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Abstract. We consider a model for online computation in which the
online algorithm receives, together with each request, some information
regarding the future, referred to as advice. The advice provided to the
online algorithm may allow an improvement in its performance, com-
pared to the classical model of complete lack of information regarding
the future. We are interested in the impact of such advice on the com-
petitive ratio, and in particular, in the relation between the size b of the
advice, measured in terms of bits of information per request, and the
(improved) competitive ratio. Since b = 0 corresponds to the classical
online model, and b = �log |A|�, where A is the algorithm’s action space,
corresponds to the optimal (offline) one, our model spans a spectrum of
settings ranging from classical online algorithms to offline ones.

In this paper we propose the above model and illustrate its applicabil-
ity by considering two of the most extensively studied online problems,
namely, metrical task systems (MTS) and the k-server problem. For MTS
we establish tight (up to constant factors) upper and lower bounds on
the competitive ratio of deterministic and randomized online algorithms
with advice for any choice of 1 ≤ b ≤ Θ(log n), where n is the number
of states in the system: we prove that any randomized online algorithm
for MTS has competitive ratio Ω(log(n)/b) and we present a determin-
istic online algorithm for MTS with competitive ratio O(log(n)/b). For
the k-server problem we construct a deterministic online algorithm for
general metric spaces with competitive ratio kO(1/b) for any choice of
Θ(1) ≤ b ≤ log k.

1 Introduction

Online algorithms are algorithms that receive their input piece by piece and
have to act upon the receipt of each piece of input (a.k.a. request). Yet, their
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goal is usually to guarantee a performance which is as close as possible to the
optimal performance achievable if the entire input is known in advance. How
close do they get to this optimal performance is usually analyzed by means of
competitive analysis (cf. [4]).

From a theoretical standpoint, the complete lack of knowledge about the future
makes it many times impossible to achieve “reasonable” competitive ratios. From
a practical standpoint, complete lack of knowledge about the future does not
always accurately model realistic situations. Consequently, several attempts have
been made in the literature to somewhat relax the “absolutely no knowledge”
setting, and achieve better competitive ratios in such relaxed settings. Most
notable are the setting where a limited number of steps into the future is known
at any time (lookahead) (e.g., [1,7,19]), and the “access graph” setting for paging
(e.g., [5,13]). These settings and their analyses are usually specific to the problem
they address.

In this paper we study a new, general framework whose purpose is to model
online algorithms which have access to some information about the future. This
framework is intended to analyze the impact of such information on the achiev-
able competitive ratio. One important feature of our framework is that it takes
a quantitative approach for measuring the amount of information about the fu-
ture available to an online algorithm. Roughly speaking, we define a finite advice
space U , and augment the power of the online algorithm Alg (and thus reduce
the power of the adversary) by means of a series of queries ut, t = 1, 2, . . ., where
ut maps the whole request sequence σ (including the future requests) to an ad-
vice ut(σ) ∈ U provided to Alg in conjunction with the tth request of σ. This
advice can then be used by the online algorithm to improve its performance. At
the risk of a small loss of generality, we assume that the advice space is of size
2b for some integer b ≥ 0 and consider the advice to be a string of b bits.

Example 1. For the paging problem, it is relatively easy to verify that the fol-
lowing is a 1-competitive algorithm which uses 1 bit of advice per request (i.e.,
|U| = 2) [10]. The bit of advice indicates whether the optimal offline algorithm
keeps in memory the requested page until the next request to that same page.
The online algorithm tries to imitate the behavior of the optimal algorithm:
if the optimal algorithm indeed keeps in memory the requested page until the
next request to that same page, then so does the online algorithm. Whenever a
page must be swapped out from memory, the online algorithm picks an arbitrary
page among all pages that are not supposed to remain in memory until they are
requested again.

Clearly, since for a “usual” online problem the set of all possible request se-
quences is often infinite and in any case would typically be larger than the
advice space U , our framework just imposes some “commitment” of the adver-
sary regarding the future. This reduces the power of the adversary, and gives
to the online algorithm some information about the future. Since (typically) an
online algorithm has at any time a finite set of possible actions, our setting ad-
ditionally provides a smooth spectrum of computation models whose extremes
are (classical) online computation with no advice (advice space of size 1) and
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optimal, offline computation, where the advice is simply the optimal action (the
advice space corresponds to the set of all possible actions).

The main motivation for studying online algorithms that receive a small advice
with each request is purely theoretical. Nevertheless, this framework may be
motivated by settings such as the following, which may be dubbed “spy behind
enemy lines”: an entity which is aware of the plans of the adversary collaborates
with the online algorithm, however the communication between this entity and
the online algorithm is limited in terms of its capacity.

In this work we concentrate on two classical and extensively studied online
problems, metrical task systems (MTS) and the k-server problem. We establish
several (upper and lower) bounds on the achievable competitive ratios for these
problems by online algorithms with advice, thus demonstrating the applicability
of our approach for online problems, and giving a more refined analysis for online
algorithms having some information about the future. Specifically, for MTS we
establish asymptotically tight upper and lower bounds by proving Theorems 1
and 2.

Theorem 1. Any randomized online algorithm for uniform n-node MTS with
1 ≤ b ≤ Θ(log n) bits of advice per request cannot be ρ-competitive against an
oblivious adversary unless ρ = Ω(log(n)/b).

Theorem 2. For any choice of 1 ≤ b ≤ log n, there exists a deterministic online
algorithm for general n-node metrical task systems that receives b bits of advice
per request and whose competitive ratio is O(log(n)/b).

For the k-server problem we first prove Theorem 3 and then generalize it to
establish Theorem 4.

Theorem 3. There exists an O(
√

k)-competitive deterministic algorithm for the
k-server problem that receives O(1) bits of advice per request.

Theorem 4. For any choice of Θ(1) ≤ b ≤ log k, there exists a deterministic
online algorithm for the k-server problem that receives b bits of advice per request
and whose competitive ratio is kO(1/b).

Related work. Online algorithms operating against restricted adversaries have
been considered in the literature on many occasions, and under different settings.
For example, online algorithms that operate against an adversary that has to
provide some lookahead into the future have been considered, e.g., for the list
accessing problem [1], the bin-packing problem [19], and the paging problem [7].
Another example is the model of “access graph” for the paging problem [5,13].

The notion of advice is central in computer science (actually, checking mem-
bership in NP-languages can be seen as computing with advice). In particular,
the concept of advice and the analysis of its size and its impact on various com-
putations has recently found various applications in distributed computing. It is
for instance present in frameworks such as informative labeling for graphs [27],
distance oracles [28], and proof labeling [22,23]. A formalism of computing with
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advice based on a pair of collaborative entities, usually referred to as an oracle
and an algorithm, has been defined in [17] for the purpose of differentiating the
broadcast problem from the wake-up problem. This framework has been recently
used in [16] for the design of distributed algorithms for computing minimum
spanning trees (MST), in [15] for tackling the distributed coloring problem, and
in [26] for analyzing the graph searching problem (a.k.a. the cops-and-robbers
problem). Other applications can be found in [8,18,20]. In the framework of com-
puting with advice, the work probably most closely related to the present one
is the work of Dobrev, Královič, and Pardubská [10] who essentially prove that
there is a 1-competitive online algorithm for the paging problem, with 1 bit of
advice1 (see Example 1).

Online algorithms (without advice) for metrical task systems have been ex-
tensively studied. For deterministic algorithms it is known that the competitive
ratio is exactly 2n−1, where n is the number of states in the system [6]. For ran-
domized algorithms, the known upper bound for general metrical task systems
is O(log2 n log log n) [12,14] and the known lower bound is Ω(log n/ log log n)
[2,3]. For uniform metric spaces the randomized competitive ratio is known to
be Θ(log n) [6,21].

For the k-server problem the best competitive ratio for deterministic algo-
rithms on general metric spaces is 2k − 1 [24], and the lower bound is k [25].
Randomized algorithms for the k-server problem (against oblivious adversaries)
are not well understood: it is known that in general metric spaces no algorithm
has competitive ratio better than Ω(log k/ log log k) [2,3], but no upper bound
better than the one of [24] (that holds for deterministic algorithms) is known.

Organization. The rest of the paper is organized as follows. In Section 2 we
give the necessary preliminaries. The lower bound for metrical task systems is
presented in Section 3; the matching upper bound is established in Section 4.
In Section 5 we prove Theorem 3 regarding the k-Server problem. Due to space
limitations we only give outlines of these three results, while the proof of Theo-
rem 4 is omitted entirely. We conclude in Section 6 with some further discussion
and open problems.

2 Preliminaries

An online algorithm is an algorithm that receives its input piece by piece. Each
such piece is an element in some set S and we refer to it as a request. Let σ
be a finite request sequence. The tth request is denoted by σ[t] ∈ S. The online
algorithm has to perform an action upon the receipt of each request, that is, at
1 The model and interests of [10] actually differ from ours in two aspects. First, they are

interested in the amount of information required in order to obtain online algorithms
with optimal performance, rather than improved competitive ratios. Second, they
allow the advice to be of variable size, including size zero, and concentrate their work
on the question of how much below 1 can the average size of the advice be. This is
done by means of encoding methods such as encoding the 3-letter alphabet {∅, 0, 1}
using one bit only.
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round t, 1 ≤ t ≤ |σ|, this action has to be performed when the online algorithm
only knows the requests σ[1], . . . , σ[t]. For this action it incurs some cost (in the
case of minimization problems).

To formally define a deterministic online algorithm we use the formulation of
[4] (cf. Chapter 7). A deterministic online algorithm is a sequence of functions
gt : St → At, t ≥ 1, where At is the set of possible actions for request t (in many
cases all At are identical and we denote them by A.) In this work we strengthen
the online algorithm (and thus weaken the adversary) in the following manner.
For some finite set U , referred to as the advice space, the online algorithm is
augmented by means of a sequence of queries ut : S∗ → U , t ≥ 1. The value of
ut(σ), referred to as advice, is provided to the online algorithm in each round
1 ≤ t ≤ |σ|. The complexity of the advice is defined to be log |U|. For simplicity
of presentation, and at the risk of an inaccuracy in our results by a factor of at
most 2, we only consider advice spaces of size 2b for some integer b ≥ 0, and
view the advice as a string of b bits.

Formally, a deterministic online algorithm with advice is a sequence of pairs
(gt, ut), t ≥ 1, where gt : St×U t → At, and ut : S∗ → U . Given a finite sequence
of requests σ = (σ[1], . . . , σ[�]), the action taken by the online algorithm in round
t is gt(σ[1], . . . , σ[t], u1(σ), . . . , ut(σ)).

A randomized online algorithm with advice is allowed to make random choices
(i.e., “toss coins”) to determine its actions (the functions gt) and the advice
scheme (the queries ut). Formally, then, a randomized online algorithm with
advice is a probability distribution over deterministic online algorithms with
advice.

A deterministic online algorithm Alg (with or without advice) is said to be
c-competitive if for all finite request sequences σ, we have Alg(σ) ≤ c ·Opt(σ)+β,
where Alg(σ) is the cost incurred by Alg on σ, Opt(σ) is the cost incurred by
an optimal (offline) algorithm on σ, and β is a constant which does not depend
on σ. If the above holds with β = 0, then Alg is said to be strictly c-competitive.
For a randomized online algorithm (with or without advice) we consider the
expectation (over the random choices of the algorithm) of the cost incurred by
Alg on σ. Therefore a randomized online algorithm Alg (with or without advice)
is said to be c-competitive (against an oblivious adversary) if for all finite request
sequences σ, we have E[Alg(σ)] ≤ c · Opt(σ) + β.

As commonly done for the analysis of online algorithms, one may view the
setting as a game between the online algorithm and an adversary that issues the
request sequence round by round. In this framework, the values of the queries
ut can be thought of as commitments made by the adversary to issue a request
sequence which is consistent with the advice seen so far. For an online algorithm
Alg, augmented with advices in U , we are interested in the competitive ratio of
Alg, the advice complexity log |U|, and the interplay between these values.

Metrical Task Systems. A metrical task system (MTS) is a pair (M,R),
where M = (V, δ) is an n-point metric space2, and R ⊆ (R≥0 ∪ {∞})n is a set
2 Throughout the paper, we use the standard definition of a metric space consisting

of a set V of points and a distance function δ.
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of allowable tasks. The points in V are usually referred to as states. We assume
without loss of generality that M is scaled so that the minimum distance between
two distinct states is 1.

An instance I of (M,R) consists of an initial state s0 and a finite task sequence
r1, . . . , rm, where rt ∈ R for all 1 ≤ t ≤ m. Consider some algorithm Alg for
(M,R) and suppose that Alg is in state s at the beginning of round t (the
algorithm is in state s0 at the beginning of round 1). In round t Alg first moves
to some state s′ (possibly equal to s), incurring a transition cost of δ(s, s′), and
then processes the task rt in state s′, incurring a processing cost of rt(s′). The
cost incurred by Alg on I is the sum of the total transition cost in all rounds
and the total processing cost in all rounds.

The k-server problem. Let M = (V, δ) be a metric space. We consider in-
stances of the k-server problem on M, and when clear from the context, omit
the mention of the metric space. At any given time, each server resides in some
node v ∈ V . A subset X ⊆ V , |X | = k, where the servers reside is called a
configuration. The distance between two configurations X and Y , denoted by
D(X, Y ), is defined as the weight of a minimum weight matching between X
and Y .

An instance I of the k-server problem on M consists of an initial configura-
tion X0 and a finite request sequence r1, . . . , rm, where rt ∈ V for all 1 ≤ t ≤ m.
Consider some algorithm Alg for the k-server problem on M and suppose that
Alg is in configuration X at the beginning of round t (the algorithm is in con-
figuration X0 at the beginning of round 1). The request rt must be processed by
one of the k servers in round t, which means that Alg moves to some configu-
ration Y such that rt ∈ Y (Y may be equal to X if r ∈ X), incurring a cost of
D(X, Y ). The cost incurred by Alg on I is the total cost in all rounds.

3 A Lower Bound for MTS

In this section we sketch the proof of Theorem 1, that is, we show that if a
randomized online algorithm for uniform n-node MTS with 1 ≤ b ≤ Θ(log n)
bits of advice per request is ρ-competitive, then ρ = 1+Ω(log(n)/b). For the sake
of the analysis, we consider a stronger model for the online algorithms, where
the whole advice is provided at the beginning of the execution rather than round
by round.

Before dwelling into the details of the lower bound, we describe a key ingre-
dient in the proof that relates to a basic two-player zero-sum game, referred to
as generalized matching pennies (GMP). In GMP both the min-player and the
max-player have the same discrete action space {1, . . . , k}. The cost incurred by
the min-player is 0 if both players play the same action 1 ≤ i ≤ k; otherwise, it
is 1. Let S be the random variable that takes on the action of the max-player (S
reflects the mixed strategy of the max-player). Clearly, if H(S) = log k, namely,
if the entropy of S is maximal (which means that the max-player chooses its
action uniformly at random), then the expected cost incurred by the min-player
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is 1− 1/k. The following lemma, whose proof is omitted from this extended ab-
stract, provides a lower bound on the expected cost incurred by the min-player
when the entropy in S is not maximal.

Lemma 1. For every mixed strategy of the max-player, if H(S) ≥ δ log k, where
0 < δ < 1, then the expected cost incurred by the min-player is greater than
δ − 1/ log k.

Given some integer 1 ≤ b ≤ Θ(log n) (the size of the advice per round), fix
φ = 2Θ(b) and τ = 
logφ(n/2)�. The hidden constants in the Theta notations
are chosen to guarantee the following properties: (P1) 4 ≤ φ <

√
n/2; and (P2)

1 < τ = Ω(log(n)/b).
Let L be a sufficiently large integer. By repeating the GMP game with k = φ

for Lτ rounds, we obtain the following online GMP problem. Each round 1 ≤ t ≤
Lτ of the online GMP problem is characterized by some letter �t in the alphabet
[φ]. This letter (chosen by an oblivious adversary) is revealed immediately after
round t. The alphabet [φ] also serves as the action space of the algorithms
for the online GMP problem, that is, the action of an algorithm in round t is
characterized by some letter �′t ∈ [φ]. The cost incurred by the algorithm in
round t is 0 if �′t = �t and 1 if �′t �= �t. The online GMP problem is defined such
that any algorithm incurs additional L units of dummy cost regardless of its
choices of letters �′t. Clearly, an optimal (offline) algorithm for the online GMP
problem does not incur any cost other than the dummy cost as its action in
round t is �′t = �t for every 1 ≤ t ≤ Lτ .

The remainder of the proof consists of two parts. First, we employ an infor-
mation theoretic argument to show that if the request sequence σ ∈ [φ]Lτ of
the online GMP problem is chosen uniformly at random among all Lτ -letter
words over the alphabet [φ], then the expected cost incurred on σ by any de-
terministic online algorithm that receives bL(τ + 1) bits of advice in advance is
L(1 + Ω(τ)). Therefore by Yao’s principle, it follows that for every randomized
online algorithm Alg that receives bL(τ + 1) bits of advice in advance, there ex-
ists a request sequence σ ∈ [φ]Lτ such that E[Alg(σ)] = L(1+Ω(τ)). Second, we
reduce the online GMP problem to uniform n-node MTS showing that a request
sequence of length Lτ for the former problem can be implemented as a request
sequence of length L(τ + 1) for the latter. By combining these two parts, and
since Opt(σ) = L for every σ ∈ [φ]Lτ , we conclude that the competitive ratio
of any randomized algorithm for uniform n-node MTS with advice of b bits per
round is 1+Ω(τ) = 1+Ω(log(n)/b) (even if the whole advice is provided to the
algorithm at the beginning of the execution).

The information theoretic argument. Let σ = (σ1, . . . , σLτ ) be a sequence
of Lτ letters of the alphabet φ chosen independently and uniformly at random.
Consider some deterministic online algorithm Alg for the online GMP problem
that receives bL(τ + 1) = Θ(Lτ log φ) bits of advice, denoted by U , at the
beginning of the execution.

The entropy in σ is H(σ) = Lτ log φ. By definition, the advice U is a random
variable which is fully determined by σ, thus H(σ | U) = H(σ, U) − H(U) =
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H(σ) − H(U) = Ω(Lτ log φ). A straightforward variant of the chain rule of con-
ditional entropy implies that H(σ | U) = H(σ1 | U)+H(σ2 | σ1, U)+· · ·+H(σLτ |
σ1, . . . , σLτ−1, U). Since H(σt) = log φ for all t, it follows by an averaging argu-
ment that in a constant fraction of the rounds t the entropy that remains in σt

after Alg saw the advice U and the outcomes σ1, . . . , σt−1 of the previous rounds
is Ω(log φ). Lemma 1 can now be used to deduce that the expected cost incurred
by Alg in each such round t is Ω(1). Therefore the expected cost (including the
dummy cost) incurred by Alg throughout the execution is L(1 + Ω(τ)).

The reduction. We now turn to reduce the online GMP problem to the MTS
problem. The online GMP problem is implemented as an n-node MTS (M,R),
where R = {0,∞}n. That is, each task r ∈ R has 0 processing cost for some
states and infinite processing cost for the rest. (It is assumed that in every task,
at least one state has 0 processing cost.) Clearly, a competitive algorithm for
(M,R) must have 0 total processing cost.

Given a request sequence of length Lτ over the alphabet [φ] (for the online
GMP problem), fix n′ = φτ . The corresponding MTS request sequence is divided
into L cycles, where each cycle consists of τ +1 rounds, so the total length of the
request sequence is L(τ + 1). (Consequently, the advice provided to the online
algorithm at the beginning of the execution contains bL(τ + 1) bits.) A request
r = 〈r(1), . . . , r(n)〉 in odd (respectively, even) cycles satisfies r(i) = ∞ for every
n′+1 ≤ i ≤ 2n′ (resp., for every 1 ≤ i ≤ n′). For states 2n′+1 ≤ i ≤ n, we always
have r(i) = ∞. Therefore, throughout an odd (respectively, even) cycle, every
algorithm must be in state i for some 1 ≤ i ≤ n′ (resp., for some n′+1 ≤ i ≤ 2n′).
This means that between cycle c and cycle c+1 every algorithm must move from
some state in {1, . . . , n′} to some state in {n′ + 1, . . . , 2n′} or vice versa, which
sums up to L units of cost referred to as the dummy cost.

In what follows we describe the structure of cycle c for some odd c. The
structure of the even cycles is analogous. States 1, . . . , n′ are organized in con-
tiguous ranges. For every round 1 ≤ t ≤ τ + 1 of cycle c, there exists some
range Rt ⊆ {1, . . . , n′} such that the processing cost of state i is 0 if i ∈ Rt; and
∞ if i /∈ Rt. Clearly, every competitive algorithm must process the request of
round t in some state of Rt. In round 1 all states have zero processing cost, i.e.,
R1 = {1, . . . , n′}. For t = 1, . . . , τ , we have Rt+1 ⊆ Rt. Specifically, the range Rt

is partitioned into φ equally-sized contiguous subranges ; range Rt+1 will be one
of these subranges (determined by the letter in [φ] that characterizes the cor-
responding round in the online GMP request sequence). Eventually, in the last
round of the cycle, the range Rτ+1 consists of a single state. This is consistent
with our choice of parameters since τ = logφ n′.

Note that the only unknown in each round 1 ≤ t ≤ τ of cycle c is which of
the φ subranges of Rt corresponds to the range rt+1. If at the end of round t the
algorithm is located in some state of Rt+1, then no cost is incurred in round t+1;
otherwise, a unit cost is incurred. So, we have Lτ rounds characterized by some
letter in [φ] and L additional rounds in which every algorithm incurs a unit cost.
Therefore a ρ-competitive online algorithm for (M,R) implies a ρ-competitive
online GMP algorithm.
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4 An Upper Bound for MTS

In this section we establish Theorem 2 by presenting a deterministic online algo-
rithm for general MTS that gets b, 1 ≤ b ≤ log n, bits of advice per request and
achieves a competitive ratio of � �log n�

b � = O(log(n)/b). We call this algorithm
Follow.

Let (M,R) be a metrical task system. The request sequence is divided into
cycles, each consisting of α = � �log n�

b � requests, with the last cycle possibly
shorter. The first cycle, cycle 0, consists of the first α requests, and so on. During
cycle i ≥ 0, Follow receives advice of �log n� bits, which indicate the state in
which the optimal algorithm serves (will serve) the first request of cycle i + 1.

For cycle i, let si be the state in which the optimal algorithm serves the first
request of the cycle, and let OPTi be the cost of the optimal algorithm during
cycle i. Let OPT be the cost of the optimal algorithm on the whole request
sequence.

Definition of Follow. Before starting to serve cycle i, i ≥ 0, Follow places
itself at state si. This is possible for cycle 0 because both the optimal algorithm
and Follow start at the same initial state s0. This is possible for any cycle i > 0
by moving, at the end of phase i− 1, to state si, known to Follow by the advice
given in cycle i − 1.

To describe how Follow serves the requests in a cycle we give the following
definition. Let Bi(j), j ≥ 0, be the set of states in the metrical task system
that are at distance less than 2j from si. I.e., Bi(j) = {s : d(s, si) < 2j}. We
now partition the (at most) α requests of cycle i, into phases. When the cycle
starts, phase 0 starts. During phase j, Follow serves the requests by moving to
the state, among the states in Bi(j), which has the least processing cost for the
given task, and serving the request there. A request no longer belongs to phase
j, and phase j + 1 starts, if serving the request according to the above rule will
bring the total processing cost since the cycle started to be at least 2j . Note that
if a given request belongs to some phase j, the next request may belong to phase
j′ > j + 1. That is, there may be phases with no request.

We first give a lower bound on the cost of the optimal algorithm in each cycle
(proof omitted), and then give the main theorem of this section.

Lemma 2. If the last request of cycle i belongs to phase k, k ≥ 1, then OPTi ≥
2k−2.

Theorem 5. Follow is O(α)-competitive.

Proof sketch: We consider the cost incurred by Follow cycle by cycle. We denote
by Ci the cost of Follow during cycle i. Ci = Cs

i + Ct
i + C∗

i , where Cs
i is the

processing cost during cycle i, Ct
i is the transition cost during cycle i, and C∗

i

is the cost incurred by Follow, at the end of cycle i, to move to state si+1

(we do not count this cost in Ct
i ). First note that by the triangle inequality

C∗
i ≤ Ct

i + d(si, si+1). Then, for each cycle we consider two cases.
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Case 1: The last request of cycle i is in phase k = 0. In this case Cs
i +Ct

i ≤ OPTi

because Follow does not incur any transition cost, and the optimal algorithm
either moved away from si, incurring a cost of at least 1, or serves the whole
cycle in si, incurring processing cost equal to that of Follow.
Case 2: The last request of cycle i is in phase k > 0. In this case we have
Cs

i +Ct
i ≤ 8α·OPTi. This is because (1) by Lemma 2 we have that OPTi ≥ 2k−2;

and (2) Cs
i < 2k by the definition of the phases, and Ct

i ≤ (α − 1)2k+1 since
Follow does not leave Bi(k) during the phase.

Since
∑

i d(si, si+1) ≤ OPT , summing over all cycles gives the result. ��

5 An Upper Bound for the k-Server Problem

In this section we present a deterministic algorithm for the k-server problem that
receives 4 bits of advice per request and admits a competitive ratio of O(

√
k),

thus establishing Theorem 3.
The algorithm, denoted Partition, works in iterations, where each iteration

consists of k requests. Fix some optimal (offline) algorithm Opt and let Ai denote
the configuration of Opt at the beginning of iteration i. Partition uses two bits
of advice per round of iteration i to identify Ai+1 as follows. The first bit of
advice, received in round 1 ≤ j ≤ k of iteration i, determines whether the node
corresponding to the current request belongs to Ai+1. The second bit of advice,
received in round 1 ≤ j ≤ k of iteration i, determines whether the jth (according
to some predefined order) node of Ai is still occupied in Ai+1. Based on these
two bits of advice, and based on the knowledge of Ai, Partition computes the
configuration Ai+1 and moves to it at the end of iteration i. The cost incurred
by this move is bounded from above by the sum of the total cost incurred by
Partition in iteration i (tracing the steps of Partition back to configuration
Ai) and the total cost incurred by Opt in iteration i (tracing the steps of Opt
from Ai to Ai+1), thus increasing the overall competitive ratio of Partition
only by a constant factor.

In order to serve the requests of iteration i, the k servers are partitioned into
heavy servers and light servers according to the role they play in Opt during iter-
ation i: those serving (in Opt) at least

√
k requests are classified as heavy servers;

the rest are classified as light servers. The third bit of advice, received in round
1 ≤ j ≤ k of iteration i − 1, determines whether the server that occupies the jth

node of configuration Ai is heavy or light. Consequently, at the beginning of it-
eration i Partition knows the heavy/light classification of all the servers. (The
details related to the first iteration are omitted from this extended abstract.) The
fourth bit of advice, received in round 1 ≤ j ≤ k of iteration i, determines whether
Opt serves the current request with a heavy server or with a light one. Note that
this partitions the requests of iteration i into heavy requests (served in Opt by a
heavy server) and light requests (served in Opt by a light server).

To actually serve the requests of iteration i, Partition invokes the Work
Function Algorithm (WFA) [9], with the heavy servers, on the subsequence con-
sisting of the heavy requests of iteration i. WFA has a competitive ratio of 2k′−1,
where k′ is the number of servers in the problem [24]. Moreover, it is shown in
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[11] that WFA is in fact strictly O(k′)-competitive. In our case k′ ≤ √
k as there

cannot be more than
√

k heavy servers. Thus the cost incurred by Partition on
the heavy requests of iteration i is at most O(

√
k) times larger than that of Opt.

The subsequence consisting of the light requests of iteration i is served by
the light servers according to the following greedy strategy: each light request is
served by the closest light server, which then immediately returns to its initial
position in Ai. This strategy is strictly O(�)-competitive, where � is the maximum
number of requests served by any (light) server in Opt. By the definition of the
light servers, � in our case is at most

√
k, which implies that the cost incurred by

Partition on the light requests of iteration i is at most O(
√

k) times larger than
that of Opt. By summing over all iterations, we conclude that the competitive
ratio of Partition is O(

√
k), thus establishing Theorem 3.

6 Conclusions

We define a model for online computation with advice. The advice provides the
online algorithm with some (limited) information regarding future requests. Our
model quantifies the amount of this information in terms of the size b of the
advice measured in bits per request. This model does not depend on the specific
online problem.

The applicability and usefulness of our model is demonstrated by studying,
within its framework, two of the most extensively studied online problems:
metrical task systems (MTS) and the k-server problem. For general metrical
task systems we present a deterministic algorithm whose competitive ratio is
O(log(n)/b). We further show that any online algorithm, even randomized, for
MTS has competitive ratio Ω(log(n)/b) if it receives b bits of advice per request.
This lower bound is proved on uniform metric spaces. For the k-server problem
we present a deterministic online algorithm whose competitive ratio is kO(1/b).
Whether this is best possible is left as an open problem.

We believe that employing our model of online computation with advice may
lead to other results, thus enhancing our understanding of the exact impact of
the amount of knowledge an online algorithm has regarding the future on its
competitive ratio.
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