
New Jersey Institute of Technology
Digital Commons @ NJIT

Dissertations Theses and Dissertations

Spring 1995

Mapping of portable parallel programs
Song Chen
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for
inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact
digitalcommons@njit.edu.

Recommended Citation
Chen, Song, "Mapping of portable parallel programs" (1995). Dissertations. 1110.
https://digitalcommons.njit.edu/dissertations/1110

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1110&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1110&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1110?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1110&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely afreet reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

A Bell & Howell Information Company
300 North Z eeb R oad. Ann Arbor. Ml 48106-1346 USA

313 /761 -4700 800/521-0600

DMI Number: 9539580

Copyright 1995 by
Chen, Song

All rights reserved.

UMI Microform 9539580
Copyright 1995, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

A BSTR AC T

M A P P IN G OF PORTABLE PARALLEL PRO G RAM S

by
Song Chen

An efficient parallel program designed for a parallel architecture includes a

detailed outline of accurate assignments of concurrent computations onto processors,

and data transfers onto communication links, such that the overall execution time

is minimized. This process may be complex depending on the application task and

the target multiprocessor architecture. Furthermore, this process is to be repeated

for every different architecture even though the application task may be the same.

Consequently, this has a major impact on the ever increasing cost of software devel­

opment for multiprocessor systems. A remedy for this problem would be to design

portable parallel programs which can be mapped efficiently onto any computer

system. In this dissertation, we present a portable programming tool called Cluster-

M. The three components of Cluster-M are the Specification Module, the Repre­

sentation Module, and the Mapping Module. In the Specification Module, for a

given problem, a machine-independent program is generated and represented in the

form of a clustered task graph called Spec graph. Similarly, in the Representation

Module, for a given architecture or heterogeneous suite of computers, a clustered

system graph called Rep graph is generated. The Mapping Module is responsible

for efficient mapping of Spec graphs onto Rep graphs. As part of this module, we

present the first algorithm which produces a near-optimal mapping of an arbitrary

non-uniform machine-independent task graph with M modules, onto an arbitrary

non-uniform task-independent system graph having N processors, in O(MP) time,

where P = max(M, N). Our experimental results indicate that Cluster-M produces

better or similar mapping results compared to other leading techniques which work

only for restricted task or system graphs.

M A P P IN G OF PORTABLE PARALLEL PR O G RA M S

by
Song Chen

A Dissertation
Subm itted to the Faculty of

N ew Jersey Institu te o f Technology
in Partial Fulfillment o f the R equirem ents for the D egree of

D octor of Philosophy

D epartm ent of C om puter and Inform ation Science

May 1995

Copyright © 1995 by Song Chen

ALL RIGHTS RESERVED

APPROVAL PAGE

MAPPING OF PORTABLE PARALLEL PROGRAMS

Song Chen

Dr. Mary M. Eshaghian, Dissertation Advisor 	 Date
Director of Advanced Computer Architecture and
Parallel Processing Laboratory
Assistant Professor of Computer and Information Science
Assistant Professor of Electrical and Computer Engineering, NJIT

fir. John D. Carpinelli, Committee Member 	 Date
Director of Computer Engineering
Acting Associate Chair of Electrical and Computer Engineering Department
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. James/McHugh, Committee Member 	 Date
Director of Ph.D. Program in Computer Science
Professor of Computer and Information Science, NJIT

br. Peter A. Ng, Committee Member 	 Date
Chair of Computer and Information Science Department
Professor of Computer and Information Science, NJIT

Dr. Sotirios G. Ziavras, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author: Song Chen

Degree: Doctor of Philosophy

Date: May 1995

Undergraduate and Graduate Education:

• Doctor of Philosophy in Computer Science,
New Jersey Institute of Technology, Newark, New Jersey, 1995

e Master of Science in Systems Engineering,
Shanghai Jiao Tong University, Shanghai, P. R. China, 1990

• Bachelor of Science in Computer Science,
East China Normal University, Shanghai, P. R. China, 1987

Major: Computer Science

Presentations and Publications:

S. Chen and M. M. Eshaghian, "A Fast Recursive Mapping Algorithm," to appear
in Concurrency: Practice and Experience, August 1995.

S. Chen, M. M. Eshaghian, R. F. Freund, J. L. Potter, and Y. Wu, "Evaluation
of Two Programming Paradigms for Heterogeneous Computing," to appear in
Journal of Parallel and Distributed Computing, 1995/1996.

S. Chen, M. NI. Eshaghian, and Y. Wu, "Mapping Arbitrary Non-Uniform Task
Graphs onto Arbitrary Non-Uniform System Graphs," submitted to IEEE
Transactions on Parallel and Distributed Computing.

S. Chen and M. M. Eshaghian, "Tools for Design and Mapping of Portable Parallel
Programs," to appear in Proceedings of Workshop on Challenges for Parallel
Processing, International Conference on Parallel Processing, August 1995.

S. Chen, M. M. Eshaghian, and Y. Wu, "Mapping Arbitrary Non-Uniform Task
Graphs onto Arbitrary Non-Uniform System Graphs," to appear in Proceedings
of International Conference on Parallel Processing, August 1995.

S. Chen, M. M. Eshaghian, R. F. Freund, J. L. Potter, and Y. Wu, "Scalable
Heterogeneous Programming Tools," Proceedings of Heterogeneous Computing
Workshop, pp 89-96, April 1994.

iv

S. Chen, M. M. Eshaghian, A. Khokhar, and M. E. Shaaban, “A Selection
Theory and Methodology for Heterogeneous Supercomputing,” Proceedings of
Workshop on Heterogeneous Processing, pp 15-22, April 1993.

L. R. Welch, A. D. Stoyenko, and S. Chen, “Assigning ADT Modules with Random
Neural Networks,” Proceedings of Hawaii International Conference on Systems
Science, pp 546-555, January 1993.

This work is dedicated to
my grandparents, my parents, and my lovely wife.

vi

ACK N O W LED G M EN T

The author wishes to express his sincere gratitude to his advisor, Professor

Mary M. Eshaghian, for her guidance, friendship, and moral support throughout

this research.

Special thanks to Professor John D. Carpinelli, Professor James McHugh,

Professor Peter A. Ng, and Professor Sotirios G. Ziavras for serving as members

of the committee and offering invaluable suggestions to this dissertation.

The author is grateful to the Department of Computer and Information Science

and the National Science Foundation for funding for this project.

The author appreciates the consistent help from the Cluster-M project team

members: Geetha Chitti, Ajitha Gadangi, Javier G. Vasquez, and especially Ying-

Chieh Wu.

Lastly, the author wants to thank his dear wife, Jing Zhu, for her love, under­

standing and help without which he simply can not complete this dissertation.

TABLE OF CONTENTS

Chapter Page

1 IN TRODUCTION.. 1

1.1 Existing Parallel Programming T o o ls .. 1

1.2 Mapping Techniques.. 3

1.2.1 Mapping of Specialized Task onto Specialized S y s te m s 4

1.2.2 Mapping of Specialized Task onto Arbitrary S y s te m s 5

1.2.3 Mapping of Arbitrary Task onto Specialized S y s te m s 5

1.2.4 Mapping of Arbitrary Tasks onto Arbitrary System s................. 6

1.3 Cluster-M ... 8

1.4 Contributions and O utline ... 9

2 CLUSTER-M PROGRAMMING... 11

2.1 Cluster-M Specifications.. 11

2.2 Cluster-M C o n stru c ts ... 12

2.3 Implementation of the Cluster-M C onstructs.. 13

2.4 Cluster-M Specification M ac ro s ... 14

2.4.1 Associative Binary O peration.. 15

2.4.2 Vector Dot P roduct.. 17

2.4.3 SIMD Data Parallel O p era tio n s ... 18

2.4.4 Broadcast O peration ... 18

3 CLUSTERING G R A P H S ... 20

3.1 Clustering Arbitrary Uniform G rap h s ... 20

3.1.1 Clustering Directed G ra p h s .. 20

3.1.2 Clustering Undirected Graphs ... 25

3.2 Clustering Arbitrary Non-Uniform Graphs ... 29

3.2.1 Clustering Non-Uniform Directed Graphs 29

viii

Chapter Page

3.2.2 Clustering Non-Uniform Undirected G raphs................................. 36

4 CLUSTER-M M A PPIN G .. 39

4.1 Cluster-M Uniform M ap p in g .. 39

4.1.1 Uniform Mapping A lg o rith m .. 40

4.1.2 Uniform Mapping Exam ples.. 41

4.2 Uniform Mapping Comparison R e su lts .. 44

4.2.1 Task Scheduling Results .. 45

4.2.2 Task Allocation R esu lts .. 45

4.3 Cluster-M Non-Uniform M apping.. 48

4.3.1 Non-Uniform Mapping A lgorithm .. 48

4.3.2 Non-Uniform Mapping E xam ples.. 53

4.4 Non-Uniform Mapping Comparison R esults... 56

4.4.1 Comparison with McCreary and Gill’s Clan A lgorithm 58

4.4.2 Comparison with El-Rewini and Lewis’s Mapping Heuristic . . . 59

4.4.3 Comparison with Wu-Gajski’s MCP A lg o rith m 61

4.4.4 Comparison with Sarkar’s Edge-Zeroing A lgorithm 61

4.4.5 Comparison with Yang and Gerasoulis’ DSC A lg o rith m 61

5 HIERARCHICAL CLUSTER-M MAPPING FOR HETEROGENEOUS
C O M PU T IN G ... 67

5.1 Heterogeneous Optimal Selection Theory (H O S T)................................ 68

5.2 Modeling the Input to H O ST.. 71

5.3 Hierarchical Cluster-M (H C M).. 73

5.3.1 HCM Specification... 73

5.3.2 HCM Representation.. 74

5.4 HCM Bound-Degree Mapping Algorithm... 77

5.5 Comparison S tu d y ... 79

6 COMBINED USE OF CLUSTER-M WITH H A SC .. 83

ix

C hapter Page

6.1 Heterogeneous Associative Computing (HAsC) 83

6.2 Combined Use of Cluster-M and H A sC .. 91

6.3 Scalability Issues .. 95

6.3.1 Homogeneous Scalab ility .. 97

6.3.2 Heterogeneous Scalability.. 98

6.3.3 Scalability of HAsC and C luster-M .. 100

7 CO N CLU SIO N S... 102

APPENDIX A Cluster-M Constructs in PCN ... 103

REFERENCES ... 108

x

LIST OF TABLES

Table Page

4.1 Mapping of Bokhari’s algorithm and C luster-M ... 49

4.2 Comparisons of mappings of Bokhari’s algorithm and C luster-M 50

5.1 Notations used in HOST form ulation .. 71

xi

LIST OF FIGURES

Figure Page

2.1 Spec graph of a unary operation on an array of size n 11

2.2 Spec graph of a binary associative operation on 8 elements......................... 12

2.3 PCN system structure... 15

2.4 Cluster-M Specification of broadcast macro.. 19

3.1 Clustering-directed-graphs algorithm... 23

3.2 A task graph and the obtained Spec graph... 24

3.3 Clustering-undirected-graphs algorithm .. 26

3.4 An undirected graph and its clustering.. 27

3.5 A clustered graph of a hypercube... 27

3.6 A clustered graph of a mesh.. 27

3.7 A clustered graph of a ring.. 28

3.8 A clustered graph of a completely connected graph....................................... 28

3.9 Clustering-non-uniform-directed-graphs algorithm.. 30

3.10 Two types of clustering... 31

3.11 Clustering on a Merge-node.. 32

3.12 Clustering on a Merge-node: a general case.. 33

3.13 Clustering on a Broadcast-node... 33

3.14 Clustering on a Broadcast-node: a general case... 34

3.15 Possible embedding on a Broadcast-node.. 34

3.16 A task graph and the obtained Spec graph.. 35

3.17 Clustering-non-uniform-undirected-graphs algorithm................................... 37

3.18 A non-uniform system graph and its clustering... 37

4.1 Uniform mapping algorithm ... 42

4.2 A mapping example.. 43

xii

Figure Page

4.3 Gantt chart of the obtained schedule.. 44

4.4 Comparison example with Lee and Aggarwal’s strategy............................... 46

4.5 Comparison with Bokhari’s mapping: task and system graph..................... 47

4.6 Non-uniform mapping algorithm... 52

4.7 A mapping example... 53

4.8 Gantt chart of the obtained schedule.. 54

4.9 Mappings on different system graphs.. 55

4.10 Gaussian elimination algorithm... 56

4.11 The mapping example of a 5 x 5 matrix Gaussian elimination.................. 57

4.12 Comparison example with Clan... 60

4.13 Comparison example with MH.. 62

4.14 Comparison example with MCP, Sarkar and DSC... 63

4.15 Comparison example 2 with DSC... 65

4.16 Comparison example 3 with DSC... 65

4.17 Comparison example 4 with DSC... 66

5.1 Input format to HOST.. 69

5.2 A heterogeneous subtask consists of MIMD and vector code segments. . . 74

5.3 Construction of the Spec subgraph of the MIMD code segment................ 75

5.4 The system graph and its clustering of a heterogeneous suite.................... 76

5.5 HCM bound-degree mapping algorithm.. 78

5.6 The obtained mapping result... 80

5.7 The mapping results of MIMD code blocks onto MIMD machine............. 81

5.8 The mapping results of Gaussian elimination on the vector machine. . . . 82

6.1 Analogy between an associative computer and an associative configu­
ration of a network... 84

6.2 A layered heterogeneous network.. 85

6.3 Instruction Synchronization... 90

xiii

Figure Page

6.4 Cluster-M aided HAsC computation within HAsC nodes............................. 93

6.5 Switching between Cluster-M and HAsC.. 93

6.6 The task graph and Spec graph of the HAsC user level instructions. . . . 94

6.7 The task graph of a GE on a 7 x 7 m atrix.. 95

6.8 The architectures of HAsC Nodel and Node2.. 96

6.9 The Cluster-M mappings within the HAsC nodes.. 96

6.10 Hierarchical breakdown of a t a s k ... 99

6.11 Scalability of HAsC and Cluster-M .. 101

xiv

C H A PT E R 1

IN TR O D U C TIO N

In this chapter, we first present an overview of existing parallel programming tools,

and will specifically focus on tools for design and mapping of portable parallel

programs. An essential component of these tools is the mapping techniques employed.

For this reason, we present a detailed overview of various mapping techniques,

classified in four categories. Finally, in this chapter, we introduce Cluster-M portable

parallel programming tool which will be studied in detail throughout this disser­

tation.

1.1 E xisting Parallel Program m ing Tools

Many parallel programming tools have been developed. They can be classified as

debugger, high-level language, library of specialized routines, mapping tool, network

tool, performance tool, parallelization tool, etc. [18]. For example, PVM [76] is

a network tool. It consists of library routines embedded in C or FORTRAN that

permit a network of heterogeneous computers to appear as one large virtual machine.

PVM is simple and easy to use, therefore it is widely used. However, using PVM,

the user must specify data allocation and task partitioning. PVM does not provide

automatic and intelligent load balancing or mapping. Therefore, programs written

in PVM may not be portable.

In this dissertation, we are only interested in portable mapping tools that

port parallel programs onto different parallel systems. Using these programming

tools, the user can write a parallel program without knowing all the details of the

target computer where the program is to be executed. Examples of these tools

include Linda, Prep-P, Oregami, Hypertool, and PYRROS [11, 6, 60, 82, 85]. Linda

1

2

[11, 1, 46] is a language extension to C and FORTRAN for parallel programming.

It is a coordination language for creating parallel or distributed applications via a

virtual shared memory paradigm. Linda defines a logically shared data structuring

memory mechanism called tuple space. Tuple space holds two kinds of tuples: process

tuples which are under active evaluation and data tuples that are passive. Ordinarily,

building a Linda program involves dropping a process tuple into tuple space spawning

off other process tuples. This pool of process tuples, all executing simultaneously,

exchange data by generating, reading and consuming data tuples. Once a process

tuple has finished executing, it turns into a data tuple indistinguishable from other

data tuples. Linda requires large volumes of data to be exchanged to and from the

shared memory. This may cause heavy congestion over available communication

channels of a typical multiprocessor system. For this reason, Linda has been mostly

used for coarse grain computations. Furthermore, it is very difficult to implement

Linda on architectures not supporting the shared memory structure.

On the other hand, Prep-P, Oregami, Hypertool and PYRROS all include a

mapping component which can map a given parallel program onto either a special or

arbitrary system. However, the mapping components of Prep-P [6] and Oregami [60]

are basically libraries of specialized mapping algorithms which only map regularly

structured programs onto regularly structured systems. Their mappings for irreg­

ularly structured programs or systems can be very slow and not effective. Hypertool

[82] and PYRROS [85] generate fast and near optimal mappings by clustering the

task graphs. However, they only map the clusters of task modules onto a fully

connected system.

Cluster-M [29, 30, 31, 32], the parallel programming tool to be studied in this

dissertation, also includes a mapping component called Cluster-M Mapping Module.

The other components of Cluster-M are Cluster-M Specification Module and Cluster-

M Representation Module. Portable parallel programs can be written in Cluster-

3

M Specification without any information of the target computer, while the target

computer system is represented by Cluster-M Representation. Cluster-M Mapping

Module uses a new mapping technique which maps Cluster-M Specification onto

Cluster-M Representation. In the next section, we give an overview of existing

mapping techniques.

1.2 M apping Techniques

The mapping problem has been described in a number of different ways in literature

[12, 27]. In general, the mapping problem can be viewed as determining an

assignment of a given program which consists of a collection of task modules

that can be run serially or in parallel (representable in the the form of a task graph)

onto the processing elements of the underlying architecture (representable in form of

a system graph), so that some performance measure, such as total execution time,

is optimized.

The mapping problem is one of the most challenging problems in parallel

and distributed computing. It is known to be NP-complete in its general form as

well as several restricted forms [47, 78, 79, 8, 33, 27]. Basically, the techniques

used in mapping can be classified into three groups: graph theoretic, mathematical

programming, and heuristics [71, 14, 2]. The graph theoretic and mathematical

programming techniques are only suitable for some special mapping problems, e.g.,

for tasks without communication requirement, for systems with special topology,

etc. In an attem pt to solve the problem in the general case, a number of heuristics

have been introduced. These heuristics do not guarantee an optimal solution to the

problem but they try to find near-optimal solutions most of the time.

Mapping can be either static or dynamic. In static mapping, the assignments

of the nodes of the task graphs onto the system graphs are determined prior to the

execution and are not changed until the end of the execution. Static mapping can

4

be further divided into static mapping with task duplication and static mapping

without task duplication. In static mapping with task duplication, a node (task

module) of task graph can be assigned to more than one node (processor) in the

system graph [53, 63, 21, 19, 22, 62]. Task duplication is not permissible for tasks

which perform destructive operations such as data output or modification. In static

mapping without task duplication, a node (task module) of task graph is assigned

to only one node (processor) in the system graph [8, 71, 5, 4, 56, 52, 59, 61, 70, 33,

82, 26, 28, 2, 40, 72, 41, 64, 57, 50, 86, 15, 17], In this dissertation, we concentrate

on static mapping without task duplication.

A static task graph or system graph can be either uniform or non-uniform. A

graph is called non-uniform if the weights of nodes are different, and the weights of

edges also differ. Otherwise, it is uniform. Mapping of directed task graphs (if there

is precedence relation among the task modules), is called task scheduling, as studied

in [78, 79, 56, 52, 61, 70, 43, 82, 3, 26, 2, 40, 72, 41, 50, 86, 15, 17]. If the task

graphs to be mapped are undirected, then it is called task allocation, as studied in

[8, 71, 5, 4, 59, 33, 28, 64, 57, 15], Whether the graphs are directed or undirected,

uniform or non-uniform, there are basically four types of static mappings based on

the topological structures of the task and system graphs [15, 17]: (1) mapping of

specialized tasks onto specialized systems [20, 73, 10]; (2) mapping of specialized

tasks onto arbitrary systems [9, 33]; (3) mapping of arbitrary tasks onto specialized

systems [28, 61, 2, 40, 50]; and (4) mapping of arbitrary tasks onto arbitrary systems

[8, 25, 56, 5, 6, 59, 26, 60, 65, 15, 17].

1.2.1 M apping of Specialized Task onto Specialized System s

The most distinguished examples of research on mapping specialized tasks onto

specialized systems include Coffman and Graham’s early work and later Stone and

Bokhari’s work on a two processor system [20, 73, 74, 7, 75], Coffman and Graham

5

[20] did not consider inter-processor communication cost, while Stone and Bokhari

assumed a serial program with multiple modules was to be mapped onto the two

processors. In the latter case, an optimal solution can be obtained using max flow

min cut algorithm in polynomial time [45, 73]. An extension of the min cut to

three and N processor system was also discussed. However, it was noted that this

extension was not trivial and the mapping results can not guarantee to be optimal.

Other examples of this group of mappings is Bokhari’s partitioning and mapping

of chain-like tasks on chain-linked processors or host-satellite system, and a tree-

structured single-host multiple-satellite system (actually a star) [10].

1.2.2 M apping o f Specialized Task onto Arbitrary System s

Some techniques have been developed for mapping specialized tasks onto arbitrary

systems. Bokhari in [9] used the shortest tree algorithm to obtain the optimal

mapping of a tree-structured task graph having M task modules onto arbitrary N

processors in 0 (M N 2) time. Again, it was also assumed that the execution of all the

modules of the task was serial. Towsley in [77] gave an algorithm for mapping a series-

parallel task graph onto an arbitrary system graph in 0 (M N 3) time. Fernandez-Baca

[33] observed that tree graph and series-parallel graph are actually two special cases

of a fc-tree, and developed an efficient algorithm for mapping any &-tree or partial k-

tree task graph onto an arbitrary system graph in 0 (M N h+1) time. This matches the

time complexity of [9] and [77] as its special cases. Also, Fernandez-Baca developed

an algorithm for mapping an almost tree with parameter k in 0 (M A ^ 21+2) time.

1.2.3 M apping of Arbitrary Task onto Specialized System s

Most mapping techniques developed fall into the third category. When the system

has N processors but of a specialized structure, some specialized techniques can be

used for the mapping. These techniques are especially suited for a set of specialized

systems, therefore the mappings can be very efficient and effective. For example,

6

Ercal, et. al.’s [28] mapping algorithm on a hypercube using Kernighan-Lin’s mincut

bipartitioning technique [49], Sadayappan and Ercal’s work on mesh [68], Lo’s

algorithm for bus network [58], etc. Indurkya et al. also analyzed the optimal

mapping of an arbitrary task graph onto a specialized system graph with additive

communication cost, e.g., a bus network [44]. Mappings on more general regular-

structured task graphs were studied by Berman and Snyder using edge grammar [5].

Many mapping algorithms did not consider the system in detail, thus assuming that

all the processors were fully connected [61, 2]. Ali and El-Rewini in [2] proposed an

interesting graph theoretic approach for mapping M modules onto N processors by

constructing a split graph containing M module nodes and N processor nodes. The

mapping problem was then reduced to finding cliques of the split graph. Since a fully

connected system provides the strongest communication capacity, many heuristics

have been developed for mapping on such a system [70, 82, 40, 86]. Various clustering

techniques can be used (especially for mapping on fully connected system) to reduce

the time complexity of mappings [70, 82, 40, 86].

1.2.4 M apping of Arbitrary Tasks onto Arbitrary System s

General mappings from an arbitrary task onto arbitrary systems have proven to be

the most difficult, especially when the task graph and system graph become large

and complex. Bokhari in [8] defined the mapping problem to be matching the edges

of the task graph and the system graph. The order of the task graph was assumed

to be no greater than that of the system graph. The edges were uniformly weighted,

and the mapping was assumed to be one-to-one onto mapping, which may not be

the optimal mapping. A heuristic mapping algorithm based on local search using

pair-wise exchange was presented in [8]. The time complexity of this algorithm is

0 (N 3). Lee and Aggarwal in [56] extended Bokhari’s general mapping algorithm

to take into account a directed task graph with a set of communication phases.

7

Therefore, communication edges of different phases can be mapped independently.

However, the order of the task graph was still assumed to be no greater than that

of the system graph. This restriction was relaxed in [14]. Stone’s max flow min cut

algorithm, by which an optimal mapping can be obtained on a two processor system,

can also be used for sub-optimal mappings of arbitrarily connected M modules on N

processors. Lo used the max flow min cut algorithm as the first step in her heuristic

algorithm [59]. The time complexity of Lo’s heuristic is 0 (M 2N\ Ep\ log M), where

\EV\ is the number of communication links between processors. El-Rewini and Lewis

presented their mapping heuristic (MH) algorithm in [26]. MH is a list scheduling

heuristic which maps an arbitrary task graph onto an arbitrary system graph. In list

scheduling, each task module is assigned a priority. Whenever a processor is available,

a task module with the highest priority is selected from the list and assigned to this

processor. MH has a time complexity of 0 (M 2N 3). A searching algorithm can also

be used to match an arbitrary task graph to an arbitrary system graph [71, 48],

Graph contraction and or clustering is often used to reduce the task graph before

mapping, thus reducing the time complexity. For some regularly structured tasks,

a specialized graph contraction technique, such as edge grammar, can be used to

reduce the order of the task graph to a desired value [5, 60]. When task graph is

arbitrary shaped, heuristic approaches such as simulated annealing, simply greedy,

or critical path can be used for graph contraction or clustering [25, 4, 6, 61, 39, 28,

69, 60, 83, 85, 65, 81, 32],

An alternative approach to map an arbitrary task graph onto an arbitrary

system graph is to first map the task graph onto a completely connected graph

with a certain order, and second, map this completely connected graph onto the

target system graph. Sarkar’s edge-zeroing algorithm [70], Wu and Gajski’s Modified

Critical-Path (MCP) and Mobility-Directed (MD) scheduling algorithm [82], and

Yang and Gerasoulis’s Dominant Sequence Clustering (DSC) algorithm [86] fall into

8

this group. They all produce fast and good mappings from an arbitrary directed

task graph onto a completely connected system graph. However, to finally map onto

an arbitrary target system graph, other mapping (allocation) algorithms such as

Bokhari’s 0 (N 3) mapping algorithm have to be used which may increase the overall

time complexity. Also, the final mapping results on an arbitrary system may not be

as good as on a completely connected system.

Most mapping techniques for mapping arbitrary tasks onto arbitrary systems

only consider uniform systems [8, 56, 5, 70, 82, 60, 28, 14, 86, 62, 15]. Therefore,

information about systems such as computation speed of each processor and commu­

nication bandwidth on each link is implicitly known before mapping. Even in those

techniques which consider non-uniform systems [71, 59, 72], the information about

the system graphs is incorporated in their task graphs. Only in [26, 15, 17], the

information about the speed of the processors and the communication links is kept

independent of the task graphs. Therefore, these results can be directly used towards

designing portable programs which are representable in form of machine-independent

task graphs.

1.3 Cluster-M

Cluster-M facilitates the design and mapping of portable parallel programs onto

various multiprocessor systems by clustering not only machine-independent task

graphs but also system graphs. Cluster-M has three components: the Cluster-M

Specification of the given task, the Cluster-M Representation of the underlying

system, and the Cluster-M Mapping Module. Portable programs are specified in

Cluster-M Specifications in a way which represents concurrent computations and

communications at every step of the overall execution. On the other hand, the

processors of the underlying system are clustered in a hierarchical fashion so that all

of those in the same cluster have an efficient communication medium. The Cluster-

9

M Specification and Representation are actually multi-level clustered graphs of the

directed (or undirected) task graph, called the Spec graph, and the undirected system

graph, called the Rep graph. The user can directly specify the Cluster-M Specifi­

cation of a given task which is representable in the form of a Spec graph. On the

other hand, for any given task graph, a Spec graph can be generated by using one of

the clustering algorithms presented in this dissertation. Similarly, a Rep graph can

be generated given the topology of the target system as input.

Both Spec and Rep graphs contain a certain number of clustering levels. In

each level, there are a number of clusters which are called Spec clusters and Rep

clusters respectively. A Spec cluster represents a set of concurrent computations

which have inter-communication between each other. A Rep cluster represents a set

of processors with a certain level of connection. The mapping is carried out from

a Spec graph onto a Rep graph by matching Spec clusters to Rep clusters. As the

number of clusters at each clustering level is much less than the number of original

task modules or processors, the mapping process becomes very fast, yet produces

sub-optimal results.

1.4 Contributions and Outline

The mapping technique presented in this dissertation is the first which produces a

near-optimal mapping of an arbitrary non-uniform machine-independent task graph

onto an arbitrary non-uniform task-independent system graph. The clustering is

done only once for a given task graph (system graph) independent of any system

graphs (task graphs). This is a machine-independent (application-independent)

clustering and is not repeated for different mappings. The presented recursive

mapping algorithm maps any task graph with M modules onto any system graph

having N processors in O(MP) time, where P = max(M, N). This time complexity

guarantees faster mappings compared to other leading mapping techniques. Our

10

experimental results also indicate that Cluster-M produces better or similar mapping

results compared to other techniques which work only for restricted task or system

graphs.

The rest of the dissertation is organized as follows. In Chapter 2, we

present Cluster-M programming in Cluster-M Specification Module. The clustering

algorithms for uniform/non-uniform directed/undirected graphs are given in Chapter

3. Chapter 4 presents mapping algorithms for both uniform and non-uniform graphs,

and experimental results and comparisons with other known techniques. Related

work of mapping of specialized heterogeneous tasks, and the combined use of Cluster-

M with another tool, called HAsC, are discussed in Chapter 5 and 6 respectively.

Finally, conclusions are given in Chapter 7.

CHAPTER 2

C L U ST E R -M P R O G R A M M IN G

In this chapter, we show how to write portable parallel programs in form of Cluster-

M Specifications. A set of Cluster-M constructs, which are essential for writing

Cluster-M Specifications, is described. To illustrate programming in Cluster-M

Specifications, several frequently used operations are coded using these constructs.

2.1 C lu ste r-M Specifications

A Cluster-M Specification of a task is a high level machine-independent program that

specifies the computation and communication requirements of a given problem. A

Cluster-M Specification can be translated into a Spec graph which contains multiple

levels of clustering. In each level, there are a number of Spec clusters representing

concurrent computations at a certain step. Clusters are merged when there is a need

for communication among concurrent task modules. For example, if all n elements

of an array are to be squared, each element is placed in a cluster, then the Cluster-M

specification would state:

For all n clusters, square the contents.

© ® © © ©
F ig u re 2.1 Spec graph of a unary operation on an array of size n.

Note, that since no communication is necessary, there is only one level in the

Spec graph as shown in Figure 2.1. The mapping of this Specification to any archi­

tecture having n processors would be identical. Figure 2.2 shows the Spec graph

of a binary associative operation on 8 elements. Initially, each element is in a

11

cluster. Then clusters are merged at each level when they have inter-communication.

The result of this binary associative operation is obtained in the cluster at the last

clustering level.

ix.eii

Level 2 C T a |*aO O * 8* C V « ^

Level 3

Level 4
(Result) ai*a2*a3*a4*a5»a6*a7*a8

F ig u re 2.2 Spec graph of a binary associative operation on 8 elements.

2.2 C lu ste r-M C o n stru c ts

The basic operations on the clusters and their contained elements are performed

by a set of constructs which form an integral part of the Cluster-M Specification

Module. The following is a list and description of the constructs essential for writing

Cluster-M Specifications.

• C M A K E { L V L , E L E M E N T S , x)

This construct creates a cluster x at level L V L which contains E L E M E N T S

as its initial elements. E L E M E N T S is an ordered tuple of the form

[ej, e2, • • •, en] where n is the total number of components of E L E M E N T S .

The components of E L E M E N T S could be scalar, vector, mixed-type, or any

type of data structure required by the problem.

• C E L E M E N T (x , j, e)

This construct yields the j- th element of cluster x, and returns this element as

13

e. If j is replaced by then C E L E M E N T yields all the elements of cluster

x. If x is replaced by then C E L E M E N T yields all the elements of all

clusters.

• C S I Z E (x , e)

Returns e as the number of elements of cluster x.

• C M E R G E (x ,y , E L E M E N T S , z)

This construct merges clusters x, y into cluster 2 . The elements of the new

cluster are given by E L E M E N T S. If E L E M E N T S in C M E R G E is replaced

by the elements of the new cluster are the elements of x concatenated to

the elements of y.

• C U N(op ,n ,x , i ,e)

This construct applies unary operation op to the i-th element of cluster x, and

returns the result in e. If op is left or right shift operation, the number of shifts

is specified by n.

• CBI(op, x, i, y , j , e)

This construct applies binary operation op to the i-th element of cluster x and

the j-th element of cluster y, and returns the result by e. If i, j are replaced

by then the binary operation is applied to all elements of x, y.

• C S P L I T (E , k , E l , E 2)

This construct splits cluster E at the fc-th element into two clusters E l and

E2.

2.3 Im plem entation of the C luster-M Constructs

The Cluster-M Specification constructs have been implemented by Program Compo­

sition Notation (PCN), a system for developing and executing parallel programs

14

[13, 35]. PCN consists of a high-level programming language with C-like syntax, tools

for developing and debugging programs in this language, and interfaces to Fortran

and C allowing the reuse of existing code in multilingual parallel programs. Programs

developed using PCN are portable across many different workstations, networks and

parallel computers. The code portability aspect of PCN makes it suitable as an

implementation medium for Cluster-M.

PCN focuses on the notion of program composition and emphasizes the

techniques of using combining forms to put individual components such as blocks,

procedures and modules together. This encourages the reuse of parallel code, since

a single combining form can be used to develop many different parallel programs.

In addition, this facilitates the reuse of sequential code and simplifies development,

debugging and optimization by exposing the basic structure of parallel programs.

PCN provides three core primitive composition operators: parallel, sequential, and

choice composition, represented by “||” , and “?” respectively. More sophisticated

combining forms can be implemented as user-defined extensions to this core notation.

Such extensions are referred to as templates or user-defined composition operators.

Program development, both with the core notation and the templates, is supported

by a portable toolkit. The three main components of the PCN system are illustrated

in Figure 2.3. The implementation of the seven Cluster-M constructs is listed in

Appendix A.

2.4 Cluster-M Specification Macros

Several operations are frequently encountered in writing parallel programs. Macros

can be defined using basic Cluster-M constructs to represent such common operations.

We next present several macros, their coding in terms of Cluster-M constructs and

their PCN implementations:

15

Portab le Toolkit

Application-specific
com position opera to rs

C ore Program m ing Notation

F ig u re 2.3 PCN system structure.

2.4.1 A ssociative B in a ry O p era tio n

Performing an associative binary operation on N elements is a common operation in

parallel applications. The Spec graph for input size = 8 is given in Figure 2.2. The

resulting Spec graph is an inverted tree with input values each in a leaf cluster at level

1 and the result at the root cluster at level logn + 1. Using Cluster-M constructs,

the macro ASSOC-BIN, written in PCN, applies associative binary operation * to

the N elements of input A and returns the resulting value as follows:

A S S O C J3IN(* , N, A)

int N, A[];

{ ; Ivl — 0,

makeJuple(N, cluster),

{; i over 0 .. N — 1 ::

{ ; CMAI<E{lvl,[A[i]],c),

cluster\i\ = c

}

16

},

Binary JOp{cluster, TV, op, Z)

}

Binary JDp(X, TV, op, B)

int TV, n;

{? TV > 1— > { ; n := TV/2,

makeluple(n , K),

{ ; i over 0 .. n — 1 ::

{ ; B l M E R G E { o p , X[2 * i) , X [2 * i + 1], Z),

Y[t\ = Z

}

} ,

Binary JDp(Y, n, op, B)

} ,

default— > B — X

}

B I M E R G E (o p , X 1, X2, M)

int e;

{ ; C B I (o p , X l , l , X 2 , l , e) ,

C M E R G E { X l ,X 2 , [e] ,M)

}

17

2.4.2 Vector D ot Product

As a representative example of vector operations, the dot product of two vectors is

considered here. The vector dot product of two n-element vectors A and B is defined

as d = ' h). The Spec graph of this operation is similar to that shown in

Figure 2.2. This macro can be written in terms of Cluster-M constructs and the

above ASSOC-BIN macro as follows:

/* VECTOR DOT PRODUCT*/

DOT-PRODUCT(N , op, A, B, Z)

int N,A[],B[],C[N],e;

{; Ivl - 0,

makeJuple(N, A l),

makeJuple(N, B l) ,

{|| i over 0 .. TV — 1 ::

{ ; CMAKE(lvl,[A[i]],a),

C M A K E (lv l , [£[*]],&),

A\[i\ = a,

Bl[i] = b

}

} ,

{; j over 0 .. TV — 1 ::

{ ; C B I (o p , A l \ j] , l , B l \ j] , l , e) ,

C\j] := e

}

},

A S S O C J 3 I N (“ + ” , N, C, Z)

}

18

2.4.3 SIM D D ata Parallel Operations

In this class of operations each operation is applied to all the input elements

without any communication. In this case each operand is assigned one cluster in the

Cluster-M Specification. The desired operation is applied to all clusters. The macro

DATA-PAR applies operation * to all N elements of input A, as follows:

DATA-PAR(op, n, N, A , Z)

int A[];

{; Ivl = 1,

makeJuple(N, cluster),

{ ; i over 0 .. N — 1 ::

{ ; CMAKE(lvl ,[A[i\],c),

cluster[i\ = c

}

} ,

makeJuple(N, Z),

{ ;j over 0 .. N — 1 ::

{ ; CUN(op, n, cluster[j], 1, e),

Z\j] = e

}

}

}

2.4.4 Broadcast O peration

A frequently encountered operation in parallel programs is broadcast operation. One

value is to be broadcast to all processors in the system. The Cluster-M Specification

19

for a macro that broadcasts one value a from cluster x to N recipient clusters, can

be written in terms of Cluster-M constructs as follows:

B R O A D C A S T (N , e, Z)

{; Ivl = 0,

makeJuple(N, Z),

{|| i over O to N — l ::

{ ; CMAKE(lvl ,[e] ,c) ,

Z[i\ = c

}

}

}

The Spec graph for the broadcast operation when TV = 8 is shown in Figure

2.4.

Level 1
COPY ICOPY

Figure 2.4 Cluster-M Specification of broadcast macro.

CHAPTER 3

C LUSTERING G R A PH S

In this chapter a set of clustering algorithms, which can be used to generate Spec

and Rep graphs from arbitrary uniform/non-uniform directed/undirected task and

system graphs, are presented. Clustering algorithms for uniform graphs are presented

in Section 3.1, and clustering algorithms for non-uniform graphs are presented in

Section 3.2. The obtained Spec and Rep graphs will be input to the Mapping Module

as presented in the next chapter.

3.1 C lustering Arbitrary Uniform Graphs

This section addresses clustering algorithms for uniform graphs. If the task graph is

directed, then the algorithm presented in Section 3.1.1 can be used to obtain the Spec

graph. If the task graph is undirected, then the algorithm presented in Section 3.1.2

can be used to generate the Spec graph. Since it is assumed that the connections

between adjacent processors of the parallel systems studied here are bi-directional,

the system graphs are always undirected. A Rep graph can be obtained by the

clustering algorithm for undirected graphs in Section 3.1.2. For every architecture,

at least one corresponding Cluster-M Rep graph can be constructed. A Rep graph

with k nested clustering levels represents a connected network of processors with

diameter fl(k).

3.1.1 C lustering D irected Graphs

Many clustering techniques have been developed to reduce the order and size of task

graphs [25, 4, 61, 28, 69, 60, 40, 65]. For example, a cluster can be a clan [61] which

is a set of nodes with common outside ancestors and descendants on the task graph.

20

21

Our Cluster-M based mapping requires clustering of both the task graph as well as

the system graph to obtain even better and faster solutions. For clustering either the

task graph or the system graph, the following algorithm is used if the input graph is

directed, otherwise the algorithm presented in the next section (3.1.2) is utilized. In

the scheduling problem, task graphs are directed, while in task allocation problem

they are not. The system graphs, on the other hand, are always assumed to be

undirected (todays computers have bi-directional links). Therefore, the algorithm

presented below is to be used only for directed task graphs. In the following, a

formal definition of directed task graphs, which is also applicable to undirected task

graphs (with the exception that for every i,j, (ti,tj) = (fj,i,)), is given.

A task can be represented by a task graph Gt(Vt, E t), where Vt = {t\, ..., tm} is

a set of task modules to be executed, and E t is a set of edges representing the partial

orders and communication directions between task modules. A directed edge (t i , t j)

represents that a data communication exists from module i, to tj and that <,• must be

completed before tj can start. Furthermore, each task module <,■ is associated with its

amount of computation A,-, and each edge (£,-, tj) is associated with Dij, the amount of

data required to be transmitted from module <t- to module tj. Note A,- > 0 and Dij >

0, for 1 < i , j < M. If an directed edge (f;,fj) exists, then /,■ is called a parent node

(module) of tj and tj a child node (module) of f,-. If a node has more than one child, it

is called a Broadcast-node. If a node has more than one parent, it is called a Merge-

node. Task modules are divided into different execution steps and communications

between modules are divided into different execution phases according to the data

and operational precedence. Computations in the same step and communications in

the same phase can be carried out in parallel, but can not start before the parent

modules of those in the previous step have finished computations. In this section, it

is assumed that the amount of computation within each task module and the amount

of data communication between any two task modules are uniform, i.e., A, = 1 and

22

D{j = 1, for 1 < i , j < M and (ti,tj) E E t. This assumption leads to the simple

greedy clustering in the clustering algorithm.

The algorithm for clustering directed graphs is presented in Figure 3.1. The

basic idea is to merge all the nodes in each execution step if they have a common

parent node or a common child node. Each cluster has a size which is defined to

be the number of concurrent nodes contained in this cluster. If a Spec cluster has

a size as{ and the sizes of its sub-clusters at the lower level are as,,, • • •, &s,k, it is

obvious that as, = astl + • • • + crsik • Also, some task modules which can not be run

in parallel will be embedded into a supernode, so that they will be finally assigned

to the same processor. The size of a supernode is still 1. If a parent node t,- has one

or more children, one of its children is to be embedded to If a child node has one

or more parents, it will be embedded to one of its parents.

The complexity of the clustering-directed-graph algorithm is on the order of

the number of edges of the task graph, which is 0 (M 2), where M is the number

of nodes of the task graph. To illustrate this algorithm, the following example is

presented.

A task graph of 15 modules is shown in Figure 3.2. Each module has a compu­

tation amount of 1, and each edge carries this amount of data communication. This

task graph contains two subgraphs that are not connected, which means the two

subtasks can be executed in parallel. The Spec graph is constructed by merging the

clusters when they have communication needs as illustrated in Figure 3.2. The input

task graph has nodes a to o (15 nodes). The final Spec graph is a multi-layered graph

containing 9 nodes. For example, j , k and I are embedded to d, since j , k and / are

in different execution steps and can not be executed concurrently. This will not only

save the processor resources and communication cost, but also reduce the mapping

cost since the Spec graph now only contains 9 nodes versus the original 15.

23

Clustering-directed-graphs Algorithm
group nodes of given task graph into corresponding steps
group edges of given task graph into corresponding phases
for all nodes at step 1, do

make each node into a cluster
for all phases, do

for all edges (t{,tj), do
begin if tj is a Merge-node, then

begin embed tj to <,■
if the parent nodes of tj are not in a cluster, then
begin merge them into a cluster

increase cluster size
end

end
if t{ is a Broadcast-node, then
begin k = number of nodes in cluster t{ belongs to

if t{ has more than k children, then
begin embed first k children to the above k nodes

merge the rest into the above cluster
increase cluster size

end
else embed all children

end
end

F ig u re 3.1 Clustering-directed-graphs algorithm.

24

A task graph

stepl:

step2:

step3:

stcp4:

result:

clusters

© © © © © ©
cEXiS) (tsXS)

embed j to d embed m to e embed n to g

© (I<DG1
embed k to d embed o to f

embed 1 to d

j, k, I tod
embed m to e

n tog
o to f

Constructing the Spec graph

Figure 3.2 A task graph and the obtained Spec graph.

25

3.1.2 C lustering U ndirected Graphs

The algorithm presented in this section can be used to generate the Spec graph of an

undirected task graph (for allocation problem), as well as the Rep graph of a system

graph (undirected). Since the definition of a directed task graph was presented in

the last section, it is also applicable to an undirected task graph (with the exception

of (t{ , t j) = (t j , t {), for all i, j) . This section only presents the definition of system

graphs (undirected). Then the algorithm for generating a clustered graph (Spec

graph for task graph or Rep graph for system graph) out of such an undirected input

graph is presented.

A parallel system can be modeled as an undirected system graph GP(VP, Ep).

VP = {pi,--->P/v} is a set of processors forming the underlying architecture, while Ep

is a set of edges representing the interconnection topology of the parallel system. It

is assumed that the connections between adjacent processors of the parallel systems

studied here are bi-directional. Therefore, an edge (pi,Pj) represents that there is a

direct connection between processor p,- and pj. The computation speed of processor

Pi is denoted by S',-, and the communication bandwidth/rate between two processors

P i and pj is denoted by R,j. In this section, we assume that there is a uniform speed

at each processor and a uniform transmission rate over any direct communication

link in the system, i.e., 5; = 1 and Rij = 1, for 1 < i , j < M and (p ;,p j) E Ep. This

assumption leads to the simple greedy clustering.

To construct a clustered graph (Rep graph or Spec graph) from an undirected

input graph, initially, every node forms a cluster. This node is presented by p,- in

the case of the system graph and by i,- in the case of the task graph. Then clusters

which are completely connected are merged to form a new cluster. This is continued

until no more merging is possible. Two clusters x and y are connected if x contains

a node px (tx) and y contains a node py (ty), such that nodes px (tx) and py (ly)

are connected by a direct communication link. Each cluster has a size which is the

26

Clustering-undirected-graphs Algorithm
for all nodes p,- (£,), do

make a cluster for p; (<,•) at clustering level 1
set cluster level to 1
while merging is possible, do
begin for all clusters c at current level, do

begin make c into cluster c' at next level
delete cluster c from current level
for all clusters x in current level, do
if x is connected to all sub-clusters of c', then
begin merge x into c'

delete x from current level
end

end
increment clustering level by 1

F ig u re 3.3 Clustering-undirected-graphs algorithm

number of nodes it contains. If a Rep (Spec) cluster has a size or, (crs.) and the

sizes of its sub-clusters at the lower level are ctr,.,, •••, (jRik (a,s,,, • • as,k), it is

obvious <7r, = ctr,., H V<TR,k (crs, = 0's,, H The algorithm for clustering

undirected graphs is shown in Figure 3.3. An example is shown in Figure 3.4. The

undirected graph shown can represent a system graph, therefore the generated output

is shown as a Rep graph. However, if the same input is an undirected task graph for

allocation problem, then the generated output is a Spec graph. Figures 3.5, 3.6, 3.7,

and 3.8 show the clustered graphs of the hypercube, mesh, ring, and a completely

connected graph respectively.

The running time of this implementation is analyzed as follows. In every level,

each cluster in that level is compared with the higher numbered clusters in the same

level and check if they form a clique. Suppose at a certain level of the system

graph (undirected task graph), there are m clusters ci, with each cluster

c, containing Pi number of processors (T,- number of task modules). It is clear

<E>---------- ©

-©

stcpl:

atcp2:

An undirected graph.

© 0 © © © © © ©

(^T © lg£> (jg) ©j) (D̂~(a£) ©

stcp3: CCS) © ©) v® ©2) C(© @) ©

(rcaulO

Clustering of the undirected graph.

F ig u re 3.4 An undirected graph and its clustering.

F ig u re 3.5 A clustered graph of a hypercube.

1 1
............ -6 A

i i t it I
<-4-----------< H i

l (

-(-■a-............<iH- ■" <-■&------------ i - l i

F ig u re 3.6 A clustered graph of a mesh.

F igu re 3.7 A clustered graph of a ring.

F igure 3 .8 A clustered graph of a completely connected graph.

29

Pi = N (]C£Li Pi — M), where N is the number of underlying processors (M is

the number of task modules). The time of clustering at this level is dominated by

the total number of comparisons made to determine if each cluster is connected to

all sub-clusters of another cluster at next level, which is at most YllLx SjLi+i PiPj

< £ ," i PiN < N 2 (ES:i EjLi+i TiTi ^ £ £ i TiM ^ M2)- The number of levels can

be at most N — 1 (M — 1). Therefore, the total time complexity of this algorithm is

0 (N 3) (0 (M 3)).

3.2 Clustering Arbitrary Non-Uniform Graphs

In this section, two algorithms for clustering non-uniform graphs are presented. The

clustering is done only once for a given task graph (system graph) independent of any

system graphs (task graphs). It is a machine-independent (application-independent)

clustering and is not repeated for different mappings. Once a Spec graph and a

Rep graph are obtained, a sub-optimal mapping can be generated by using a fast

recursive mapping algorithm to be presented in Chapter 4.

3.2.1 C lustering Non-Uniform D irected Graphs

The definition of directed task graph is the same as that presented in Section 3.1.1,

except that computation amount A, and data transmission amount may be non-

uniform for different nodes and edges in the task graph.

A clustering algorithm called clustering-non-uniform-directed-graphs is shown

in detail in Figure 3.9. The algorithm is briefly described in the following. It begins

with a quadruple of parameters (as, 6s, Ids, n s)• Each of these parameters is

described as follows. The size of a cluster is denoted by as, and represents the

maximum number of nodes in this cluster that can be computed in parallel. The

number of levels in a cluster represents the maximum sequential computation length

of each node in the cluster, and is denoted by 6s■ The total amount of communi-

30

Clustering-non-uniform-directed-graphs Algorithm
group nodes of given task graph into corresponding steps
group edges of given task graph into corresponding phases
for all nodes at step 1, do
begin make it into a cluster

calculate the parameters of each cluster
end
for all phases, do

for all edges (t{,tj), do
begin if tj is a Merge-node, then

begin sort all incoming edges to tj in descending
order of communication amount
embed the first child node to <,•
if the parent nodes of tj are not in a cluster, then
begin merge them into a cluster

calculate the parameters of the new cluster
end

end
if ti is a Broadcast-node, then
begin sort all outgoing edges from /,• in descending

order of communication amount
embed the first child node to t{
if the child nodes of t,- are not in a cluster, then
begin merge them into a cluster

calculate the parameters of the new cluster
end

end
end

F ig u re 3.9 Clustering-non-uniform-directed-graphs algorithm.

clustering
(a) Em bedding o f k sequential computations represented

by a node o f weight k. o r by its equivalent uniform (b) M erging o f k com m unications rep resen ted by on ed g e o f w eight k , o r by
graph having k unit-com putation nodes. its equ ivalen t un iform g raph h av in g k u n it-co m m u n ica tio n edges.

F ig u re 3.10 Two types of clustering.

cation among all clustering levels is denoted by IIs, and the average communication

amount at current (top) level is denoted by ixs- Furthermore, there are two types of

operations performed on clusters: embedding and merging. Embedding is when two

or more sequential clusters are combined into one cluster as shown in Figure 3.10.

This is shown in perforated line in Figure 3.10(a) and (b). Merging is when a number

of concurrently executable sub-clusters are grouped to form a new cluster. This is

shown by a solid line in Figure 3.10(b). The embedded cluster in Figure 3.10(a) has

as = 1, Ss — k, Us — 0 and its — 0. The merged cluster in Figure 3.10(b) has

as — k, 6s — 2, n s = k and 7Cs = k — 1. In each of the two figures, the value of

the quadruple obtained is identical for both the uniform and non-uniform equivalent

representations.

The clustering is done step by step. Each clustering step corresponds to a

computation step. At every step, the nodes (clusters) are clustered as follows. If

a node is a Merge-node, it is first embedded onto one of its parent nodes, all the

parent nodes are merged into a larger cluster, similar to what was done in Section

3.1.1. A simple case where a Merge-node has only two parent nodes is shown in

Figure 3.11. Similarly, a general case is shown in Figure 3.12, where a Merge-node

has n parent nodes, and the n edges are sorted in descending order of the edge weight

(communication amount). If a node is a Broadcast-node, then one of its child nodes

will be embedded into this Broadcast-node, and then the rest of the child nodes

32

cluslcrt o , , 6 , , n , , n ,) cluslctf o 2 ,ft2 , n 2>n 3)

Suppose D (>= D 3

Embed node A to its left parent cluster,

then merge the two clusters.

cluster(o , + a 2 , max(8 , + A, 6 j) + l , n , + n 2 + D, +Da , Da

Figure 3.11 Clustering on a Merge-node.

will be merged with the Broadcast-node into a larger cluster. A simple case where a

Broadcast-node has only two child nodes is shown in Figure 3.13. Similarly, a general

case is shown in Figure 3.14, where a Broadcast-node has n child nodes, and the n

edges are sorted in descending order of their weights. Note that since the task graphs

are independent of the system graphs (unlike [70, 82, 86]), they do not contain the

information about computation time and communication delay. Therefore, only one

child node can be embedded to the parent node in both the merge and broadcast

cases shown above. Consider an example in Figure 3.15, where D\ > D2 > • • • > Dn.

If A{ and Di (1 < i < n) are actual computation time and communication delay,

then more than one child node should be embedded to the parent Broadcast-node

if possible. Suppose Dj > J2i=i A, for j — 2, ■ • •, k , but £ > * ,+ 1 < Y%=i A,-, then the

first k child nodes can be embedded to the parent node. However, since A, and £),

(1 < i < n) are just computation and communication amounts, the time spent on

such computations and communications is unknown before they are mapped onto

a particular system. Therefore, only the first child node can be embedded to the

parent node. However, the embedding of multiple child nodes can be done as part

of the mapping, which is explained in Chapter 4.

d u ste rf a , ,5 , , n , , n ,) clu s te r(o 2 , 62 , I I 2 , ft 2) clu>ter(o n . ft n. II n . nn)

F ig u re 3.12 Clustering on a Merge-node: a general case.

cluster(a „ , 6 , ,no , it 0)

Suppose D , >=D .

Ai

Aa.

c lu s te r (a 0 + 1 ,m ax(6 0 + A , , A 2) + 1, n 0 + D t + D 2 t D2)

F ig u re 3.13 Clustering on a Broadcast-node.

34

clusler(o0 ,&0 , n 0 , n 0)

\

nn 2D
clustcr{ o 0 + n -1 , max(B0 + A , , A 2 ,... A n) + 1 J I 0 + £ D{ 1 - 2 1)

Figure 3.14 Clustering on a Broadcast-node: a general case.

k+1

Figure 3.15 Possible embedding on a Broadcast-node.

A non-uniform task graph

I i. 2.0.0)
(1,12. !<),<);

2, 2)

(.1, 18, 26, 6)

(1. 4, 6, 6)

Constructing the Spec graph

Figure 3.16 A task graph and the obtained Spec graph.

36

The time complexity of the clustering-non-uniform-directed-graphs algorithm

is bound by the number of edges in the task graph, which is 0 (M 2), where M

is the number of nodes. To illustrate this algorithm, consider the task graph of

7 modules and its Spec graph as shown in Figure 3.16. Each module is labeled

with its computation amount, and each edge is labeled with the amount of data

communication. The Spec graph is constructed by merging the clusters when they

have communication needs. The final Spec graph is a multi-level clustered graph.

3.2.2 C lustering N on-U niform U ndirected Graphs

The algorithm presented in this section can be used for generating the Spec graph

of an undirected task graph (for allocation problem), as well as the Rep graph of a

system graph (undirected). The definition of the directed task graph presented in

the last section is also applicable to an undirected task graph (with the exception of

(t{, t j) = (t j , t j), for all i, j) . The definition of undirected system graph is the same

as that presented in Section 3.1.2, except that both the computation speeds 5, of

different processors and the transmission rates R,j of different communication links

may be non-uniform. Therefore, the system discussed in this section can be a truly

heterogeneous system. The rest of the section concentrates on the clustering of an

undirected system graph to obtain Rep graphs. The same approach can be used to

obtain Spec graph from a non-uniform undirected task graph.

Similar to a Spec cluster, each Rep cluster is associated with a quadruple (<7 ^,

8r , I!/*, ttr) which represents number of processors contained in the cluster, average

computation speed of the processors in the cluster, total communication bandwidth,

and the average communication bandwidth at the current (top) clustering level. To

construct a clustered graph (Rep graph) from an undirected system graph, initially

every node with computation speed 5,- forms a cluster with parameters (1 , 5;, 0 ,

0). Then clusters which are completely connected are merged to form a new cluster,

37

Clustering-non-uniform-undirected-graphs Algorithm
for all nodes p,-, do
begin make a cluster for p,- at clustering level 1

set the parameters of the cluster to be (1 , 5,-, 0 , 0)
end
set cluster level to 1

while there is at least one edge linking two clusters, do
begin sort all edges linking any two clusters

while sorted edge list is not empty, do
begin take the first edge (c,-,Cj) from sorted edge list

delete the edge from the list
merge c, and Cj into cluster c' at next level
calculate the parameters of c'
delete clusters c, and cj from current level
for each edge (cx, cy) in sorted edge list
if cx is a sub-cluster of c' and
cy is not a sub-cluster of any cluster and
cy is connected to all other sub-clusters of c', then
begin merge cy into c'

recalculate the parameters of c'
delete (cx,cy) from edge list

end
else if cx and cy are sub-clusters of
two different clusters at next level, then
begin add the weight of (cx,cy) to

the edge between the two super-clusters
delete (cx,cy) from edge list

end
end
increment clustering level by 1

end

F ig u re 3.17 Clustering-non-uniform-undirected-graphs algorithm.

(3 ,5/3,1,1)

(1,1,0,0)(2,2,2,2)

F igure 3 .18 A non-uniform system graph and its clustering.

38

and the parameters of the new cluster are calculated accordingly. This process is

continued until no more merging is possible. Two clusters x and y are connected if

x contains a node px (tx) and y contains a node py (ty), such that node px (tx) and

py (ty) are connected by a direct communication link. The algorithm for clustering

undirected graphs is shown in Figure 3.17. An example is shown in Figure 3.18.

The running time of this implementation is analyzed as follows. For each level,

first sort all the edges between clusters which takes 0(\EP\ log \EP\), where \EP\ is

the number of edges in the system graph. Clusters keep merging into the next levels.

Suppose at a certain level, there are m clusters c\, ■••,cTn. The time for all these

comparisons is at most m * m < N 2, where N is the number of processors in the

system graph. The number of levels can be at most N — 1. Therefore the total time

complexity of this algorithm is 0 (N (\ Ep\ log \EP\ + N 2)). Consider the worst case

where the system graph is completely connected so that \EP\ = 0 (N 2), the upper

bound for this algorithm will be 0 (N 3 log TV).

C H A PT E R 4

CLUSTER-M M A PPIN G

For a given problem, a high level machine independent parallel program can be

presented in form of a Cluster-M Specification which is directly representable as a

Spec graph. In addition, a Spec graph can be generated directly from a given task

graph, using one of the algorithms in the last chapter. On the other hand, given a

system graph representing an underlying architecture or organization, a Rep graph

can be generated as shown in the last chapter. In this chapter, given a Spec graph and

a Rep graph as the input to the Mapping Module, efficient mapping algorithms are

presented which produce sub-optimal matching of them. The mapping procedure

presented in this chapter has a much lower time complexity than the traditional

mappings since it contains a graph matching procedure for which both of the input

graphs have been clustered. The uniform mapping algorithm presented in Section

4.1 has a time complexity of O(MN) , while the non-uniform mapping algorithm in

Section 4.3 has a time complexity of 0(A /P), where P = max (M, N) . Extensive

experimental results and comparisons with other leading mapping techniques are

also presented in this chapter.

4.1 C luster-M Uniform M apping

This section presents a fast recursive mapping algorithm which produces sub-optimal

mapping of a uniform Spec graph onto a uniform Rep graph in O (MN) time. A set

of preliminaries are given below, followed by a high level description of the mapping

algorithm.

39

40

4.1.1 U niform M apping Algorithm

The mapping function is defined by f m : Vt Vp. Following the precedence

constraints and the computation and communication requirements of the original

task graph, a schedule can be obtained which places each task module f,- to processor

at the proper time (earliest possible starting time). Since the communication

weights along edges of both uniform task graphs and system graphs are 1 , the

communication time of the task graph edge (t j , t j) is equal to dist(fm(ti), f m(tj)),

where dist(pi,pj) is the shortest distance between processor p; and pj. It is also

assumed that it takes no time to communicate data within the same processor, i.e.,

dist(pi,pi) = 0 .

A schedule can be illustrated by a Gantt chart which consists of a list of all

processors and for each processor a list of all task modules allocated to that processor

ordered by their execution time [27], The total execution time of a schedule, defined

by Tm, is the latest finishing computation time of the last scheduled task module

on any processor. Obviously, Tm is equal to the total execution time of a given

task on a given system. As the shortest execution time of a given task on a system

is considered to be the ultimate goal in scheduling, Tm is taken as the measure of

quality to scale a mapping. However, since Tm can only be calculated once a schedule

has been obtained, it is difficult to predict Tm in the process of mapping. Therefore,

another objective function is to be presented as the mapping heuristic to guide the

mapping process.

A detailed description of the uniform mapping algorithm is presented in Figure

4.1. This gives an overview of the algorithm. Before starting the mapping, it is

necessary to compute a reduction factor denoted by / , which is essential for mapping

of task graphs having more nodes than the system graphs. The reduction factor / is

the ratio of the total sizes of the Rep clusters over the total sizes of the Spec clusters.

It is used to estimate how many computation nodes need to share a processor. The

41

mapping is done recursively at each clustering level, where the best matching between

Spec clusters and Rep clusters is found. For matching Spec clusters to Rep clusters,

first the Spec and Rep clusters are sorted in descending order with respect to their

sizes. Then to map each Spec cluster ks, with size as,, search for a Rep cluster with

the best matched size, i.e., closest to / x asr Therefore, the objective function to

be minimized can be formulated as below:

I/m I = E 1/ X - ^ /m(KSi)l (4-1)
i

As shown in (4.1), the objective is to find a minimum | / m| by matching all Spec

clusters to Rep clusters. When the mapping at top level is done, for each pair of the

mapped Spec and Rep clusters, the same mapping procedure is continued recursively

at a lower level until the mapping is fine grained to the processor level.

The time complexity of the mapping algorithm is dominated by the time of

finding the best matches of all Spec clusters at all levels. At each level, the time

complexity of finding the best matches of all A',- Spec clusters is 0(K{N) , as the total

number of clusters in the Rep graph is O(N), where N is the number of processors.

Since the total number of Spec clusters is O(M), i.e. X^A', = O(M), where M is

the number of nodes in original task graph. Therefore, the total time complexity of

this mapping algorithm is O(MN).

4.1.2 Uniform M apping Exam ples

In Section 3.1, a Spec graph and a Rep graph have been constructed from the original

uniform task graph and system graph, as shown in Figures 3.2 and 3.4. Figure 4.2

shows the mapping from the obtained Spec graph to the Rep graph following the

mapping algorithm described above. First, calculate as = 9, an = 8 and / = 8/9.

Then sort the Spec and Rep clusters at top level, and find the matching Rep cluster

for each Spec cluster. The Spec cluster of size 5 is mapped onto the Rep cluster of

42

C lu ster -M U niform M ap p in g A lgorith m
s o r t a l l S p e c c lu s te r s a t to p lev e l in d e s c e n d in g o rd e r o f s izes,
s o r t a ll R e p c lu s te r s a t to p lev e l in d e s c e n d in g o rd e r o f s izes,
c a lc u la te a s , a n a n d / .
if / > 1, le t / = 1.
c a lc u la te th e r e q u ire d s ize o f th e R e p c lu s te r m a tc h in g to b e / x a s t
fo r e a c h S p e c c lu s te r a t to p leve l s o r te d lis t , do
b e g in if a R e p c lu s te r o f r e q u ir e d s ize is fo u n d , th e n

m a tc h th e S p e c c lu s te r to th e R e p c lu s te r
d e le te th e S p e c a n d R e p c lu s t e r fro m S p e c a n d R e p lis t

e n d
fo r e a c h u n m a tc h e d S p e c c lu s te r , do
b e g in if t h e s ize o f t h e f ir s t R e p c lu s te r > th e r e q u ire d s ize , th e n

b e g in s p l i t th e R e p c lu s t e r in to tw o p a r t s w ith o n e p a r t h a v in g th e re q u ir e d size
m a tc h th e S p e c c lu s te r to th is p a r t
in s e r t th e o th e r p a r t to p r o p e r p o s it io n o f th e s o r te d R e p c lu s te r lis t

e n d
else
b e g in m e rg e R e p c lu s te r s u n t i l th e s u m o f s izes > th e r e q u ir e d s ize

if = , th e n
m a tc h th e S p e c c lu s t e r to t h e m e rg e d R e p c lu s te r
e lse
b e g in s p l i t th e m e rg e d R e p c lu s te r in to tw o p a r t s w ith o n e h a v in g re q u ir e d s ize

m a tc h th e S p e c c lu s te r to th is p a r t
in s e r t th e o th e r p a r t to t h e s o r te d R e p l is t

e n d
e n d

e n d
fo r e a c h m a tc h in g p a i r o f S p e c c lu s te r a n d R e p c lu s te r , do
b e g in if th e R e p c lu s te r c o n ta in s o n ly o n e p ro c e ss o r , th e n

m a p a ll th e m o d u le s in t h e S p e c c lu s te r to th e p ro c e s s o r
e lse
b e g in go to th e s u b -c lu s te r s o f th e S p e c a n d R e p c lu s te r

(th u s th e y a re p u s h e d to to p leve l)
c a ll th e s a m e m a p p in g a lg o r i th m fo r th e se c lu s te r s

e n d
e n d

Figure 4.1 Uniform mapping algorithm

Cluster-M Specification Cluster-M Representation:

© ((© (© Qyrj) <Js) © Q
mapped onto

f = &9

mapped
A H B H C

onto

mapped© C ® © (3

Step 1:

mapped

onto

mapped

onto

mapped
Step 3 :

mapped

onto

mapped © ®

mapped mapped
— — © © — — <

mapped
© -® mapped __

■(c) (d » ----------------► ©
mapped

© ►©

Step 4 :
mapped

© ►©
mapped

® ► ©

Figure 4.2 A mapping example.

44

Time
0 1 2 3 4 5 6

A 8 n
B h
C i
D e m
E f o
F c d J k 1
G b
H a

Figure 4.3 Gantt chart of the obtained schedule.

the same size, however the Spec cluster of size 4 has to be mapped onto the Rep

cluster of size 3 since this is the closest matching of sizes. Then the same procedure is

applied to the Spec clusters at the lower level. As shown in step 2 in Figure 4.2, task

module a is mapped onto Rep cluster H , which contains a single processor. In step

3, modules 6 , e, / , g, h and i are mapped onto corresponding processors. Finally in

step 4, modules c and d are both mapped onto processor F. Since modules j , k and

I are embedded to module d (see Figure 3.2), they are also mapped onto processor

F, to which d is mapped onto. Similarly, modules m, n and o are mapped onto

processors D , A and E respectively. Now all the task modules in the original task

graph have been mapped onto corresponding processors. Figure 4.3 shows the final

schedule obtained from the above mapping by following the data and operational

precedence of the task graph. As shown in the Gantt chart, Tm — 6 .

4.2 Uniform M apping Comparison R esults

This section presents a set of experimental results that have been obtained in

comparing Cluster-M mapping algorithm with other leading techniques for mapping

uniform arbitrary task graphs onto uniform arbitrary system graphs. The examples

selected here are the same as those presented and experimented by the authors of

the papers reporting the leading techniques [8 , 56]. The following three criteria are

45

used for evaluating the performance of the algorithms examined: 1) the total time

complexity of executing the mapping algorithm, Tc; 2) the total execution time of

the generated mappings, Tm\ and (3) the number of processors used, Nm. From (2)

and (3), speedup Sm = and efficiency rj = can be obtained, where Ts is the* m /V m

sequential execution time of the task. In the following, we present the comparison

results for both the scheduling problem and the allocation problem.

4.2.1 Task Scheduling R esults

In comparison study of task scheduling of uniform graphs, we choose Lee and

Aggarwal’s mapping strategy [56]. Their mapping strategy considers the task graph

as directed graph and differentiate nodes and edges into different computation steps

and communication phases in order to accurately calculate the actual communication

cost between two non-adjacent processors. However, Lee and Aggarwal’s strategy

maps the entire task graph onto the system graph without graph contraction or

clustering. Also, it assumes that the order of the task graph is no greater than

that of the system graph. The time complexity of Lee and Aggarwal’s algorithm is

0 (A 3), while ours is O(MN) (i.e., if M = N, then ours is 0 (N 2)).

Given a task graph as shown in Figure 4.4(a), the mapping obtained by Lee

and Aggarwal on a 16-processor hypercube is (iQ t\ t-r t9 t9 t2 110 / 1 3 t5 tn 114 t6

18 ^ 1 5 1̂ 2) [56]. The final schedule following the task graph precedency is illustrated

in Figure 4.4(b), while the schedule obtained from Cluster-M mapping is illustrated

in Figure 4.4(c). An optimal schedule, which also uses fewer number of processors,

is shown in Figure 4.4(d).

4.2.2 Task A llocation R esults

The goal of task allocation is to minimize the communication delay between

processors and to balance the load among processors. The problem of task allocation

arises when specifying the order of executing the task modules is not required.

(a) Task graph

Processors
0
1
2

3
4
5

6

7

Time

0 1 2 3 4 5 6 7 8 9 10 11 12

m

S
(b) Lee and Aggarwal’s mapping, Tc = 0 (N 3), Tm — 12, N„

Time

Processors 0 1 2 3 4 5 6 7 8 9 10 11

0
1
2
3
4

5

6
7 :

to| tl 1 t9| | t l - | I t l f

t2

13

wl
I t s l ' j i l I « 4

16

t7 : . I n f
id

(c) Cluster-M mapping, Tc = 0 (M N) , Tm = 11, Nm = 8

lim e

Processors ® ̂ 2 3 4 5 6 7

0 toj tl t2 t9
1 t3 t4 tl(M
2 15 16 t i l

3 17 18 t l ^ t l d j t l i

(d) An optimal mapping, Tc — 0(2MN), Tm = 8, Nm = 4

F igure 4.4 Comparison example with Lee and Aggarwal’s strategy.

Task graph System graph

F ig u re 4.5 Comparison with Bokhari’s mapping: task and system graph.

Therefore, the task graph in task allocation is undirected and the clustering-

undirected-graphs algorithm is used to generate the Spec graph in this case. The

measure of mapping quality in task allocation is still Tm.

Cluster-M mapping algorithm are compared to Bokhari’s mapping (allocation)

algorithm [8] using uniform undirected task graphs. Bokhari’s algorithm has the

running time complexity of 0 (N 3), while Cluster-M has O(MN) . Bokhari’s

algorithm assumes the number of task modules is no greater than the number

of processors, so that the mapping can be one to one. In this case, a lower bound

on Tm can be 6 -f 1, where 8 is the degree of a given task graph.

In comparing Cluster-M with Bokhari’s for the example shown in Figure 4.5

having a 33-node task graph and a 6 x 6 finite element machine (FEM) [8], a Sun

SPARC station 1 was used. The results are shown in Table 4.1. The lower bound

on Tm as described before is 9, and yet both Cluster-M and Bokhari’s algorithms

have obtained near optimal results of Tm — 17 and 13, respectively. The above

example uses the same structured task and system graph as tried in [8], Other

randomly generated task and system graphs have also been tested. Table 4.2 shows

the mapping results and comparisons for 10 randomly generated task and system

graphs of 10 nodes. Similar results were obtained for other random graphs. Bokhari’s

48

algorithm is not applicable to mapping a larger task graph onto a smaller system

graph (called cardinality variation [5]). However, Cluster-M mapping is an efficient

approach to the mapping problems having topological and cardinality variation in

their input graphs [5].

4.3 Cluster-M Non-U niform M apping

This section presents an efficient mapping algorithm which produces sub-optimal

matching of a non-uniform Spec graph onto a non-uniform Rep graph in O(MP)

time, where P = max(M, N). A high level description of the mapping algorithm is

presented in Section 4.3.1. In Section 4.3.2, a few examples are given to illustrate

the non-uniform mapping algorithm.

4.3.1 N on-U niform M apping A lgorithm

The mapping function is defined to be f m : Vt Vp, as in Section 4.1.

However, since both the task graph and the system graph may be non-uniform,

we assume that the communication time of the task graph edge (i,-, t j) is equal to

T,(x,y)epath(Mti),jm(tJ)) where p a t h (p i , p j) is the shortest path between processor

Pi and p j .

A detailed description of the non-uniform mapping algorithm is presented in

Figure 4.6. In the following, an overview of the algorithm is given. Before the

mapping begins, it is necessary to compute a reduction factor denoted by / , which

is essential for mapping of task graphs having more nodes than the system graphs.

The reduction factor / is the ratio of the total sizes of the Rep clusters over the total

sizes of the Spec clusters. This is used to estimate how many computation nodes

are to share a processor. The mapping is done recursively at each clustering level,

where the best matching between Spec clusters and Rep clusters are found. For

matching Spec clusters to Rep clusters, first the Spec and Rep clusters are sorted

49

Table 4.1 Mapping of Bokhari’s algorithm and Cluster-M

Task Mapped processor
module Bokhari Cluster-M

1 5 0
2 30 1
3 3 2
4 0 6
5 2 3
6 6 4
7 1 7
8 8 8
9 7 9
10 15 5
11 13 12
12 14 10
13 20 11
14 9 13
15 19 19
16 10 18
17 17 14
18 18 15
19 11 26
20 12 20
21 16 27
22 22 32
23 23 21
24 21 16
25 29 28
26 26 17
27 27 22
28 28 33
29 31 24
30 33 23
31 25 25
32 32 30
33 34 31
Tc 0 (N 3) O(MN)
Tm 13 17

Tt (sec) 152.5 0.05

50

Table 4.2 Comparisons of mappings of Bokhari’s algorithm and Cluster-M

Random graphs T
-L m running time (sec)

of 10 nodes Bokhari Cluster-M lower bound Bokhari Cluster-M
1 15 15 8 0.82 0.03
2 9 13 7 1.58 0.03
3 10 11 8 1.20 0.03
4 11 14 8 1.00 0.03
5 11 12 9 1.02 0.03
6 10 12 8 2.35 0.02
7 11 12 8 1.40 0.03
8 10 12 8 1.18 0.03
9 10 13 9 1.20 0.02
10 9 10 7 1.03 0.02

in descending order with respect to the four parameters (a, 6, Il,7r). For example,

Spec clusters with larger sizes are sorted before those with smaller sizes, and for Spec

clusters with the same size, those with larger number of levels are sorted first.

Second, each of the Spec clusters (denoted by Ks,) is mapped as follows. First

search for the Rep cluster (denoted by k r ;) with the best matched size, i.e., closest

to / x crsi • The first objective function in mapping is thus the same as formulated in

Equation (4.1) in Section 4.1.1. If multiple Rep clusters with the matching size are

found, one is selected with the minimum estimated execution time. The estimated

execution time of mapping Spec cluster Ksi onto Rep cluster krj, r(/cs;,/«Rj), is

equal to the number of clustering levels of Ksi times the average computation and

communication time at each level, as formulated in Equation (4.2). If no Rep cluster

with a matching size can be found for a Spec cluster, either merge or split (unmerge)

Rep clusters until a matching Rep cluster is found.

, . c , i l n * x t>Rj x /.
r{KSi, KRj) = x 7 + 71— 7 -7 -) (4-2)VRj J Bfij X Osi

Thirdly, for every matched pair of the Spec and Rep clusters, the following

is done to embed communication intensive nodes together. (This is similar to the

51

clustering process in [70, 82, 86]. However, here it is only done in the mapping step

so that the clustering of the task graph is kept independent of the system graph,

as described in the Chapter 3.) If a Spec cluster has multiple sub-clusters and the

average communication time between these sub-clusters is greater than the possible

computation time of a sub-cluster as formulated in Inequality (4.3), then embed the

sub-clusters onto a sub-cluster having the largest size, and calculate the parameter

quadruple for the new cluster. We then insert it in the proper position in the sorted

list of Spec clusters for mapping, and repeat the matching as described above by

Equations (4.1) and (4.2) for the remaining Spec clusters in the list. If no embedding

is necessary, then the mapping of this Spec cluster onto a Rep cluster is done for this

level, and therefore this Spec cluster is removed from the list.

T t S i m i n (< T 5 u (,—c l u s t e r X 6 Sub — c l u s t e r) 1 (. n v > ----------------------X - (4.3)
T̂ Rj ORj J

In the above mapping algorithm, the worst case of a mapping at a level i

happens either when (case 1) for each Spec cluster, all the remaining Rep clusters

have the matching size, therefore Equation (4.2) is used to select the best Rep cluster;

or when (case 2) for each Spec cluster, no Rep cluster of matching size is found,

therefore Rep clusters are merged/split recursively until a Rep cluster of matching

size is obtained. Suppose the number of Spec clusters at level i is K{. In both cases

described above, or in any combination of the two cases, it takes 0(I \ i N) time to find

the best matches of all A',- Spec clusters, as the total number of clusters in the Rep

graph is O(N), where N is the number of processors. For each pair of matching Spec

and Rep clusters, if Inequality (4.3) is satisfied, the extra time taken in embedding

will be O(M). Since the total number of Spec clusters is O(M), i.e., J2i Ki — O(M),

where M is the number of nodes in original task graph. Therefore, the total time

complexity of this mapping algorithm is Yli{KiN + M) = 0 (M N) + 0 (M 2) =

O(MP) , where P = max(M, TV).

C lu ster -M N on -U n iform M appin g A lgorith m
s o r t a ll S p e c c lu s te r s a t to p le v e l in d e s c e n d in g o rd e r o f erg, 6g} 115, A s ­
s o r t a ll R e p c lu s te r s a t to p lev e l in d e s c e n d in g o r d e r o f <t r tfj*, I 1 r , a n d 7Tft.
c a lc u la te / .
c a lc u la te th e r e q u ire d size o f th e R e p c lu s t e r m a tc h in g Kgt to b e / X <75

fo r e a c h S p e c c lu s te r ngt a t to p leve l s o r te d l is t , do
b e g in i f th e c lu s te r h a s o n ly o n e s u b -c lu s te r

th e n g o to a low er lev e l w h e re t h e r e a re m u lt ip le o r n o s u b -c lu s te r s
if a t le a s t a R e p c lu s te r o f r e q u ir e d s ize is fo u n d
th e n b e g in s e le c t th e R e p c lu s te r k.j i - w ith m in im u m r(kappag t , kappa^j)

m a tc h th e S p e c c lu s t e r to th e R e p c lu s te r
d e le te th e S p e c a n d R e p c lu s te r f ro m S p e c a n d R e p lis t

e n d
e n d
fo r e a c h u n m a tc h e d S p ec c lu s te r , d o
b e g in if th e s ize o f th e f ir s t R e p c lu s te r > th e re q u ir e d size

th e n b e g in s p l i t th e R e p c lu s te r in to tw o p a r t s w ith o n e p a r t h a v in g r e q u i r e d s ize
m a tc h th e S p e c c lu s t e r to th is p a r t
in s e r t th e o th e r p a r t to p r o p e r p o s i t io n o f th e s o r te d R e p c lu s t e r lis t

e n d
else b e g in m e rg e R ep c lu s te r s u n t i l th e s u m o f s izes > th e re q u ir e d s ize

i f = th e n m a tc h th e S p e c c lu s te r to th e m e rg e d R e p c lu s te r
e lse b e g in s p l i t th e m e rg e d R e p c lu s te r in to tw o p a r t s

w ith o n e h a v in g re q u ir e d size
m a tc h th e S p e c c lu s te r to th is p a r t
in s e r t t h e o th e r p a r t to th e s o r te d R e p l is t

e n d
e n d

e n d
fo r e a c h m a tc h in g p a i r o f S p e c c lu s te r a n d R e p c lu s te r , do
b e g in if th e R e p c lu s te r c o n ta in s o n ly o n e p ro c e s s o r

th e n m a p a ll th e m o d u le s in t h e S p e c c lu s te r to th e p ro c e ss o r
e lse if In e q u a l i ty (4 .3) is s a tis f ie d

th e n b e g in se le c t th e s u b -c lu s te r o f th e S p e c c lu s te r w ith th e l a r g e s t s ize
e m b e d th e n o d e s o f o th e r s u b -c lu s te r s
to th e c o n n e c te d n o d e s o f t h e se le c te d s u b -c lu s te r
e m b e d th e s e s u b -c lu s te r s o n to th e se le c te d o n e
c a lc u la te th e p a r a m e te r s fo r th e new c lu s te r
in s e r t i t in to t h e s o r te d S p e c c lu s te r lis t

e n d
e lse b e g in d e le te th e S p e c a n d R e p c lu s te r fro m S p ec a n d R e p lis t

go to th e s u b -c lu s te r s o f t h e S p e c a n d R ep c lu s te r
call th e s a m e m a p p in g a lg o r i th m fo r th e se c lu s te r s

e n d
e n d

F igu re 4.6 Non-uniform mapping algorithm.

53

(3,22,38,0) (3,5/3,!,1)

(3,20,32,0)

(3,18,26,6)

(3,18,26,6)

(3,2032,0)

CD

(2,17,20,0) (1,4,6,6)

(2,2,2,2) (1,1,0,0)

CD O
(33/3,1,1)

(2,2,2,2) (1, 1,0 ,0)

C D O

(33/3,1,1)

(2 ,2,2,2) (1,1,0 ,0)

CD O
(1,4,6,6) (2,17,20,0)

Condition (2) is satisfied, embed CD onto C _D
(2,23,26,0) (33/3,1,1)

(2,13,12,2) (2,2,2,2) (1,1,0,0)

() .CD O .
(2,13,12,2) (33/3,1,1)

(1, 12,10,0) (1,2,2,2)

o o

(2,13,12,2)

(2,2,2,2) (1,1,0 ,0)

CO o
(2,2,2,2)

(1,12,10,0) (1,2,2 ,2) (1,2,0 ,0) (1,2,0 ,0)oo --------
© ©

(1,12,10,0)

o
<1,2,0,0)
(5)

r e s u l t : t , t 2 t 7

(1,2,2,2)
o

(1.2,0,0)
-5- ©

l 3 , l 4 ,*5 , l 6 P2

F igu re 4.7 A mapping example.

4.3.2 N on-U n ifo rm M app ing E xam ples

In Section 3.2, a Spec graph and a Rep graph were constructed from the original non-

uniform task graph and system graph, as shown in Figure 3.16 and 3.18. Figure 4.7

shows the snapshot of the mapping process from the obtained Spec graph to the Rep

graph following the mapping algorithm described above. Figure 4.8 shows the final

schedule obtained from the above mapping by following the data and operational

precedence of the task graph. As shown in the Gantt chart, Tm = 10.

54

0 1 2 3 4 5 6 7 8 9 10

Pi t i l l 2 t7

p? . | t 3 | 14 ‘5 M

p 3

F igu re 4.8 Gantt chart of the obtained schedule.

To show that the same task graph can be mapped onto various system graphs,

three different system graphs are chosen and shown in Figure 4.9. Figure 4.9(a)

is the same task graph as shown in Figure 3.16. Figure 4.9(b) shows a uniform

fully connected system graph and its clustering. The computation speed of each

processor and the communication bandwidth of each communication link is equal to

2. The result of Cluster-M mapping onto this graph is shown in Figure 4.9(c). In

Figure 4.9(d), the system is fully connected with unit computation speed at each

processor, but having higher communication bandwidths at the edges. In this case,

the Cluster-M mapping algorithm distributes the task modules as shown in Figure

4.9(e), to all three processors to utilize the relatively high communication bandwidth

available. On the other hand, if the system is fully connected with unit communi­

cation bandwidth but having higher computation speeds at the processors as shown

in Figure 4.9(f), Cluster-M mapping algorithm maps all the task modules onto the

processor with the highest speed to avoid the relatively expensive communication

cost. This is shown in Figure 4.9(g).

Finally, an example of mapping a real application task onto a heterogeneous

system is given. The Gaussian elimination algorithm used in LINPACK [23, 24] is

chosen. The FORTRAN code is given in Figure 4.10. Suppose it takes 1 unit of time

to do an addition or subtraction, and it takes 2 units of time to do a multiplication or

division of two real numbers. It is also assumed that the communication amount of

sending/receiving each real number to be 1. A task graph for computing the Gaussian

elimination of a 5 x 5 matrix is shown in Figure 4.11(a). In each task module Tj ,

column j is modified by using column k. Suppose that the system running this task

(a) Task graph

132.2.2)

(b) A uniform system graph

(3.13,3)

(d) A non-uniform system graph

(33,1.1.)

0 1 2 3 4 5 6 7 8 9 10

P|
P2
P3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

P . ‘ 1 1 t 2
1 , 1 «7

p 2 1 ‘3 1 ‘4 1 1 ‘6
P 3 1 l * 1

(e) Mapping result on (d)

0 1 2 3 4 5 6 6 i

Pi
p 2

p3

l l *2 »3 <4 *5 *6 >7

111 *2 I 1 *7
113 1 *4 I 15 I *61

(c) Mapping result on (b)

(1) A different non-uniform system graph (g) Mapping result on (0

F igu re 4.9 Mappings on different system graphs.

56

SUBROUTINE KJI(A,LDA,N)
C
C SAXPY
C FORM KJI-SAXPY
C

REAL A(LDA,N)
DO 40 K=1,N-1

DO 10 I=K+1,N
A(I,K)=-A(I,K)/A(K,K)

10 CONTINUE
DO 30 J=K+1,N

DO 20 I=K+1,N
A(I,J)=A(I>J)+A(I,K)*A(K,J)

20 CONTINUE
30 CONTINUE
40 CONTINUE

RETURN
END

F ig u re 4.10 Gaussian elimination algorithm.

contains only two workstations p\ and p%. Also, p\ and P2 have speed of 2 and 1.6

respectively, and are connected with a link of bandwidth 1. The mapping result

using Cluster-M technique is illustrated in Figure 4.11(b).

4.4 N on-U nifo rm M ap p in g C om parison R esu lts

Presented in this section is a set of experimental results that have been obtained

in comparing Cluster-M mapping algorithm with other leading techniques. The

examples selected here are not designed by us, rather are those presented and studied

by the authors of the papers reporting the leading techniques. Again, the following

three criteria are used for evaluating the performance of the algorithms examined:

(1) the total time complexity of executing the mapping algorithm, Tc; (2) the total

execution time of the generated mappings, Tm\ and (3) the number of processors

used, N m.

57

8

12(T 12(T I21T

(a) Task graph

0 4 10 13 19 235 25.5 30.625 33.62534.625 40 415

S 155 23 28.623 34.25 39

(b) Mapping result

Figure 4.11 The mapping example of a 5 x 5 matrix Gaussian elimination.

58

Since there is no existing mapping technique which maps a machine-independent

arbitrary non-uniform task onto an arbitrary non-uniform system, it is not easy to

choose candidates for the comparison study. Therefore, the comparison study is

focused on the leading mapping techniques designed for arbitrary non-uniform tasks,

but for specialized systems only. The mapping techniques in this category include

McCreary and Gill’s Clan [61], El-Rewini and Lewis’s MH [26], Sarkar’s Edge-

Zeroing clustering [70], Wu and Gajski’s MCP [82], and Yang and Gerasoulis’ DSC

[86]. These algorithms have proven to be very effective and efficient in mapping

arbitrary and non-uniform directed tasks. Similar to Cluster-M mapping algorithm,

these algorithms also cluster the task graphs before the mapping. Except for MH,

which is a list scheduling algorithm, they all assume that the target systems are fully

connected with an unbounded number of uniform processors and communication

links. If the number of processors is bounded and smaller than the number of

obtained clusters of task modules, some clusters will be merged until the number

of clusters is no less than the number of processors. For a fully connected system,

it does not m atter to which processor a cluster is mapped. If the system graph

is arbitrary but uniform, some allocation algorithms such as Bokhari’s pairwise

exchange mapping [8] can be used for one-to-one mapping of clusters of task

modules onto processors [85]. The following comparison results show that Cluster-M

produces better or similar mapping results with less time complexity compared to

the other mapping techniques studied here.

4.4.1 Com parison w ith M cCreary and G ill’s Clan Algorithm

McCreary and Gill’s Clan algorithm finds suitable sized grain (cluster) of task

modules to be assigned to the same processor before scheduling the tasks [61]. A

clan is a set of nodes X of the directed task graph Gt iff for all ty G X and

all t z G Gt — X such that (1) tz is a parent node of tx iff tz is a parent node of

59

ty; or (2) t z is a child node of tx iff tz is a child node of ty. Informally, a clan is

a subset of nodes where every element outside the set is related in the same way

to each member in the set. An 0 (M 3) parsing algorithm has been proposed that

decomposes a task graph into clans. In McCreary and Gill’s algorithm, it is also

assumed that the underlying system is fully connected and all the processors and

communication links are uniform (5,- = 1, Rij — 1, for all i, j). Using McCreary

and Gill’s algorithm, the following task modules of the task graph shown in Figure

4.12(a) are clustered together and are assigned to the processors of a fully connected

four processor system:

Pi'- 1, 2, 9
P2: 3, 4, 10

P3: 5, 6, 11

Pa- 7, 8, 12

As task module 13 receives data from 9 and 10, it is assigned to P\. Similarly,

14 is also assigned to P2 and 15 is assigned to P\. The schedule resulting from

this assignment appears in Figure 4.12(b). Even though Cluster-M clustering and

mapping algorithms are different and more generic than Clan, similar results have

been obtained as shown in Figure 4.12(c).

4.4.2 Com parison w ith El-Rewini and Lewis’s M apping H euristic

Next Cluster-M mapping algorithm is compared with El-Rewini and Lewis’s mapping

heuristic (MH) algorithm [26]. The time complexity of MH is 0 (M 2N 3), while

Cluster-M has an 0 (M N) time complexity. Given a task graph as shown in Figure

4.13(a) and a uniform 8-processor hypercube (Dij = 1, if edge (t i , t j) exists, 1 < i , j <

18), the schedule obtained from MH is illustrated by a Gantt chart in Figure 4.13(b)

[26]. Similarly, the Gantt chart of the schedule obtained by Cluster-M mapping is

shown in Figure 4.13(c). An optimal schedule is also shown in Figure 4.13(d). Both

60

(a) Task graph

(b) Clan mapping, Tc — 0 (M 3), Tm - 59, Nm = 4

(c) Cluster-M mapping, Tc = O(MP), Tm = 59, Nm — 4

F ig u re 4.12 Comparison example with Clan.

61

MH and Cluster-M mappings have produced close to optimal Tm for this example,

yet Cluster-M is faster by a factor of 0 (M N 2).

4.4.3 Comparison w ith W u-G ajski’s M CP A lgorithm

The Modified Critical Path (MCP) algorithm [82] is based on critical path introduced

by Hu [42]. A critical path in a DAG is a path of greatest weight from a source node

to a sink node, including the weights of all the nodes and edges along this path.

The critical paths can be shortened by removing communication weights (zeroing

edges) and embedding the nodes on the path. MCP assumes that the weights of task

nodes and edges are the actual computation and communication times. Therefore,

given the same task graph as shown in Figure 3.16 and the system graph as shown

in Figure 4.9(b), a transformed task graph incorporating the information about the

system graph has to be generated first as shown in Figure 4.14(b). The mapping

results by Cluster-M and MCP are shown in Figure 4.14(c) and (d) respectively.

Cluster-M has produced a mapping with Tm = 10 while MCP has Tm = 10.5. The

time complexity of MCP is 0 (M 2 log M).

4.4.4 Com parison w ith Sarkar’s Edge-Zeroing A lgorithm

The basic idea of Sarkar’s Edge-Zeroing algorithm is to repetitively zero the highest

weighted edge if it does not increase the estimated Tm, until all the edges have been

examined. Its time complexity is 0{ \Et \{M + |i^ |)), where \Et \ is the number of

edges in the task graph. Figure 4.14(e) shows the mapping result obtained by the

Edge-Zeroing algorithm on the same example used for MCP in Figure 4.14. This

result matchs that of Cluster-M.

4.4.5 Comparison w ith Yang and G erasoulis’ D SC Algorithm

Yang and Gerasoulis’ Dominant Sequence Clustering (DSC) algorithm [86] is also

based on critical path and edge zeroing, and it incorporates several other heuristics

(a) Task graph

Time

_ 0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24 25 26
Processors

0

1

2

3

4

5
6

(b) MH mapping, Tc - 0 (M 2N 3), Tm = 26, Nm = 7

Time

Processors 0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24 25 26

0

1

2

3

4

5

6
7

(c) Cluster-M mapping, Tc = 0(M P) , Tm = 26, = 8

Time

Processors 0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24 25

0

1

2
3

4

5

6
7

11 12

t3 HO | 114 118

t4

15 111 115

16
17 112 116

t8

1 19 | 113 | 117

t l 12 110 114 Ilf
13

14 t i l 115

15

...... 1 « 112 116

17

18 113 117

19

tl t3 12 110 115 t lf

t4 112 116

15 117

1 17 | t i l

t6 tl3 114

18
19

(d) An optimal mapping, Tc = 0 (2MW), Tm — 25, _/Vm - 8

F igu re 4.13 Comparison example with MH.

63

h

1.5

(a) The original task graph (b) The transformed task graph

0 1 2 3 4 5 6 7 8 9 10 0 1 2 5 6 7 8 8.5 9. 5 10.5

Pi ti l t2 t7 Pi tl t31 t2 1
p7I'-il 14 1 Is 1 tfil P2,......... ,.... l4 1 t6 t7
P3 P31 t5 fc:-

(c) Cluster-M, Tc = O(MP)
Tm = 1 0 , Nm = 3

(d) MCP, Tc = 0 (M 2 log M)
Tm = 10.5, Nm — 3

0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 5 6 7 8 9

Pi i i t2 1 i t7 Pi ‘■I t2 1
p 7, t3 t4 1 tS tfi P2 t3 t4 ts t6 t7
p 3 P3

(e) Sarkar, Tc = 0(\Et\(M + |£ t|)) (f) DSC, Tc = 0((\Et\ + M)\ogM)
Tm = 1 0 , Nm = 3 Tm = 9 ,N m = 2

Figure 4.14 Comparison example with MCP, Sarkar and DSC.

64

for better clustering. DSC can find optimal schedules for some special DAG’s such

as fork and join. However, the task graphs considered in DSC are not machine-

independent, and similar to the above three techniques, it cannot map to non-uniform

systems such as those shown in Figure 4.9(d) and (f). The time complexity of DSC

is 0((\Et \ + M)logM), where \Et\ is the number of edges in the task graph.

Figure 4.14(f) shows the mapping result obtained by DSC for the same example

which was studied in comparison with MCP and Sarkar’s algorithms. Among these

results for this example, DSC’s is the best and actually the optimal, yet the result

by Cluster-M is very close to optimal. In the following, we show several more

comparison examples with DSC. These examples are taken from [84, 8 6]. Figure

4.15 and 4.16 show the mapping of two task graphs onto unbounded number of

identical processors fully connected by identical communication links. The compu­

tation speed and communication bandwidth of the system in Figure 4.15 are both 1,

while the computation speed and communication bandwidth of the system in Figure

4.16 are both 2.

Finally, the same example is taken that was used for comparison with MH in

Figure 4.13. As shown in Figure 4.13, the mapping by MH has Tm — 26 and Nm = 7,

and an optimal mapping uses 8 processors and has Tm = 25. The mapping results

by Cluster-M and DSC are illustrated in Figure 4.17(b) and (c). If a 4-processor

hypercube is used, the mappings of the same task graph by Cluster-M and DSC are

shown in Figure 4.17(d) and (e).

(a) Task graph

0 1 2 3 4 5 0 1 2 3 4 5

P i ‘1 4 3 1 l 4 l ‘ 6 P i ‘1 l 3 1 1-41 t 6

p ? *2 P 2 ‘2
P 3 .. ‘ 5 1 1 ‘ 7 P 3 t s 1 1 t 7

(b) Cluster-M, Tm = 5, Nm = 3 (c) DSC, Tm = 5, Nm = 3

Figure 4.15 Comparison example 2 with DSC.

.0.5

t 2

0.5

(a) Task graph (b) Transformed task graph

0 I 2.5 3 5 9

Pi t i 1 t 2 | t 3 t 5 l = - : v

P ? t 4

(c) Cluster-M mapping result, Tm = 9, Nm —

0 1 2.5 8 5 9 5

P i ‘i 1 t2 | 1
p2

1.5 2
■,l t5

7 5

(d) DSC-I’s mapping result, Tm — 9.5, Nm = 2

Figure 4.16 Comparison example 3 with DSC.

(a) Task graph

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

P» l l l t2 n o 1 1 114 I'll
p, 13

r, t4 1 111 I I 115 1

Pi 1 15 1

P4 ; r : : ^ 16 1 tl 2 1 1 . 116 1
P5 t7

p* t8 I 113 1 ... 117 1 . . .

p7 1 ® I;:- ■ ■

(b)Cluster-M mapping on 8 processors, Tm = 26, N m = 8

0 5 10 15 20 25 2

Pn t3 1 t io 1 117 . | t l 8

Pi t4 t i l l 14

P* t6 112 115

P 3 t8 113 1 1 t i e 1
P 4 ‘ . I ts t2

Ps t9

P6 ‘7

P 7

(c) DSC’s mapping on 8 processors, Tm = 27, Nm = 7

0 5 10 IS 20 25 27

Po ‘ 11 l2 1 t3 1 t io 1 ! 114 |t 18

P i t4 ts t i l t IS
p?. t6 t7 112 t | 6

P 3 t 8 t9 l 13 117

(d) Cluster-M mapping on 4 processors T-*■ m = 2 7 , Nm == 4

0 S 10 IS 20 25 27

Po . ‘5 «6 112 116

P i I ‘ 7 l 3 t io 117

p? ti 1 l2 1 t4 1 t i l 1 1 t I4 |t 18

P 3 t9 t8 113 115

(e) DSC’s mapping on 4 processors, Tm = 27, Nm = 4

Figure 4.17 Comparison example 4 with DSC.

CHAPTER 5

H IERARCH ICAL CLUSTER-M M A P P IN G FOR H ETER O G EN EO U S
C O M PU TIN G

Heterogeneous Computing (HC) has been proposed as a novel approach towards

solving computationally demanding application tasks due to exploiting the hetero­

geneity of a variety of high-performance computers [38, 51]. There are two types of

HC systems: a mixed-mode machine and a mixed-machine system. A mixed-mode

machine is a single machine which can operate in different modes of parallelism

[34], while a mixed-machine system is a suite of diverse machines which are inter­

connected by a high-speed network. These diverse machines are high-performance

computers with different parallelism modes (such as vector processors, SIMD, MIMD,

and mixed-mode machines). Khokhar et. al. [51] have addressed the challenges

and issues posed by HC systems. The trend of HC has also brought researchers’

attention to the problem of mapping tasks onto a suite of heterogeneous computers

[80, 16, 54, 55, 67]. However, many existing mapping techniques which were designed

for uniform homogeneous systems are not suitable for mappings on heterogeneous

systems. This chapter studies the problem of mapping specialized application tasks

onto heterogeneous systems by applying the mapping algorithms presented in the

last chapter.

In [37] Freund proposed the Optimal Selection Theory (OST) which is a proof

of existence of an optimal configuration of heterogeneous machines for executing an

application task such that the total execution time is minimized. OST was then

augmented by Wang et. al. [80], called the Augmented Optimal Selection Theory

(AOST), to incorporate non-optimal machine choices and non-uniform decompo­

sitions of code segments. This chapter first presents the Heterogeneous Optimal

67

68

Selection Theory (HOST), which is an extension to OST and AOST. HOST includes

various additional assumptions to be more suitable for a HC environment. Based on

HOST, a modified Cluster-M mapping algorithm is presented for mapping bound-

degree heterogeneous task graphs onto bound-degree heterogeneous system graphs.

At each step of mapping, instead of using a greedy algorithm for matching the Spec

clusters to the Rep clusters as we did in last chapter, the optimal matching is found

by using Integer Linear Programming (ILP). The comparison results show that the

modified mapping algorithm produces better mappings than the original algorithm

as well as other heterogeneous mapping techniques.

5.1 H eterogeneous Optim al Selection Theory (H O ST)

In Freund’s Optimal Selection Theory (OST) [37], it is assumed that the number of

machines available is unlimited and an application task comprises several uniform

and non-overlapping code segments. Each segment has homogeneous parallelism

embedded in its computations. Also, code segments are considered to be executed

serially. A code segment is further decomposed into different code blocks. All

code blocks within a code segment have the same type of parallelism and can be

executed concurrently. The goal of OST is to assign the code blocks within each

code segment to the available matching machine types such that the code segment

can be optimally executed. Augmented Optimal Selection Theory (AOST) [80]

extended OST to incorporate the performance of code segments on non-optimal

machine choices, assuming that the number of available machines for each type is

limited. Based on this assumption, a code segment which is most suitable for one

type of machine may have to be assigned to another type.

HOST, presented in this section, is an extension to AOST in two ways: it incor­

porates the effects of various fine grain mapping techniques available on individual

machines, and the task is assumed to have heterogeneous embedded parallelism.

69

The input format to HOST, as shown in Figure 5.1, allows concurrent execution of

mutually independent code segments. An application task is decomposed into several

subtasks. Subtasks are executed serially. Each subtask may contain a collection

of code segments which can be executed in parallel. A code segment consists of

homogeneous parallel instructions. Each code segment is further divided into several

code blocks which can be executed concurrently. These code blocks are to be assigned

to the machines of the same type. A machine type is identified according to the

underlying architectures, such as SIMD, MIMD, vector, scalar, etc. Each machine

type may have more than one model, for example, a hypercube and a mesh may be

two models of SIMD machine type. In HOST, heterogeneous code blocks of different

code segments can be executed concurrently on different types of machines, exploiting

heterogeneous parallel computations embedded in a given application.

Subtaaka

Talk

T
t!1 • • ft a | . . .

Coda blocks (I

F igu re 5.1 Input format to HOST.

I *ip« I « « « ! I

Cods blocks (homoganooua)

To express the formulation of HOST, some parameters need to be defined. Let

S be the number of code segments of a given subtask, and M be the number of

different machine types to be considered. Let r)[t] be the number of machine models

of type t, a[f] be the number of mappings available on machine type t, and f3[t, /]

be the number of machines of model I of type t available. Assume v[t, j] is the

maximum number of code blocks code segment j can be decomposed into. Define

70

7 [f,J] to be the number of machines of type t that are actually used to execute

code segment j . Therefore, 7 [t,j\ = min(J3j’=l/^[f,/], u[/, j]). A parameter m[t,k] is

defined to specify the effect of the mapping technique available for a code block k

on machine type t . Assume that for a particular mapping m on machine type t, the

best matched code segment can obtain the optimal speedup 0[t, m] in comparison

to a baseline system. A real number 7r[t, j] indicates how well a code segment j can

be matched with machine type t. A[i,&] is a utilization factor when running code

block I' on a machine of type t. Thus 0 < n[t,j\ < 1 and 0 < A[f,&] < 1. Let p[j]

be the percentage of tim e spent executing code segment j within overall execution

of a given subtask on baseline machine. J2j=i p[j] = 1- Similar to the definition of

p[j], let p[j, &] be the percentage of time spent executing code block k within overall

execution of code segment j on baseline machine. Y^kt^p\ji &] = 1 .

Suppose code segment j is assigned to machine type t. For each code block k

within code segment j , there is a mapping m[t,k\. Let p[t,j] be mapping vector for

code segment j on machine type t.

p[t , j} = (m [f,l],m [f,2] ,- -- ,m [f ,7 [f,j]]),l < m[t,k] < a[<].

With this mapping vector p, on machine type t, the relative execution time of

segment j will be:

ru ■ 1 P[i] x P\j, k\o \ t , j , u \ = max —t -r— pr; r —p r?— rr-i<fc<7 [qj] 6[t,m[t,k]] x ir[t,j] x A[f,&]

Therefore, different mappings, p, available on machine type t result in different

execution times of segment j. Let A[i, j] be the minimum execution time of segment

j among all the possible mappings on type t.

X [t,j] = min<5[f,j,^[i!,i]]

Let the machine type selection vector t indicate the selection of machine types

for code segment 1 to 5, such that r = (f[l], t[2], • • •, i[S]). Let c[t[j]] denote the cost

Tl

Table 5.1 Notations used in HOST formulation

5 the number of code segments of a given subtask
M the number of different machine types to be considered
v[t] the number of machine models of type t

the number of mappings available on machine type t
/?[<,/] the number of available machines of model I of type t
«[*» j] the maximum number of code blocks code segment j can be decomposed
i[t,j] the number of machines of type t actually used to execute code segment j
m[t, Ar] mapping technique used for a code block k on machine type t
6[t, m] the optimal speedup for a particular mapping m on machine type t
* [t,j] how well a code segment j can be matched with machine type t
A[f, k] utilization factor when running code block k on a machine of type t
P[j} the percentage of execution time of code segment j within a given subtask
P[j, k] the percentage of execution time of block k within code segment j
P[tj] mapping vector for code segment j on machine type t
b[tj,p] execution time of segment j with mapping mu on machine type t

minimum execution time of segment j among all possible mappings on type t
T machine type selection vector
X[r] execution time of the given subtask with machine type selection r

of machine selected to execute code segment j , and C be the total cost constraint.

Define xM be the execution time of the given subtask with heterogeneous machine

type selection r on all the code segments, such that y[r] = maxi <j<s A[i[j], y], then

HOST is formulated as follows:

For any subtask , there exists a r with

s
m in x H subject to * cMi]D < c

3=1

For an easy reference, all the notations used in HOST formulation are listed in

Table 5.1.

5.2 M odeling the Input to HOST

HOST, as described in the previous section, is an existence proof for an optimal

selection of processors for a given subtask in HC. The input formulation in HOST

72

assumes that a parallel task T is divided into subtasks f,-, 1 < i < N. Each subtask

ti is further divided into code segments 1 < j < S, which can be executed

concurrently. Each code segment within a subtask can belong to a different type of

parallelism (i.e. SIMD, MIMD, vector, etc.), and thus should ideally be mapped onto

a machine with a matching type of parallelism. Each code segment may further be

decomposed into several concurrent code blocks with the same type of parallelism.

These code blocks tijk, 1 < k < B, are suited for parallel execution on machines

having the same type of parallelism. This decomposition of the task into subtasks,

code segments, and code blocks is shown in Figure 5.1.

A good model of this input format is needed to facilitate the mapping of tasks

onto a heterogeneous architecture. In addition to modeling the input format, the

architecture being considered for the execution of the task should also be modeled.

Several requirements for this model are identified as follows:

• The modeling of the input format should handle the decomposition of the task

into subtasks, code segments, and code blocks, while preserving the information

regarding the type of parallelism present in each portion of the task. This is

essential to match the type of each code block with a suitable machine type in

the system.

• The model should handle parallelism at fine grain and coarse grain levels.

o Modeling of the input code should emphasize the communication requirements

of the various code segments.

• The modeling of the input code should be independent of the underlying archi­

tecture.

• The modeling of the system should provide the mode of computation of each

machine in the system.

73

• The interconnection topology of individual architectures should be systemat­

ically represented in the model at both system and machine levels.

Cluster-M meets most of the above requirements. However, Cluster-M has no

provision to model the heterogeneity present in the task and the system. In the

next section, an extension to Cluster-M, called Hierarchical Cluster-M (HCM), is

presented to incorporate the heterogeneous types both in tasks and systems. Then,

a HOST based HCM mapping algorithm is presented in Section 5.4 which finds sub-

optimal selection and mapping of each subtask. The HCM mapping algorithm is

compared with other techniques in Section 5.5.

5.3 Hierarchical C luster-M (HCM)

Hierarchical Cluster-M (HCM) is an extension to Cluster-M to exploit parallelism at

the subtask, code segment, code block, and instruction levels. This is accomplished

by modifying both the Cluster-M Specification and Representation. The extended

Cluster-M Specification takes into account the type of parallelism present in each

portion of the task. The modification to the Cluster-M Representation takes into

account the presence of several interconnected machines in the system, providing a

spectrum of computational modes.

5.3.1 HCM Specification

The HOST formulation can be applied to a non-uniform task graph Gt = (Vt,Et) as

defined in Chapter 3. In a non-uniform task graph, each task module t{ is a code

block. Task modules of the same type of computation requirements compose a code

segment. A subtask consists of several sequential or concurrent code segments of

different types. Thus, the Hierarchical Cluster-M Specification can be constructed in

the same way as the original Cluster-M Specification. Besides, in HCM Specification,

each Spec cluster is also labeled by a computation type. Only clusters of the same

74

type can be embedded and merged. For example, given a heterogeneous subtask as

shown in Figure 5.2, the HCM Spec graph can be obtained by clustering the MIMD

and vector type task modules (code blocks) respectively. Therefore, the obtained

HCM Spec graph will consist of two subgraphs: one contains MIMD type clusters

and the other contains vector type clusters. The MIMD type Spec subgraph is

illustrated in Figure 5.3.

8 e

2
h6

MIMD type Vector type

F ig u re 5.2 A heterogeneous subtask consists of MIMD and vector code segments.

5.3.2 H C M R ep re se n ta tio n

The Hierarchical Cluster-M Representation of a system consists of two layers of

clustering: system layer and machine layer. System layer clustering consists of

several levels of nested clusters. At the lowest level of clustering each machine in the

system is assigned a cluster by itself. Completely connected clusters are merged to

form the next level of clustering. This process is continued until no more merging

is possible. Machine layer clustering is obtained in the same way as described in

75

(4,13,4,3)

1(1 , 12 ,2.0)

(1,8, 1,1) (1.8,1,1)1 ,8, 1. 1) 1,8,1.1)

(l ,8 ,2 ,!) \ l 2 / ' 1’8’1’1)

(1,23,3)(1 ,6 , 1, 1) (1,6,2,2)

(1,6,4,4)

step 1

(4,15,7 A) (4,25,10,6)

' (1.4,0,0)

1(1, 12,2,0) 1(1, 12,2 ,0)

(1.14,2,0)

(1 ,8 ,1 ,1)L

(1,14,2,0)1 (1,14,2,0) 1 -(1.8,1,1)!.

(1,6,1,1)

(1.6.4,4)

•top 3 step 4

Figure 5.3 Construction of the Spec subgraph of the MIMD code segment.

76

Chapter 3. For a heterogeneous suite of interconnected computers, the HCM Repre­

sentation is obtained as follows:

1. For each computer in the system, apply the Clustering-non-uniform-undirected-

graphs algorithm as in Chapter 3 to obtain Cluster-M Representation of all

the processors in the computer. The resulting clusters are called machine level

clusters.

2. Each resulting cluster is labeled according to the type of parallelism present in

the cluster (i.e. SIMD, MIMD, vector, etc.).

3. Treat each computer as a processor and apply the Clustering-non-uniform-

undirected-graphs algorithm. At the first level of clustering, each computer

in the system is in a cluster by itself. Each clustering level is constructed by

merging clusters from the lower level that are completely connected. This is

continued until no more clustering is possible. The resulting clusters are called

system level clusters.

A heterogeneous parallel computing system is shown in Figure 5.4, which

consists of one MIMD machine and one vector machine. The MIMD machine has

three processors, P I, P2 and P3, and the vector machine has two processors P4 and

P5. The clustering of the HCM Rep graph is also shown in this figure.

(3,4/3,5,5/3)

(1.2,0,0)

(1,2,0,0),(1.1.0.0)

P2 P3

M IM D m achine Vector m achine

Figure 5.4 The system graph and its clustering of a heterogeneous suite.

77

5.4 HCM Bound-D egree M apping Algorithm

Given the HCM Spec graph and HCM Rep graph, the mapping can be done for

each type Spec subgraph and Rep subgraph respectively, using the original Cluster-

M mapping algorithm as presented in Chapter 4. However, the original Cluster-M

mapping, whether for uniform or non-uniform graphs, does not find optimal matching

of Spec clusters with Rep clusters at each level. In this section, we present an

HCM mapping algorithm for bound-degree task and system graphs. This mapping

algorithm is a modified version of the original Cluster-M mapping algorithm. Instead

of greedily matching Spec clusters to Rep clusters in the original mapping, the

new algorithm finds an optimal matching using integer linear programming yet still

maintains a polynomial time complexity.

Many parallel systems such as ring, binary tree, and mesh have constant degree.

Many applications can also be expressed in bound-degree graphs such as in image

processing, most divide-and-conquer applications, etc. If the degree of a graph is

bound by a constant fc, the number of sub-clusters within each Spec or Rep cluster

at any clustering level will be at most k. Therefore, the function 4.2 in Chapter 4

can be used to find optimal matching of each Spec cluster without increasing the

time complexity of mapping. In the following, a modified mapping algorithm is

presented which uses an Integer Linear Programming (ILP) approach to find the

optimal matching between Spec clusters and Rep clusters at each mapping step.

Mathematica 2.2 for SPARC , a product by Wolfram Research, Inc., is used to solve

this ILP problem.

Assume that the degrees of the given task graph and system graph are bound

by two constants ks and fc/?, respectively. To formulate each mapping step into

an ILP model, a binary variable ^(ks,, «/?_,) is defined to indicate whether a Spec

cluster KSi is mapped onto a Rep cluster kr}. /^(ks, , kr}) = 1 if «s, is mapped to

k^ . Otherwise, / / (k s , , k r }) = 0. This transfers the mapping problem into an ILP

78

model in which each Spec cluster can be mapped to only one Rep cluster, which

can be represented by kRj) = L 1 < * < &s- The estimated execution time
j

on Rep cluster kR] is denoted by T(kRj), and T(kRj) - ■, kRj)t {ks„ kRj).
i

Since the overall execution time is denoted by Tm, there are constraints that for all

j-, Tm > T(kRj). The objective is to minimize the overall estimated execution time.

Therefore, the objective function of our ILP model can be expressed as follows.

Minimize Tm, while Tm > T(kRj) for all j

Once the minimal Tm is found, the matching of Spec clusters and Rep clusters can

be determined by using binary variables ks,, kr3)-

HCM Bound-Degree Mapping Algorithm
begin

for each machine type

calculate reduction factor / =

i
for each Spec cluster 5,, 1 < i < ks
begin

for each Rep cluster R j , 1 < j < kR

end
/ * Starting Integer Linear Programming */
/ * Set Constraints */
Y^n(Si, Rj) = 1,1 < i < ks

3

? (R j) = R i) T (S » R i) ’ 1 < 3 < k R

Tm > r (R j) ,i < j < k R
/ * Objective Function */
Minimize Tm

end
end

Figure 5.5 HCM bound-degree mapping algorithm.

79

A detailed description of the HCM bound-degree mapping algorithm is

presented in Figure 5.5. The time complexity of this algorithm can be analyzed as

follows. The numbers of iteration for the outer for loop and the inner for loop are

at most ks and kn , respectively. Therefore, the total number of iteration for these

for loops is bound by 0(ks x kji). Consider the portion of ILP in this algorithm,

it examines all instances of (ks, , kr.j) pairs for all i and j . The running time of this

portion, hence, is equal to 0((kn)ks). The overall time complexity of the mapping

algorithm is therefore 0(ks x kn) + 0((kft)hs) = 0((kR)ks). However, since both ks

and kfi are constants, it is still a polynomial time complexity.

Consider mapping the task graph illustrated in Figure 5.2 to the system graph

of Figure 5.4. The mapping is done for each type of Spec and Rep clusters respec­

tively. The mapping of the MIMD Spec subgraph onto the MIMD Rep subgraph is

done as below. At the top level, the mapping is trivial since there is only one Spec

cluster k<j0(4,25, 10,6) and one Rep cluster k r 0 (3, | ,5 , |) . At the next level, four

Spec clusters k s , (1,12,2,0), «s2(l, 14,2,0), ks3(1, 10,3,0), and ks4 (1,20,5,0) are

to be mapped to three Rep clusters /c/i, (1,2,0,0), k r 2 { 1,1, 0,0), and k r3(1, 1, 0, 0).

Using the modified mapping algorithm, ks3 and ks4 are mapped onto kr^ , and ks2

and are mapped to kr2 and k r 3 respectively. It implies that task modules d, e,

g, h, i are mapped to processor P i, b, f are mapped to P2, and a, c are assigned to

P3.

The mapping of the vector Spec subgraph onto the vector Rep subgraph can

be done in a similar way. The overall mapping result is shown in Figure 5.6.

5.5 Comparison Study

In this section, the HCM bound-degree mapping algorithm is compared with the

original Cluster-M non-uniform mapping algorithm as well as other two techniques

which are capable of mapping tasks onto distributed heterogeneous systems. Lo’s

80

0 4.5 8.5 12J 13.5 165 19.5 22.5 25.67

PI
P2

P3

P4

P5

mapping algorithm in [59] is a heuristic which combines recursive invocation of max

flow min cut algorithm to find suboptimal assignments of tasks to heterogeneous

processors. In [71], Shen and Tsai considered a cost function and a minmax criterion

for minimization of the cost function, then solve the mapping problem by the well-

known A* algorithm. Since both algorithms do not incorporate the heterogeneous

computation and machine types in their mapping, it is only possible to compare the

result of mapping each type of task modules (code blocks) onto the same type of

processors respectively.

Considering the example discussed in the previous section for mapping the task

graph of Figure 5.2 to the system graph of Figure 5.4. The mapping results of MIMD

type task modules onto MIMD type processors by HCM bound-degree mapping, the

original Cluster-M non-uniform mapping, Lo’s heuristic, and Shen and Tsai’s A*

heuristic are shown in Figure 5.7. Their total execution times are 22.5, 24.5, 24, and

28 respectively. HCM bound-degree mapping produces the best result.

The mapping results of the vector type task modules onto the vector type

processors are shown in Figure 5.8. The Tm by the four different mapping algorithms

are 25.67, 30.17, 38, and 33.83, respectively. Again the HCM bound-degree algorithm

produces the best mapping, yet the mapping of the original Cluster-M algorithm is

also very good.

j d e |g h | i |

. 1 b | r
a c j

t J t J t }
2 2 2

t 2 t 3 t 4
3 3
3 T 4

T«iii
4

t ! T S T s T s

4.67 10.67 16.67 21.17 24.17

F ig u re 5.6 The obtained mapping result.

81

0 4.5 8.5 12.5 13.5 16.5 19.5 22.5

PI
P2

P3

0 2 6 9 21.5 24.5

PI
P2

P3
3 11 19 21

(b) Original Cluster-M non-uniform mapping

0 2 6 10 14 18 21 24

PI

P2
P3

0 5 9 13 17 19 25 28

PI
P2
P3

Figure 5.7 The mapping results of MIMD code blocks onto MIMD machine.

c d e S i
a f

b h
5 13 18 24

(d) Shen and Tsai’s A* searching

a b c d e h i

g
f

6.5 12.5

(c) Lo’s heuristic

a b f i
e h

c d g

d e g h i
b f

a c
4 12

(a) HCM bound-degree mapping

82

2.67

PI

P2

10.67 12.67 22 22.67 24.67 25.67

10.67 16.67 21.17 24.17

(a) HCM bound-degree mapping

2.67 6.67 10.67 12.67 15.67 17 29.17 30.17

PI

P2

10.67 16.67 21.17 25.67 28.67

(b) Original Cluster-M non-uniform mapping

0 2.67 6.67 10.67 14.67 18.67 20.67 23.67 26.67 29.67 31 33 35 37 38

t ! T 1*2 T 13 T 4 T 5 T 32 t 2 t 52 T 2 r 5

r 4

35.5 36.5

(c) Lo’s heuristic

0 6 10 14 18 20 23 26 27.33 2933 33.83

T 2 T 1*3
T' t2
*4 l 2 T

2

3 T 21 4 rl 2
3

T 4

t! ^5 IS T* r 4 T5
4 10 21.5 26 28 3 3 31.33 32.33

(d) Shen and Tsai’s A* searching

F igu re 5.8 The mapping results of Gaussian elimination on the vector machine.

CHAPTER 6

C O M BINED USE OF CLUSTER-M W ITH HASC

In this chapter, we study how Cluster-M can be used together with a different

programming paradigm, called Heterogeneous Associative Computing (HAsC), to

provide an efficient scheme for heterogeneous programming. Unlike other existing

heterogeneous orchestration tools which are MIMD based, HAsC is for data-parallel

SIMD associative computing. HAsC models a heterogeneous network as a coarse­

grained associative computer. It is designed to optimize the execution of tasks where

the program size is small compared with the amount of data processed. Ease of

programming and execution speed are the primary goals of HAsC. On the other hand,

Cluster-M can be applied to both coarse-grained and fine-grained networks. Cluster-

M provides an environment for porting heterogeneous tasks onto the machines to

maximize the resource utilization and to minimize the execution time. Both Cluster-

M and HAsC can efficiently support heterogeneous networks by preserving a level

of abstraction without containing any architecture details. They are both machine-

independent and scalable for various network and task sizes.

6.1 H eterogeneous A ssociative Com puting (H A sC)

Heterogeneous Associative Computing (HAsC) models a heterogeneous network as

a coarse-grained associative computer. It assumes that the network is organized

into a relatively small number of very powerful nodes. Basically, each node is a

supercomputer (vector, SIMD, MIMD, etc). Thus each node of the network provides

a unique computational capability. There may be more than one node of a specific

type in a case where special properties are present. For example, one SIMD node

83

84

Memory 1 P E I

e •
• •
o •

Memory n PE n

(a) An associative computer

Sequential

Control

Disk 1 Computer 1

• •
• •
• •

Disk n Computer n

(b) Associative configuration of a network

HAsC

Control

F ig u re 6.1 Analogy between an associative computer and an associative configu­
ration of a network.

may be specialized for associative processing and a second SIMD node may contain

a very powerful internal network configuration.

Figure 6.1 illustrates the logical similarity of an associative machine and a

heterogeneous network. In particular, a disk-computer node on a network can be

compared to an associative memory-PE cell. As in an associative cell, the node’s

computer is dedicated to processing the data on the node’s disk(s). The disk-to-

machine data transfer rate is much more efficient than the node-to-node transfer

rate, just as memory-to-PE transfers are much faster than PE-to-PE transfers. Note

that the associative computer and network diagrams are quite different from shared

memory MIMD models. Shared memory configurations emphasize the concept that

all data is equally accessible from all processors. This is not the case in a hetero­

geneous network.

HAsC is “layered” so that any node in the HAsC network may be another

network. Thus a HAsC node may be a HAsC cell containing more than one computer,

or it may be a port to another level of computing in the HAsC network. For example,

85

Port/T ransport node

D ata

Data

Workstation
SIMD

VECTOR

SIMD

Workstation

MIMD

MIMD

Control

HAsC

F ig u re 6.2 A layered heterogeneous network.

most nodes may contain a general purpose computer in addition to a supercomputer

to function as the node’s port to the rest of the HAsC network. Figure 6.2 shows

a typical HAsC network organization. Each HAsC node has access to a number of

instruction stream channels. Each channel broadcasts a different sequence of code.

The HAsC node selects the appropriate channel based on its local data and previous

state. The selected channel is saved in a channel register. A port, or transponder

node, will accept a high level command and “translate it” into the command(s)

appropriate for the subnetwork.

Some of the properties of the associative computing paradigm well suited for

heterogeneous computing include: (1) efficient programming and execution with large

data sets and small programs; (2) optimal data placement; (3) software scalability

(see Section 6.3); (4) cellular memory allocation; and (5) search-process-retrieve

synchronism [66].

In HAsC, instructions are broadcast to all of the cells listening to a channel, but

each individual cell must determine whether to execute the instruction. This determi­

nation is performed as follows: Upon receipt of an instruction, a node “unifies” it with

its local instruction set and data files. Several languages such as Prolog and STRAND

[36] incorporate this process. HAsC is different in that it uses unification only at the

top level. Thus there is only one unification operation per data file, as opposed to

one per record or field. This difference is critical in a heterogeneous network where

communication of individual data items would be prohibitively expensive.

86

If there is a match, the appropriate instruction is initiated. The instruction may

in turn issue more instructions. Thus, control is distributed throughout HAsC. That

is, a program starts by issuing a command from a control node. If a receiving node

receives a command that is in effect a subroutine call, it may become a transponder

control node. It may first perform some local computations and then start issuing

(broadcasting) commands of its own. If the node happens to be a port node, the

commands are issued to its subnet as well as to its own network. Thus it is possible

for multiple instruction streams to be broadcast simultaneously at several different

logical network levels in a HAsC network.

In general, HAsC assumes that data is resident in a cell. As a result, data

movement is minimal. However, it is common for one cell to compute a value

and broadcast it to other cells. Thus, there is a need to synchronize the arrival

of commands and data. There are basically two cases which are handled autom at­

ically by the HAsC administrator as a part of the search-process-retrieve protocol.

The normal case is for data to be resident in a cell when the HAsC command

arrives. Instruction unification and execution proceed as described above. HAsC

allows data transfers, but protocol insists that the data transfer be completed before

any associated commands are broadcast.

The second case involves command parameters. When a command arrives and

is unified with resident data at a node but some parameter data is missing, the

unified command is stored in a table to wait for the parameter in a synchronism

process called a data rendezvous. When parameter data arrives, the rendezvous

table is searched for a match. If found, the associated command is executed.

HAsC uses network administrators and execution engines to effect the

paradigm. Each HAsC network level has a system administrator and each node

in a network has its own local administrator. The local administrator monitors

87

network traffic capturing incoming instructions and checking for illegal commands.

It is also responsible for maintaining the local HAsC instruction set.

The HAsC administrator receives all incoming HAsC instructions from the

local network. It then verifies if each instruction is legal. If it is, the administrator

puts it in the Execution Engine queue. Otherwise, it attem pts to identify the source

and makes a report to the system administrator. Repeat offenses cause escalating

diagnostic actions as determined by the network administrator.

If a Meta HAsC instruction such as (un)install, (un)extend, or (un)augment,

is received, it is processed immediately. The Meta instructions will create, modify

and delete HAsC instructions from the local HAsC instruction set respectively. Meta

instructions can also modify local data structure definitions.

Since the instruction set can be dynamically expanded by the users, it is

possible for two users to install the same instructions. The node administrator distin­

guishes between the two instructions by a user id and program id which is broadcast

with every HAsC instruction.

Instructions can be added at several different logical levels: (1) system, (2)

project, and (3) user. Typical system level instructions would be data move and

formatting commands. Project commands would be project oriented. For example,

a numerical analysis project would have matrix multiplication and vector-matrix

multiplication instructions, while a logic programming project might have specialized

logic instructions, such as unification. At the user level, one user might specify a

SAXPY operation while another might want a dot product. Scalable libraries may

exist at any level, but most commonly at the project level.

Each node/cell has an execution engine which controls instruction execution

at that node. The execution engine selects the next instruction, makes the bindings

specified by instruction unification and causes the instruction to be executed. The

execution engine performs the following tasks: save environment, get next unified

88

instruction, bind unified variables, establish environment, execute unified instruction,

and restore old environment.

Instruction execution may take two basic forms. First the instruction may be a

HAsC program which is executed in the transponder mode. Second, the instruction

may be a library call written in FORTRAN, C, LISP, etc. In this case, the established

environment restrictions produce the proper interface for the appropriate language.

HAsC must allow for a dynamic instruction set and data structure modifi­

cations. Thus the HAsC install Meta instruction consists of an associative pattern

and a body of code. When it is broadcast to the system, all nodes which successfully

unify with the instruction gather the body of code and install it on the local node.

The extend instruction consists of a pattern and a data definition. Responding

nodes add the data definition to the local associations. Extend may add a named

row or column to an existing association. Augment can be used to add an entire new

association.

The patterns in these instructions contain administrative data. Such as job id,

project id, etc. If the node is not participating in the project or job, then it does

not unify and the instruction is not installed or the data definition not extended.

Uninstall, unextend and unaugment perform the inverse operations.

Basic to the HAsC philosophy is the concept that data, when initially loaded

into the system, are sent to the appropriate node and are never moved. While this

would be ideal, there will always be a need to move data from one node to another.

Accordingly, there are a number of HAsC move commands. Move commands can

be divided into intra-association and inter-association instructions. Intra-association

instructions are very much like expressions in conventional languages and are not

discussed here due to lack of space. Inter-association instructions include file I/O as

a special case. Inter-association moves must have node identifiers and for I/O , a file

server, a disk or other peripheral is a legal node.

89

The essence of HAsC is to model a distributed heterogeneous network as

an associative data parallel computer, where processor synchronization is on an

instruction by instruction basis. Accordingly, in HAsC, the associative instructions

are synchronized. A hierarchy of instructions is briefly described here - from the

highest, most global (easiest to synchronize) to the lowest, most local (hardest to

synchronize). HAsC will perform most efficiently if the programs are written using

high level commands. The lower the level of the command, the more inter-node

communication is required. Five different levels of instruction coupling are required

to implement all of the HAsC statements on a heterogeneous network.

Communication and synchronization are built into the HAsC instruction.

There is no need for the programmer to be aware of the degree of instruction

communication. The five levels of instructions are presented here to more clearly

delineate the relationship between associative and heterogeneous computing.

The highest level of instruction synchronization is pure associative data paral­

lelism and involves the use of the channel registers only, i.e., there is no global

coupling. There are two types of top level instructions: (1) those which execute based

on the channel register value only, such as logical and arithmetic expressions; and (2)

those which set the channel register. Data parallel logical expressions (associative

searchers) can be used to set the channel registers and are “automatically” incor­

porated into many HAsC statements. Thus a data parallel IF or WHERE consists

of only an associative search, followed by a sequence of data parallel expressions. It

is a top level instruction. Top level instructions execute in real time and require no

global response or communication. Most computation is done at the top level.

Figure 6.3 gives an example of instruction synchronization, where $ is the

parallel marker. ResultS is a data parallel pronoun referring to the results of the last

performed data parallel computation. The top level synchronization box shows the

programming style for algebraic expressions supported by HAsC.

90

add the b$ to the c$
subtract the result! from the d$
convolve the result! with the e$
save the result! in the f !
compare the a ! with the b !
where the result! are equal d o ... elsewhere do ...

Top level synchronization
Expressions and WHERE
commands

pick one o f the responder!
any a ! greater than the b !

m ove the a ! to the b !
save the a ! in the b !
read c !

read matrix a !
exit if EOF
convolve a ! with im age!
display result!
repeat
sum the salary!

any a ! greater than 5

Second level synchronization
Data m ove and I/O
commands

Third level synchronization
A N Y command

Fourth level synchronization
Item selection

Fifth level synchronization
Iteration

Figure 6.3 Instruction Synchronization.

91

The second level of instruction coupling requires only global synchronism.

Prime examples are the data transfer and I/O commands. I/O is always local to

a cell’s processor, but in general the processors may be quite different physically

and therefore I/O times may vary dramatically requiring synchronization before the

next HAsC command is issued. Again, the programmer need not be aware of the

synchronization requirements of this class of instructions. The synchronization is

automatic. The programmer only recognizes the need for I/O or data movement.

The third level of complexity consist of simple responder commands. These

commands require the ORing of the responder results of all processors (i.e. an OR

reduction). On a SIMD machine this is a single instruction. In HAsC, it is the

simplest form of a HAsC reduction communication. The instructions at this level,

such as ANY, are used to check for error conditions, or determine whether special

case computing needs to be done.

The fourth level is random selection. The HAsC commands in Figure 6.3 at this

level consist of an associative search, followed by the selection of a responder by the

“first reduction” operation. The data object of the selected responder is broadcast

to the entire HAsC network for further processing.

The fifth level is iteration. The only use for iteration at the top level of HAsC

is for user interaction. For example, a typical program might be one which allows

the user to interactively specify kernels to be convolved with an image and to review

the results. Data iteration does not exist in Figure 6.3.

6.2 Com bined U se of Cluster-M and HAsC

HAsC is most suitable for coarse-grained heterogeneous parallel computing. It is

intended to ease the programming effort and to maximize execution speed. Cluster-

M, on the other hand, provides both coarse-grained and fine-grained mapping in a

clustered fashion. It aims at maximizing both execution speed as well as resource

92

utilization. Therefore, both paradigms can be combined to achieve a better overall

performance featuring ease of programming, increased execution speed and optimal

resource utilization.

Cluster-M mapping can be applied to HAsC in several ways. First, Cluster-

M can be used to determine the initial data mapping before HAsC computation

begins so that the overall execution time is minimized. Secondly, Cluster-M mapping

can be used to decide the fine-grained mapping within HAsC nodes as shown in

Figure 6.4. Thirdly, Cluster-M can be alternated with HAsC at run time. In this

approach, a Cluster-M Specification for the task is generated first. The Cluster-M

Specification preserves computation and communication information in a multi-level

cluster organization. Clusters at the same level represent computations at a given

step which can be executed concurrently. This cluster organizational information

can be sent to the HAsC network controller which then broadcasts the clusters of

HAsC instructions (Figure 6.5). As described in Section 6.1, the local HAsC nodes

determine which of the clusters to execute based on their local configuration and data.

Global results, if any, are returned to the initiating HAsC controller which may use

them to select the next level of clusters to be broadcast. The process repeats until

all cluster levels have been processed. This approach is a network implementation of

the multiple-SIMD architecture described in [66].

The following illustrates the combined use of Cluster-M and HAsC by an

example. Given two 7 x 7 real matrices A and B, suppose we want to calculate

Ua x Ug, where L a x Ua = A and L b x Ub — B. The matrices L a (or L b) and

UA (or Ub) have the same dimensions as A; L a (or L b) is unit lower triangular

(i.e., zeros above the diagonal and the value one on the diagonal), and Ua (or Ub)

is upper triangular (i.e., zero below the diagonal). To transform the original square

matrix A (or B) into the product of the two matrices L a (or L b) and Ua (or Ub)-,

93

HAsC

Node I

HAsC

N oden

Cluster

^ > 1 1

Cluster

C luster-M

Mapping

C luster-M

Mapping

F igu re 6.4 Cluster-M aided HAsC computation within HAsC nodes.

C luster-M Specification

Level 1 ^ © |M ^)

Level i ^
«
*

Level n (P © ' " ^)

O IM @) * * * (A

SIMP

VECTOR

Control

HAsC

F igu re 6.5 Switching between Cluster-M and HAsC.

a Gaussian Elimination (GE) algorithm can be used. Therefore, the solution to the

above problem can be written at HAsC user level as below:

do GE on A$
save result$ in UA$
do GE on B$
transpose result$
save result$ in UBT$
multiply UA$ with UBT$

The task graph of this coarse-grain solution is shown in Figure 6.6(a). Using

one of Cluster-M’s clustering algorithms, a Spec graph can be obtained as shown in

94

(b) Spec graph

tnukiply

(a) Task graph

F ig u re 6.6 The task graph and Spec graph of the HAsC user level instructions.

Figure 6.6(b). Suppose there is more than one HAsC node available in the system.

Using Cluster-M mapping, the matrices A and B will be allocated to two different

HAsC nodes, say Nodel and Node2, respectively.

Next, for each level of clustering in the Spec graph (which represents each

computation step in the original task graph), the concurrent clusters at that level

(which represnt concurrent computation modules) can be sent to the HAsC network

controller to be broadcast to all the HAsC nodes. For example, at step 1, two clusters

of HAsC user level instructions (function calls) “do GE on A$” and “do GE on i?$”

are broadcast to all HAsC nodes at the same time. The HAsC node Nodel will select

to execute the first instruction, while the HAsC node Node2 will select to execute

the second instruction.

Finally, Cluster-M mapping is used to decide the fine-grain mapping within

each HAsC node. The GE operation, which is a function in the user level library,

actually consists of many system level instructions which may look similar to the

SAXPY code in LINPACK [23, 24]. The task graph of a GE on a 7 x 7 matrix A or

B is illustrated in Figure 6.7. In each task module T f, column j is modified by using

column k. Suppose Node 1 is a 2 x 3 torus, and Node2 is a 4-processor completely

95

F ig u re 6.7 The task graph of a GE on a 7 x 7 matrix.

connected machine, as shown in Figure 6.8. Also, suppose for both Node 1 and

Node2, it takes 1 unit of time to compute each T f and 1 unit of time to transmit

each column between two connected processors. Using the Cluster-M clustering and

mapping algorithms, the fine-grain mappings of system level HAsC instructions onto

the processors within each HAsC node can be obtained, as shown in Figure 6.9.

6.3 S ca lab ility Issues

Scalability is often understood differently by different authors. We will consider

scalability to refer to hardware, tasks and software in roughly analogous fashion. In

(fT>— — (k) Pfi

F ig u re 6.8 The architectures of HAsC Node 1 and Node2.

p i

P2

P3

P4

P5

P6
0 I 2 3 4 5 6 7 8 9 10 II 12 13 14 !5 16 17

(a) Clustcr-M mopping within HAsC Node 1

P I

P2

P3

P4
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) Clustcr-M mopping within HAsC Node 2

Time

Time

F ig u re 6.9 The Cluster-M mappings within the HAsC nodes.

97

addition, scalability may refer to both homogeneous or heterogeneous architectures.

In the following, first homogeneous scalability is defined and extended to hetero­

geneous scalability. Then the scalability of HAsC and Cluster-M is discussed.

6.3.1 H om ogeneous Scalability

Homogeneous hardware scalability refers to multiple machines which are of the same

basic architectural type, typically various-sized versions of the same vendor product.

The hardware scalability function, y (a , /?), between two homogeneous architectures

a (the larger) and /3 (the smaller), is defined to be the ratio of the size of a over

the size of /?. For example, an eight processor CRAY YMP is a hardware example

of a scaled-up version of a two-processor CRAY YMP. In this example, the eight-

processor CRAY YMP has a scalability factor of 4 (y = 4) over the two-processor.

Task scalability is more complex. What is typically implied is the ability to take

a task (algorithm plus data) executing on a small machine and execute the same task

on a scaled-up machine. Thus, using the additional resources of the larger machine

allows scaled-up performance reasonably close to y. One ambiguity in this concept

is what is meant by the same task. If it means only executing the same program, but

with possibly different (i.e. larger) data, then tasks in a homogeneous environment

often scale. The type 1 task scalability function, T(a,/3) for a given program applied

to two different sized data set a (the larger) and /? (the smaller), is defined to be the

ratio of the size of a over the size of /?. For example, if the size of a is 16K items and

the size of is 2K items, then T — 8. This means that a program is type 1 scalable

if it processes data set /3 eight times faster than data set a , using the same hardware

configuration.

However, if applying the above definitions to the case where both the data and

the algorithm are fixed, then tasks often do not scale. Type 2 task scalability, between

two homogeneous architectures a (the larger) and (the smaller), is defined to be

98

the potential to exploit the inherent hardware scalability between them on some task

of a size that fills a.

The software scalability refers to the ability to exploit task and hardware scala­

bility, with little or no changes other than parameters. Software scalability function,

<r(a, /?), for the case of two homogeneous architectures a (the larger) and /? (the

smaller), is defined to be the real-valued function giving the increase in performance

of a over /3. Typically some increase in performance is expected but generally, at

least in the homogeneous case, not super-linear performance, i.e., 1 < <

x(cr, /?). In most cases a is a simple multiple of y, i.e., cr(a, f3) = A x y(a:, /?), where

1 /X(a,/?) < A < 1.0.

6.3.2 H eterogeneous Scalability

Heterogeneous scalability is clearly more complicated than homogeneous scalability,

though it is also the case in which one can aspire to the ultimate in heterogeneous

computing potential, i.e, to achieve cr significantly greater than y. This is what

is meant by super-linear performance. In the heterogeneous case, there may be no

commonality between two different architectures, therefore, hardware scalability does

not apply to the heterogeneous case.

Consider the breakdown of a task into four levels, as shown in Figure 6.10. The

top level is the functional level. In this level, the function “find a datum” is specified.

Next is the approach level. For this problem, there is a radical difference between the

approach for a SIMD machine used associatively and non-SIMD machines. In the

former case, we can use simple associative search, which is 0(1). In the latter case

we would typically use a sort, then search operation, the asymptotic performance

of which is bounded by fl(logn). For the associative search on a suitable SIMD

machine, there is really only one instruction, “find datum ,” so that there is no room

for differing algorithmic or code variations. However, in the non-SIMD case, there

99

Functional

Approach

Algorithm

Code

Find a datum

Non-SIMD / v SIMD

Sort, then search
i.e., >= Ofiog n)

Associative Search
(not sort), i.e., o (I)

Various Sorts (Quicksort, Bubblesorl, etc.)

i/̂ \ if̂ \ l^\
Various encodings fo r any

specific algorithm
Single Associative command,

e.g., find datum

F ig u re 6.10 Hierarchical breakdown of a task

are many variations possible. For example, depending on the data, parameters,

architecture, etc., a number of different search techniques can be used and similarly

a number of different coding schemes for each algorithm could also be utilized.

In this context, the term scalability only applies to either functional level

or approach level. In the above example, the scalable approach is the non-SIMD

approach. However, this will bring the following dilemmas: (1) it is possible to have

a non-scalable implementation (at the approach level) inherently more effective than

a scalable approach implemented on the same machine; and (2) it is possible to have

high hardware scalability but low task/software scalability, or vice versa. In other

words, the scalable metric is inherently defective in this case if scalability is applied

to the approach level.

In conclusion, the only kind of scalability applicable to a heterogeneous network

is type 1 task scalability at the functional level. In essence heterogeneous scalability

refers to the property that a given software scalable program will execute efficiently

on any size data set on any heterogeneous network configuration without any modifi­

cation. While functional level scalability may be trivial on a homogeneous network,

100

it is fundamental to establishing a common unifying programming environment for

heterogeneous networks.

6.3.3 Scalability of HAsC and Cluster-M

Both HAsC and Cluster-M are machine-independent as explained in detail and

therefore support heterogeneous scalability. In HAsC, a program is broadcast to

the entire network and the individual nodes determine locally which instructions to

execute. The global broadcasting approach means that there is no need to know

how nodes are connected in the network or how data is distributed across the nodes.

This allows data files to be analyzed dynamically at run time as they enter the HAsC

system and to be directed to the nodes best suited to process them. Broadcasting

allows scalability. The hardware can be expanded or modified and the problem size

can be changed without having to reprogram or recompile the basic HAsC program.

New nodes consisting of new machines with installed HAsC software can be added to

a network at any time, and at any location. HAsC is not dependent on any physical

machine or network configuration. This is because the instruction broadcast, cell

memory organization and associative searching allows the removal of any reference

to data set size and type from the program.

Cluster-M is also scalable. When a new machine is added to the heterogeneous

network, a new Cluster-M Representation of the new suite can be generated.

However, the Cluster-M Specification, which is machine-independent, can be

efficiently executed without any change. An appropriate new mapping can be

computed to map the Cluster-M Specification to the new Cluster-M Representation.

Furthermore, the two paradigms can. be used concurrently as a hybrid scalable

programming paradigm. Figure 6.11 illustrates the above claims.

101

M achine M achineM achineM achine

M achine Independent P rogran

D istribu tion Unit

Structure of a scalable heterogeneous paradigm

Problem

M achine M achineM achineM achine

M achine Independen t P rogran

(HAsC Instructions)

(HAsC Controller Broadcasting)

D istribution Unit

Scalability in HAsC

Cluster-M

(Cluster-M mpmsonmlon)

M achineM achineM achine M achine

M achine Independent P rogran
(Cluster-M Specification)

D istribu tion Unit
(Cluster-M Mapping Module)

Scalability in Cluster-M

M achlne3

Cluster-M
Mapping

M achlne l

Cluster-M
Mapping

M achine?

Cluster-M
Mapping

M achlne4

Cluster-M
Mapping

M achine Independen t P rogram
(Multi-level Cluster-M Specification of HAsC instructions)

(HAsC Controller broadcasting)

D istribu tion Unit

Scalability in concurrent use of HAsC and Cluster-M

F igure 6.11 Scalability of HAsC and Cluster-M

CHAPTER 7

CONCLUSIONS

In this dissertation, we presented a generic and efficient technique for mapping

portable parallel programs onto various multiprocessor systems. The presented

mapping technique is based on Cluster-M, a parallel programming tool. We presented

the three main components of Cluster-M: Cluster-M Specifications, Cluster-M Repre­

sentations and Cluster-M Mapping Module. The Cluster-M Specifications are high

level machine-independent descriptions of parallel tasks, while the Cluster-M Repre­

sentations represent the computation/communication capacity and pattern of the

underlying parallel computer systems. Both Cluster-M Specifications and Represen­

tations can be viewed as two special types of clustered graphs, called Spec graphs

and Rep graphs, respectively. The clustering is done only once for a given task graph

(system graph) independent of any system graphs (task graphs). This is a machine-

independent (application-independent) clustering and is not repeated for different

mappings. The Cluster-M Mapping Module maps a Spec graph onto a Rep graph.

The mapping algorithms presented in this dissertation can map arbitrary tasks onto

arbitrary systems, for both uniform and non-uniform graphs, in O (M N) and O(M P)

time, respectively, where M is the number of task modules, N is the number of

processors and P — max(M ,N). Our experimental results indicate that Cluster-M

produces better or similar mapping results compared to other leading techniques

which work only for restricted task or system graphs. Lastly, several applications

of the presented mapping technique to the area of heterogeneous computing were

presented.

102

A P P E N D IX A

Cluster-M Constructs in P C N

The seven Cluster-M constructs are implemented in PCN as follows:

/* 1. Makes given elements into one cluster */

C M AI < E { L V L , E L E M E N T S , x)

{ | | M I N _ E L E M E N T { E L E M E N T S , n),

/* n is the smallest number in ELEMENTS */

x = [El/E,ra, ELEM E N T S]

}

M I N - E L E M E N T (E , n)

{; sys : l i s t Jeng t h(E, l en) ,

{? len = — 1— > n — E[0],

default — > { ? E l = [m | E l] — >

{; M I N J S L E M E N T l (E l , m , m i n) ,

n = min

}

}

}

M I N - E L E M E N T l (E l , m , m i n)

{ ? E l? = [h | E2] - >

{;

{ ? h < m — > m l = h,

defaul t — > m l = m

103

104

} ,

M I N - E L E M E N T l (E 2 , m l, mm)

},

default — > min = m

}

/* 2. Yields an element of the cluster */

C E L E M E N T (x , j , e)

{; C S IZ E (x , s),

{ ? ; = = “ - ”,x ? = > e = i l ,

j <— s, x l = [_, xl] — > C E L E M E N T l (x l , j , e)

}

}

C E L E M E N T l (x , j , e)

{ ? j > 1 - >

{ ? x? = [_|xl]— >

C E L E M E N T l (x l , j - l,e),

},

d e fau lt— > e = a;[0]

}

/* 3. Yields the size of the cluster */

C S IZ E (x ,s)

{? x? = [_,_,a;2] — > C S I Z E l (x 2 ,0,s),

de fa u l t — > s = 0

}

C S I Z E l (x , acc,s)

105

{? x l = [_|a;l] — > C S I Z E l (x l , acc+ 1, s),

default — > s = acc

}

/* 4. Merges cluster x and y */

C M E R G E (x , y , E L E M E N T S , *)

{? x ? = [LVZ,_a:,_,a;l], j/? = [LULj/, _,pl] - >

{; M I N J E L E M E N T (E L E M E N T S , min),

makeJuple(3, T),

T[0] = L V L .x + 1,

T[l] = min,

{? E LEm ents = = “ —" — >

{; s y s : l i s t - C o n c a t (x l , y l , x y) ,

T[2] = xy

},

d e fa u l t - > T[2] = E L E M E N T S

},

.sps : tuple.toJist{T, Z, [])

}

}

/* 5. Does the Unary operation */

CUN(op, n, x, i, e)

{; C E L E M E N T { x , i ,e 1),

{? op = = “ < < ” — > le f t^ sh i f t(e l ,n ,e) ,

op == “ > > ”— > r igh t^sh if t(e \ ,n ,e),

op = — > ones.complement(el,e),

106

op —— “s q r > e = el * el,

op e = 0 - el

}

}

/* 6. Does the Binary operation */

C B I(o p ,x , i ,y , j ,e)

{; C E L E M E N T (x , i , el),

C E L E M E N T (y J ,e 2),

{ ? op = = “ + > e = el + e2,

o p “ — ” — > e = el — e2,

op = = “ * > e = el * e2,

op== 7 ” - > e = el/e2,

op = = > e = el%e2,

op = = — > bitwisejand(e, el, e2),

op = = “I” — > bitwisejor(e, el, e2),

op = = > bitwise-Xor(e, el, e2)

}

}

/* 7. Does the Split operation */

C S P L IT {x ,k ,p ,q)

{ || C S I Z E { x , s),

{ ? x? = [IK L ,n ,£] - >

{ ? k = = s - >

{ || p = [IK L + 1 ,n ,£] ,

9 = [L \ / L + l , O , 0] ,

{ || C S P L I T l (E ,k ,E l ,E 2) ,

M I N .E L E M E N T (E l, n 1),

M I N .E L E M E N T (E 2 , n2),

p = [LVL I, n l, El],

q = [LVL + 1, n2, E2],

}

}

}

}

C S P L I T l (E ,k ,E l ,E 2)

{ ? k > 0 - >

{? E? = [h \ t \ ->

{ || C S P L I T l (t , k - l , E 3 , E 2) ,

E l = [h\E3]

}

},

defau lt— >

REFERENCES

1. C-Linda Reference Manual. Scientific Computing Associates, Inc., New Haven,
CT, 1990.

2. H. H. Ali and H. El-Rewini. “A graph theoretic approach for task allocation.”
In Proc. Hawaii International Conference on Systems Science, pages
577-584, 1992.

3. F. D. Anger, J. Hwang, and Y. Chow. “Scheduling with sufficient loosely coupled
processors.” Journal of Parallel and Distributed Computing, 9:87-92,
1990.

4. F. Berman. “Experience with an automatic solution to the mapping problem.”
The Characteristics of Parallel Algorithms, pages 307-334, 1987.

5. F. Berman and L. Snyder. “On mapping parallel algorithms into parallel archi­
tectures.” Journal of Parallel and Distributed Computing, 4:439-458,
1987.

6. F. Berman and B. Stramm. “Prep-P: Evolution and overview.” Technical report
cs89-158, Department of Computer Science, University of California at
San Diego, 1987.

7. S. H. Bokhari. “Dual processor scheduling with dynamic reassignment.” IEEE
Trans, on Software Engineering, SE-5:341-349, July 1979.

8. S. H. Bokhari. “On the mapping problem.” IEEE Trans, on Computers,
c-30(3):207-214, March 1981.

9. S. H. Bokhari. “A shortest tree algorithm for optimal assignments across space
and time in a distributed processor system.” IEEE Trans, on Software
Engineering, SE-7(6):583-589, November 1981.

10. S. H. Bokhari. “Partitioning problem in parallel, pipelined, and distributed
computing.” IEEE Trans, on Computers, 37(l):48-57, January 1988.

11. N. Carriero, D. Gelernter, and J. Leichter. “Distributed data structures
in Linda.” In Proc. Thirteenth ACM Symposium on Principles of
Programming Languages, January 1986.

12. T. L. Casavant and J. G. Kuhl. “A taxonomy of scheduling in general-purpose
distributed computing systems.” IEEE Trans, on Software Engineering,
14(2):42-45, February 1988.

13. K. M. Chandy and S. Taylor. An Introduction to Parallel Programming. Jones
and Bartlett Publishers, Boston, MA, 1992.

108

109

14. V. Chaudhary and J. K. Aggarwal. “A generalized scheme for mapping
parallel algorithms.” IEEE Trans, on Parallel and Distributed Systems,
4(3):328-346, March 1993.

15. S. Chen and M. M. Eshaghian. “A fast recursive mapping algorithm.” To appear
at Concurrency: Practice and Experience, August 1995.

16. S. Chen, M. M. Eshaghian, A. Khokhar, and M. E. Shaaban. “A selection
theory and methodology for heterogeneous supercomputing.” In Proc.
Second Heterogeneous Processing Workshop, pages 15-22, April 1993.

17. S. Chen, M. M. Eshaghian, and Y. Wu. “Mapping arbitrary non-uniform task
graphs onto arbitrary non-uniform system graphs.” To appear at Proc.
International Conference on Parallel Processing, August 1995.

18. D. Y. Cheng. “A survey of parallel programming languages and tools.” Report
RND-93-005, NASA Ames Research Center, Moffett Field, CA, 1993.

19. Y. Chung and S. Ranka. “Applications and performance analysis of a compile­
time optimization approach for list scheduling algorithms on distributed
memory multiprocessors.” In Proc. Supercomputing ’92, pages 512-521,
1992.

20. E. G. Coffman and R. L. Graham. “Optimal scheduling for two processor
systems.” Acta Informatica, 1:200-213, 1972.

21. J. Y. Colin and P. Chritienne. “CPM scheduling with small communication
delays and task duplication.” Operations Research, 39(4):680-684, 1991.

22. S. Darbha and D. P. Agrawal. “SDBS: A task duplication based optimal
scheduling algorithm.” In Proc. Scalable High Performance Computing
Conference, pages 756-763, 1994.

23. J. J. Dongarra, J. Bunch, C. Moler, and G. Stewart. LINPACK User’s Guide.
SIAM, Philadelphia, PA, 1979.

24. J. J. Dongarra, F. Gustavson, and A. Karp. “Implementing linear algebra
algorithms for dense matrices on a vector pipeline machine.” SIAM
Review, 26(1):91-112, 1984.

25. K. Efe. “Heuristic models of task assignment scheduling in distributed systems.”
IEEE Computer, 15(6):50-56, 1982.

26. H. El-Rewini and T. G. Lewis. “Scheduling parallel program tasks onto arbitrary
target machines.” Journal of Parallel and Distributed Computing,
9:138-153, 1990.

27. H. El-Rewini, T. G. Lewis, and H. H. Ali. Task Scheduling in Parallel and
Distributed Systems. Prentice Hall, Englewood Cliffs, NJ, 1994.

110

28. F. Ercal, J. Ramanujam, and P. Sadayappan. “Task allocation onto a hypercube
by recursive mincut bipartitioning.” Journal of Parallel and Distributed
Computing, 10:35-44, 1990.

29. M. M. Eshaghian. “Cluster-M parallel programming model.” In Proc. Interna­
tional Parallel Processing Symposium, pages 462-465, March 1992.

30. M. M. Eshaghian and R. F. Freund. “Cluster-M paradigms for high-order
heterogeneous procedural specification computing.” In Proc. Workshop
on Heterogeneous Processing, pages 47-49, March 1992.

31. M. M. Eshaghian and M. E. Shaaban. “A Cluster-M based mapping
methodology.” In Proc. International Parallel Processing Symposium,
pages 213-221, April 1993.

32. M. M. Eshaghian and M. E. Shaaban. “Cluster-M parallel programming
paradigm.” International Journal of High Speed Computing,
6(2):287-309, June 1994.

33. D. Fernandez-Baca. “Allocating modules to processors in a distributed systems.”
IEEE Trans, on Software Engineering, 15(11): 1427—1436, November 1989.

34. S. A. Fineberg, T. L. Casavant, and H. J. Siegel. “Experimental analysis of a
mixed-mode parallel architecture using bitonic sequence sorting.” Journal
of Parallel and Distributed Computing, 11(3):239-251, March 1991.

35. I. Foster and S. Tuecke. “Parallel programming with PCN.” Technical report,
Argonne National Laboratory, University of Chicago, January 1993.

36. I. Foster and T. Stephen. STRAND, New Concepts in Parallel Programming.
Prentice Hall, 1975.

37. R. F. Freund. “Optimal selection theory for superconcurrency.” In Proc. Super­
computing ’89, pages 699-703, November 1989.

38. R. F. Freund and D.S. Conwell. “Superconcurrency: A form of distributed
heterogeneous supercomputing.” Supercomputing Review, 3:47-50,
October 1990.

39. A. Gerasoulis, S. Venugopal, and T. Yang. “Clustering task graphs for message
passing architectures.” In Proc. ACM International Conference of Super­
computing, June 1990.

40. A. Gerasoulis and T. Yang. “A comparison of clustering heuristics for scheduling
directed acyclic graphs on multiprocessors.” Journal of Parallel and
Distributed Computing, 16:276-291, 1992.

Ill

41. D. H. Gill, T. J. Smith, T. E. Gerasch, J. V. Warren, C. L. McCreary, and
R. E. K. Stirewalt. “Spatial-temporal analysis of program dependence
graphs for useful parallelism.” Journal of Parallel and Distributed
Computing, 19:103-118, October 1993.

42. T. C. Hu. “Parallel sequencing and assembly line problems.” Operations
Research, 9(6):841—848, 1961.

43. J. Hwang, Y. Chow, F. D. Anger, and C. Lee. “Scheduling precedence graphs
in systems with interprocessor communication times.” SIAM Journal on
Computing, 18:244-257, 1989.

44. B. Indurkya, H. S. Stone, and X. Lu. “Optimal partitioning of randomly
generated distributed programs.” IEEE Trans, on Software Engineering,
SE-12(3):483-495, March 1986.

45. L. R. Ford Jr. and D. R. Fulkerson. Flows in Networks. Princeton University
Press, Princeton, NJ, 1962.

46. S. Kambhatla, J. Inouye, and J. Walpole. “Experiences with BeLinda: A
synthetic Linda benchmark for parallel computing platforms.” In Proc.
International Conference on Parallel Processing, 1990.

47. R. M. Karp. “Reducibility among combinatorial problems.” Complexity of
Computer Computations, 1972.

48. H. Kasahara and S. Narita. “Practical multiprocessor scheduling algorithms
for efficient parallel processing.” IEEE Trans, on Computers,
c-33(11): 1023-1029, November 1984.

49. B. W. Kernighan and S. Lin. “An efficient heuristic procedure for partitioning
graphs.” Bell System Technical Journal, February 1970.

50. A. A. Khan, C. L. McCreary, and M. S. Jones. “A comparison of multi­
processor scheduling heuristics.” In Proc. International Conference on
Parallel Processing, pages II 243-250, 1994.

51. A. Khokhar, V. K. Prasanna, M. E. Shaaban, and C. Wang. “Heterogeneous
computing: Challenges and opportunities.” IEEE Computer, 26(6): 18-27,
June 1993.

52. S. J. Kim and J. C. Browne. “A general approach to mapping of parallel
computation upon multiprocessor architectures.” In Proc. International
Conference on Parallel Processing, volume 3, pages 1-8, 1988.

53. B. Kruatrachue and T. Lewis. “Grain size determination for parallel processing.”
IEEE Trans, on Software Engineering, January 1988.

112

54. B. Narahari, L. Tao, and Y. C. Zhao. “Heuristics for mapping parallel compu­
tations to heterogeneous parallel architectures.” In Proc. Workshop on
Heterogeneous Processing, pages 36-41, April 1993.

55. C. Leangsuksun and J. Potter. “Problem representation for an automatic
mapping algorithm on heterogeneous processing environment.” In Proc.
Workshop on Heterogeneous Processing, pages 48-56, April. 1993.

56. S. Lee and J. K. Aggarwal. “A mapping strategy for parallel processing.” IEEE
Trans, on Computers, 36:433-442, April 1987.

57. R. Leland and B. Hendrickson. “An empirical study of static load balancing
algorithms.” In Proc. Scalable High-Performance Computing Conference,
pages 682-685, 1994.

58. V. M. Lo. “Algorithms for static task assignment and symmetric contraction
in distributed computing systems.” In Proc. International Conference on
Parallel Processing, pages 239-244, August 1988.

59. V. M. Lo. “Heuristic algorithms for task assignment in distributed systems.”
IEEE Trans, on Computers, 37(11):1384—1397, November 1988.

60. V. M. Lo, S. Rajopadhye, S. Gupta, D. Keldsen, M. A. Mohamed, and J. A.
Telle. “Oregami: Software tools for mapping parallel computations to
parallel architectures.” In Proc. International Conference on Parallel
Processing, 1990.

61. C. McCreary and H. Gill. “Automatic determination of grain size for
efficient parallel processing.” Communications of ACM, 32(9):1073-1078,
September 1989.

62. M. A. Palis, J. Liu, and D. S. L. Wei. “Task clustering and scheduling for
distributed memory parallel architectures.” Technical report, Department
of Electrical and Computer Engineering, New Jersey Institute of
Technology, 1995.

63. C. H. Papadimitriou and M. Yannakakis. “Towards an architecture-independent
analysis of parallel algorithms.” SIAM Journal on Computing,
19(2):322-328, April 1990.

64. F. Pellegrini. “Static mapping by dual recursive bipartitioning of process and
architecture graphs.” In Proc. Scalable High-Performance Computing
Conference, pages 486-493, 1994.

65. R. Ponnusamy, N. Mansour, A. Choudhary, and G. C. Fox. “Mapping realistic
data sets on parallel computers.” In Proc. 7th International Parallel
Processing Symposium, pages 123-128, April 1993.

66. J. L. Potter. Associative Computing. Plenum Press, New York, NY, 1992.

113

67. S. Prakash and A. C. Parker. “A design method for optimal selection of
application-specific heterogeneous multiprocessor systems.” In Proc.
Workshop on Heterogeneous Processing, pages 75-80, April 1992.

68. P. Sadayappan and F. Ercal. “Nearest-neighbor mapping of finite element graphs
onto processor meshes.” IEEE Trans, on Computers, C-36(12):1408-1424,
December 1987.

69. P. Sadayappan, F. Ercal, and J. Ramanujam. “Cluster partitioning approaches
to mapping parallel programs onto a hypercube.” Parallel Computing,
13:1-16, 1990.

70. V. Sarkar. Partitioning and Scheduling Parallel Programs for Execution on
Multiprocessors. MIT Press, Cambridge, MA, 1989.

71. C. Shen and W. Tsai. “A graph matching approach to optimal task assignment
in distributed computing systems using a minmax criterion.” IEEE Trans,
on Computers, c-34(3):197-203, March 1985.

72. G. C. Sih and E. A. Lee. “A compile-time scheduling heuristic
for interconnection-constrained heterogeneous processor architectures.”
IEEE Trans, on Parallel and Distributed Systems, 4(2):75-87, February
1993.

73. H. S. Stone. “Multiprocessor scheduling with the aid of network flow
algorithms.” IEEE Trans, on Software Engineering, SE-3(l):85-93,
January 1977.

74. H. S. Stone. “Critical load factors in distributed systems.” IEEE Trans, on
Software Engineering, SE-4:254-258, May 1978.

75. H. S. Stone and S. H. Bokhari. “Control of distributed processes.” IEEE
Computer, July 1978.

76. V. S. Sunderam. “PVM: A framework for parallel distributed computing.”
Concurrency: Practice and Experience, 2(4):315-339, December 1990.

77. D. Towsley. “Allocating programs containing branches and loops within a
multiple processor system.” IEEE Trans, on Software Engineering,
SE-12(10): 1018-1024, 1986.

78. J. D. Ullman. “NP-complete scheduling problems.” Journal of Computer
Systems and Science, June 1975.

79. K. Vairavan and R. DeMillo. “On the computational complexity of a generalized
scheduling problem.” IEEE Trans, on Computers, c-25(ll):1067-1073,
November 1976.

114

80. M. Wang, S. Kim, M. Nichols, R. Freund, and H. J. Siegel. “Augmenting the
optimal selection theory for superconcurrency.” In Proc. Workshop on
Heterogeneous Processing, pages 13-21, March 1992.

81. L. R. Welch, S. Chen, A. D. Stoyenko, and A. K. Ganesh. “Applying random
neural networks to exploit parallelism and conserve processors in ADT
module assignments.” Technical report, Department of Computer and
Information Science, New Jersey Institute of Technology, 1993.

82. M. Y. Wu and D. Gajski. “Hypertool: A programming aid for message-
passing systems.” IEEE Trans, on Parallel and Distributed Systems,
1(3):101—119, 1990.

83. J. Yang, L. Bic, and A. Nicolan. “A mapping strategy for MIMD computers.”
In Proc. International Conference on Parallel Processing, 1991.

84. T. Yang and A. Gerasoulis. “List scheduling with or without communication
delays.” Technical report, Department of Computer Science, Rutgers
University, 1992.

85. T. Yang and A. Gerasoulis. “A parallel programming tool for scheduling
on distributed memory multiprocessors.” In Proc. IEEE Scalable High
Performance Computing Conference, April 1992.

86. T. Yang and A. Gerasoulis. “DSC: Scheduling parallel tasks on an unbounded
number of processors.” IEEE Trans, on Parallel and Distributed Systems,
5(9):951-967, September 1994.

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Spring 1995

	Mapping of portable parallel programs
	Song Chen
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Cluster-M Programming
	Chapter 3: Clustering Graphs
	Chapter 4: Cluster-M Mapping
	Chapter 5: Hierarchical Cluster-M Mapping for Heterogeneous Computing
	Chapter 6: Combined Use of Cluster-M with HASC
	Chapter 7: Conclusions
	Appendix A: Cluster-M Constructs in PCN
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

