426 research outputs found

    Principles for problem aggregation and assignment in medium scale multiprocessors

    Get PDF
    One of the most important issues in parallel processing is the mapping of workload to processors. This paper considers a large class of problems having a high degree of potential fine grained parallelism, and execution requirements that are either not predictable, or are too costly to predict. The main issues in mapping such a problem onto medium scale multiprocessors are those of aggregation and assignment. We study a method of parameterized aggregation that makes few assumptions about the workload. The mapping of aggregate units of work onto processors is uniform, and exploits locality of workload intensity to balance the unknown workload. In general, a finer aggregate granularity leads to a better balance at the price of increased communication/synchronization costs; the aggregation parameters can be adjusted to find a reasonable granularity. The effectiveness of this scheme is demonstrated on three model problems: an adaptive one-dimensional fluid dynamics problem with message passing, a sparse triangular linear system solver on both a shared memory and a message-passing machine, and a two-dimensional time-driven battlefield simulation employing message passing. Using the model problems, the tradeoffs are studied between balanced workload and the communication/synchronization costs. Finally, an analytical model is used to explain why the method balances workload and minimizes the variance in system behavior

    Application Specific Customization and Scalability of Soft Multiprocessors

    Full text link

    Expanded delta networks for very large parallel computers

    Get PDF
    In this paper we analyze a generalization of the traditional delta network, introduced by Patel [21], and dubbed Expanded Delta Network (EDN). These networks provide in general multiple paths that can be exploited to reduce contention in the network resulting in increased performance. The crossbar and traditional delta networks are limiting cases of this class of networks. However, the delta network does not provide the multiple paths that the more general expanded delta networks provide, and crossbars are to costly to use for large networks. The EDNs are analyzed with respect to their routing capabilities in the MIMD and SIMD models of computation.The concepts of capacity and clustering are also addressed. In massively parallel SIMD computers, it is the trend to put a larger number processors on a chip, but due to I/O constraints only a subset of the total number of processors may have access to the network. This is introduced as a Restricted Access Expanded Delta Network of which the MasPar MP-1 router network is an example

    Architectures for reasoning in parallel

    Get PDF
    The research conducted has dealt with rule-based expert systems. The algorithms that may lead to effective parallelization of them were investigated. Both the forward and backward chained control paradigms were investigated in the course of this work. The best computer architecture for the developed and investigated algorithms has been researched. Two experimental vehicles were developed to facilitate this research. They are Backpac, a parallel backward chained rule-based reasoning system and Datapac, a parallel forward chained rule-based reasoning system. Both systems have been written in Multilisp, a version of Lisp which contains the parallel construct, future. Applying the future function to a function causes the function to become a task parallel to the spawning task. Additionally, Backpac and Datapac have been run on several disparate parallel processors. The machines are an Encore Multimax with 10 processors, the Concert Multiprocessor with 64 processors, and a 32 processor BBN GP1000. Both the Concert and the GP1000 are switch-based machines. The Multimax has all its processors hung off a common bus. All are shared memory machines, but have different schemes for sharing the memory and different locales for the shared memory. The main results of the investigations come from experiments on the 10 processor Encore and the Concert with partitions of 32 or less processors. Additionally, experiments have been run with a stripped down version of EMYCIN

    Computer vision algorithms on reconfigurable logic arrays

    Full text link

    A communication-ordered task graph allocation algorithm

    Get PDF
    technical reportThe inherently asynchronous nature of the data flow computation model allows the exploitation of maximum parallelism in program execution. While this computational model holds great promise, several problems must be solved in order to achieve a high degree of program performance. The allocation and scheduling of programs on MIMD distributed memory parallel hardware, is necessary for the implementation of efficient parallel systems. Finding optimal solutions requires that maximum parallelism be achieved consistent with resource limits and minimizing communication costs, and has been proven to be in the class of NP-complete problems. This paper addresses the problem of static allocation of tasks to distributed memory MIMD systems where simultaneous computation and communication is a factor. This paper discusses similarities and differences between several recent heuristic allocation approaches and identifies common problems inherent in these approaches. This paper presents a new algorithm scheme and heuristics that resolves the identified problems and shows significant performance benefits

    Mapping of portable parallel programs

    Get PDF
    An efficient parallel program designed for a parallel architecture includes a detailed outline of accurate assignments of concurrent computations onto processors, and data transfers onto communication links, such that the overall execution time is minimized. This process may be complex depending on the application task and the target multiprocessor architecture. Furthermore, this process is to be repeated for every different architecture even though the application task may be the same. Consequently, this has a major impact on the ever increasing cost of software development for multiprocessor systems. A remedy for this problem would be to design portable parallel programs which can be mapped efficiently onto any computer system. In this dissertation, we present a portable programming tool called Cluster-M. The three components of Cluster-M are the Specification Module, the Representation Module, and the Mapping Module. In the Specification Module, for a given problem, a machine-independent program is generated and represented in the form of a clustered task graph called Spec graph. Similarly, in the Representation Module, for a given architecture or heterogeneous suite of computers, a clustered system graph called Rep graph is generated. The Mapping Module is responsible for efficient mapping of Spec graphs onto Rep graphs. As part of this module, we present the first algorithm which produces a near-optimal mapping of an arbitrary non-uniform machine-independent task graph with M modules, onto an arbitrary non-uniform task-independent system graph having N processors, in 0(M P) time, where P = max(M, N). Our experimental results indicate that Cluster-M produces better or similar mapping results compared to other leading techniques which work only for restricted task or system graphs

    Graph Contraction for Mapping Data on Parallel Computers: A Quality–Cost Tradeoff

    Get PDF
    • …
    corecore