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1 Introduction

Current web caching algorithms serve requests in the order of arrival, despite
the fact that web requests are essentially independent and better hit rates may
be achieved by reordering the requests. (Such a phenomenon is even more evi-
dent at high volume websites). A natural constraint is that no request should
be delayed for long. We propose the following online r-reordering problem:
given an HTTP request sequence L0 = (x1, x2, . . . , xn), the proxy server can
reorder the sequence as long as in the new ordering xi ≺ xj only if i − r < j.
We call r the reordering parameter. The goal is to minimize the total number
of misses(faults) for a given cache of size k and reordering parameter r.

We study such a model in the context of online algorithms and competitive
analysis. Our model extends the classical paging model by allowing reordering
among nearby requests in the sequence. In our model, the online algorithm
can see the page requests that can be served currently, while respecting the r-
reordering rule. Thus, a virtual window w of length r is positioned at the first
unserved page of the sequence. The window includes the current page request
and r− 1 subsequent pages in the sequence, regardless of whether some of the
pages might have been served already. All the unserved pages in the window
w are legal pages to be served next, hence visible to the online algorithm. Our
work also extends the reordering model to l-lookahead (l > r), which allows
an online algorithm to see more future requests. A virtual window w′ of length
l is positioned at the first unserved page of the sequence, and all pages within
w′ are visible to the algorithm, though only pages in the first r positions can
be served next. As before, we require a page to be brought into cache before
it can be served. The measurement is then the total number of cache misses.
The competitive ratio is the ratio of the number of cache misses incurred by
our online algorithm vs. that of the optimal offline algorithm.

We begin the study of the online algorithms by considering a cache of size
1, which is already interesting and non-trivial. We first show that the offline
reordering problem can be solved in time O(nr2r) and O(nrp+1), where p
denotes the total number of pages. Thus the problem is polynomially solvable
when r is at most logarithmic, or when r is arbitrary but p is constant.

We also consider a generalization for the case of cache size 1. We can translate
the miss rate into a more familiar theoretical measure—distance. We assume
serving (visiting) a page currently in the cache costs nothing, thus d(i, i) = 0.
In the case of a miss, the new page j is fetched and replaces a page i currently
in the cache. Thus in the unit cost case d(i, j) = 1 (i 6= j). In the weighted
version, page i costs wi to fetch. A naive distance function sets d(i, j) = wj.
We can transform this function into a metric one by introducing a new page O
and forming a star structure with the rest of the pages, letting d(O, j) = 1

2
wj,
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consequently, d(i, j) = 1
2
(wi + wj) for i 6= j. We augment the original request

sequence by adding the new page request O to the beginning and end of the
sequence. Thus the cost of fetching page j is split into two occasions: when
j is first brought into the cache, and when j is replaced by another page. It
is then sufficient to design online algorithms for the metric distance function
d(i, j) = 1

2
(wi + wj) in order to solve the weighted version, motivating the

study for problem instances under general metric distances.

We then consider the online version of the r-reordering problem with d(i, j) =
1 or d(i, j) = 1

2
(wi + wj) for i 6= j and give a 2-competitive deterministic

greedy online algorithm. We give a 3-competitive deterministic algorithm for
a general metric distance function. We provide a lower bound of 1.5 for de-
terministic algorithms and 1.25 for randomized algorithms. For the addition
of l-lookahead, we give a deterministic online algorithm that is 1 + O(r/l)
competitive for the metric case. We also prove a 1 + Ω(r/l) lower bound on
the competitiveness of any algorithm.

We remark here that the unit size cache model is similar to the k-client prob-
lem [2]. In the k-client problem, requests form k different queues, the server
can serve any of the first request of each queue. Alborzi et al. gave (2k − 1)-
competitive online algorithms, while log k

2
is a lower bound on this ratio. Di-

vakaran and Saks [4] studied an online scheduling problem with job set-ups.
Their problem is different from ours in that jobs (not requests) arrive with re-
lease time, processing time, and sequence-independent but job-dependent set-
up times. The goal is to minimize the maximum flow time. A O(1)-competitive
online algorithm is presented [4].

For general cache sizes, we show that the competitive ratio is lower bounded
by k and Hk for deterministic and randomized online algorithms, respectively,
even if the algorithm has reordering and additional lookahead, while the opti-
mal offline cannot reorder the requests. This then implies that we have tight
bounds k and Hk for the following two possible comparisons: 1) Both the online
and the offline algorithms cannot reorder the requests (the original model). 2)
The online algorithm can have lookahead and/or reorder the requests, while
the optimal offline algorithm cannot do so.

For the setting where both the online and the offline algorithms can reorder
the requests, we provide deterministic and randomized r-reordering algorithms
that have competitive ratios k+2 and 2Hk+2, respectively, without additional
lookahead (i.e., r = l). More generally, the deterministic algorithm is ( k

k−s+1
+

2)-competitive with respect to an optimal offline algorithm having cache size
s ≤ k, again within an additive factor 2 of our lower bound.

Since current caching algorithms serve the request sequence in order, it is
also interesting to compare the performance of an online algorithm without

3



Table 1: Lower Bounds

Optimal with r-reordering

Deterministic Randomized

Online, no reordering max( k
k−s+1

, r
2(2k−s)

, r
k−s+l

),
max(Hk,

r
k
)

but with l-lookahead max(k, r
k
, r

l
) if s = k

Online with reordering
k Hk

(w./w.o. lookahead)

Table 2: Upper Bounds

Optimal with r-reordering

Deterministic Randomized

Online, no reordering k
k−s+1

+ 2r
k−s+min(k,l)

+ 2, 4Hk + 9.01 r
k

+ 7.01

but with l-lookahead k + 2d r
min(k,l)

e if s = k (without lookahead)

Online with reordering
k + 2 2Hk + 2

(w./w.o. lookahead)

Fig. 1. Lower Bounds and Upper Bounds for the Reordering Model

reordering with cache size k to an optimal offline algorithm with r-reordering
with cache size s ≤ k. We also allow the online algorithm to have l-lookahead 5

but no reordering. We show a lower bound of max( k
k−s+1

, r
2(2k−s)

, r
k−s+l

) for any
deterministic online algorithm. For the randomized situation, we show a lower
bound of max(Hk,

r
k
). We further show that a modified LRU (deterministic)

and a modified marking algorithm (randomized) are within a constant factor
5 and 13.011 of our lower bound, respectively. Such results completely classify
the possible comparisons between online and optimal offline algorithms with or
without reordering/lookahead in the web caching model. Figure 1 summarizes
our bounds. Most of the results can be extended to the multi-sized page model
to allow different page sizes. We consider two specific models for the case of
multi-sized page: the bit model and the fault model. In the bit model, the cost
measure is the number of bits loaded into the cache; in the fault model, it is
the number of pages.

The paging problem (without reordering) has been studied extensively. Sleator
and Tarjan [10] have demonstrated that the well-known replacement algo-
rithms LRU (Least Recently Used) and FIFO (First-in First-out) are k-compe-
titive and no online deterministic paging algorithm can be better than k-

5 Here l can take on any value, not necessarily greater than r, which is the parameter
for the offline algorithm.
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competitive. Fiat et al. [5] have shown that no randomized online algorithm
can be better than Hk-competitive where Hk =

∑k
i=1

1
i

is the kth harmonic
number. McGeogh and Sleator [9] devised an Hk-competitive algorithm.

Several extensions of the standard paging model with lookahead have been
proposed as well. Lookahead allows the online algorithm to see future page
requests before making an eviction decision. Young [11] proposed the resource-
bounded l-lookahead model, where the algorithm can see the current page re-
quest and the maximal future sequence of page requests for which it will incur
l page faults. For this model, Young presented deterministic and randomized
algorithms with competitive ratios max(2k/l, 2) and 2(ln(k/l) + 1), respec-
tively. Albers [1] proposed the strong l-lookahead model, where the algorithm
can see the future l distinct pages which are different from the current page re-
quest. Albers presents an optimal (k− l)-competitive deterministic algorithm,
and a 2Hk−l-competitive randomized algorithm, which is within a factor 2
of optimal. Breslauer [3] proposed the natural l-lookahead model, where the
algorithm has in the lookahead queue at most l distinct page requests that
are currently not in the cache. Breslauer presented a tight bound of k+l

l+1
for

deterministic algorithms for both natural and resource-bounded l-lookahead.

There are other extensions of the paging model in the literature. For example,
a multi-threaded paging model was proposed by Feuerstein et. al. [6], where
there are multiple servers and request queues.

The rest of the paper is organized as follows: Section 2 presents an off-
line algorithm, Section 3 is devoted to algorithms and analysis for caches
of size 1, Section 4 analyzes deterministic algorithms with and without re-
ordering/lookahead for caches of size k, and their performance is compared to
the optimal offline reordering algorithm, Section 5 presents results under the
same comparisons for randomized algorithms, finally Section 6 summarizes
our results.

2 Offline r-reordering

We first show how to solve the offline r-reordering problem using dynamic
programming. We denote by n the total length of the sequence, p the total
number of distinct pages, and r the reordering parameter. From now on, we
use OPT to denote the optimal offline strategy.

Theorem 1 The offline r-reordering problem can be solved by dynamic pro-
gramming in time O(nr

∑

s≤p

(

r

s

)

). An extra factor of min(p, r) is incurred for
general metric distance functions.
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Proof. Without loss of generality, we can assume that when OPT fetches one
page into the cache, all occurrences of the same page requests in the current
window is served, advancing the window as far as possible.

Let w = {p1, . . . , p2, . . . , pm, . . .} denote the current window, where pi is the
first occurrence of the ith different unserved page in w (so there are a total of
m unserved distinct pages, with m ≤ p). 6

The key observation is that we can restrict OPT to serve either p1 or p2 next,
i.e., OPT can exchange the first served page pi (i > 2) with either p1 or p2,
whichever will be served first later. It’s easy to verify that the optimality is
maintained.

Next we use dynamic programming, with the following table entries. Each
table entry corresponds to the current “state” of the sequence, and records
the least number of misses needed to arrive at such “state”:

(1) The current position of the window. There are n such choices.
(2) For each page in the current window, up to which occurrence has the

page been served already. Since there are at most r pages in the window,
and up to p difference pages, there are at most

∑

s≤p

(

r

s

)

such choices.

For each table entry T , we need to backtrack up to r previous table entries that
could have resulted in T . For general metric distance functions, we augment
each table entry to also include which page was served last. 2

The complexity of the offline case for general r and p remains an interesting
open problem.

3 Online r-reordering, l-lookahead for Unit Size Cache

The greedy online r-reordering algorithm always serves the first unserved
page in the current window, followed by as many occurrences of the same
page, while advancing the window as far as possible. For instance, let w =
{x1, x2, . . . , xi, . . .} be the current window. Let xi be the first occurrence of
an unserved page different from x1. Then add all occurrences of page x1 from
position 1 up to i + r − 1 to the sequence, advancing the window so that now
it starts with xi. Now we serve all occurrences of xi, and so on. We call pages
such as x1 and xi leading pages. Thus the number of misses is exactly the
number of leading pages. We use LOPT to denote the optimal sequence, and
LG the sequence created by the greedy algorithm.

6 It is possible that some occurrences in the current window have already been
served, however, by definition none of the pi’s has been served.
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Theorem 2 The greedy online r-reordering algorithm is 2-competitive, even
in the case where pages may have weights. It is not α-competitive for any
α < 2.

Proof. We show that if a page occurs t times in LOPT , then it occurs at most
2t times in LG (we count consecutive occurrences as one). Consider a maximal
window I = {xi, . . . , xj} in the request sequence such that all the occurrences
of page x in this window appear consecutively in LOPT , with xi = xj = x. We
show that in LG there are at most two leading pages of x out of all occurrences
in I. Let xi′ be first such leading page, then xi′ = x and i′ ≥ i. Similarly, let xi′′

be the second leading page, xi′′ = x and i′′ > i′ + r. Let xq 6= xi′′ be the next
leading page after serving xi′′ in LG. We know that all occurrences of x up to
xq+r−1 are included together right after xi′′ in LG. We claim that q+r > j, i.e.
any occurrences of x after position q + r − 1 cannot be included in I. If not,
then OPT must have served xq before serving xi, but q > i′′ > i′ + r ≥ i + r,
a contradiction. This proves that the next lead page of x in LG is beyond I.

For the lower bound, first consider r = 2 and a sequence of pages (123)2l. The
greedy algorithm will serve these pages in the order they occur, for a total
cost of 6l. OPT starts with 2, then serves two 1s, then two 3s, then two 2s,
and so on, for a total cost of 3l + 1; the ratio (6l)/(3l + 1) approaches 2 as l
grows. The result for even r = 2q is obtained by the sequence (1q2q3q)2l. For

odd r = 2q + 1, we consider instead the sequence (1q2q+13q1q+12q3q+1)
l
. 2

Theorem 3 No deterministic online algorithm for the r-reordering problem
can be better than 1.5-competitive. No randomized online algorithm can be
better than 1.25-competitive.

Proof. Let r = 2. We use pages 0, 1, 0′ and 1′. The sequence start with a
pattern of either 0100 or 01011, then repeat the chosen pattern to continue the
sequence with pages 0′, 1′ instead of 0, 1, then switch back to 0, 1, and so on.
Both of the patterns can be done in 2 misses (1000 and 00111 respectively).
But since a window of size r = 2 just sees 01, it cannot distinguish between the
2 sequences. Deterministically, it can be made to require 3 misses per pattern,
for a factor of 3/2 = 1.5.

For a randomized lower bound, assume a randomized algorithm will serve
page 0 with probability p and serve page 1 with probability 1− p. If p ≥ 1/2,
then the adversary picks the pattern 0100, otherwise the adversary will pick
01011. In either construction, the expected number of misses is no less than
(3/2)1/2 + 1/2 = 1.25.

The case of general r is obtained by replacing each 0 with 0r−1 in the sequence.
2
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3.1 Extension to l-lookahead

We now consider r-reordering with l-lookahead (with l > r). The upper bound
obtained will be improved later in the study of the more general case for metric
spaces.

Theorem 4 There is a deterministic online r-reordering algorithm with l-
lookahead that achieves competitiveness 1 + 16r/l, for (l/8r) integer.

Proof. Partition the sequence into groups of size l/2, each of these consisting
of t segments of size 4r (where t = l/8r). Within a group, let Di be the
number of distinct pages in the ith segment. We assume that the middle set
of size 2r within each segment has at least two distinct pages. Otherwise
the sequence can be reduced into two separate sequences, with the single
page as the dividing point. Once this condition is met, it is easy to show
that a collection of consecutive occurrences of the same page in LOPT must
be contained within two consecutive segments (if we reach three consecutive
segments for a page p1, then a different page p2 in the middle 2r of the middle
segment could not be included before or after we serve p1). This gives a lower
bound of

∑

Di/2 for the optimal solution.

On the other hand, we can choose to split a group of size l/2 by selecting
a segment out of the t segments as a split segment. We choose the segment
j with the smallest Dj, and choose a random dividing point within this jth

segment. The lookahead l guarantees that we can decide the splitting segment
for the next group of size l/2. Between the two chosen dividing points we
can solve the problem optimally by dynamic programming. However, we may
serve the pages in the split segment one more time compared to OPT , which
is upper bounded by Dj. The loss is at most Dj ≤

∑

Di/t = (
∑

Di/2)(16r/l).
2

Theorem 5 No deterministic online r-reordering algorithm with l-lookahead
can have competitive ratio better than 1 + 3r/[2(l + r + 1)], for (l + r + 1)/3r
integer. In the randomized case, the lower bound becomes 1+3r/[4(l + r +1)].

Proof. Let r = 2, and consider the two sequences (01)3t+100 and (01)3t+101.
Let l = 6t + 3. Then with lookahead l the two sequences cannot be distin-
guished, and yet whether we start with 0 or with 1 makes a difference between
costs 2t + 2 and 2t + 3. The sequence is then continued with pages 0′ and 1′

as in Theorem 3. The ratio is then 1 + 1/(2t + 2) = 1 + 3/(l + 3). Similar to
Theorem 3, randomized algorithms can at best halve the additive term in the
deterministic case, giving a lower bound of 1 + 3/[2(l + 3)].

The case of general r is obtained by replacing each 0 with 0r−1 in the sequence,
and letting l = r(3t + 1) + r − 1. 2
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3.2 Extension to Metric Distance Functions

We first consider metric distance functions with reordering parameter r and
no additional lookahead. We present the SP (Shortest Path) algorithm. Let
the initial cache content be x0, and the first window w = {x1, x2, . . . , xr}.
The algorithm find a minimum travelling salesman path visiting all the pages
starting with x0 and ending with xr. After serving page xr, the current window
becomes w = {xr+1, . . . , x2r}. The algorithm then find a minimum travelling
salesman path visiting all the pages from xr to x2r, with xr and x2r as the
starting and ending point. In general, at the ith stage, the algorithm follows the
minimum length path visiting the pages x(i−1)r, . . . , xir, starting with x(i−1)r

and ending with xir.

Theorem 6 The SP algorithm for metric distance functions is 3-competitive,
but not α-competitive for any α < 3.

Proof. Let pi be the last page in LOPT of an xj with j ≤ ir. The first observa-
tion is that pi’s must appear in order in LOPT = {. . . , p1, . . . , p2, . . . , pi . . . , },
because of the reordering constraint. By definition, the pages between pi−1 and
pi must contain xir, and only contain pages xj with (i − 1)r < j < (i + 1)r.

We can construct a tour R visiting pages between pi−1 and pi in the following
manner. First we go from pi−1 to pi, visiting only the pages xj with (i− 1)r <
j < ir; then go from pi back to pi−1, visiting only xir; finally, we go from pi−1

back to pi again, visiting the remaining pages xj with ir < j < (i + 1)r. Now
that R visits pages in between x(i−1)r and xir all together. And R costs at
most 3 times that of LOPT . Since our algorithm find the optimal path visiting
x(i−1)r up to xir, it follows that SP produces a sequence which is within a factor
of 3 of LOPT . Therefore the algorithm is 3-competitive. In the case of r too big
to find the optimal path in polynomial time, we can use a 5/3-approximation
algorithm to approximate the shortest travelling salesman path between two
specified end points [7]. Thus in total, we get a 5-competitive online algorithm.

For the lower bound, let r = 2, and consider in the unweighted case the
sequence (01)3t+10, which as we said before has optimal cost 2t + 2. Each
stage of the algorithm considers a segment 010 and visits these three pages in
this order, i.e. no reordering is done. Therefore the cost for the algorithm is
6t + 3, and the ratio (6t + 3)/(2t + 2) approaches 3 as t grows. The case of
even r = 2q follows by replacing 0 and 1 with q 0’s and 1’s. The case of odd
r = 2q + 1 uses the sequence (0q1q+1)

3t+1
0. 2

We now consider r-reordering with l-lookahead for metric distance functions.

Theorem 7 There is a deterministic online r-reordering algorithm with l-
lookahead for metric distance functions that achieves competitiveness 1+4(3r−

9



2)/l, for l/(6r − 4) integer.

Proof. Partition the sequence into groups of size l/2, each of these consisting
of t segments of size 3r−2 (where t = l/[2(3r−2)] is an integer). Each segment
has pages in positions 1, . . . , 3r − 2; the first 2r − 1 pages are called special
pages, and the page in position r is called the distinct page.

For each segment i out of the t segments in a group, consider the optimal cycle
Ci that visits the 2r − 1 special pages, starting and ending with the distinct
page. We use ci to denote the total cost of Ci. Note that ci is at most twice
the cost incurred on these special pages by LOPT . Furthermore, special pages
in distinct segments are visited by LOPT in the order they occur, since they
are separated by r− 1 non-special pages in a segment. Thus

∑

i ci/2 is a lower
bound on the total distances incurred by LOPT .

Our algorithm works as follows. We call the segment with the minimum ci

value in each group the special segment. Using lookahead l, select the next
special segment s2 whose optimal cycle Cs2

has the minimum cost out of the
t segments in the next group. Use dynamic programming, solve optimally
how to start from the current distinct page in the current special segment s1,
visiting the last r − 1 non-special pages remaining in s1, up to the pages just
before s2, and ending with the distinct page in s2. Our algorithm then attach
the minimum cycle Cs2

, find the next special segment s3 and so on.

The crucial observation is that in LOPT , the distinct page in segment i must
appear after all the pages in the segments i − 1 or lower, and before all the
non-special pages in segment i and all the pages in segments i + 1 or higher,
by the reordering constraint. If ignore the cost of the cycles we attached, the
rest of the cost incurred by our algorithm is upper bounded by that of OPT .
The total cost of the attached cycles ci’s is at most 2/t = 4(3r−2)/l times the
cost incurred by the optimum. The overall competitive ratio is thus at most
1 + 2/t = 1 + 4(3r − 2)/l. 2

4 Deterministic Algorithms for General Cache Sizes

In this section we consider the online reordering problem for a cache of size k.
We first establish a lower bound.

Theorem 8 No deterministic online algorithm for the r-reordering problem
with l-lookahead can have a competitive ratio better than k with respect to the
optimal solution without reordering and cache size k, or k/(k − s + 1) with
respect to the optimal solution without reordering and cache size s ≤ k.

10



Greedy LRU —
1 WHILE there is a page p ∈ Cache in the current window w
2 Serve first such p
3 Shift w if possible
4 Evict the least recently used page in cache
5 Fetch the first page in the current window and serve
6 Shift the window w

Fig. 2. Pseudo-code for the Greedy LRU Algorithm

Proof. We consider sequences consisting of blocks of l ≥ r identical pages. For
such sequences, reordering and lookahead are useless, and the result follows
from Sleator and Tarjan’s results on the standard paging model [10]. 2

It is obvious that the above bound also applies to cases where optimal algo-
rithms are allowed to reorder the requests as well. We now concentrate on
online algorithms. Consider the Greedy LRU algorithm, which operates as fol-
lows: always serve the cached pages in the current window first, and shift the
window if possible. If there are no cached pages in the window, serve the first
“miss” request in the window by evicting the least recently used page in the
cache. See Figure 2 for the pseudo-code.

This practical algorithm has competitive ratio exceeding our lower bound by
at most 2. We denote the optimal off-line r-reordering for a cache of size s by
OPT (s), with s ≤ k.

Theorem 9 The Greedy LRU algorithm is (k +2)-competitive with respect to
OPT (k), and ( k

k−s+1
+ 2r

k−s+r
)-competitive with respect to OPT (s) for s ≤ k.

Proof. We divide the sequence into steps that contain two parts each. The first
part of step i begins with the window starting at a position 7 f(i). When the
Greedy LRU algorithm is about to fault for the (k+1)th time in the first part,
we begin the second part, with the window starting at a position g(i). The
next step i+1 begins with the window starting at position f(i+1) = g(i)+ r.

The definition of the first part of step i implies that there are at least k + 1
distinct pages between positions f(i) and g(i). These pages must be served
by OPT (s) with its window starting at a position p between f(i)− r + 1 and
g(i) = f(i + 1) − r, so OPT (s) will fault at least k − s + 1 times while its
window starts at such a position p. Thus the number of faults incurred in the
first part of all steps i is at most k/(k − s + 1) times the number of faults
incurred by OPT (s).

7 Here and henceforth the word “position” refers to the position of the pages with
respect to the original request sequence.
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Suppose Greedy LRU faults q times in the second part of step i. The q pages
on which it faults are distinct and also different from the k pages in the cache
when the window starts at position g(i). These k pages were served in the
first part of step i, so there are at least k + q distinct pages between positions
f(i) and g(i) + r − 1 = f(i + 1)− 1. These pages must be served by OPT (s)
with its window starting at a position p between f(i)− r +1 and f(i+1)− 1,
so the optimal algorithm will fault at least k − s + q times while its window
starts at such a position p. Since q ≤ r, we have q/(k− s + q) ≤ r/(k− s + r),
and the faults incurred in the second part of all even (odd) steps i are at most
r/(k − s + r) times the number of faults incurred by OPT (s).

The overall competitiveness is thus k/(k−s+1)+2r/(k−s+r), in particular
k + 2 if s = k. 2

We now study the performance of algorithms without reordering and cache
size k with respect to an optimal solution with r-reordering and cache size
s ≤ k. We first show a lower bound.

Theorem 10 No algorithm without reordering can have a competitive ratio
better than r

2(2k−s)
for s ≤ k, or better than r

k
if s = k. No deterministic

algorithm without reordering but with lookahead l can have a competitive ratio
better than max( k

k−s+1
, r

2(2k−s)
, r

k−s+l
), or better than max(k, r

k
, r

l
) if s = k.

Proof. Consider an instance with 2k distinct pages, which has the form
(123 · · · (2k))n. OPT (s) will fault on at most 2k − s pages out of each con-
secutive block of r pages. Any algorithm without reordering and cache size k
will fault on k pages out of each consecutive block of 2k pages. The first result
follows since ( k

2k
)/(2k−s

r
) = r

2(2k−s)
.

When s = k, consider an instance with k + 1 distinct pages of the form
(123 · · · (k + 1))n. OPT (s) will fault on at most 1 page out of each consecutive
block of r pages. Any algorithm without reordering will fault on at least 1 page
out of each consecutive block of k pages. This shows a lower bound on the
competitive ratio of r

k
.

Consider now the case with lookahead l, and consider instances with k + l
distinct pages. An adversary can always choose the page in position l to be
different from the preceding l − 1 pages and from the k pages in the cache.
Thus the algorithm without reordering will fault on every page. OPT (s) will
fault on at most k + l− s pages out of each consecutive block of r pages. This
shows a lower bound on the competitive ratio of r

k−s+l
. 2

We now present algorithms without reordering that match our lower bounds
on competitiveness up to constant factors, for all values of r, l, k, and s.

Theorem 11 LRU (without reordering/lookahead) is k+r
k−s+1

-competitive with
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respect to OPT (s), in particular (k + r)-competitive if s = k.

Proof. We divide the sequence into steps that contain two parts each, as in
Theorem 9. Again, there are at least k + 1 distinct pages between positions
f(i) and g(i) that must be served by OPT (s) with its window starting at a
position p between f(i) − r + 1 and g(i) = f(i + 1) − r, and so OPT (s) will
fault at least k − s + 1 times while its window starts at such a position p.

The total number of faults incurred by LRU during step i is at most k + r,
giving competitiveness (k + r)/(k − s + 1), in particular k + r if s = k. 2

Note that the above algorithm gives a competitive ratio of 2k or better, if
r ≤ k. For r > k we devise online algorithms with lookahead but without
reordering. We consider the following modified LRU algorithm without re-
ordering. Our algorithm has a lookahead no more than k, i.e., the algorithm
uses lookahead l′ = min(k, l). The modified LRU operates like LRU in the
first part of each step i beginning with the window starting at a position f(i),
and the second part of step i begins with the window starting at a position
g(i) = f(i + 1) − r. For the second part of step i, the r pages at positions
starting with g(i) are divided into dr/l′e blocks of size at most l′. We run LRU
on the l′ pages in each block, except that we never evict from the cache a page
in the current block. (This is possible because l′ ≤ k.)

Theorem 12 The modified LRU algorithm without reordering and with looka-
head l′ = min(k, l) is ( k

k−s+1
+ 2r

k−s+min(k,l)
+ 2)-competitive with respect to

OPT (s), and (k + 2d r
min(k,l)

e)-competitive if s = k.

Proof. The faults incurred in the first part of all steps i are at most k/(k−s+1)
times the number of faults incurred by the optimal algorithm. During the
second part, let q ≤ l′ be the maximum number of faults incurred by the
modified LRU algorithm in a single block out of all dr/l′e blocks. Then we
have q distinct pages different from the k pages in the cache when the window
starts at the beginning of a block, thus at least k + q distinct pages between
positions f(i) and g(i)+ r− 1 = f(i+1)− 1. OPT (s) faults at least k− s+ q
times while its window starts between f(i) − r + 1 and f(i + 1) − 1. Adding
even and odd steps i separately, since q/(k− s+ q) ≤ l′/(k− s+ l′), we obtain
a ratio for the second part of the steps i given by 2l′dr/l′e/(k − s + l′) ≤
2(r + l′ − 1)/(k − s + l′) < 2r/(k − s + l′) + 2. 2

Note that in particular we obtain an O(k)-competitive algorithm as before
with respect to the optimal r-reordering, provided r = O(k · min(k, l)).
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4.1 Multi-sized pages

It is possible to adapt our proofs for the situation where not all the pages have
the same size. As an example, we adapt the proof of Theorem 9. We denote
the smallest possible page size by ε and the size of the cache by K, and write
k = K/ε.

Theorem 13 In both the bit and the fault model, the Greedy LRU r-reordering
algorithm for cache size K is (k+3)-competitive with respect to the optimal r-
reordering algorithm for cache size K, and [(k+1)/(k−s+1)+2]-competitive
with respect to the optimal r-reordering algorithm for cache size S ≤ K, where
s = S/ε.

Proof. We first consider the bit model.

We divide the sequence into steps that contain two parts. The first part of step
i begins with the window starting at a position f(i). As soon as the Greedy
LRU algorithm has served distinct requests totaling more than K bits, the
next distinct request after this, with the window starting at a position g(i),
is the start of the second part. The next step i + 1 begins with the window
starting at position f(i + 1) = g(i) + r.

The definition of the first part of step i implies that there are K + δ bits
requested (counting bits from identical requests only once) between positions
f(i) and g(i), for some δ > 0. These pages must be served by the optimal
algorithm with its window starting at a position p between f(i) − r + 1 and
g(i) = f(i+1)−r, so the optimal algorithm will pay at least K−S+max(δ, ε)
while its window starts at such a position p. (Any fault costs at least ε.) Thus
the faults incurred in the first part of all steps i cost at most (K + δ)/(K −
S + max(δ, ε)) ≤ (k + 1)/(k − s + 1) times the optimal cost.

Suppose Greedy LRU faults q times in the second part of step i, and the total
size of the pages on which it faults is Q. The q pages on which it faults are
distinct and also different from the pages in the cache when the window starts
at position g(i). These pages were served in the first part of step i, so there
are at least K + Q bits from distinct pages requested between positions f(i)
and g(i) + r − 1 = f(i + 1) − 1. These pages must be served by the optimal
algorithm with its window starting at a position p between f(i) − r + 1 and
f(i + 1) − 1, so the optimal algorithm will pay at least K − S + Q while its
window starts at such a position p. Therefore, the cost incurred in the second
part of all even (odd) steps i is at most the cost incurred by the optimal
algorithm.

The overall competitiveness is thus (k + 1)/(k− s + 1) + 2, in particular k + 3
if s = k.
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Window Randomized Marking —
1 WHILE there is a page p ∈ Cache in the current window w
2 Serve first such p and mark the page
3 Shift w if possible
4 IF all pages in the cache are marked
5 Unmark all the pages
6 Evict randomly an unmarked page in the cache
7 Fetch and mark the first page in the current window and serve
8 Shift the current window w

Fig. 3. Pseudo-code for the window randomized marking algorithm

For the fault model, the proof is similar: the cost function changes, but the
ratios remain the same. 2

5 Randomized Algorithms for General Cache Sizes

We now consider randomized algorithms for the online reordering problem
with cache size k ≥ 2. The general lower bound is again straightforward.

Theorem 14 No randomized online algorithm for the r-reordering problem
with l-lookahead can have a competitive ratio better than Hk with respect to
the optimal solution without reordering and cache size k.

Proof. We consider sequences consisting of blocks of l ≥ r identical pages. For
such sequences, reordering and lookahead are useless, and the result follows
from a result of Fiat et. al. [5] without reordering or lookahead. 2

The window randomized marking algorithm maintains a set of pages which
can be marked in the cache. Initially no pages in the cache are marked. The
algorithm operates in marking phases where it behaves iteratively as follows.

The algorithm always serves and marks cached pages currently in the window
first and always advances the window as far as possible. Otherwise, we serve
the first page in the current window, which is not in the cache. We pick an
unmarked page in the cache uniformly at random and replace it with the newly
fetched page. We mark the new page and advance the window. At the end of
the marking phase, all pages in the cache are marked and the first page in
the window is unmarked, plus all the cached pages in the window are served
already. We then unmark all pages and proceed to the next marking phase.
See Figure 3 for the pseudo-code.
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We first show that this natural modification of the original marking algorithm
is at most a factor of 4 away from optimal.

Theorem 15 The window randomized marking algorithm is (4Hk+2)-compe-
titive with respect to OPT (k).

Proof. Let M denote the window randomized marking algorithm. We divide
the sequence into steps that contain two parts each. Step i begins at a po-
sition f(i) that is the starting position of the window at the beginning of a
marking phase. The second part of step i begins at a position g(i) that is the
starting position of the window at the beginning of the next marking phase.
Furthermore, if step i + 1 has beginning position f(i + 1), then we require
f(i) ≤ f(i + 1) − r ≤ g(i). This can be achieved by fixing the starting posi-
tions f(i) in decreasing order of i. We add the marking phases before f(i + 1)
to the second part of step i. The first marking phase we encounter (traversing
the request sequence in reverse order) with starting position before f(i+1)−r
will be the first part of step i. Note then step i may not have a second part, if
a single marking phase begins with the window starting at f(i) ≤ f(i+1)− r
(and ends at f(i + 1) − 1).

Let M(i) denote the cache content of M when its window starts at position
f(i), and let OPT (i) denote that of OPT when its window starts at position
f(i) − r. Let d(i) = |OPT (i) − M(i)| = |M(i) − OPT (i)|. Let u denote the
number of distinct pages served by M in the first part of step i that were
not in M(i). OPT incurs at least u − d(i) faults with its window starting at
positions between f(i) − r + 1 and g(i) − 1, since there are at least u − d(i)
distinct pages served by M in the first part of step i that were not in OPT (i).
From a different angle, OPT also incurs at least d(i+1) faults with its window
starting at positions between f(i) − r + 1 and f(i + 1) − 1. Consider the k
pages in M(i + 1), they must occur somewhere between f(i) and f(i + 1)− 1.
In particular, take the d(i+1) pages not in OPT (i+1), they are either served
without a fault but evicted in a subsequent fault by OPT with its window
starting between f(i) − r + 1 and f(i + 1) − r − 1, or served with a fault by
OPT with its window starting between f(i + 1) − r and f(i + 1) − 1.

Thus OPT incurs at least max(u − d(i), d(i + 1)) ≥ (u − d(i) + d(i + 1))/2
faults with its window starting between f(i)−r+1 and f(i+1)−1. Summing
over all steps, the d(i) terms telescope, so we can charge u/4 to the number
of faults for OPT in step i, since every page on which OPT faults is counted
at most twice in this sum.

The above argument establishes a lower bound on OPT , we now obtain an
upper bound on M. During the first part of step i, M faults on the u pages
not in M(i). Consider the remaining k − u pages that M serves, which are
in M(i). When serving the first such pages, M faults only if this page was
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replaced in the cache by one of the u pages, and thus with probability at most
u/k. In general, when serving the (j + 1)th such page, this page is among the
k − j pages in M(i) that have not been marked, and at most u of them have
been replaced, so M faults with probability at most u/(k− j). Summing over
all k − u pages, the expected number of misses is bounded by

u

k
+

u

k − 1
+

u

k − 2
+ · · · +

u

u + 1
= u(Hk − Hu) ≤ u(Hk − 1).

Thus M faults in expectation at most u + u(Hk − 1) = uHk times during the
first part of step i, hence at most 4Hk times the number of faults for OPT .

The analysis of the second part of step i is the same as in Theorem 9. Assume
M faults on q distinct pages in the second part of step i, so there are at least
k + q distinct pages between positions f(i) and f(i + 1) − 1. These pages are
served by OPT with its window starting at a position between f(i) − r + 1
and f(i + 1) − 1, causing at least q faults for OPT . Adding even and odd
steps separately gives ratio at most 2 between the number of faults incurred
by M in the second part of the steps and the total number of faults incurred
by OPT . Combining the two parts of each step gives ratio 4Hk + 2. 2

We now show that with a twist in the algorithm, we can improve the ratio to
2Hk + 2. The modified window randomized marking algorithm runs in steps,
again divided into two parts each. The first part of step i again consists of
a single marking phase. The second part of step i consists of marking phases
as before, except that it ends when the second part of step i has caused the
window to advance exactly r positions. At that point in time, all marks are
erased and step i + 1 begins.

Theorem 16 The modified window randomized marking algorithm is (2Hk +
2)-competitive with respect to OPT (k).

Proof. The effect of the modification is to enforce g(i) = f(i + 1)− r. Again,
OPT incurs at least u − d(i) faults with its window starting at positions
between f(i) − r + 1 and g(i) − 1 = f(i + 1) − r − 1, on pages in neither
OPT (i) nor M(i). Also OPT incurs at least d(i + 1) faults with its window
starting at positions between f(i) − r + 1 and f(i + 1) − 1. We are going to
distinguish between these misses. Let d(i+1) = d1(i+1)+d2(i+1). Let d1(i+1)
refer to the number of pages that are served without a fault but evicted in one
of the subsequent faults, with its window starting between f(i) − r + 1 and
f(i + 1)− r− 1. Let d2(i + 1) refer to the number of pages served with a fault
by OPT , with its window starting between f(i + 1) − r and f(i + 1) − 1.

Note that the d2(i) faults are different from the u − d(i) faults, since the
u − d(i) pages are not in M(i) whereas the d2(i) pages are. Therefore the
total number of faults, with OPT ’s window starting at positions between
f(i) − r and f(i + 1) − r − 1, is at least max[u − d(i) + d2(i), d1(i + 1)] ≥
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(u−d(i)+d2(i)+d1(i+1))/2. Summing over all steps, again the d(i), d1(i), d2(i)
terms telescope, but now the starting window positions occurring in the sum
do not overlap. We can then assume that the number of faults for OPT in
step i is u/2 instead of u/4.

The analysis for the modified algorithm is identical to that of Theorem 15.
The expected number of faults for the modified algorithm in the first part of
step i at most uHk, giving ratio 2Hk. For the second part we obtain a ratio 2.
Combining the two parts gives the desired bound 2Hk + 2. 2

We now study the performance of randomized algorithms without reordering
and cache size k with respect to an optimal solution with r-reordering and
cache size k. The following result can be obtained from Theorems 10 and 14.

Theorem 17 No randomized algorithm without reordering and with lookahead
l can have a competitive ratio better than max(Hk,

r
k
).

We now present a randomized algorithm without reordering that is a constant
factor away from the lower bound, for all values of r, l, k, using only lookahead
l′ = min(k, l). The lookahead-only algorithm again consists of steps divided
into two parts. The first part of step i is a randomized marking phase without
reordering. The second part of step i operates on blocks of size l′ as in the
second part of the modified LRU algorithm without reordering in Section 4.

Theorem 18 The lookahead-only algorithm with lookahead l′ = min(k, l) is
(4Hk + 2dr/ min(k, l)e)-competitive with respect to OPT (k).

Proof. We obtain ratio 4Hk for the first part of step i as in Theorem 15, and
ratio 2dr/l′e for the second part of step i as in Theorem 12. 2

Even more interesting is the fact that there is an online algorithm without
either lookahead or reordering that achieves a slightly worse bound, but is
still only a constant factor away from our lower bound.

We remark first that the original marking algorithm [9] as is does not have
such property. It is only (Hk + Hk · r

k
)-competitive (up to constant factors),

and not (Hk + r
k
)-competitive. Consider a sequence (123 · · · (k + 1))t, OPT

incurs only one fault every r pages, while the original randomized marking
algorithm incurs about Hk faults every k pages.

Consider the following no-lookahead randomized marking algorithm. It also
has two parts for each step. The first part of step i is again a randomized
marking phase without reordering. For the second part, we run randomized
marking algorithm on blocks of size l = dαke for dr/le blocks, where 0 < α < 1
is a parameter to be determined later. Once the block limit dαke is reached,
all marks are cleared (even if some pages are still unmarked) and the next
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marking phase begins.

Theorem 19 The no-lookahead randomized marking algorithm with cache
size k has competitive ratio 4Hk +9.011 · r/k +7.011 with respect to OPT (k).

Proof. The ratio 4Hk for the first part of step i is due to Theorem 15. The
analysis for second part of step i is similar to that of Theorem 12. Let q be
the maximum number of pages in a single block that are not in the online
algorithm’s cache when the window starts at the beginning of the block. Then
there are again at least k + q distinct pages between positions f(i) and f(i +
1)− 1, giving q faults for OPT with its window starting between f(i)− r + 1
and f(i + 1) − 1. We may thus attribute q/2 faults from OPT to step i. Our
algorithm, on the other hand, faults in each block on the q′ pages (with q′ ≤ q),
and on the remaining l − q′ pages that are in the cache at the beginning of
the block, which in expectation is at most

q′

k
+

q′

k − 1
+

q′

k − 2
+ · · · +

q′

k − l + q′ + 1
= q′(Hk − Hk−l+q′).

If l = dαke, this quantity is at most q(Hk−Hk−l) ≤ q[1+ln k− ln(k−α ·k)] =
q[1− ln(1−α)]. There are thus a total of q[2− ln(1−α)] faults in each of the
dr/le ≤ r/(αk) + 1 blocks, giving a ratio of 2[2 − ln(1 − α)](r/(αk) + 1) for
the second part of step i. Setting α = 0.778 gives the desired bound. 2

6 Conclusions

In this paper we have studied the model of web caching with request reorder-
ing. We presented good deterministic and randomized online algorithms, as
well as established matching lower bounds for the competitive ratios (up to
a constant factor). We also classified the performance comparisons between
online algorithms and optimal offline algorithms with or without reorder-
ing/lookahead under the proposed model. One interesting open problem is
the complexity of the offline reordering web caching problem with arbitrary
r (the reordering parameter) and p (total number of distinct pages).
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