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ABSTRACT 

Mapping data to parallel computers aims at minimizing the execution time of the associ
ated application. However, it can take an unacceptable amount of time in comparison 
with the execution time of the application if the size of the problem is large. In this 
article, first we motivate the case for graph contraction as a means for reducing the 
problem size. We restrict our discussion to applications where the problem domain can 
be described using a graph (e.g., computational fluid dynamics applications). Then we 
present a mapping-oriented parallel graph contraction (PGC) heuristic algorithm that 
yields a smaller representation of the problem to which mapping is then applied. The 
mapping solution for the original problem is obtained by a straightforward interpola
tion. We then present experimental results on using contracted graphs as inputs to two 
physical optimization methods; namely, genetic algorithm and simulated annealing. The 
experimental results show that the PGC algorithm still leads to a reasonably good 
quality mapping solutions to the original problem, while producing a substantial reduc
tion in mapping time. Finally, we discuss the cost-quality tradeoffs in performing graph 
contraction. © 1994 John Wiley & Sons, Inc. 

1 INTRODUCTION 

Given an application based on an algorithm and a 
data set, D, the data mapping problem refers to 
mapping disjoint subsets of D to the processors of 
a distributed-memory multiprocessor such that 
the execution time of the application, lapp, on the 
multiprocessor is minimized. Data mapping is an 

NP-hard optimization problem, and several heu
ristic and physical optimization algorithms have 
been proposed for finding good suboptimal map
ping solutions. Examples of heuristic algorithms 
are recursive bisection [1-5], mincut-based heu
ristics [6], clustering and geometry-based map
ping [7-9], and scattered decomposition [10]. 
Examples of physical optimization algorithms are 
simulated annealing [ 1 0-13], neural networks 
[12, 14, 15], and genetic algorithms [16]. 

The content of the information does not necessarilv reflect 
the position of the policy of the Government and no. official 
endorsement should be inferred. 
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For large data sets, the high-quality physical 
optimization (PO) mapping algorithms are very 
slow [ 17]. Their execution time is unacceptable 
when compared with typical execution times of 
applications using the data sets. In fact, the same 
assessment holds even for faster good-quality 
heuristic mapping algorithms, such as recursive 
spectral bisection (RSB) [ 4]. For example, map-
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ping takes a nontrivial amount of time relative to 
the actual solution time when the data set is rea
sonably large [18:. Therefore, for realistic appli
cations. we need to minimize the sum of lapp and 
tmap, where tmap is the mapping time. That itl, the 
goal is to reduce the mapping time significantly 
while preserving a favorable mapping quality. 

An approach to reducing lmap is to shrink the 
problem first, and then map the reduced-size 
problem to the multiprocessor. The mapping so
lution of the coarse problem can be simply inter
polated to yield the mapping solution of the origi
nal problem. The need for such an approach has 
been recognized in previous works [3, 19]. How
ever, its implementation has not had much atten
tion. \Ve note that l\olting [20] has proposed the 
formation of blocks of data objects during the pro
cess of generating the data set itself. This tech
nique may be useful for the data and application 
dealt with by Nolting [20], but it lacks flexibility 
and generalizability. Recently a graph contraction 
method is also proposed in the context of RSB 
algorithm [21]. 

In this article, we propose graph contraction for 
reducing the problem size prior to mapping. For 
example, to study air flow over an aircraft, the 
structure of the aircraft can be represented as a 
three-dimensional unstructured mesh [221 and 
the flow variables are computed only at the verti
ces of the mesh. In a typical mesh representation. 
for a good quality solution, there will be thousands 
of vertices and millions of edges connecting the 
vertices in the mesh. Efficiently mapping such a 
realistic mesh, as it is, onto a multiprocessor sys
tem might take more time than the solution. \Ve 
propose to merge (cluster) the vertices of the origi
nal mesh to form a contracted mesh maintaining 
the edges between the vertices. The contracted 
mesh is given as input to the data mapping algo
rithms. Because the problem size is reduced, the 
mapping can be done in an acceptable amount of 
time. The result of contracted mesh mapping can 
be used to map the original mesh. We present a 
parallel graph contraction (PGC) heuristic algo
rithm oriented to satisfying the requirements of 
the mapping step. One of these requirements is 
that its execution time, tpgc, is significantly smaller 
than lmap. That is, the ultimate goal can be recast 
as the minimization of the total sum: (tPI'" + l~nap + 
lapp), where t':nap is the mapping for the contracted 
graph and graph expansion time is not included 
as it is negligible. Also, PGC is not restricted by 
assumptions about the problem structure and 
thus enjoys general applicability. The results show 
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FIGURE 1 Performance tradcoffs in mapping data 
using graph contraction. 

remarkable savings m mapping time, while pre
serving good mapping solutions. 

The tradeoffs involved in contraction level ver
sus the overall application execution time is illus
trated in Figure 1. 1\'ote that the figure does not 
correspond to any specific values and is not drawn 
to scale. The goal of the figure is to show the trend. 
As graph contraction is performed. the mapping 
time reduces rapidly first. where as the contrac
tion time as well as the application execution time 
increases (a point on the Y -axis signifies no con
traction). Increase in the application execution 
time is expected because the quality of mapping in 
terms of communication and load balance will de
grade due to contraction. But initially, this degra
dation will be more than compensated by the re
duction in the mapping time. However, for very 
large contraction levels, the quality may degrade 
so much that overall execution time will rise again. 
Therefore, normally we may expect a range of 
contraction levels (as shown in the figure) that will 
provide reasonably good performance. and at the 
same time provide a reduction in the overall exe
cution time. 

This article is organized as follows. Section 2 
describes the data mapping problem. Section 3 
explains graph contraction and discusses require
ments for guiding the development of the graph 
contraction heuristics. Section 4 presents a se
quential graph contraction algorithm. Section 5 
presents a parallel algorithm based on the se
quential one. Section 6 describes how graph con
traction can be employed by PO and other map
ping algorithms. Section 7 presents and discusses 



the experimental results. We use a parallel genetic 
algorithm (PGA) mapper and a parallel simulated 
annealing (PSA) mapper to study the tradeoffs in
volved in graph contraction. Section 8 presents 
conclusions and future work. 

2 DATA MAPPING 

To characterize processor workloads for a data 
mapping instance. we define a computation 
graph, Gc = (Vc, Ec), where its vertices, Vc, repre
sent the data set and its edges, Ec, represent the 
computation dependencies among the data ob
jects specified by the particular algorithm used by 
the application. Hence, the degree, O(v ), of aver
tex v determines its computation weight. The two 
terms, data objects and computation graph verti
ces, will henceforth be used interchangeably. We 
note that in this representation the weights of 
edges. g(v, u). are unity for all vertices v and u. 
Automatic methods for determining computation 
graphs are discussed [23]. The multiprocessor to 
which Gc is mapped, is also represented by a 
graph G\4 = (Vu, E.u ). The vertices, V14 , refer to the 
processors. and the edges. £ 14 , refer to their inter
connections. Data mapping becomes a function 
from Vc to V14 such that lapp is minimized. A data 
mapping configuration can be represented by an 
array MAP[ vi], fori= 0 to IVcl - 1. where MAP[ vi] 
is the processor number, from 0 to IVuf - 1, to 
which Vi is mapped. For a given configuration 
MAP[ vi], the workload of a processor, p, is com
posed of computation and communication com
ponents. The computation component is depen
dent on the sum of the degrees of the vertices 
mapped top. The communication cost is depen
dent on the number of vertices that are boundarv 
with other processors. A vertex is a boundary ver
tex if it has an incident edge whose other end is a 
vertex mapped to a different processor; we refer to 
such an edge as crossedge. Thus, a high-quality 
mapping solution is that which balances compu
tation loads among the processors and minimizes 
interprocessor communication. A more formal 
formulation of the mapping problem is reported 
by Mansour [17]. 

3 MAPPING-ORIENTED GRAPH 
CONTRACTION 

In this section, we explain premapping graph con
traction and its parameters. We also discuss the 

GRAPH CO:\'TRACTIO:\ FOR MAPPING DATA 75 

requirements of data mapping that should guide 
the development of graph contraction heuristics. 

The basic graph contraction operation involves 
merging two adjacent vertices, vi and vi, to form a 
supervertex vii whose computational weight is 
E>(vij) = E>(vi) + E>(vJ); initially E>(v) = O(v). vi, and 
vi are henceforth referred to as partner vertices. 
Merging two vertices, vi and vi, is equivalent to the 
contraction of the edge connecting them. Also. a 
superedge connecting supervertices Vy and Vrzm is 
assigned a weight g(vij, V,n) = Lv,Evij.l\El'nm g(v.n v,.). 

The contract-and-merge operations are ap
plied to all vertices in the graph in an iteration k. 
The number of such iterations is equal to a user
defined level of contraction determined by the pa
rameter 

(1) 

where fV,fx is the size of the contracted graph and 
(X) is the nearest higher power of 2 integer to X. 
Equivalently, the level of contraction is deter
mined by the parameter 

(2) 

the ratio of the sizes of the contracted graph and 
the multiprocessor. Graph contraction, with pa
rameter K, leads to big reduction in the search 
space of data mapping from fVu[IV,I to [Vu[KIV"I, 
where K fVw[ is the size of the contracted graph and 
can be considerably smaller than the original size, 
[Vel· This makes the mapping of contracted graphs 
a much faster step. 

When mapping a contracted graph, the weights 
of supervertices determine the computational 
workload of processors, and the edge weights af
fect the interprocessor communication cost. 
Hence, for mapping purposes, an optimally con
tracted graph would be a fairly homogeneous 
weighted graph that involves relatively small edge 
weights. That is, optimal graph contraction is 
identical to finding an optimal solution to the 
mapping problem, which is intractable. There
fore, we can only hope for reasonable heteroge
neous contracted graphs. The heterogeneity of 
contraction contributes to placing an upper 
bound on the contraction parameter, x, as shown 
in Section 7. On the other hand, PO mapping al
gorithms have degrees of flexibility and adaptabil
ity, which allows them to utilize graph contraction 
despite nonoptimality. 
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Based on these considerations, the require
ments guiding the development of graph contrac
tion heuristics can be stated as follows. The first 
requirement is making edges with large weights 
intrasupervertices edges, ensuring that most of the 
intersupervertices edges have relatively small 
weights. This requirement helps in reducing the 
communication cost in a mapping configuration. 
The second requirement is having a small average 
supervertex degree in the contracted graph. Small 
supervertex degrees are useful for decreasing the 
number of communicating processors, and hence 
the communication cost, in a mapping configura
tion. The third requirement is keeping the ®max to 
®min ratio as small as possible; smaller variations 
in the weights of the vertices of a contracted graph 
reduces heterogeneity and yields smaller size 
graphs. This requirement is also necessary to sup
port the second requirement. The fourth require
ment is that a graph contraction heuristic algo
rithm must be efficient; its execution time must be 
smaller than the mapping time. 

4 SEQUENTIAL GRAPH CONTRACTION 
ALGORITHM 

A sequential graph contraction (SeC) heuristic al
gorithm that aims for satisfying the above men
tioned requirements is presented in this section. 

Input: Gc(Vc, Ec); Xi 

0o(v) = 8(v); ~o(v;, v;) 

for k = 1 to X do 

Counting-Sort(); 

1; IVclo = !Vel; 

repeat (of order of IVclk-d 

An outline of sec is given in Figure 2. In each 
contraction iteration, k, pairs of adjacent vertices, 
i.e., partners, are selected from c~- 1 ' to be 
merged. The first vertex, vi, is that which has the 
minimum E>(vJ Its partner, v;, is an unpaired ver
tex adjacent to vi with maximum ~(vi, v1). If v1 does 
not exist, Vi becomes a vertex of ct The way v, is 
selected ensures that vertices with smaller weights 
are merged before those with larger weights, which 
limits the differences in the weights of superver
tices in G~. It has been observed that this vields a 
®max to ®min ratio in G~ that is smaller ~han or 
same to that in c~- 1 , which is a reasonable result 
satisfying the third design requirement mentioned 
in the previous section. A partner vertex, v1, is 
selected with maximum ~(vi, v;) to satisfy the first 
design requirement. Also, both techniques for se
lecting partner vertices support the second design 
requirement. 

SeC is an efficient heuristic algorithm. A 
counting sort algorithm, with complexity of order 
(IVc\k-1 + E>max(k-1)), can be used for sorting vertex 
weights because the maximum weight is known 
and is relatively small in every contraction itera
tion [24]. It can be easily shown that the complex
ity of SeC is of the order of (Omax\Vc\). It is also 
clear that SeC's complexity is considerably less 
than that of any of the PO mapping algorithms 
[17]. 

v; =unpaired vertex with minimum 0k-l(v;)i 

I* find v;'s partner, if exists* I 
if k = 1 then 

v; = randomly chosen unpaired vertex adjacent to v;, if exists; 

else 

v;= unpaired vertex adjacent to v; with max ~k( v;, v;), if exists; 

end-if-else 

Form supervertex v;; = v;, v;; 
until all vertices are paired or considered 

Determine IVclki 

Construct_contracted..graph(G~(Vc, ek-1 ( Vjj ), ~k( Vjj, Vnm)); 

end for 

Output: G~(Va, Ea) with size IVclxi 

FIGURE 2 Sequential graph contraction algorithm. 
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A conflict at k=i 

A supervertex at k=2 

Two simultaneous 
conflicts at k= I 

FIGURE 3 Possible conflicts and supervertex pro
duced bv PGC. 

5 PGC ALGORITHM 

A PeC algorithm is presented in this section. The 
PeC algorithm is based on distributing the verti
ces among the !Vul processing nodes and execut
ing sec concurrently on the distributed sub
graphs. This strategy involves conflicts in different 
nodes over nonlocal partner vertices. Resolving 
conflicts in accordance with sec requires se
quential processing of boundary vertices over all 
nodes, which leads to deterioration in PeC's effi
ciency. Because our goal is to efficiently produce 
contracted graphs that satisfy the design require
ments mentioned in Section 3 to a reasonable ex
tent, deviating from sec is both acceptable and 
necessary. Another issue that PeC has to address 
is the expansion in the amount of nonlocal infor
mation needed in successive contraction itera
tions. Figure 3 illustrates how a supervertex 
formed across node boundaries leads to an in
crease in nonlocal and nonboundarv information: 
it also shows examples of conflicts. The design of 
PeC presented next addresses the two issues of 
conflicts and expanding nonlocal information. 
The guiding concerns are: making the decisions in 
PeC as dose as possible to those in sec. and 
keeping the PeC's time significantly smaller than 
the mapping time. 

An outline of PGC is given in Figure 4. PeC is 
based on executing sec concurrently in v\1 
nodes. The initial graph, G2·, is partitioned among 
the nodes in a naive wav: each node is allocated 
IV~I/ V11 vertices: node. n; is allocated vertices 
n;(jV~V V11) to (n; + 1 )V~·I Vu- 1. Such subgraphs 
are denoted as ( GV V11 ). A PeC iteration includes 
the same steps of sec concerning the selection of 
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vertices and their partners for forming superver
tices. Selection of nonlocal partners is allowed, 
which sometimes causes conflicts as illustrated in 
Figure 3. We note that only the vertices at the 
node boundaries may be involved in such con
flicts. Although there are many ways in which the 
conflicts can be resolved, a simple rule would be 
to respect a nonlocal request for a partner vertex 
only if the requested vertex is still free or has also 
selected the requesting vertex as a partner. This 
simple rule prevents any ambiguities in forming 
supervertices. 

After deciding about nonlocal partnership re
quests, the decisions are exchanged among neigh
boring nodes in order to update the local informa
tion about the nonlocal request in the most recent 
period. Those vertices that find that their requests 
have been turned down select a new partner, if 
possible, within the local set of vertices before 
proceeding to the next PeC period. This offers 
these smaller-computation -weight vertices earlier 
chances for merging than the other free local verti
ces, in accordance with sec. 

After partner selection process, the node 
boundaries are redrawn in order to place whole 
supervertices in one node. This avoids the prob
lem of expanding nonlocal information. Boundary 
shifting is accomplished by some nodes transfer
ring their part of the cross-supervertices to the 
other nodes that own the other part. Figure 5 
shows an example of boundary shifting after the 
first iteration. While merging two vertices, the ver
tex with the lower number is merged with its 
higher numbered partner in even iteration steps. It 
is done the other way in odd iteration steps. Fi
nally, the new contracted graph is constructed. 

It is worth noting that the results of PGC de
pend on the mapping of the initial graph.. the 
number of processors used, and the order in 
which conflicts are resolved. 

6 MAPPING USING GRAPH 
CONTRACTION 

Some remarks are given in this section about how 
the PO algorithms make use of premapping graph 
contraction. The algorithms include PSA and 
PeA. 

All the algorithms map the contracted graph 
first: we refer to this step as coarse-structure map
ping. Then. the mapped graph is decontracted by 
a simple interpolation in order to specify JdAP [ v;j. 
for i = 0 to JV,I- 1 . That is. a vertex. v;, in the 
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Read computation subgraph (G~INH); 
for k = 1 to x do 

counting-sort( 0k-l ( v) ); 
while (m=O tom< IVclk-Il do 

Select v; and its partner Vj as in SGC; 
resol ve_conflicts(); 
for (all boundary vertices Vb requesting nonlocal partners) do 

if (requesLof[vb] = REJECT) then 
Select another local partner by an SGC step; 

end-if 
end-for 

end-while 
merge(); I* remap vertices *I 
Build contracted subgraph (G~INH)i I* involves communication *I 

end-for 

I* *I 
resolve_conflicts() 

exchange_ boundary( Vj, mate[vj]); I* exchange decisions *I 
for all local boundary vertices Vb 

match mate[vb] with a received Vj; 

if (mate[vb] -f; Vj ) 

request_of[vb] = REJECT; 
end-if 

end-for 
exchange_result( request_of[ vb]) 
for all local boundary vertices Vb 

if (requesLof[vb] == REJECT) then mate[vb] = FREE; 
end-for 

I* *I 
merge() 

if (k is odd) then 

else 

if ( v; < Vj ) then merge Vj with v;; 
else merge v; with Vji 

if (v; < Vj ) then merge v; with Vji 

else merge Vj with v;; 
end-if-else 

FIGURE 4 PGC algorithm. 

original graph is mapped to the same processor as 
the supervertex it belongs to: we refer to this step 
as fine-structure mapping. 

In coarse-structure mapping. the PO algo
rithms lose some information in computing their 
objective functions. For example, it becomes im
possible to compute the correct number of initial 
boundary vertices from supervertices. These are 
replaced by an approximation derived from the 
crossedges. 

node 0 

node 3 

FIGURE 5 ~ew node boundaries due to remapping in 
PGC (only 0-1 boundary shown). 

7 EXPERIMENTAL RESULTS AND 
DISCUSSION 

This section presents experimental results for 
PGC and the use of its output graph for mapping. 
The experiments employ data seb with different 
sizes. These data sets constitute coarse and fine 
discretizations of an aircraft wing [22j (unstruc
tured mesh representations) and are henceforth 
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Table 1. Graph contraction time (sec) and Contracted Graph Size for 
USM(10 K) 

Contraction Level 

:'\o. 
1 2 

Procs tflf£C f~,w lPW' Jpp:c 

8 9.3:3 .")003 12.29 2668 
16 2.84 .5153 4.05 28?9 
32 1.00 5391 1.5? :3429 

referred to as l~S.\l(x), where x is the number of 
data points. These data are mapped to hypercube 
multiprocessors. ~We study the effect of graph con
traction on these data sets for two PO methods 
implemented on iPSC/860. The scheduling of ir
regular communication that occurs in PGC is han
dled using PART I software l18]. 

7.1 PGC 

The performance of the PGC for US.\1(10 K) on 
various processor sizes is shown in Table 1. The 
table shows the time taken for executing the PGC 
algorithm. lPI'"' and the corresponding size of the 
contracted graph, ~'w· There are two important 
observations to be made from the table. First. the 
total time for contraction increases sublinearlv as 
the contraction level is increased. For example. 
time to go from contraction level 1 to contraction 
level 8 results in onlv a threefold increment in the 
time. Second, the effect of approximating the se
quential algorithm by a parallel one is illustrated 
when the number of processors is varied. As the 
number of processors is increased. the contracted 
graph's size also increases for the same contrac
tion level. This is because the number of conflicts 
increases with the number of processors. 

7.2 PGA 

The most important performance metrics for the 
PGC algorithm. however. are the reduction in the 

Table 2. Mapping time (sec) After Graph 
Contractions for PGA on 16 Processors 

Contraction Level 

.VIesh 3 4 .:> 6 : 8 

GS.V1(2 K) 102 64 69 30 
CSM(3 K) 113 78 42 2-:J 

USM(10 K) 365 162 141 ?6 60 43 

4 6 8 

ffJf!C "~'~'",. t,'l',. T~,w t,,w I PI''" 

H.'-1 815 15.97 380 16.4 212 
5.02 1021 .'").?2 4?0 6.00 :~oo 

2.22 1461 2.?0 9?0 3.10 ?50 

mapping time and the quality of the mapping 
based on the contracted graph. The effect of PGC 
on the PGA mapping time for meshes CS.\1(2 K), 
CS.\1(3 K), and USM(10 K) is shown in Table 2. 
1\"ote that there is a fivefold improvement (reduc
tion) in the mapping time for the PGA on a graph 
contracted from level3 to level6. Therefore. it can 
be seen that by paying a small penalty for graph 
contraction. mapping time can be considerably 
reduced. However. the reduction in mapping time 
should be coupled with the quality of the mapping 
solution to judge the overall performance. One of 
the ways to measure the solution quality of a map
per is using crossedges (Section 2). Crossedges de
termine the communication cost of mapping. The 
average number of crossedg:es (per processor) for 
CSM(2 K) and CS.\1(10 K) for different levels. X· 
of contraction is shown in Table 3. For example. 
for contraction level6 for LS.\1(10 K). the number 
of crossedges increases by approximately 1 O'Yo. 
That is, for a reduction in mapping time of five
fold. the mapping degrades by 1 O'Yo in terms of 
average crossedges. However. note that the corre
sponding increase in the communication time is 
expected to be less than 10% because a major 
factor of communication cost is the startup cost. 
which does not increase. As expected. for smaller 
values of X the number of crossedg:es stays close to 

the numbe of crossedges obtained without con
traction. However. beyond a threshold. the degra
dation in terms of crossedges increases rapidly. 

7.3 PSA 

Tables 4 and 5 show the mapping time and the 
number of crossedges for PSA. For example, for 
US.\1(1 0 K) the cost of mapping reduces by a fac
tor of 10 when contracted from level 2 to level 6 . 
But the number of crossedges increases by almost 
50%. Comparing PGA with PSA indicates that the 
quality of the mapping is better for PGA but the 
cost of mapping is also higher for PGA. For exam-
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Table 3. Average Crossedges After Contractions for PGA 
on 16 Processors 

Contraction Level (X) 

Mesh 3 4 5 6 7 8 

USM(2 K) 536 596 796 924 
lJSM(3 K) 660 740 785 941 
GS:\1(1 0 K) 1554 1.537 1618 1713 2100 2691 

Table 4. Mapping Time (sec) After Graph Contractions 
for PSA on Eight Processors 

Contraction Level (X) 

Mesh 0 1 2 3 4 5 6 7 

USM(2 K) 199 123 67 40 31 18 
lJSY1(3 K) 300 162 98 35 19 9 
USM(10 K) 244 182 69 43 25 18 

Table 5. Average Crossedges After Contraction for PSA on Eight 
Processors 

Contraction Level (x) 

Ylesh 0 1 2 

USM(2 K) 669 701 716 
GSM(3 K) 837 815 859 
USY1(10 K) 1854 

ple, for contraction level 4, the mapping cost for 
PGA is a factor of 3 greater than that for PSA, but 
the number of crossedges is more than 50% larger 
for PSA. Hence, the selection of the contraction 
level also depends on the choice of the PO method 
along with the cost of mapping. After a certain 
contraction level, the quality of partitioning de
grades due to increase in number of conflicts to be 
resolved in choosing partner nodes. 

In Table 6, we present average crossedges for 
the HPF BLOCK distribution. From Tables 6. 3. 
and 5, it can be seen that it is important to have a 
good mapping of data as number of crossedges. 
which reflect the volume of communication. for 
BLOCK distribution is enormously high. 

8 CONCLUSIONS 

In this article we motivated the case for using 
graph contraction when using PO methods for 
data mapping because for large-size problems the 
cost of mapping on the original data size can be 

3 4 5 6 7 

776 910 1067 
909 74 1190 

2002 2311 2.530 2804 3014 

exorbitant. A parallel graph contraction algorithm 
with a user-defined contraction parameter, X· was 
presented for reducing the problem size prior to 
mapping. The experimental results show that 
PGC leads to considerable reductions in the exe
cution time of the mapping algorithms, while 
maintammg reasonable suboptimal mapping 
qualities. The time reduction is larger for larger 
problems, because with graph contraction. time is 
determined by X and IVul. not by !Vel. These find
ings make the application of physical optimization 
algorithms to large problems feasible and allows 
the mapping step itself to be an efficient and scal
able operation. Therefore. the use of graph con
traction is imperative for large problems. 

It was shown that with a small degradation in 
the quality of the mapping solution. considerable 
savings in the mapping time can be obtained. In 
our experiments we were limited by the memory 
size of the available parallel computer to apply our 
algorithms to even larger problems. \Ye expect 
that the performance gains are expected to be 
even better for much larger problems. In the near 



Table 6. Average Crossedges for BLOCK 
Partition 

Processors 

Data 8 

USM(2 K) 2159 
USM(3 K) 2225 
USM(10 K) 7476 

16 

1700 
1858 
6509 

future, we expect to obtain access to machines 
with larger memory to experiment with larger 
problems. 

The graph contraction method can be used 
with other physical optimization methods such as 
neural networks. It can also be used for other 
mapping methods that can use a weighted graph 
as an input. Further work needs to be done to 
improve the PGC algorithm itself. Also, tech
niques to perform good quality but low cost initial 
graph mapping based on domain information 
(e.g., geometric information) will be useful to re
duce the cost of PGC as well as to improve the 
quality of the PGC. Finally, graph contraction 
techniques that are parallel yet deterministic need 
to be explored. 
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