
Graph Contraction for Mapping Data on
Parallel Computers: A Quality-Cost Tradeoff

R. PONNUSAMY1, N. MANSOUR2 , A. CHOUDHARY3 , AND G. C. FOX1

1Northeast Parallel Architectures Center, Syracuse University, Syracuse, NY 13244
2Beirut University College, Lebanon
3ECE Department, Syracuse University, Syracuse, NY 13244

ABSTRACT

Mapping data to parallel computers aims at minimizing the execution time of the associ
ated application. However, it can take an unacceptable amount of time in comparison
with the execution time of the application if the size of the problem is large. In this
article, first we motivate the case for graph contraction as a means for reducing the
problem size. We restrict our discussion to applications where the problem domain can
be described using a graph (e.g., computational fluid dynamics applications). Then we
present a mapping-oriented parallel graph contraction (PGC) heuristic algorithm that
yields a smaller representation of the problem to which mapping is then applied. The
mapping solution for the original problem is obtained by a straightforward interpola
tion. We then present experimental results on using contracted graphs as inputs to two
physical optimization methods; namely, genetic algorithm and simulated annealing. The
experimental results show that the PGC algorithm still leads to a reasonably good
quality mapping solutions to the original problem, while producing a substantial reduc
tion in mapping time. Finally, we discuss the cost-quality tradeoffs in performing graph
contraction. © 1994 John Wiley & Sons, Inc.

1 INTRODUCTION

Given an application based on an algorithm and a
data set, D, the data mapping problem refers to
mapping disjoint subsets of D to the processors of
a distributed-memory multiprocessor such that
the execution time of the application, lapp, on the
multiprocessor is minimized. Data mapping is an

NP-hard optimization problem, and several heu
ristic and physical optimization algorithms have
been proposed for finding good suboptimal map
ping solutions. Examples of heuristic algorithms
are recursive bisection [1-5], mincut-based heu
ristics [6], clustering and geometry-based map
ping [7-9], and scattered decomposition [10].
Examples of physical optimization algorithms are
simulated annealing [1 0-13], neural networks
[12, 14, 15], and genetic algorithms [16].

The content of the information does not necessarilv reflect
the position of the policy of the Government and no. official
endorsement should be inferred.

Received November 1992
Revised December 1993

© 1994 by John Wiley & Sons, Inc.
Scientific Programming, Vol. 3, pp. 73-82 (1994)
CCC 1058-9244/94/010073-10

For large data sets, the high-quality physical
optimization (PO) mapping algorithms are very
slow [17]. Their execution time is unacceptable
when compared with typical execution times of
applications using the data sets. In fact, the same
assessment holds even for faster good-quality
heuristic mapping algorithms, such as recursive
spectral bisection (RSB) [4]. For example, map-

73

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/206519325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

74 PO~I\USA:YIY ET AL.

ping takes a nontrivial amount of time relative to
the actual solution time when the data set is rea
sonably large [18:. Therefore, for realistic appli
cations. we need to minimize the sum of lapp and
tmap, where tmap is the mapping time. That itl, the
goal is to reduce the mapping time significantly
while preserving a favorable mapping quality.

An approach to reducing lmap is to shrink the
problem first, and then map the reduced-size
problem to the multiprocessor. The mapping so
lution of the coarse problem can be simply inter
polated to yield the mapping solution of the origi
nal problem. The need for such an approach has
been recognized in previous works [3, 19]. How
ever, its implementation has not had much atten
tion. \Ve note that l\olting [20] has proposed the
formation of blocks of data objects during the pro
cess of generating the data set itself. This tech
nique may be useful for the data and application
dealt with by Nolting [20], but it lacks flexibility
and generalizability. Recently a graph contraction
method is also proposed in the context of RSB
algorithm [21].

In this article, we propose graph contraction for
reducing the problem size prior to mapping. For
example, to study air flow over an aircraft, the
structure of the aircraft can be represented as a
three-dimensional unstructured mesh [221 and
the flow variables are computed only at the verti
ces of the mesh. In a typical mesh representation.
for a good quality solution, there will be thousands
of vertices and millions of edges connecting the
vertices in the mesh. Efficiently mapping such a
realistic mesh, as it is, onto a multiprocessor sys
tem might take more time than the solution. \Ve
propose to merge (cluster) the vertices of the origi
nal mesh to form a contracted mesh maintaining
the edges between the vertices. The contracted
mesh is given as input to the data mapping algo
rithms. Because the problem size is reduced, the
mapping can be done in an acceptable amount of
time. The result of contracted mesh mapping can
be used to map the original mesh. We present a
parallel graph contraction (PGC) heuristic algo
rithm oriented to satisfying the requirements of
the mapping step. One of these requirements is
that its execution time, tpgc, is significantly smaller
than lmap. That is, the ultimate goal can be recast
as the minimization of the total sum: (tPI'" + l~nap +
lapp), where t':nap is the mapping for the contracted
graph and graph expansion time is not included
as it is negligible. Also, PGC is not restricted by
assumptions about the problem structure and
thus enjoys general applicability. The results show

Time

Total Time = Map Time+ App Time + PGC Time

Map Time
Desirable Rang~
of Operation '

Level of Graph Contraction

App. Time

FIGURE 1 Performance tradcoffs in mapping data
using graph contraction.

remarkable savings m mapping time, while pre
serving good mapping solutions.

The tradeoffs involved in contraction level ver
sus the overall application execution time is illus
trated in Figure 1. 1\'ote that the figure does not
correspond to any specific values and is not drawn
to scale. The goal of the figure is to show the trend.
As graph contraction is performed. the mapping
time reduces rapidly first. where as the contrac
tion time as well as the application execution time
increases (a point on the Y -axis signifies no con
traction). Increase in the application execution
time is expected because the quality of mapping in
terms of communication and load balance will de
grade due to contraction. But initially, this degra
dation will be more than compensated by the re
duction in the mapping time. However, for very
large contraction levels, the quality may degrade
so much that overall execution time will rise again.
Therefore, normally we may expect a range of
contraction levels (as shown in the figure) that will
provide reasonably good performance. and at the
same time provide a reduction in the overall exe
cution time.

This article is organized as follows. Section 2
describes the data mapping problem. Section 3
explains graph contraction and discusses require
ments for guiding the development of the graph
contraction heuristics. Section 4 presents a se
quential graph contraction algorithm. Section 5
presents a parallel algorithm based on the se
quential one. Section 6 describes how graph con
traction can be employed by PO and other map
ping algorithms. Section 7 presents and discusses

the experimental results. We use a parallel genetic
algorithm (PGA) mapper and a parallel simulated
annealing (PSA) mapper to study the tradeoffs in
volved in graph contraction. Section 8 presents
conclusions and future work.

2 DATA MAPPING

To characterize processor workloads for a data
mapping instance. we define a computation
graph, Gc = (Vc, Ec), where its vertices, Vc, repre
sent the data set and its edges, Ec, represent the
computation dependencies among the data ob
jects specified by the particular algorithm used by
the application. Hence, the degree, O(v), of aver
tex v determines its computation weight. The two
terms, data objects and computation graph verti
ces, will henceforth be used interchangeably. We
note that in this representation the weights of
edges. g(v, u). are unity for all vertices v and u.
Automatic methods for determining computation
graphs are discussed [23]. The multiprocessor to
which Gc is mapped, is also represented by a
graph G\4 = (Vu, E.u). The vertices, V14 , refer to the
processors. and the edges. £ 14 , refer to their inter
connections. Data mapping becomes a function
from Vc to V14 such that lapp is minimized. A data
mapping configuration can be represented by an
array MAP[vi], fori= 0 to IVcl - 1. where MAP[vi]
is the processor number, from 0 to IVuf - 1, to
which Vi is mapped. For a given configuration
MAP[vi], the workload of a processor, p, is com
posed of computation and communication com
ponents. The computation component is depen
dent on the sum of the degrees of the vertices
mapped top. The communication cost is depen
dent on the number of vertices that are boundarv
with other processors. A vertex is a boundary ver
tex if it has an incident edge whose other end is a
vertex mapped to a different processor; we refer to
such an edge as crossedge. Thus, a high-quality
mapping solution is that which balances compu
tation loads among the processors and minimizes
interprocessor communication. A more formal
formulation of the mapping problem is reported
by Mansour [17].

3 MAPPING-ORIENTED GRAPH
CONTRACTION

In this section, we explain premapping graph con
traction and its parameters. We also discuss the

GRAPH CO:\'TRACTIO:\ FOR MAPPING DATA 75

requirements of data mapping that should guide
the development of graph contraction heuristics.

The basic graph contraction operation involves
merging two adjacent vertices, vi and vi, to form a
supervertex vii whose computational weight is
E>(vij) = E>(vi) + E>(vJ); initially E>(v) = O(v). vi, and
vi are henceforth referred to as partner vertices.
Merging two vertices, vi and vi, is equivalent to the
contraction of the edge connecting them. Also. a
superedge connecting supervertices Vy and Vrzm is
assigned a weight g(vij, V,n) = Lv,Evij.l\El'nm g(v.n v,.).

The contract-and-merge operations are ap
plied to all vertices in the graph in an iteration k.
The number of such iterations is equal to a user
defined level of contraction determined by the pa
rameter

(1)

where fV,fx is the size of the contracted graph and
(X) is the nearest higher power of 2 integer to X.
Equivalently, the level of contraction is deter
mined by the parameter

(2)

the ratio of the sizes of the contracted graph and
the multiprocessor. Graph contraction, with pa
rameter K, leads to big reduction in the search
space of data mapping from fVu[IV,I to [Vu[KIV"I,
where K fVw[is the size of the contracted graph and
can be considerably smaller than the original size,
[Vel· This makes the mapping of contracted graphs
a much faster step.

When mapping a contracted graph, the weights
of supervertices determine the computational
workload of processors, and the edge weights af
fect the interprocessor communication cost.
Hence, for mapping purposes, an optimally con
tracted graph would be a fairly homogeneous
weighted graph that involves relatively small edge
weights. That is, optimal graph contraction is
identical to finding an optimal solution to the
mapping problem, which is intractable. There
fore, we can only hope for reasonable heteroge
neous contracted graphs. The heterogeneity of
contraction contributes to placing an upper
bound on the contraction parameter, x, as shown
in Section 7. On the other hand, PO mapping al
gorithms have degrees of flexibility and adaptabil
ity, which allows them to utilize graph contraction
despite nonoptimality.

76 PONNUSAMY ET AL.

Based on these considerations, the require
ments guiding the development of graph contrac
tion heuristics can be stated as follows. The first
requirement is making edges with large weights
intrasupervertices edges, ensuring that most of the
intersupervertices edges have relatively small
weights. This requirement helps in reducing the
communication cost in a mapping configuration.
The second requirement is having a small average
supervertex degree in the contracted graph. Small
supervertex degrees are useful for decreasing the
number of communicating processors, and hence
the communication cost, in a mapping configura
tion. The third requirement is keeping the ®max to
®min ratio as small as possible; smaller variations
in the weights of the vertices of a contracted graph
reduces heterogeneity and yields smaller size
graphs. This requirement is also necessary to sup
port the second requirement. The fourth require
ment is that a graph contraction heuristic algo
rithm must be efficient; its execution time must be
smaller than the mapping time.

4 SEQUENTIAL GRAPH CONTRACTION
ALGORITHM

A sequential graph contraction (SeC) heuristic al
gorithm that aims for satisfying the above men
tioned requirements is presented in this section.

Input: Gc(Vc, Ec); Xi

0o(v) = 8(v); ~o(v;, v;)

for k = 1 to X do

Counting-Sort();

1; IVclo = !Vel;

repeat (of order of IVclk-d

An outline of sec is given in Figure 2. In each
contraction iteration, k, pairs of adjacent vertices,
i.e., partners, are selected from c~- 1 ' to be
merged. The first vertex, vi, is that which has the
minimum E>(vJ Its partner, v;, is an unpaired ver
tex adjacent to vi with maximum ~(vi, v1). If v1 does
not exist, Vi becomes a vertex of ct The way v, is
selected ensures that vertices with smaller weights
are merged before those with larger weights, which
limits the differences in the weights of superver
tices in G~. It has been observed that this vields a
®max to ®min ratio in G~ that is smaller ~han or
same to that in c~- 1 , which is a reasonable result
satisfying the third design requirement mentioned
in the previous section. A partner vertex, v1, is
selected with maximum ~(vi, v;) to satisfy the first
design requirement. Also, both techniques for se
lecting partner vertices support the second design
requirement.

SeC is an efficient heuristic algorithm. A
counting sort algorithm, with complexity of order
(IVc\k-1 + E>max(k-1)), can be used for sorting vertex
weights because the maximum weight is known
and is relatively small in every contraction itera
tion [24]. It can be easily shown that the complex
ity of SeC is of the order of (Omax\Vc\). It is also
clear that SeC's complexity is considerably less
than that of any of the PO mapping algorithms
[17].

v; =unpaired vertex with minimum 0k-l(v;)i

I* find v;'s partner, if exists* I
if k = 1 then

v; = randomly chosen unpaired vertex adjacent to v;, if exists;

else

v;= unpaired vertex adjacent to v; with max ~k(v;, v;), if exists;

end-if-else

Form supervertex v;; = v;, v;;
until all vertices are paired or considered

Determine IVclki

Construct_contracted..graph(G~(Vc, ek-1 (Vjj), ~k(Vjj, Vnm));

end for

Output: G~(Va, Ea) with size IVclxi

FIGURE 2 Sequential graph contraction algorithm.

nodeO
A conflict at k=i

A supervertex at k=2

Two simultaneous
conflicts at k= I

FIGURE 3 Possible conflicts and supervertex pro
duced bv PGC.

5 PGC ALGORITHM

A PeC algorithm is presented in this section. The
PeC algorithm is based on distributing the verti
ces among the !Vul processing nodes and execut
ing sec concurrently on the distributed sub
graphs. This strategy involves conflicts in different
nodes over nonlocal partner vertices. Resolving
conflicts in accordance with sec requires se
quential processing of boundary vertices over all
nodes, which leads to deterioration in PeC's effi
ciency. Because our goal is to efficiently produce
contracted graphs that satisfy the design require
ments mentioned in Section 3 to a reasonable ex
tent, deviating from sec is both acceptable and
necessary. Another issue that PeC has to address
is the expansion in the amount of nonlocal infor
mation needed in successive contraction itera
tions. Figure 3 illustrates how a supervertex
formed across node boundaries leads to an in
crease in nonlocal and nonboundarv information:
it also shows examples of conflicts. The design of
PeC presented next addresses the two issues of
conflicts and expanding nonlocal information.
The guiding concerns are: making the decisions in
PeC as dose as possible to those in sec. and
keeping the PeC's time significantly smaller than
the mapping time.

An outline of PGC is given in Figure 4. PeC is
based on executing sec concurrently in v\1
nodes. The initial graph, G2·, is partitioned among
the nodes in a naive wav: each node is allocated
IV~I/ V11 vertices: node. n; is allocated vertices
n;(jV~V V11) to (n; + 1)V~·I Vu- 1. Such subgraphs
are denoted as (GV V11). A PeC iteration includes
the same steps of sec concerning the selection of

GRAPH CONTRACTION FOR MAPPING DATA 77

vertices and their partners for forming superver
tices. Selection of nonlocal partners is allowed,
which sometimes causes conflicts as illustrated in
Figure 3. We note that only the vertices at the
node boundaries may be involved in such con
flicts. Although there are many ways in which the
conflicts can be resolved, a simple rule would be
to respect a nonlocal request for a partner vertex
only if the requested vertex is still free or has also
selected the requesting vertex as a partner. This
simple rule prevents any ambiguities in forming
supervertices.

After deciding about nonlocal partnership re
quests, the decisions are exchanged among neigh
boring nodes in order to update the local informa
tion about the nonlocal request in the most recent
period. Those vertices that find that their requests
have been turned down select a new partner, if
possible, within the local set of vertices before
proceeding to the next PeC period. This offers
these smaller-computation -weight vertices earlier
chances for merging than the other free local verti
ces, in accordance with sec.

After partner selection process, the node
boundaries are redrawn in order to place whole
supervertices in one node. This avoids the prob
lem of expanding nonlocal information. Boundary
shifting is accomplished by some nodes transfer
ring their part of the cross-supervertices to the
other nodes that own the other part. Figure 5
shows an example of boundary shifting after the
first iteration. While merging two vertices, the ver
tex with the lower number is merged with its
higher numbered partner in even iteration steps. It
is done the other way in odd iteration steps. Fi
nally, the new contracted graph is constructed.

It is worth noting that the results of PGC de
pend on the mapping of the initial graph.. the
number of processors used, and the order in
which conflicts are resolved.

6 MAPPING USING GRAPH
CONTRACTION

Some remarks are given in this section about how
the PO algorithms make use of premapping graph
contraction. The algorithms include PSA and
PeA.

All the algorithms map the contracted graph
first: we refer to this step as coarse-structure map
ping. Then. the mapped graph is decontracted by
a simple interpolation in order to specify JdAP [v;j.
for i = 0 to JV,I- 1 . That is. a vertex. v;, in the

78 PO:\':\'USAYIY ET AL.

Read computation subgraph (G~INH);
for k = 1 to x do

counting-sort(0k-l (v));
while (m=O tom< IVclk-Il do

Select v; and its partner Vj as in SGC;
resol ve_conflicts();
for (all boundary vertices Vb requesting nonlocal partners) do

if (requesLof[vb] = REJECT) then
Select another local partner by an SGC step;

end-if
end-for

end-while
merge(); I* remap vertices *I
Build contracted subgraph (G~INH)i I* involves communication *I

end-for

I* *I
resolve_conflicts()

exchange_ boundary(Vj, mate[vj]); I* exchange decisions *I
for all local boundary vertices Vb

match mate[vb] with a received Vj;

if (mate[vb] -f; Vj)

request_of[vb] = REJECT;
end-if

end-for
exchange_result(request_of[vb])
for all local boundary vertices Vb

if (requesLof[vb] == REJECT) then mate[vb] = FREE;
end-for

I* *I
merge()

if (k is odd) then

else

if (v; < Vj) then merge Vj with v;;
else merge v; with Vji

if (v; < Vj) then merge v; with Vji

else merge Vj with v;;
end-if-else

FIGURE 4 PGC algorithm.

original graph is mapped to the same processor as
the supervertex it belongs to: we refer to this step
as fine-structure mapping.

In coarse-structure mapping. the PO algo
rithms lose some information in computing their
objective functions. For example, it becomes im
possible to compute the correct number of initial
boundary vertices from supervertices. These are
replaced by an approximation derived from the
crossedges.

node 0

node 3

FIGURE 5 ~ew node boundaries due to remapping in
PGC (only 0-1 boundary shown).

7 EXPERIMENTAL RESULTS AND
DISCUSSION

This section presents experimental results for
PGC and the use of its output graph for mapping.
The experiments employ data seb with different
sizes. These data sets constitute coarse and fine
discretizations of an aircraft wing [22j (unstruc
tured mesh representations) and are henceforth

GRAPH CO~TRACTIO~ FOR MAPPII\"G DATA 79

Table 1. Graph contraction time (sec) and Contracted Graph Size for
USM(10 K)

Contraction Level

:'\o.
1 2

Procs tflf£C f~,w lPW' Jpp:c

8 9.3:3 .")003 12.29 2668
16 2.84 .5153 4.05 28?9
32 1.00 5391 1.5? :3429

referred to as l~S.\l(x), where x is the number of
data points. These data are mapped to hypercube
multiprocessors. ~We study the effect of graph con
traction on these data sets for two PO methods
implemented on iPSC/860. The scheduling of ir
regular communication that occurs in PGC is han
dled using PART I software l18].

7.1 PGC

The performance of the PGC for US.\1(10 K) on
various processor sizes is shown in Table 1. The
table shows the time taken for executing the PGC
algorithm. lPI'"' and the corresponding size of the
contracted graph, ~'w· There are two important
observations to be made from the table. First. the
total time for contraction increases sublinearlv as
the contraction level is increased. For example.
time to go from contraction level 1 to contraction
level 8 results in onlv a threefold increment in the
time. Second, the effect of approximating the se
quential algorithm by a parallel one is illustrated
when the number of processors is varied. As the
number of processors is increased. the contracted
graph's size also increases for the same contrac
tion level. This is because the number of conflicts
increases with the number of processors.

7.2 PGA

The most important performance metrics for the
PGC algorithm. however. are the reduction in the

Table 2. Mapping time (sec) After Graph
Contractions for PGA on 16 Processors

Contraction Level

.VIesh 3 4 .:> 6 : 8

GS.V1(2 K) 102 64 69 30
CSM(3 K) 113 78 42 2-:J

USM(10 K) 365 162 141 ?6 60 43

4 6 8

ffJf!C "~'~'",. t,'l',. T~,w t,,w I PI''"

H.'-1 815 15.97 380 16.4 212
5.02 1021 .'").?2 4?0 6.00 :~oo

2.22 1461 2.?0 9?0 3.10 ?50

mapping time and the quality of the mapping
based on the contracted graph. The effect of PGC
on the PGA mapping time for meshes CS.\1(2 K),
CS.\1(3 K), and USM(10 K) is shown in Table 2.
1\"ote that there is a fivefold improvement (reduc
tion) in the mapping time for the PGA on a graph
contracted from level3 to level6. Therefore. it can
be seen that by paying a small penalty for graph
contraction. mapping time can be considerably
reduced. However. the reduction in mapping time
should be coupled with the quality of the mapping
solution to judge the overall performance. One of
the ways to measure the solution quality of a map
per is using crossedges (Section 2). Crossedges de
termine the communication cost of mapping. The
average number of crossedg:es (per processor) for
CSM(2 K) and CS.\1(10 K) for different levels. X·
of contraction is shown in Table 3. For example.
for contraction level6 for LS.\1(10 K). the number
of crossedges increases by approximately 1 O'Yo.
That is, for a reduction in mapping time of five
fold. the mapping degrades by 1 O'Yo in terms of
average crossedges. However. note that the corre
sponding increase in the communication time is
expected to be less than 10% because a major
factor of communication cost is the startup cost.
which does not increase. As expected. for smaller
values of X the number of crossedg:es stays close to

the numbe of crossedges obtained without con
traction. However. beyond a threshold. the degra
dation in terms of crossedges increases rapidly.

7.3 PSA

Tables 4 and 5 show the mapping time and the
number of crossedges for PSA. For example, for
US.\1(1 0 K) the cost of mapping reduces by a fac
tor of 10 when contracted from level 2 to level 6 .
But the number of crossedges increases by almost
50%. Comparing PGA with PSA indicates that the
quality of the mapping is better for PGA but the
cost of mapping is also higher for PGA. For exam-

80 PONNUSA:YIY ET AL.

Table 3. Average Crossedges After Contractions for PGA
on 16 Processors

Contraction Level (X)

Mesh 3 4 5 6 7 8

USM(2 K) 536 596 796 924
lJSM(3 K) 660 740 785 941
GS:\1(1 0 K) 1554 1.537 1618 1713 2100 2691

Table 4. Mapping Time (sec) After Graph Contractions
for PSA on Eight Processors

Contraction Level (X)

Mesh 0 1 2 3 4 5 6 7

USM(2 K) 199 123 67 40 31 18
lJSY1(3 K) 300 162 98 35 19 9
USM(10 K) 244 182 69 43 25 18

Table 5. Average Crossedges After Contraction for PSA on Eight
Processors

Contraction Level (x)

Ylesh 0 1 2

USM(2 K) 669 701 716
GSM(3 K) 837 815 859
USY1(10 K) 1854

ple, for contraction level 4, the mapping cost for
PGA is a factor of 3 greater than that for PSA, but
the number of crossedges is more than 50% larger
for PSA. Hence, the selection of the contraction
level also depends on the choice of the PO method
along with the cost of mapping. After a certain
contraction level, the quality of partitioning de
grades due to increase in number of conflicts to be
resolved in choosing partner nodes.

In Table 6, we present average crossedges for
the HPF BLOCK distribution. From Tables 6. 3.
and 5, it can be seen that it is important to have a
good mapping of data as number of crossedges.
which reflect the volume of communication. for
BLOCK distribution is enormously high.

8 CONCLUSIONS

In this article we motivated the case for using
graph contraction when using PO methods for
data mapping because for large-size problems the
cost of mapping on the original data size can be

3 4 5 6 7

776 910 1067
909 74 1190

2002 2311 2.530 2804 3014

exorbitant. A parallel graph contraction algorithm
with a user-defined contraction parameter, X· was
presented for reducing the problem size prior to
mapping. The experimental results show that
PGC leads to considerable reductions in the exe
cution time of the mapping algorithms, while
maintammg reasonable suboptimal mapping
qualities. The time reduction is larger for larger
problems, because with graph contraction. time is
determined by X and IVul. not by !Vel. These find
ings make the application of physical optimization
algorithms to large problems feasible and allows
the mapping step itself to be an efficient and scal
able operation. Therefore. the use of graph con
traction is imperative for large problems.

It was shown that with a small degradation in
the quality of the mapping solution. considerable
savings in the mapping time can be obtained. In
our experiments we were limited by the memory
size of the available parallel computer to apply our
algorithms to even larger problems. \Ye expect
that the performance gains are expected to be
even better for much larger problems. In the near

Table 6. Average Crossedges for BLOCK
Partition

Processors

Data 8

USM(2 K) 2159
USM(3 K) 2225
USM(10 K) 7476

16

1700
1858
6509

future, we expect to obtain access to machines
with larger memory to experiment with larger
problems.

The graph contraction method can be used
with other physical optimization methods such as
neural networks. It can also be used for other
mapping methods that can use a weighted graph
as an input. Further work needs to be done to
improve the PGC algorithm itself. Also, tech
niques to perform good quality but low cost initial
graph mapping based on domain information
(e.g., geometric information) will be useful to re
duce the cost of PGC as well as to improve the
quality of the PGC. Finally, graph contraction
techniques that are parallel yet deterministic need
to be explored.

ACKNOWLEDGMENTS

We would like to thank Dimitri .\1avriplis for pro
viding us with his unstructured meshes. We also
would like to thank R. Das and J. Saltz for provid
ing us PARTI software. This work was sponsored
in part by DARPA under contract no. DABT63-
91-C-0028 and in part by NSF grant .\HP-
9110810. A. Choudhary was also supported by
NSF Young Investigator Award (CCR-9357840)
with matching support from Intel SSD.

REFERENCES

[1] .VI. Berger and S. Bokhari, "A partitioning strat
egy for nonuniform problems on multiproces
sors," IEEE Trans. Comput.. vol. C-36. pp.
570-580. 1987.

[2] K. Dragon and J. Gustafson, Fourth Conference
on Hypercube Concurrent Computers, and Ap
plications. New York: ACM, 1989, pp. 583-
590.

[3] G.C. Fox, Numerical Algorithms for Modern Par
allel Computers. :'\'ew York: Springer-Verlag,
1988.

GRAPH CONTRACTION FOR MAPPING DATA 81

[4] A. Pothen, H. Simon, and K.-P. Liou, "Partition
ing sparse matrices with eigenvectors of graphs,"
SIAM]. Matrix Anal. Appl., vol. 11, pp. 430-
452, 1990.

[5]

[6]

[7]

H. Simon, Conference on Parallel Methods on
Large Scale Structural Ana(ysis and Physics Ap
plications. Permagon Press, 1991.
F. Ercal. "Heuristic approaches to task allocation
for parallel computing." Ph.D. thesis, Ohio State
University, 1988.
;\i.P. Chrisochoides, C.E. Houstis, E.:'-1. Houstis,
P.l\'. Papachiou, S.K. Kortesis, and J.R. Rice,
Domain Decomposition Methods for Partial Dif
ferential Equations. SIAM Publication, 1991.

[8] S.-Y. Lee and J.K. Aggarwal. "A mapping strat
egy for parallel processing," IEEE Trans. Com
puters. vol. C-36, pp. 433-442, 1987.

[9] P. Sadayappan and F. Ercal, "~earest-neighbor
mapping of finite element graphs onto processor
meshes," I£'1:1: Trans. Computers. vol. C-36. pp.
1408-1424, 1987.

[10] G.C. Fox, M. Johnson, G. Lyzenga. S. Otto, J.
Salmon, and D. Walker. Solving Problems on
Concurrent Processors. Englewood Cliffs. ~J:

Prentice Hall, 1988.
[11] J. Flower, S. Otto, and M. Salama, S_ymposium on

Parallel Computations and their Impact on Me
chanics. AS.\1£. 1987.

[12] 1\ . .\1ansour and G. C. Fox, "Parallel physical op
timization algorithms for allocating data to multi
computer nodes." Syracuse Center for Computa
tional Science, Technical Report SCCS-305.
1992.

[13] R.D. Williams, "Performance of dvnamic load
balancing algorithms for unstructured mesh cal
culations, ·• Concurrency Practice Exp .. vol. 3,
pp. 457-481. 1991.

[14] H. Byun, S.K. Kortesis, and E.~. Houstis. "A
workload partitioning strategy for PDEs by a gen
eralized neural network,,. Purdue Cniversity,
Computer Science, Technical Report CSD-TR-
92-015. 1992.

[15] G.C. Fox and W. Furmanski, Third Conference
on Hypercube Concurrent Computers, and Ap
plications. New York: ACM, 1988, pp. 241-278.

[16] 1\ . .\1ansour and G. C. Fox. Proceedings from the
Supercomputing Symposium, 1992.

[17] 1\". Mansour. "Physical optimization algorithms
for mapping data to distributed-memory multi
processors." Ph.D. Dissertation. School of Com
puter Science. Syracuse Cniversity, 1992.

[18] R. Das, R. Ponnusamy. J. Saltz. and D. Mavripi
lis. "Distributed memory compiler methods for ir
regular problems - data copy reuse and runtime
partitioning," !CASE Report 1\"o. 91-73. 1991.

[19] J. De Keyser and D. Roose, Sixth Distributed
Memory Computing Conference. 1\ew York:
ACM, 1991, pp. 122-128.

82 PO~l'\CSAMY ET AL.

[20] S. ::\olting. lc'uropean Distributed /vlemory Com
puting Conference. 1991, pp. 283-293.

[21] S. Barnard and H. Simon. '·A fast multilevel im
plementation of recursive spectral bisection for
partitioning unstructured problems,·' Report
R.'\iR-92-033. .'\iASA Ames Research Center.
~1offett Field. CA 94035. 1992.

[22] D. Mavriplis. AIAA 1Oth Computational Fluid
D.Ynamics Conference, 1991.

[23] R. Ponnusamy. J. Saltz. R. Das, C. KoelbeL and
A. Choudhary, Scalable Iligh Performance Com
puting Conference, 1992. pp. 216-219.

[24] T. Cormen. C. Leiserson. and R. Rivest. intro
duction to Algorithms. Y1cGraw Hill. 1990.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

