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BRICS, Aalborg University

Abstract

Prefix iteration is a variation on the original binary version of the Kleene star
operation P ∗Q, obtained by restricting the first argument to be an atomic action.
The interaction of prefix iteration with silent steps is studied in the setting of Mil-
ner’s basic CCS. Complete equational axiomatizations are given for four notions of
behavioural congruence over basic CCS with prefix iteration, viz. branching congru-
ence, η-congruence, delay congruence and weak congruence. The completeness proofs
for η-, delay, and weak congruence are obtained by reduction to the completeness the-
orem for branching congruence. It is also argued that the use of the completeness
result for branching congruence in obtaining the completeness result for weak con-
gruence leads to a considerable simplification with respect to the only direct proof
presented in the literature. The preliminaries and the completeness proofs focus on
open terms, i.e., terms that may contain process variables. As a byproduct, the
ω-completeness of the axiomatizations is obtained as well as their completeness for
closed terms.

AMS Subject Classification (1991): 68Q10, 68Q40, 68Q55.
CR Subject Classification (1991): D.3.1, F.1.2, F.3.2.
Keywords and Phrases: Concurrency, process algebra, basic CCS, prefix itera-
tion, branching bisimulation, η-bisimulation, delay bisimulation, weak bisimulation,
equational logic, complete axiomatizations.

1 Introduction

The research literature on process theory has recently witnessed a resurgence of interest in
the study of Kleene star-like operations (cf., e.g., the papers [8, 17, 15, 13, 32, 12, 16, 3, 2]).
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Some of these studies, notably [8], have investigated the expressive power of variations
on standard process description languages in which infinite behaviours are defined by
means of Kleene’s star operation [26, 11] rather than by means of systems of recursion
equations. Some others (see, e.g., [17, 32, 15, 2]) have studied the possibility of giving
finite equational axiomatizations of bisimulation-like equivalences [30, 28] over simple
process algebras that include variations on Kleene’s star operation. De Nicola and his
co-workers have instead focused on the study of tree-based models for what they call
“nondeterministic Kleene algebras”, and on the proof systems these models support to
reason about regular expressions and more expressive languages built on top of those;
see, e.g., [13, 12] for details on this line of research.

This paper aims at giving a contribution to the study of complete equational axiom-
atizations for Kleene star-like operations from the point of view of process theory. Our
starting point is the work presented in [15]. In that reference, a finite, complete equational
axiomatization of strong bisimulation equivalence has been given for T(BCCS)

p∗(Aτ ),
i.e., the language of closed terms obtained by extending the fragment of Milner’s CCS
[28] containing the basic operations needed to express finite synchronization trees with
prefix iteration. Prefix iteration is a variation on the original binary version of the Kleene
star operation P ∗Q [26] obtained by restricting the first argument to be an atomic action.
Intuitively, at any time the process term a∗P can decide to perform action a and evolve to
itself, or an action from P , by which it exits the a-loop. The behaviour of a∗P is captured
very clearly by the rules that give its Plotkin-style structural operational semantics:

a∗P
a→ a∗P

P
b→ P ′

a∗P
b→ P ′

Equationally, as shown in [15], such an operation can be completely characterized by the
following two natural laws:

a.(a∗x) + x = a∗x

a∗(a∗x) = a∗x

The reader familiar with Hennessy’s work on complete axiomatizations for the delay
operation of Milner’s SCCS [22, 23] will have noticed the similarity between the above
laws and those presented in [22] (see also [1, Page 40]). This is not surprising as such a
delay operation is an instance of the prefix iteration construct.

1.1 Results

In this paper, we extend the results in [15] to a setting with the unobservable action τ .
More precisely, we consider four versions of bisimulation equivalence that, to different
degrees, abstract away from the internal evolution of processes (viz. delay equivalence
[27], weak equivalence [28], η-equivalence [5] and branching equivalence [19]), and provide
complete equational axiomatizations for each of the congruences they induce over the
language (BCCS)p∗(Aτ ) of open terms over the signature of T(BCCS)

p∗(Aτ). The
axiomatizations we present are obtained by extending the axiom system from [15] with the
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relevant τ -laws known from the literature for each of the congruences we consider (cf. [20]
for a discussion of these laws), and with collections of laws that describe the interplay
between the silent nature of τ and prefix iteration. For instance, the axiomatization of
weak congruence uses Milner’s well-known τ -laws [28] and the following axioms describing
the interaction of prefix iteration with the silent action τ :

τ∗x = τ.x

τ.(a∗x) = a∗(τ.a∗x)
a∗(x + τ.y) = a∗(x + τ.y + a.y) .

The first of these equations was introduced in [8] under the name of Fair Iteration Rule,
and expresses a fundamental property of weak congruence, namely the abstraction from
τ -loops, that underlies the soundness of Koomen’s Fair Abstraction Rule [4]. The other
two equations are from [3], and describe a rather subtle interplay between prefix iteration
and the silent action τ .

The completeness results for weak and branching congruence were first proven in [3]
and [16], respectively. However, the proofs of these results presented in this paper are new,
and we consider them to be an improvement on the original ones. In particular, unlike the
one given in [16], the proof for branching congruence does not rely on the completeness
result for strong bisimulation presented in [15], and that for weak congruence is obtained
by a simple and natural reduction to the completeness result for branching congruence.
Perhaps surprisingly, the proof for weak congruence presented here is considerably simpler
then the one given in [3] which uses only properties of weak congruence. All the authors’
attempts to obtain a direct proof of the completeness theorem for weak congruence which
is simpler than the one presented in [3] have been to no avail. The axiomatizations of
η-congruence and delay congruence are also given by reduction to the one for branching
bisimulation, and are, to the best of our knowledge, new. All the axiomatizations we
present are finite, if so is the set of observable actions, and irredundant.

Another notable feature of the proofs of the completeness theorems we present is
that, unlike those in [3, 16], they apply to open terms directly, and thus yield the ω-
completeness of the axiomatizations as well as their completeness for closed terms. Fol-
lowing [29, 18], this is achieved by defining a structural operational semantics and notions
of bisimulations directly on open terms. For all the notions of bisimulation equivalence
so defined for open terms in the language (BCCS)p∗(Aτ), we prove that two terms are
equivalent iff all their closed instantiations are. This ensures that our definitions are in
agreement with the standard ones in the literature on process theory.

The ω-completeness of the axiomatizations for branching, η- and delay congruence
are all new. The axiomatization for weak congruence was first shown to be ω-complete
in [3] in the presence of a denumerable set of observable actions. Our result in this paper
sharpens the one in the aforementioned reference in that, like the ones for branching, η-
and delay congruence, it only requires that the set of observable actions be non-empty.

1.2 Outline of the paper

The paper is organized as follows. Section 2 introduces the language of basic CCS with
prefix iteration, (BCCS)p∗(Aτ), and its operational semantics. In that section we also
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give the definition of branching, η-, delay and weak congruence over open terms, and
show that two open terms are related by any of those congruences iff all their closed
instantiations are. Section 2 concludes with a study of several properties of the con-
gruence relations we study that will be used in the remainder of the paper. The axiom
systems that will be shown to completely characterize the aforementioned congruences
over (BCCS)p∗(Aτ) are analyzed in Section 3. Detailed proofs of the completeness of
our axiom systems with respect to the relevant congruences over (BCCS)p∗(Aτ ) are pre-
sented in Section 4. The paper concludes with a brief comparison between the proof of
completeness for weak congruence given in [3] and the one offered in this paper.

2 Basic CCS with Prefix Iteration

We assume a non-empty, countable set A of observable actions not containing the distin-
guished symbol τ . Following Milner [28], the symbol τ will be used to denote an internal,
unobservable action of a system. We define Aτ

∆= A ∪ {τ}, and use a, b to range over A
and α, β, γ to range over Aτ . We also assume a countably infinite set of process variables
Var, ranged over by x, y, z, that is disjoint from Aτ . The meta-variable ξ will stand for a
typical member of the set Aτ ∪ Var.

The language of basic CCS with prefix iteration, denoted by BCCSp∗(Aτ), is given by
the following BNF grammar:

P ::= x | 0 | α.P | P + P | α∗P

where x ∈ Var and α ∈ Aτ . The set of (open) terms over BCCSp∗(Aτ ) is denoted
by (BCCS)p∗(Aτ), and the set of closed terms, i.e., terms that do not contain occur-
rences of process variables, by T(BCCS)

p∗(Aτ ). We shall use P,Q,R, S, T to range over
(BCCS)p∗(Aτ ). In writing terms over the above syntax, we shall always assume that

the operations α∗ and α. bind stronger than +. We shall use the symbol ≡ to stand for
syntactic equality of terms. The set of process variables occurring in a term P will be
written Var(P ).

A (closed) substitution is a mapping from process variables to (closed) terms over
BCCS

p∗(Aτ). For every term P and (closed) substitution σ, the (closed) term obtained
by replacing every occurrence of a variable x in P with the (closed) term σ(x) will be
written Pσ. We shall use [x 7→ P ] to stand for the substitution mapping x to P , and
acting like the identity on all the other variables.

The operational semantics for the language BCCS
p∗(Aτ) is given by the labelled

transition system [25, 31](
(BCCS)p∗(Aτ),

{
ξ→| ξ ∈ Aτ ∪ Var

})
where the transition relations ξ→ are the least subsets of (BCCS)p∗(Aτ)× (BCCS)p∗(Aτ)
satisfying the rules in Fig. 1. Intuitively, a transition P

α→ Q (α ∈ Aτ ) means that the
system represented by the term P can perform the action α, thereby evolving into Q,
whereas P

x→ P ′ means that the initial behaviour of P may depend on the term that is
substituted for the process variable x. It is not hard to see that if P

x→ P ′ then P ′ ≡ x.
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x
x→ x α.P

α→ P

P
ξ→ P ′

P + Q
ξ→ P ′

Q
ξ→ Q′

P + Q
ξ→ Q′

α∗P
α→ α∗P

P
ξ→ P ′

α∗P
ξ→ P ′

Figure 1: Transition rules

The derived transition relations ε⇒ and ξ⇒ (ξ ∈ Aτ ∪ Var) are defined in the standard

way as follows:

{ ε⇒ is the reflexive, transitive closure of τ→,
P

ξ⇒ Q iff ∃P1, P2 : P
ε⇒ P1

ξ→ P2
ε⇒ Q .

Definition 2.1 The set der(P ) of derivatives of P is the least set containing P that is
closed under action-transitions. Formally, der(P ) is the least set satisfying:

1. P ∈ der(P );

2. if Q ∈ der(P ) and Q
α→ Q′ for some α ∈ Aτ , then Q′ ∈ der(P ).

The following basic fact can be easily shown by structural induction on terms:

Fact 2.2 For every P ∈ (BCCS)p∗(Aτ ), the set of derivatives of P is finite.

A fundamental semantic equivalence in the study of reactive systems is bisimulation
equivalence [30, 28]. In this study, we shall consider four versions of this notion which, to
different degrees, abstract away from invisible actions, viz. branching equivalence [19], η-
equivalence [5], delay equivalence [27] and weak equivalence [28]. These we now proceed to
define for the sake of completeness. The interested reader is referred to the aforementioned
references and to [20, 29, 18] for discussion and motivation.

Definition 2.3 (Branching Equivalence) A binary relation B over (BCCS)p∗(Aτ) is
a branching bisimulation, or b-bisimulation for short, iff it is symmetric and, whenever
P B Q, for all ξ ∈ Aτ ∪ Var,

if P
ξ→ P ′ then

• ξ = τ and P ′ B Q, or

• Q
ε⇒ Q1

ξ→ Q2
ε⇒ Q′ for some Q1, Q2, Q

′ such that P B Q1, P ′ B Q2 and
P ′ B Q′.

Two process terms P, Q are branching equivalent, denoted by P ↔
b Q, iff there exists a

branching bisimulation B such that P B Q.

The notions of η-, delay, and weak bisimulation are obtained by relaxing (some of) the
constraints imposed by branching bisimulation on the way that two processes can match
each other’s behaviours. Compare the following definitions:
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Definition 2.4 (η-, Delay and Weak Equivalence) The notion of η-bisimulation is
defined just as a branching bisimulation above, but without the requirement P ′ B Q2. Two
process terms P, Q are η-equivalent, denoted by P ↔

η Q, iff there exists an η-bisimulation
B such that P B Q.

Likewise, a delay bisimulation, or d-bisimulation for short, is defined just as a branch-
ing bisimulation, but omitting the requirement P B Q1. Two process terms P,Q are delay
equivalent, denoted by P ↔

d Q, iff there exists a delay bisimulation B such that P B Q.
Finally, a weak bisimulation, or w-bisimulation, lacks both the requirements P B Q1

and P ′ B Q2, and two process terms P,Q are weakly equivalent, denoted by P ↔
w Q, iff

there exists a weak bisimulation B such that P B Q.

Remark: It is easy to see that in the definitions of both branching and delay bisimulation the
existence requirement of a term Q′ such that Q2

ε⇒ Q′ and P ′ B Q′ is redundant.

The notions of delay and weak equivalence were originally both introduced by Milner
under the name of observation(al) equivalence.

Proposition 2.5 Each of the relations ↔ℵ (ℵ ∈ {b, η, d, w}) is an equivalence relation
and the largest ℵ-bisimulation. Furthermore, for all P, Q,

1. P ↔
b Q implies P ↔

η Q implies P ↔
w Q;

2. P ↔
b Q implies P ↔

d Q implies P ↔
w Q.

Proof: For ℵ ∈ {η, d, w}, the identity relation, the converse of a ℵ-bisimulation and the sym-
metric closure of the composition of two ℵ-bisimulations are all ℵ-bisimulations. Hence ↔ℵ is an
equivalence relation. This argument does not apply for ℵ = b because the symmetric closure of
the composition of two b-bisimulations need not be a b-bisimulation, but in [7] it is shown that
also ↔

b is an equivalence relation.
That ↔ℵ is the largest ℵ-bisimulation (for ℵ ∈ {b, η, d, w}) follows immediately from the

observation that the set of ℵ-bisimulations is closed under arbitrary unions. The implications
hold by definition. 2

The reader familiar with the literature on process theory might have noticed that, in the
above definitions, we have departed from the standard approach followed in, e.g., [28]
in that we have defined notions of bisimulation equivalence that apply to open terms
directly. Indeed, with the exception of studies like [29, 18], bisimulation equivalences like
those presented in Defs. 2.3–2.4 are usually defined for closed process expressions only,
and are extended to open process expression thus (ℵ ∈ {b, η, d, w}):

P ↔ℵQ ⇔ Pσ↔ℵQσ, for every closed substitution σ .

By the following result, first shown in [18] for branching bisimulation over basic CCS
with recursion, both approaches yield the same equivalence relation over open terms in
the language BCCS

p∗(Aτ ).

Proposition 2.6 For all P, Q ∈ (BCCS)p∗(Aτ) and ℵ ∈ {b, η, d, w},

P ↔ℵQ iff Pσ ↔ℵQσ for every closed substitution σ : Var → T(BCCS)
p∗(Aτ ).
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Proof: In the proof of this result, we shall make use of the following, easily established, facts,
which relate the transitions of a term Pσ to those of P and those of the terms σ(x):

1. If P
α→ P ′, then Pσ

α→ P ′σ.

2. If P
x→ x and σ(x)

ξ→ Q, then Pσ
ξ→ Q.

3. If Pσ
ξ→ Q, then either

(a) ξ ∈ Aτ and there exists a P ′ such that P
ξ→ P ′ and Q ≡ P ′σ, or

(b) there exists an x ∈ Var such that P
x→ x and σ(x)

ξ→ Q.

We now prove the two implications in the statement of the proposition separately.

• ‘Only If Implication’. Assume that P ↔ℵQ (ℵ ∈ {b, η, d, w}). We shall show that
Pσ ↔ℵQσ for every closed substitution σ : Var → T(BCCS)

p∗(Aτ ). To this end, it is
sufficient to prove that the relation:

Bℵ
∆= {(Sσ, Tσ) | S ↔ℵ T, σ a closed substitution}

is a ℵ-bisimulation. This is straightforward using facts 1–3 above.

• ‘If Implication’. Let ℵ ∈ {b, η, d, w}. Assume that Pσ ↔ℵQσ for every closed substitu-
tion σ. We shall show that P ↔ℵQ holds. This we prove by induction on the number of
variables occurring in P or Q, i.e., on the cardinality of Var(P ) ∪ Var(Q).

– Basis: Var(P ) ∪ Var(Q) = ∅. In this case, P and Q are closed terms, and the claim
follows immediately.

– Inductive Step: Var(P )∪ Var(Q) 6= ∅. Choose a variable x in Var(P ) ∪ Var(Q). As
the set of observable actions A is non-empty, we can pick a ∈ A. It is easy to see that,
for positive integers n, m,

an.0↔ℵ am.0 ⇔ n = m .

By Fact 2.2, der(P ) ∪ der(Q) is a finite set of process terms. Therefore it is possible
to choose a positive integer n such that, for every R ∈ der(P ) ∪ der(Q),

an.0 6↔ℵ R . (1)

Note that the above inequality implies that, for every R ∈ der(P ) ∪ der(Q),

an.0 6↔ℵ R[x 7→ an+1.0] . (2)

This is immediate by (1) if x does not occur in R. Otherwise, x occurs in R, and it is
not hard to see that R[x 7→ an+1.0] can perform a sequence of transitions leading to
0 that has a suffix consisting of at least n + 1 a-transitions, whereas an.0 cannot.
Now, note that, for every closed substitution σ,(

P [x 7→ an+1.0]
)
σ ↔ℵ

(
Q[x 7→ an+1.0]

)
σ . (3)

As the set of variables occurring in P [x 7→ an+1.0] or Q[x 7→ an+1.0] is strictly
contained in Var(P ) ∪ Var(Q), we may apply the inductive hypothesis to (3) to infer
that:

P [x 7→ an+1.0] ↔ℵ Q[x 7→ an+1.0] . (4)

7



We prove that this implies P ↔ℵQ, as required. To this end, in view of (4), it is
sufficient to show that the symmetric closure of the relation

Bℵ
∆=

{
(S, T ) | (S, T ) ∈ der(P ) × der(Q) and S[x 7→ an+1.0]↔ℵ T [x 7→ an+1.0]

}
is a ℵ-bisimulation. The details of this verification are straightforward, using facts
1–3 above and (2). In particular, condition (2) ensures that whenever S Bℵ T and
S

x→ x, then T
x⇒ x.

This completes the proof of the inductive step, and thereby of the ‘if’ implication.

The proof of the proposition is now complete. 2

Remark: The reader may have noticed that the ‘if’ implication in the above statement would
not hold if the set of observable actions A were empty. In fact, in that, admittedly uninteresting,
case, the universal relation over T(BCCS)

p∗(Aτ ) would be a branching bisimulation. This would
imply, for instance, that, for every closed substitution σ and variables x, y,

xσ ↔
b yσ .

On the other hand, x is not branching equivalent to y.

For the standard reasons explained at length in, e.g., Milner’s textbook [28], none of the
aforementioned equivalences is a congruence with respect to the summation operation.
In fact, it is also the case that none of the aforementioned equivalences is preserved by
the prefix iteration operation. As a simple example of this phenomenon, consider the
terms b.0 and τ.b.0. As it is well-known, b.0↔ℵ τ.b.0 (ℵ ∈ {b, η, d,w}); however, it is not
difficult to check that a∗(b.0) 6↔ℵ a∗(τ.b.0). Following Milner [28], the solution to these
congruence problems is by now standard; it is sufficient to consider, for each equivalence
↔ℵ , the largest congruence over (BCCS)p∗(Aτ ) contained in it. We now proceed to
characterize the resulting congruences explicitly.

Definition 2.7 We say that:

• P and Q are branching congruent, written P ↔c
b Q, iff for all ξ ∈ Aτ ∪ Var,

1. if P
ξ→ P ′, then Q

ξ→ Q′ for some Q′ such that P ′↔b Q′;

2. if Q
ξ→ Q′, then P

ξ→ P ′ for some P ′ such that P ′↔b Q′.

• P and Q are η-congruent, written P ↔c
η Q, iff for all ξ ∈ Aτ ∪ Var,

1. if P
ξ→ P ′, then Q

ξ→ Q1
ε⇒ Q′ for some Q1, Q

′ such that P ′↔η Q′;

2. if Q
ξ→ Q′, then P

ξ→ P1
ε⇒ P ′ for some P1, P

′ such that P ′↔η Q′.

• P and Q are delay congruent, written P ↔c
d Q, iff for all ξ ∈ Aτ ∪ Var,

1. if P
ξ→ P ′, then Q

ε⇒ Q1
ξ→ Q′ for some Q1, Q

′ such that P ′↔d Q′;

2. if Q
ξ→ Q′, then P

ε⇒ P1
ξ→ P ′ for some P1, P

′ such that P ′↔d Q′.

• P and Q are weakly congruent, written P ↔c
w Q, iff for all ξ ∈ Aτ ∪ Var,

1. if P
ξ→ P ′, then Q

ξ⇒ Q′ for some Q′ such that P ′↔w Q′;
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2. if Q
ξ→ Q′, then P

ξ⇒ P ′ for some P ′ such that P ′↔w Q′.

Proposition 2.8 For every ℵ ∈ {b, η, d,w}, the relation ↔c
ℵ is the largest congruence

over (BCCS)p∗(Aτ) contained in ↔ℵ .

Proof: It is straightforward to check that ↔c
ℵ is an equivalence relation for ℵ ∈ {b, η, d, w},

using that this is the case for ↔ℵ . Moreover, it is trivial to see that ↔c
ℵ is included in ↔ℵ .

That ↔c
ℵ is a congruence relation over (BCCS)p∗(Aτ ) follows easily from Definition 2.7,

using that the relation
{(α∗P, α∗Q) | α ∈ Aτ , P ↔c

ℵQ} ∪ ↔ℵ
is a ℵ-bisimulation. Here it is essential that, unlike ↔ℵ , the relations ↔c

ℵ require that an initial
τ -transition in a process cannot be matched by the other staying idle.

To see that ↔c
ℵ is indeed the largest congruence relation over (BCCS)p∗(Aτ ) contained

↔ℵ , assume that =ℵ is another relation with these properties and that P =ℵ Q. We show that
P ↔c

ℵQ holds.
As A is non-empty, we can pick an action a ∈ A. By Fact 2.2, der(P ) ∪ der(Q) is a finite

set of process terms. Therefore it is possible to choose a positive integer n such that, for every
R ∈ der(P ) ∪ der(Q),

an.0 6↔ℵ R .

As P =ℵ Q and =ℵ is a congruence relation contained in ↔ℵ , it follows that P + an+1.0
↔ℵQ + an+1.0. For every ℵ ∈ {b, η, d, w}, this implies that P ↔c

ℵQ. Consider, for instance,

the case ℵ = b. Let P
ξ→ P ′ for some ξ ∈ Aτ ∪ Var. As P ′ 6↔ℵQ + an+1.0, it must be that

Q+an+1.0 ε⇒ Q1
ξ→ Q′ with P +an+1.0↔

b Q1 and P ′↔b Q′. Moreover, as P +an+1.0 cannot be
branching equivalent to a derivative of Q, it follows that Q1 ≡ Q + an+1.0. Finally P ′ 6↔ℵ an.0,

so Q
ξ→ Q′, even when ξ = a. By symmetry, it follows that P ↔c

b Q, which was to be shown. 2

Remark: Again, note that, if the set of observable actions A were empty, then the relations ↔c
ℵ

(ℵ ∈ {b, η, d, w}) would not be the largest congruences contained in ↔ℵ over (BCCS)p∗(Aτ ). In
fact, in that case, ↔ℵ itself would be a congruence, and it is easy to see that, e.g., τ.0↔ℵ 0, but
τ.0 6↔c

ℵ 0.

Remark: Bloom [10] has formulated the ‘RWB cool’ and ‘RBB cool’ formats for transition rules,
which ensure that the relations ↔c

w and ↔c
b , respectively, are congruences.

Although both ↔c
w and ↔c

b are congruences for (BCCS)p∗(Aτ ), the transition rules for
BCCS

p∗(Aτ ) do not fit the RWB and RBB cool formats. In particular, Bloom’s formats require
that operators for which weak or branching equivalence is not a congruence are not to occur in
the right-hand sides of conclusions of transition rules. However, we already remarked that weak
and branching equivalence are not congruences for prefix iteration, but this operator does occur
at the right-hand side of the transition rule a∗P

a→ a∗P .
Hence, we obtain a positive answer to the fourth open question at the end of [10], namely

whether there exist transition rules outside the RWB and RBB cool formats which define ‘inter-
esting’ operators for which ↔c

w and ↔c
b are congruences.

The following result is the counter-part of Propn. 2.6 for the aforementioned congruence
relations.

Proposition 2.9 For P, Q ∈ (BCCS)p∗(Aτ) and ℵ ∈ {b, η, d,w},

9



P ↔c
ℵQ iff Pσ ↔c

ℵQσ for every closed substitution σ.

Proof: A straightforward modification of the proof of Propn. 2.6. 2

We end this section with two lemmas that will be of use in the completeness proof for
branching congruence. (Cf. the proof of Propn. 4.3.) The first of these lemmas is a
standard result for branching bisimulation equivalence, whose proof may be found in
[20, 14].

Lemma 2.10 (Stuttering Lemma) If P0
τ→ · · · τ→ Pn and Pn ↔

b P0, then Pi ↔
b P0

for i = 1, ..., n − 1.

The following result about the expressiveness of the language (BCCS)p∗(Aτ ) stems from
[3].

Lemma 2.11 Let a, b ∈ A. If a∗P ↔ℵ b∗Q (ℵ ∈ {b, η, d, w}), then a = b.

Proof: In light of Propn. 2.5, it is sufficient to deal with the case ℵ = w. Let a∗P ↔
w b∗Q. Then

there exist terms P ′, Q′ such that:

• a∗P
b⇒ P ′↔w b∗Q, and

• b∗Q
a⇒ Q′↔w a∗P .

This implies that a∗P and b∗Q both exhibit, for example, an infinite sequence where a and b

alternate, i.e., a⇒ b⇒ a⇒ b⇒ · · ·. Thus, this lemma is an immediate consequence of the following fact.

• If Pn
an⇒ Pn+1 for n = 0, 1, 2, ..., then there is an N such that an = aN for n > N .

The proof of this fact is an easy exercise by structural induction on terms, which is left to the
reader. 2

3 Axiom Systems

The main aim of this study is to provide complete equational axiomatizations for branch-
ing, η-, delay, and weak congruence over the language (BCCS)p∗(Aτ). In this section, we
present the axiom systems that will be shown to completely characterize these congruence
relations over (BCCS)p∗(Aτ ), and prove their soundness. We also present a proposition
on the inter-derivability of these axiom systems that will be useful in the proofs of the
promised completeness theorems, and address the issue of the irredundancy of the axiom
systems.

3.1 The axioms

Table 1 presents the axiom system F , which was shown in [15] to characterize strong
bisimulation over T(BCCS)p∗(A). In addition to the axioms in F , the axiom systems
Eℵ (ℵ ∈ {b, η, d, w}) include equations which express the unobservable nature of the τ
action. These equations may be found in Tables 2–5; they reflect the different ways in
which the congruences we consider abstract away from internal computations in process

10



A1 x + y = y + x
A2 (x + y) + z = x + (y + z)
A3 x + x = x
A4 x + 0 = x
PA1 a.(a∗x) + x = a∗x
PA2 a∗(a∗x) = a∗x

Table 1: The axiom system F

B1 α.(τ.(x + y) + x) = α.(x + y)
PB1 τ∗x = τ.x + x
PB2 τ.a∗(τ.a∗(x + y) + x) = τ.a∗(x + y)

Table 2: Axioms for Eb and for Eη

behaviours. The axiom system Eb is obtained by adding the axioms presented in Table 2
to F , and Eη extends Eb with the equations in Table 4. The set of axioms Ed includes the
equations in F and those in Table 3. Finally, Ew extends Ed with the laws in Table 5.

The law B1 and the equations T1-3, AT3 are standard characterizations of the silent
action τ in branching and weak congruence, respectively. (Note that AT3 is the instance
of T3 with α ∈ A. We distinguish the laws T3 and AT3 in order to obtain an irredundant
axiom system for weak congruence. Cf. Propn. 3.4 and the subsequent remark for more
details.) The origins of the five remaining axioms, which describe the interplay between
τ and prefix iteration, are as follows. The equations PB1 and PB2 stem from [16], where
a complete axiomatization for branching congruence over closed terms in the language
BPA [9] with prefix iteration was presented. (For the sake of precision, we remark here

T1 α.τ.x = α.x
T2 τ.x = τ.x + x
PT1 τ∗x = τ.x
PT2 τ.(a∗x) = a∗(τ.(a∗x))

Table 3: Axioms for Ed and for Ew

11



T3 α.(x + τ.y) = α.(x + τ.y) + α.y
PT3 a∗(x + τ.y) = a∗(x + τ.y + a.y)

Table 4: Extra axioms for Eη

AT3 a.(x + τ.y) = a.(x + τ.y) + a.y
PT3 a∗(x + τ.y) = a∗(x + τ.y + a.y)

Table 5: Extra axioms for Ew

that equation PB2 was formulated in [16] thus:

a.a∗(τ.a∗(x + y) + x) = a.a∗(x + y) .

The two versions of equation PB2 are easily shown to be inter-derivable; each of them
proves their common generalization

PB2
′ γ.a∗(τ.a∗(x + y) + x) = γ.a∗(x + y)

for γ ∈ Aτ , using laws A1, A2, A4, PA1 and B1.) The equation PT1 was introduced
in [8] under the name of (FIR1) (Fair Iteration Rule). In [8] it was also noted that this
law is an equational formulation of Koomen’s Fair Abstraction Rule [4]. (To be precise,
Koomen’s Fair Abstraction Rule is a general name for a family of proof rules KFARn,
n ≥ 1. PT1 corresponds to KFAR1.) The laws PT2 and PT3 originate from [3], where the
axiom system Ew was shown to be complete for weak congruence over T(BCCS)

p∗(Aτ ),
and ω-complete in the presence of a denumerable set of observable actions A.

Note that each of the axiom systems Eℵ (ℵ ∈ {b, η, d, w}) is finite if so is the set of
actions A.

Notation 3.1 For an axiom system T , we write T ` P = Q iff the equation
P = Q is provable from the axiom system T using the rules of equational logic. For
axiom systems T , T ′, we write T ` T ′ iff T ` P = Q for every equation (P = Q) ∈ T ′.
For a collection of equations X over the signature of BCCSp∗(Aτ), we write P

X= Q as a
short-hand for A1,A2,X ` P = Q.

For I = {i1, . . . , in} a finite index set, we write
∑

i∈I Pi or
∑ {Pi | i ∈ I} for Pi1 +

· · · + Pin. By convention,
∑

i∈∅ Pi stands for 0.

We establish the soundness of the axiom systems.

Proposition 3.2 Let ℵ ∈ {b, η, d, w}. If Eℵ ` P = Q, then P ↔c
ℵQ.
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Proof: As ↔c
ℵ (ℵ ∈ {b, η, d, w}) is a congruence, it is sufficient to show that each equation in

Eℵ is sound with respect to it. The equations in the axiom system F are known to be sound with
respect to strong bisimulation equivalence over (BCCS)p∗(Aτ ); therefore they are, a fortiori,
sound with respect to each of the congruences we consider. The soundness of the axioms B1, T1-3
and AT3 is well-known, and that of PB1-2 and PT1-3 is easy to check. 2

3.2 Expressiveness of the axiom systems

For use in the promised completeness theorems, we now study the relative expressive
power of the axiom systems.

Proposition 3.3 Ew ` Ed ` Eb and Ew ` Eη ` Eb.

Proof: Since Ew incorporates Ed, and Eη incorporates Eb, the statements Ew ` Ed and Eη ` Eb

are trivially true. In order to prove the remaining two statements, Ed ` Eb and Ew ` Eη, it suffices
to show that the three axioms in Table 2 and the instance of T3 for α = τ are derivable from Ed.
First of all, note that

τ.(x + y) A3,T2= τ.(x + y) + x . (5)

The derivability of the instance of T3 with α = τ from Ed follows immediately by observing that,
modulo commutativity of +, that equality is a substitution instance of (5). In deriving the laws
in Table 2 from Ed, we shall make use of the following derived equation:

a∗x + x
A3,PA1= a∗x . (6)

The derivation of the three axioms in Table 2 from Ed now proceeds as follows:

B1 α.(τ.(x + y) + x)
(5)
= α.τ.(x + y) T1= α.(x + y) .

PB1 τ∗x
PT1= τ.x

T2= τ.x + x .

PB2 τ.a∗(τ.a∗(x + y) + x)
(6)
= τ.a∗(τ.(a∗(x + y) + x + y) + x)
(5)
= τ.a∗(τ.(a∗(x + y) + x + y))
(6)
= τ.a∗(τ.a∗(x + y))

PT2= τ.(τ.a∗(x + y))
T1= τ.a∗(x + y) . 2

3.3 Irredundancy of the axiom systems

A collection T of equations is said to be irredundant [33, Page 389] iff for every proper
subset T ′ of T there exists an equation which is derivable from T , but not from T ′.

Experience has shown that axiom systems can contain redundancies; in the field of
equational axiomatizations of behavioural congruences this happens for instance in [18].
Therefore, we find it interesting to conclude this section by addressing the issue of the
irredundancy of the axiom systems Eℵ (ℵ ∈ {b, η, d, w}).

Proposition 3.4 For each ℵ ∈ {b, η, d, w}, the axiom system Eℵ is irredundant.
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Proof: To show the irredundancy of the axiom system Eℵ (ℵ ∈ {b, η, d, w}), it is sufficient to
prove that, for every axiom (P = Q) ∈ Eℵ,

Eℵ \ {P = Q} 6` P = Q . (7)

The standard proof strategy to establish this kind of result is to find a model for the axiom system
Eℵ \ {P = Q} in which the equation P = Q is not valid. As the axiom systems Eb and Ed are
contained in Eη and Ew, respectively, it is sufficient to show (7) for Eη and Ew. In what follows,
we limit ourselves to the proofs for the axioms PTn (n = 1, 2, 3) and PBn (n = 1, 2). We present
the model explicitly only for axioms PT2, PB2 and PT3. For axioms PT1 and PB1 we merely
give the intuition underlying the construction of an appropriate model. The reader will not have
too much trouble in finding models which capture this intuition.

Axioms PT1 and PB1. Intuitively, the reason why equations PT1 and PB1 are not derivable
from the axiom systems Ew \{PT1} and Eη \{PB1}, respectively, is that PT1 and PB1 are
the only equations that can be used to completely eliminate occurrences of the operation
τ∗ from terms.

Axioms PT2 and PB2. These axioms can actually be regarded as axiom schemes, in the sense
that there is one axiom for each choice of an action a ∈ A. Call these instantiations PT2(a)
and PT3(a). We now show that for all a ∈ A

Ew \ {PT2(a)} 6` PT2(a) and Eb \ {PB2(a)} 6` PB2(a) .

Let a ∈ A. We say that a term P is stable iff P
τ→ P ′ for no P ′. A term whose sub-terms

of the form a∗P ′ are stable is said to be a∗-stable. Intuitively, the reason why PT2(a) and
PB2(a) cannot be derived from the other equations is that PT2(a) and PB2(a) are the
only axioms in Ew and Eη, respectively, that can be used to equate an a∗-stable term to one
that is not.
Formally, define a denotational semantics for (BCCS)p∗(Aτ ) in the domain 2{0, 1} by:

[[x]]ρ = ρ(x)
[[0]]ρ = ∅

[[τ.P ]]ρ = [[P ]]ρ ∪ {1}
[[b.P ]]ρ = [[P ]]ρ \ {1} for b ∈ A

[[P + Q]]ρ = [[P ]]ρ ∪ [[Q]]ρ
[[τ∗P ]]ρ = [[P ]]ρ ∪ {1}

[[b∗P ]]ρ =
{

[[P ]]ρ ∪ {0} if b = a ∧ 1 ∈ [[P ]]ρ
[[P ]]ρ otherwise

where ρ : Var → 2{0, 1}. Here 1 6∈ [[P ]]ρ denotes stability and 0 6∈ [[P ]]ρ denotes a∗-stability.
It is now simple to check that this is a model for both the axiom systems Ew \ {PT2(a)}
and Eη \ {PB2(a)}. However, letting ρ∅ map each variable in Var to ∅,

[[τ.(a∗x)]]ρ∅ = {1} 6= {0, 1} = [[a∗(τ.(a∗x))]]ρ∅

and
[[τ.a∗(τ.a∗(x + y) + x)]]ρ∅ = {0, 1} 6= {1} = [[τ.a∗(x + y)]]ρ∅ .

Therefore the above is neither a model of Ew nor one of Eη.

Axiom PT3. Again we consider the instantiations PT3(a) and show Ew \ {PT3(a)} 6` PT3(a).
We say that a term P is a-stable iff P

a⇒ P ′ for no P ′. Intuitively, the reason why PT3(a)
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cannot be derived from the other equations is that PT3(a) is the only axiom in Ew that
can be used to equate a term P with a sub-term of the form a∗P ′ such that P ′ is a-stable
to a term Q that does not have this property.

Formally, define a denotational semantics for (BCCS)p∗(Aτ ) in the domain 2{0, 1} by:
[[x]]ρ = ρ(x)
[[0]]ρ = ∅

[[τ.P ]]ρ = [[P ]]ρ
[[a.P ]]ρ = [[P ]]ρ ∪ {1}
[[b.P ]]ρ = [[P ]]ρ \ {1} for b 6= a

[[P + Q]]ρ = [[P ]]ρ ∪ [[Q]]ρ
[[α∗P ]]ρ = [[P ]]ρ for α 6= a

[[a∗P ]]ρ =
{

{0, 1} if 1 6∈ [[P ]]ρ
[[P ]]ρ otherwise

where ρ : Var → 2{0, 1}. Here 1 6∈ [[P ]]ρ denotes a-stability and 0 ∈ [[P ]]ρ denotes the
property of having a subterm a∗P ′ with P ′ a-stable. It is now simple to check that this is
a model for the axiom system Ew \ {PT3(a)}. However, letting ρ∅ map each variable in
Var to ∅,

[[a∗(x + τ.y)]]ρ∅ = {0, 1} 6= {1} = [[a∗(x + τ.y + a.y)]]ρ∅

and so the above is not a model of Ew. 2

Remark: In light of (5), the instance of axiom T3 with α = τ is derivable from the axiom
system Ed, and, a fortiori, from Ew. Thus defining the axioms for weak congruence to include T3
in lieu of AT3 would lead to a redundant axiomatization, like those presented in, e.g., [24, 29].

4 Completeness

This section is entirely devoted to detailed proofs of the completeness of the axiom systems
Eℵ (ℵ ∈ {b, η, d, w}) with respect to ↔c

ℵ over the language of open terms (BCCS)p∗(Aτ ).
A common and, we believe, aesthetically pleasing feature of our completeness proofs for
the behavioural congruences ↔c

ℵ (ℵ ∈ {η, d,w}) is that they are derived in uniform
fashion from the corresponding results for branching congruence. Moreover, we shall also
argue that the proof of completeness for weak congruence via reduction to the complete-
ness result for branching congruence is considerably shorter than the only direct proof of
this result presented in the literature. (Cf. the reference [3].)

Because of the prominent rôle played by the completeness theorem for branching
congruence in the developments to follow, we begin by presenting our proof of this result.
We remark here that the completeness of the theory Eb with respect to ↔c

b over the
language of closed terms T(BCCS)

p∗(Aτ) was first shown in [16]. The proof presented
below is, however, new, and yields the completeness of the axiom system Eb for the whole
of the language (BCCS)p∗(Aτ ). Moreover it may be argued that, even when restricted to
the language of closed terms, our proof improves on the one offered in the aforementioned
reference in that, unlike that proof, it does not rely on the completeness result for strong
bisimulation from [15].
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4.1 Completeness for branching congruence

We aim at identifying a subset of process terms of a special form, which will be con-
venient in the proof of the completeness result for branching congruence. Following
a long-established tradition in the literature on process theory, we shall refer to these
terms as normal forms. The set of normal forms we are after is the smallest subset of
(BCCS)p∗(Aτ ) including process terms having one of the following two forms:∑

i∈I

αi.Pi +
∑
j∈J

xj or a∗(
∑
i∈I

αi.Pi +
∑
j∈J

xj),

where the terms Pi are themselves normal forms, and I, J are finite index sets. (Recall
that the empty sum represents 0.)

Lemma 4.1 Each term in (BCCS)p∗(Aτ ) can be proven equal to a normal form using
equations A4, PA1 and PB1.

Proof: A straightforward induction on the structure of process terms. 2

Notation 4.2 P =AC Q denotes that P and Q are equal modulo associativity and com-
mutativity of +, i.e., that A1,A2 ` P = Q.

The following result is the key to the completeness theorem for branching congruence.

Proposition 4.3 For all P, Q ∈ (BCCS)p∗(Aτ), if P ↔
b Q, then, for all γ ∈ Aτ ,

Eb ` γ.P = γ.Q.

Proof: First of all, note that, as the equations in Eb are sound with respect to ↔c
b , and, a

fortiori, for ↔
b , by Lem. 4.1 it is sufficient to prove that the statement of the proposition holds

for branching equivalent normal forms P and Q.
So, let us assume that P and Q be branching equivalent normal forms. We prove that

Eb ` γ.P = γ.Q for all γ ∈ Aτ , by complete induction on the sum of the sizes of P and Q. Recall
that normal forms can take the following two forms:∑

i

αi.Pi +
∑

j

xj or a∗(
∑

i

αi.Pi +
∑

j

xj),

where the Pis are themselves normal forms. So, in particular, P and Q have one of these forms.
By symmetry, it is sufficient to deal with the following three cases:

1. P =AC
∑

i αi.Pi +
∑

k xk and Q =AC
∑

j βj .Qj +
∑

l yl;

2. P =AC a∗(
∑

i αi.Pi +
∑

k xk) and Q =AC b∗(
∑

j βj .Qj +
∑

l yl); and

3. P =AC
∑

i αi.Pi +
∑

k xk and Q =AC a∗(
∑

j βj .Qj +
∑

l yl).

We treat these three cases separately.

1. Case: P =AC
∑

i αi.Pi +
∑

k xk and Q =AC
∑

j βj .Qj +
∑

l yl. Consider the following two
conditions:

A. αi = τ and Pi ↔b Q for some i;

B. βj = τ and Qj ↔
b P for some j.
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We distinguish three sub-cases in the proof, depending on which of the above conditions
hold.

I Suppose that neither A nor B holds. Then, as P ↔
b Q, each transition P

ξ→ P ′ must

be matched by a transition Q
ξ→ Q′ with P ′↔b Q′. Hence, each summand αi.Pi of P

matches with a summand βj .Qj of Q, in the sense that αi = βj and Pi ↔
b Qj . For

each such pair of related summands, induction yields

Eb ` αi.Pi = αi.Qj = βj .Qj .

Moreover, each summand xk of P must be a summand of Q. Hence, possibly using
axiom A3, it follows that Eb ` P + Q = Q. By symmetry, we infer that Eb ` P =
P + Q = Q. The fact that Eb ` γ.P = γ.Q for all γ ∈ Aτ is now immediate.

II Suppose that both of A and B hold. In this case, there exist i and j such that
αi = βj = τ and Pi ↔

b Q ↔
b P ↔

b Qj . Applying the inductive hypothesis to the
equivalences P ↔

b Qj, Pi ↔b Qj and Pi ↔b Q, we infer that, for all γ ∈ Aτ ,

Eb ` γ.P = γ.Qj = γ.Pi = γ.Q

and the inductive step follows.

III Suppose that only one of A and B holds. In the remainder of the proof for this case,
we shall assume, without loss of generality, that only A holds. For every summand
τ.Pi of P with Pi ↔b Q we obtain, by induction, that

Eb ` τ.Pi = τ.Q .

Hence, as A holds, by possibly using axioms A3 and/or A4 we infer that

Eb ` P = τ.Q + S

where S =AC
∑

{αi.Pi | αi 6= τ or Pi 6↔b Q} +
∑

k xk.
Consider now a summand αi.Pi of S. As condition B does not hold and P ↔

b Q,
using Lem. 2.10 it is not hard to see that there must exist a summand βji .Qji of Q
such that αi = βji and Pi ↔

b Qji. By a similar reasoning, we infer that each one of
the variables xk must be a summand of Q. For related summands αi.Pi and βji .Qji

of S and Q, respectively, induction yields

Eb ` αi.Pi = βji .Qji .

It follows that Eb ` Q = R + S, where

R =AC

∑
{βj .Qj | j 6= ji for all i} +

∑
{yl | yl 6= xk for all k} .

Now, for every γ ∈ Aτ ,

Eb ` γ.P = γ.(τ.Q + S) = γ.(τ.(R + S) + S) B1= γ.(R + S) = γ.Q

and the inductive step follows.

2. Case: P =AC a∗(
∑

i αi.Pi +
∑

k xk) and Q =AC b∗(
∑

j βj .Qj +
∑

l yl). First of all, note
that, by Lem. 2.11, it must be the case that a = b. Consider the following two conditions:

A. αi ∈ {τ, a} and Pi ↔b Q for some i;
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B. βj ∈ {τ, a} and Qj ↔
b P for some j.

We distinguish three sub-cases in the proof, depending on which of the above conditions
hold.

I Suppose that neither A nor B holds. Then it is easy to see that∑
i

αi.Pi +
∑

k

xk ↔
b

∑
j

βj .Qj +
∑

l

yl

holds. As these two terms are normal forms whose combined size is smaller that
that of P and Q, we may reason exactly as in the previous case 1.I to obtain that
Eb `

∑
i αi.Pi +

∑
k xk =

∑
j βj .Qj +

∑
l yl. Hence Eb ` P = Q, and the inductive

step follows immediately.

II Suppose that both A and B hold. Then, as in case 1.II above, there exist i and j
such that Pi ↔b Q↔

b P ↔
b Qj. Applying the inductive hypothesis to the equivalences

P ↔
b Qj , Pi ↔b Qj and Pi ↔b Q, we infer that, for all γ ∈ Aτ ,

Eb ` γ.P = γ.Qj = γ.Pi = γ.Q

and the inductive step follows.

III Suppose that only one of A and B holds. In the remainder of the proof for this case,
we shall assume, without loss of generality, that only A holds. We distinguish three
further sub-cases.

IIIa Suppose that A holds for some indices i1, i2 with αi1 = τ and αi2 = a.
For every i with αi ∈ {τ, a} and Pi ↔b Q, induction yields Eb ` αi.Pi = αi.Q. Hence,
possibly using axioms A3 and/or A4, we infer that

E ` P = a∗(τ.Q + a.Q + S)

where S =AC
∑

{αi.Pi | αi 6∈ {τ, a} or Pi 6↔b Q}+
∑

k xk. Reasoning as in case 1.III
above, we find that Eb ` Q = a∗(R + S) for some term R. Now

γ.P = γ.a∗(τ.Q + a.Q + S)
= γ.a∗

(
τ.a∗(R + S) + a.a∗(R + S) + S

)
PA2= γ.a∗

(
τ.a∗a∗(R + S) + a.a∗(R + S) + S

)
PA1= γ.a∗

(
τ.a∗

(
R + a.a∗(R + S) + S

)
+ a.a∗(R + S) + S

)
PB2′= γ.a∗

(
R + a.a∗(R + S) + S

)
PA1= γ.a∗a∗(R + S) PA2= γ.a∗(R + S) = γ.Q.

IIIb Suppose that A holds only for some i with αi = τ .
Then, reasoning as in the case above, we obtain that Eb ` P = a∗(τ.Q + S) (i.e., the
summand a.Q vanishes), and Eb ` Q = a∗(R + S) for some terms R and S. This
yields the following simplification of the argument above:

γ.P = γ.a∗(τ.Q + S)
= γ.a∗(τ.a∗(R + S) + S)

PB2′= γ.a∗(R + S)
= γ.Q .
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IIIc Suppose that A holds only for some i with αi = a.
Then, reasoning as in case IIIa above, we infer that

Eb ` P = a∗(a.Q + S)

where S =AC
∑

{αi.Pi | αi 6= a or Pi 6↔b Q} +
∑

k xk (i.e., τ.Q vanishes). Since B
does not hold, it follows that every summand βj .Qj of Q matches with a summand
αi.Pi of S, every yl is equal to an xk, and vice versa. Possibly using axiom A3, it
follows that Eb ` Q = a∗S (i.e., R vanishes). Now

γ.P = γ.a∗(a.Q + S) = γ.a∗(a.a∗S + S) PA1= γ.a∗a∗S
PA2= γ.a∗S = γ.Q.

3. Case: P =AC
∑

i αi.Pi +
∑

k xk and Q =AC a∗(
∑

j βj .Qj +
∑

l yl). Consider the following
two conditions:

A. αi ∈ {τ, a} and Pi ↔b Q for some i;
B. βj ∈ {τ, a} and Qj ↔

b P for some j.

Since Q
a→ Q and P ↔

b Q, it follows that P
a⇒ P ′ with P ′ ↔b Q, for some P ′. By the

Stuttering Lemma 2.10, the intermediate states in the derivation P
a⇒ P ′ are all branching

equivalent to Q. Hence there exists an index i such that αi ∈ {τ, a} and Pi ↔
b Q. So we

know that A holds. We proceed by distinguishing two sub-cases, depending on whether B
holds or not.

I Suppose that B holds, so Qj ↔
b P for some j. Then Qj ↔

b Pi also holds, and the
inductive hypothesis yields Eb ` γ.P = γ.Qj = γ.Pi = γ.Q, for all γ ∈ Aτ , as desired.

II Suppose B does not hold. Reasoning as in case 2.III above, we can distinguish three
sub-cases:

– A holds for some indices i1 and i2 with αi1 = τ and αi2 = a.
Then, for some terms R and S, Eb ` P = τ.Q + a.Q +S and Eb ` Q = a∗(R +S).

– A holds only for some index i such that αi = τ .
Then, for some terms R and S, Eb ` P = τ.Q + S and Eb ` Q = a∗(R + S).

– A holds only for some index i such that αi = a.
Then, for some term S, Eb ` P = a.Q + S, and, since B does not hold, we find
that Eb ` Q = a∗S.

In all three cases we obtain Eb ` γ.P = γ.Q, reasoning just as in case 2.III, but
skipping the applications of PA2 and using B1 (in the second case with PA1) instead
of PB2′.

The proof of the inductive step is now complete. 2

Theorem 4.4 Let P, Q ∈ (BCCS)p∗(Aτ ). If P ↔c
b Q, then Eb ` P = Q.

Proof: Consider two process terms P and Q that are branching congruent. We shall prove that
Eb ` P = P + Q = Q, from which the claim follows. In fact, by symmetry, it is sufficient to show
that if P ↔c

b Q, then Eb ` P = P + Q. To this end, note, first of all, that, by Lem. 4.1, P and
Q may be proven equal to some normal forms using equations A4, PA1 and PB1. Possibly using
equation PA1 again, we may therefore derive that

Eb ` P =
∑

{αi.Pi | i ∈ I} +
∑

{xj | j ∈ J} and
Eb ` Q =

∑
{βk.Qk | k ∈ K} +

∑
{yl | l ∈ L}

for some finite index sets I, J, K, L. As P ↔c
b Q and the equations in Eb are sound with respect

to branching congruence, it follows that
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1. for every k there exists an index ik such that αik = βk and Pik
↔

b Qk, and

2. for every l there exists an index jl such that xjl ≡ yl .

By Propn. 4.3, for every k we may infer that

Eb ` αik.Pik = αik.Qk = βk.Qk .

The fact that Eb ` P = P + Q is now immediate using axiom A3. 2

4.2 Completeness for η-, delay, and weak congruence

We now proceed to derive completeness results for η-, delay, and weak congruence from
Thm. 4.4. The key to this derivation is the observation that, for certain classes of process
terms, these congruence relations coincide with branching congruence. These classes of
process terms are defined below.

Definition 4.5 We say that a term P is:

• η-saturated iff for each of its derivatives Q, R and S and ξ ∈ Aτ ∪ Var we have
that:

Q
ξ→ R

τ→ S implies Q
ξ→ S.

• d-saturated iff for each of its derivatives Q, R and S and ξ ∈ Aτ ∪ Var we have
that:

Q
τ→ R

ξ→ S implies Q
ξ→ S.

• w-saturated iff it is both η- and d-saturated.

The following theorem was first shown in [20] for process graphs. Here, we present its
adaptation to open terms in the language (BCCS)p∗(Aτ ).

Theorem 4.6 Let ℵ ∈ {η, d,w}. If P and Q are ℵ-saturated and P ↔c
ℵQ, then P ↔c

b Q.

Proof: We only present the proof for weak congruence. The proofs for η- and delay congru-
ence are simple variations on this theme, and the interested reader will have no difficulty in
reconstructing them.

Note, first of all, that any two w-saturated terms that are weakly equivalent are also branching
equivalent. This follows because the relation

B ∆= {(S, T ) | S ↔
w T, S, T w-saturated}

is a branching bisimulation.
Now, assume that P ↔c

w Q and that P
ξ→ P ′. Then, there exists a Q′ such that Q

ξ⇒ Q′

and P ′↔w Q′. As Q is w-saturated, it follows that Q
ξ→ Q′. Since P ′ and Q′ are w-saturated

and weakly equivalent, we infer that P ′↔b Q′. Therefore, by symmetry, we finally obtain that
P ↔c

b Q, which was to be shown. 2

Proposition 4.7 Let ℵ ∈ {η, d,w}. For each term P , Eℵ ` P = P ′ for some ℵ-saturated
term P ′.
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Proof: Again, we only present the details of the proof for ℵ = w. The proofs of η- and d-
saturation are simple variations on this theme, and the interested reader will have no difficulty in
reconstructing them.

A term P is in head normal form if it has the following form, where I, J are finite index sets:

P =AC

∑
i∈I

αi.Pi +
∑
j∈J

xj .

By induction on the structure of a process term T , we show that T can be proven equal to a
process term that is both w-saturated and in head normal form, using the axiom system Ew. The
cases T ≡ x and T ≡ 0 are trivial.

• Case: T ≡ P + Q. By the inductive hypothesis, P and Q can be transformed into w-
saturated terms P ′ and Q′ in head normal form, respectively. Then T is provably equal to
P ′+Q′, which is a w-saturated term, and may be turned into head normal form by possibly
using A4.

• Case: T ≡ a.P . By the inductive hypothesis, P can be proven equal to a w-saturated term

P ′ =AC

∑
i∈I

bi.Pi +
∑
j∈J

τ.Qj +
∑
k∈K

xk .

By AT3, T is provably equal to

T ′ =AC a.P ′ +
∑
j∈J

a.Qj .

We show that T ′ is w-saturated. Since P ′ and its derivatives are w-saturated, we only need
to check the w-saturation condition for T ′ itself. Note that the case T ′

τ→ R
ξ→ S does not

apply. Assume that T ′
ξ→ R

τ→ S. Then ξ = a, and R is either P ′ or Qj for some j ∈ J .

If R ≡ P ′, then S ≡ Qj′ for some j′ ∈ J . Therefore T ′
a→ S follows.

If R ≡ Qj, then P ′
τ→ R

τ→ S. Since P ′ is w-saturated, it follows that P ′
τ→ S. Hence

S ≡ Qj′ for some j′ ∈ J , and T ′
a→ S follows.

• Case: T ≡ τ.P . By induction, P is provably equal to a w-saturated term

P ′ =AC

∑
i∈I

αi.Pi +
∑
j∈J

xj .

By T2, T is provably equal to T ′ ≡ τ.P ′ + P ′. We show that T ′ is w-saturated. Since P ′

and its derivatives are w-saturated, we only need to check the w-saturation condition for
transitions emanating from T ′ itself. We distinguish three possibilities.

Assume that T ′
τ→ P ′

ξ→ Q. Then T ′
ξ→ Q follows immediately.

Assume that T ′
τ→ Pi

ξ→ Q for some i ∈ I with αi = τ . Then P ′
τ→ Pi

ξ→ Q, and, as P ′ is
w-saturated, it follows that P ′

ξ→ Q. Hence T ′
ξ→ Q, as desired.

Assume that T ′
αi→ Pi

τ→ Q for some i ∈ I. Then P ′
αi→ Pi

τ→ Q. As P ′ is w-saturated, it
follows that P ′

αi→ Q. Thus T ′
αi→ Q, as desired.

• Case: T ≡ a∗P . By induction, P is provably equal to a w-saturated term

P ′ =AC

∑
i∈I

bi.Pi +
∑
j∈J

τ.Qj +
∑
k∈K

xk .
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Now,

T
PT3= a∗(P ′ +

∑
j∈J

a.Qj)
PA1= a.a∗(P ′ +

∑
j∈J

a.Qj) + P ′ +
∑
j∈J

a.Qj
∆=AC T ′ .

We show that T ′ is w-saturated. All derivatives other than T ′ itself and S ≡ a∗(P ′ +∑
j∈J a.Qj) are w-saturated by assumption, so we only need deal with these two cases.

First, we deal with T ′.

• Let T ′
ξ→ Q

τ→ R. There are three possibilities:

– ξ = a and Q ≡ S. Then R ≡ Qj for some j ∈ J , and thus T ′
a→ R.

– P ′
ξ→ Q

τ→ R. In that case P ′
ξ→ R since P ′ is w-saturated, and thus T ′

ξ→ R
follows.

– ξ = a and Q ≡ Qj for some j ∈ J . In that case P ′
τ→ Qj

τ→ R. Thus P ′
τ→ R,

since P ′ is w-saturated. Hence R ≡ Qj′ for some j′ ∈ J . Again T ′
a→ R follows.

• Let T ′
τ→ Q

ξ→ R. Then P ′
τ→ Q

ξ→ R. Thus P ′
ξ→ R, since P ′ is w-saturated, and

T ′
ξ→ R follows.

Next, we deal with S.

• Let S
ξ→ Q

τ→ R. There are three possibilities:

– ξ = a and Q ≡ S. Then R ≡ Qj for some j ∈ J , and S
a→ R.

– P ′
ξ→ Q

τ→ R. In that case S
ξ→ R since P ′ is w-saturated.

– ξ = a and Q ≡ Qj for some j ∈ J . In that case P ′
τ→ Qj

τ→ R; therefore P ′
τ→ R,

since P ′ is w-saturated. Hence R ≡ Qj′ for some j′ ∈ J . Again S
a→ R follows.

• Let S
τ→ Q

ξ→ R. Then P ′
τ→ Q

ξ→ R, and, since P ′ is w-saturated, S
ξ→ R follows.

• Case: T ≡ τ∗P . Application of PT1 reduces this case to the one T ≡ τ.P .

This completes the inductive argument. 2

In light of Propn. 3.3, the results in Thm. 4.6 and Propn. 4.7 effectively reduce the
completeness problem for η-, delay, and weak congruence over (BCCS)p∗(Aτ ) to that
for branching congruence.

Corollary 4.8 Let ℵ ∈ {η, d,w}. If P ↔c
ℵQ, then Eℵ ` P = Q.

Proof: Let ℵ ∈ {η, d, w}. Suppose that P ↔c
ℵQ. Prove P and Q equal to ℵ-saturated processes

P ′ and Q′, respectively (Propn. 4.7). By the soundness of the axiom system Eℵ (Propn. 3.2), P ′

and Q′ are ℵ-congruent. It follows that P ′ and Q′ are branching congruent (Thm. 4.6). Hence, by
Thm. 4.4, Eb ` P ′ = Q′. The claim now follows because, by Propn. 3.3, the axioms for branching
congruence are derivable from the theory Eℵ. 2

4.3 Comparison of proof strategies

The ω-completeness results for branching, delay, and η-congruence that we have just
obtained, are all new. The ω-completeness of the axiomatization for weak congruence
was proven earlier in [3], under the assumption that the set of actions A be countably
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infinite. The proof presented in this paper applies to any non-empty action set. While
in this study we have obtained the completeness result for weak congruence via that
for branching congruence, in op. cit. a direct proof strategy was employed, based on
structural induction. It turns out that the direct proof method yields a long and tedious
proof, with many case distinctions. The indirect proof via branching congruence, which
we presented here, is considerably shorter, and relies on a general relationship between
the two congruences. It should be noted, however, that delicate case analyses appear
to be inescapable components of completeness proofs for equational axiomatizations of
behavioural congruences over variations on Kleene algebras (cf., e.g., the proofs in [17,
15, 3, 16, 2]). In the approach followed in this paper, the use of a detailed case analysis
is limited to the proof of Propn. 4.3, which is the key to the completeness theorem
for branching congruence, and to the saturation procedures employed in the proof of
Propn. 4.7. In both cases, the case analysis is guided by operational, rather than purely
syntactic, considerations.

A second, less vital distinction between our proof and that from [3], is that there
first completeness was proved, and then a proof strategy from [21] was used to obtain
ω-completeness. Here, we gave operational semantics to open terms, instead of closed
terms, and deduced completeness and ω-completeness at the same time. This method
could have been employed in [3] just as well.
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