19,836 research outputs found

    On Compact Routing for the Internet

    Full text link
    While there exist compact routing schemes designed for grids, trees, and Internet-like topologies that offer routing tables of sizes that scale logarithmically with the network size, we demonstrate in this paper that in view of recent results in compact routing research, such logarithmic scaling on Internet-like topologies is fundamentally impossible in the presence of topology dynamics or topology-independent (flat) addressing. We use analytic arguments to show that the number of routing control messages per topology change cannot scale better than linearly on Internet-like topologies. We also employ simulations to confirm that logarithmic routing table size scaling gets broken by topology-independent addressing, a cornerstone of popular locator-identifier split proposals aiming at improving routing scaling in the presence of network topology dynamics or host mobility. These pessimistic findings lead us to the conclusion that a fundamental re-examination of assumptions behind routing models and abstractions is needed in order to find a routing architecture that would be able to scale ``indefinitely.''Comment: This is a significantly revised, journal version of cs/050802

    Compact routing on the Internet AS-graph

    Get PDF
    Compact routing algorithms have been presented as candidates for scalable routing in the future Internet, achieving near-shortest path routing with considerably less forwarding state than the Border Gateway Protocol. Prior analyses have shown strong performance on power-law random graphs, but to better understand the applicability of compact routing algorithms in the context of the Internet, they must be evaluated against real- world data. To this end, we present the first systematic analysis of the behaviour of the Thorup-Zwick (TZ) and Brady-Cowen (BC) compact routing algorithms on snapshots of the Internet Autonomous System graph spanning a 14 year period. Both algorithms are shown to offer consistently strong performance on the AS graph, producing small forwarding tables with low stretch for all snapshots tested. We find that the average stretch for the TZ algorithm increases slightly as the AS graph has grown, while previous results on synthetic data suggested the opposite would be true. We also present new results to show which features of the algorithms contribute to their strong performance on these graphs

    Compact routing for the future internet

    Get PDF
    The Internet relies on its inter-domain routing system to allow data transfer between any two endpoints regardless of where they are located. This routing system currently uses a shortest path routing algorithm (modified by local policy constraints) called the Border Gateway Protocol. The massive growth of the Internet has led to large routing tables that will continue to grow. This will present a serious engineering challenge for router designers in the long-term, rendering state (routing table) growth at this pace unsustainable. There are various short-term engineering solutions that may slow the growth of the inter-domain routing tables, at the expense of increasing the complexity of the network. In addition, some of these require manual configuration, or introduce additional points of failure within the network. These solutions may give an incremental, constant factor, improvement. However, we know from previous work that all shortest path routing algorithms require forwarding state that grows linearly with the size of the network in the worst case. Rather than attempt to sustain inter-domain routing through a shortest path routing algorithm, compact routing algorithms exist that guarantee worst-case sub-linear state requirements at all nodes by allowing an upper-bound on path length relative to the theoretical shortest path, known as path stretch. Previous work has shown the promise of these algorithms when applied to synthetic graphs with similar properties to the known Internet graph, but they haven't been studied in-depth on Internet topologies derived from real data. In this dissertation, I demonstrate the consistently strong performance of these compact routing algorithms for inter-domain routing by performing a longitudinal study of two compact routing algorithms on the Internet Autonomous System (AS) graph over time. I then show, using the k-cores graph decomposition algorithm, that the structurally important nodes in the AS graph are highly stable over time. This property makes these nodes suitable for use as the "landmark" nodes used by the most stable of the compact routing algorithms evaluated, and the use of these nodes shows similar strong routing performance. Finally, I present a decentralised compact routing algorithm for dynamic graphs, and present state requirements and message overheads on AS graphs using realistic simulation inputs. To allow the continued long-term growth of Internet routing state, an alternative routing architecture may be required. The use of the compact routing algorithms presented in this dissertation offer promise for a scalable future Internet routing system

    A distributed, compact routing protocol for the Internet

    Get PDF
    The Internet has grown in size at rapid rates since BGP records began, and continues to do so. This has raised concerns about the scalability of the current BGP routing system, as the routing state at each router in a shortest-path routing protocol will grow at a supra-linearly rate as the network grows. The concerns are that the memory capacity of routers will not be able to keep up with demands, and that the growth of the Internet will become ever more cramped as more and more of the world seeks the benefits of being connected. Compact routing schemes, where the routing state grows only sub-linearly relative to the growth of the network, could solve this problem and ensure that router memory would not be a bottleneck to Internet growth. These schemes trade away shortest-path routing for scalable memory state, by allowing some paths to have a certain amount of bounded “stretch”. The most promising such scheme is Cowen Routing, which can provide scalable, compact routing state for Internet routing, while still providing shortest-path routing to nearly all other nodes, with only slightly stretched paths to a very small subset of the network. Currently, there is no fully distributed form of Cowen Routing that would be practical for the Internet. This dissertation describes a fully distributed and compact protocol for Cowen routing, using the k-core graph decomposition. Previous compact routing work showed the k-core graph decomposition is useful for Cowen Routing on the Internet, but no distributed form existed. This dissertation gives a distributed k-core algorithm optimised to be efficient on dynamic graphs, along with with proofs of its correctness. The performance and efficiency of this distributed k-core algorithm is evaluated on large, Internet AS graphs, with excellent results. This dissertation then goes on to describe a fully distributed and compact Cowen Routing protocol. This protocol being comprised of a landmark selection process for Cowen Routing using the k-core algorithm, with mechanisms to ensure compact state at all times, including at bootstrap; a local cluster routing process, with mechanisms for policy application and control of cluster sizes, ensuring again that state can remain compact at all times; and a landmark routing process is described with a prioritisation mechanism for announcements that ensures compact state at all times

    GMPLS-OBS interoperability and routing acalability in internet

    Get PDF
    The popularization of Internet has turned the telecom world upside down over the last two decades. Network operators, vendors and service providers are being challenged to adapt themselves to Internet requirements in a way to properly serve the huge number of demanding users (residential and business). The Internet (data-oriented network) is supported by an IP packet-switched architecture on top of a circuit-switched, optical-based architecture (voice-oriented network), which results in a complex and rather costly infrastructure to the transport of IP traffic (the dominant traffic nowadays). In such a way, a simple and IP-adapted network architecture is desired. From the transport network perspective, both Generalized Multi-Protocol Label Switching (GMPLS) and Optical Burst Switching (OBS) technologies are part of the set of solutions to progress towards an IP-over-WDM architecture, providing intelligence in the control and management of resources (i.e. GMPLS) as well as a good network resource access and usage (i.e. OBS). The GMPLS framework is the key enabler to orchestrate a unified optical network control and thus reduce network operational expenses (OPEX), while increasing operator's revenues. Simultaneously, the OBS technology is one of the well positioned switching technologies to realize the envisioned IP-over-WDM network architecture, leveraging on the statistical multiplexing of data plane resources to enable sub-wavelength in optical networks. Despite of the GMPLS principle of unified control, little effort has been put on extending it to incorporate the OBS technology and many open questions still remain. From the IP network perspective, the Internet is facing scalability issues as enormous quantities of service instances and devices must be managed. Nowadays, it is believed that the current Internet features and mechanisms cannot cope with the size and dynamics of the Future Internet. Compact Routing is one of the main breakthrough paradigms on the design of a routing system scalable with the Future Internet requirements. It intends to address the fundamental limits of current stretch-1 shortest-path routing in terms of RT scalability (aiming at sub-linear growth). Although "static" compact routing works fine, scaling logarithmically on the number of nodes even in scale-free graphs such as Internet, it does not handle dynamic graphs. Moreover, as multimedia content/services proliferate, the multicast is again under the spotlight as bandwidth efficiency and low RT sizes are desired. However, it makes the problem even worse as more routing entries should be maintained. In a nutshell, the main objective of this thesis in to contribute with fully detailed solutions dealing both with i) GMPLS-OBS control interoperability (Part I), fostering unified control over multiple switching domains and reduce redundancy in IP transport. The proposed solution overcomes every interoperability technology-specific issue as well as it offers (absolute) QoS guarantees overcoming OBS performance issues by making use of the GMPLS traffic-engineering (TE) features. Keys extensions to the GMPLS protocol standards are equally approached; and ii) new compact routing scheme for multicast scenarios, in order to overcome the Future Internet inter-domain routing system scalability problem (Part II). In such a way, the first known name-independent (i.e. topology unaware) compact multicast routing algorithm is proposed. On the other hand, the AnyTraffic Labeled concept is also introduced saving on forwarding entries by sharing a single forwarding entry to unicast and multicast traffic type. Exhaustive simulation campaigns are run in both cases in order to assess the reliability and feasible of the proposals

    Measuring Effectiveness of Address Schemes for AS-level Graphs

    Get PDF
    This dissertation presents measures of efficiency and locality for Internet addressing schemes. Historically speaking, many issues, faced by the Internet, have been solved just in time, to make the Internet just work~\cite{justWork}. Consensus, however, has been reached that today\u27s Internet routing and addressing system is facing serious scaling problems: multi-homing which causes finer granularity of routing policies and finer control to realize various traffic engineering requirements, an increased demand for provider-independent prefix allocations which injects unaggregatable prefixes into the Default Free Zone (DFZ) routing table, and ever-increasing Internet user population and mobile edge devices. As a result, the DFZ routing table is again growing at an exponential rate. Hierarchical, topology-based addressing has long been considered crucial to routing and forwarding scalability. Recently, however, a number of research efforts are considering alternatives to this traditional approach. With the goal of informing such research, we investigated the efficiency of address assignment in the existing (IPv4) Internet. In particular, we ask the question: ``how can we measure the locality of an address scheme given an input AS-level graph?\u27\u27 To do so, we first define a notion of efficiency or locality based on the average number of bit-hops required to advertize all prefixes in the Internet. In order to quantify how far from ``optimal the current Internet is, we assign prefixes to ASes ``from scratch in a manner that preserves observed semantics, using three increasingly strict definitions of equivalence. Next we propose another metric that in some sense quantifies the ``efficiency of the labeling and is independent of forwarding/routing mechanisms. We validate the effectiveness of the metric by applying it to a series of address schemes with increasing randomness given an input AS-level graph. After that we apply the metric to the current Internet address scheme across years and compare the results with those of compact routing schemes

    Scalable Routing Easy as PIE: a Practical Isometric Embedding Protocol (Technical Report)

    Get PDF
    We present PIE, a scalable routing scheme that achieves 100% packet delivery and low path stretch. It is easy to implement in a distributed fashion and works well when costs are associated to links. Scalability is achieved by using virtual coordinates in a space of concise dimensionality, which enables greedy routing based only on local knowledge. PIE is a general routing scheme, meaning that it works on any graph. We focus however on the Internet, where routing scalability is an urgent concern. We show analytically and by using simulation that the scheme scales extremely well on Internet-like graphs. In addition, its geometric nature allows it to react efficiently to topological changes or failures by finding new paths in the network at no cost, yielding better delivery ratios than standard algorithms. The proposed routing scheme needs an amount of memory polylogarithmic in the size of the network and requires only local communication between the nodes. Although each node constructs its coordinates and routes packets locally, the path stretch remains extremely low, even lower than for centralized or less scalable state-of-the-art algorithms: PIE always finds short paths and often enough finds the shortest paths.Comment: This work has been previously published in IEEE ICNP'11. The present document contains an additional optional mechanism, presented in Section III-D, to further improve performance by using route asymmetry. It also contains new simulation result

    Compact Oblivious Routing

    Get PDF
    Oblivious routing is an attractive paradigm for large distributed systems in which centralized control and frequent reconfigurations are infeasible or undesired (e.g., costly). Over the last almost 20 years, much progress has been made in devising oblivious routing schemes that guarantee close to optimal load and also algorithms for constructing such schemes efficiently have been designed. However, a common drawback of existing oblivious routing schemes is that they are not compact: they require large routing tables (of polynomial size), which does not scale. This paper presents the first oblivious routing scheme which guarantees close to optimal load and is compact at the same time - requiring routing tables of polylogarithmic size. Our algorithm maintains the polylogarithmic competitive ratio of existing algorithms, and is hence particularly well-suited for emerging large-scale networks
    corecore