111 research outputs found

    Order out of Randomness : Self-Organization Processes in Astrophysics

    Full text link
    Self-organization is a property of dissipative nonlinear processes that are governed by an internal driver and a positive feedback mechanism, which creates regular geometric and/or temporal patterns and decreases the entropy, in contrast to random processes. Here we investigate for the first time a comprehensive number of 16 self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous {\sl order out of chaos}, during the evolution from an initially disordered system to an ordered stationary system, via quasi-periodic limit-cycle dynamics, harmonic mechanical resonances, or gyromagnetic resonances. The internal driver can be gravity, rotation, thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational instability, the Rayleigh-B\'enard convection instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or loss-cone instability. Physical models of astrophysical self-organization processes involve hydrodynamic, MHD, and N-body formulations of Lotka-Volterra equation systems.Comment: 61 pages, 38 Figure

    HIERARCHICAL-GRANULARITY HOLONIC MODELLING

    Get PDF
    This thesis aims to introduce an agent-based system engineering approach, named Hierarchical-Granularity Holonic Modelling, to support intelligent information processing at multiple granularity levels. The focus is especially on complex hierarchical systems. Nowadays, due to ever growing complexity of information systems and processes, there is an increasing need of a simple self-modular computational model able to manage data and perform information granulation at different resolutions (i.e., both spatial and temporal). The current literature lacks to provide such a methodology. To cite a relevant example, the object-oriented paradigm is suitable for describing a system at a given representation level; notwithstanding, further design effort is needed if a more synthetical of more analytical view of the same system is required. In the literature, the agent paradigm represents a viable solution in complex systems modelling; in particular, Multi-Agent Systems have been applied with success in a countless variety of distributed intelligence settings. Current agent-oriented implementations however suffer from an apparent dichotomy between agents as intelligent entities and agents\u2019 structures as superimposed hierarchies of roles within a given organization. The agents\u2019 architectures are often rigid and require intense re-engineering when the underpinning ontology is updated to cast new design criteria. The latest stage in the evolution of modelling frameworks is represented by Holonic Systems, based on the notion of \u2018holon\u2019 and \u2018holarchy\u2019 (i.e., hierarchy of holons). A holon, just like an agent, is an intelligent entity able to interact with the environment and to take decisions to solve a specific problem. Contrarily to agent, holon has the noteworthy property of playing the role of a whole and a part at the same time. This reflects at the organizational level: holarchy functions first as autonomous wholes in supra-ordination to their parts, secondly as dependent parts in sub-ordination to controls on higher levels, and thirdly in coordination with their local environment. These ideas were originally devised by Arthur Koestler in 1967. Since then, Holonic Systems have gained more and more credit in various fields such as Biology, Ecology, Theory of Emergence and Intelligent Manufacturing. Notwithstanding, with respect to these disciplines, fewer works on Holonic Systems can be found in the general framework of Artificial and Computational Intelligence. Moreover, the distance between theoretic models and actual implementation is still wide open. In this thesis, starting from the Koestler\u2019s original idea, we devise a novel agent-inspired model that merges intelligence with the holonic structure at multiple hierarchical-granularity levels. This is made possible thanks to a rule-based knowledge recursive representation, which allows the holonic agent to carry out both operating and learning tasks in a hierarchy of granularity levels. The proposed model can be directly used in terms of hardware/software applications. This endows systems and software engineers with a modular and scalable approach when dealing with complex hierarchical systems. In order to support our claims, exemplar experiments of our proposal are shown and prospective implications are commented

    Decoding the heterogeneity of skin in homeostasis and regeneration at single-cell resolution

    Get PDF
    The skin plays a critical role in securing homeostasis in the mammalian body. Its epidermis forms a tight barrier, which separates the internal from the external environment, thereby shielding the body from physical and chemical insult. Due to the exposed position of skin as the outermost organ of the body, skin cells need to be replaced continuously. Cellular maintenance and regeneration of the skin and its associated hair follicles is orchestrated by a variety of stem cell populations. Because of its regenerative properties, the mouse skin is one of the most important model organs in stem cell research and regenerative medicine. The skin is a complex multicellular system composed of a large variety of molecularly and functionally distinct cell populations. The physiology of the skin is a result of the intricate interplay of these diverse cell types. Accordingly, knowledge about the cellular composition of the skin is an essential step in understanding its biology. For a long time, cell populations in the skin were defined based on the expression of individual molecular markers, thus making a comprehensive analysis of cellular heterogeneity impossible. In this thesis, I describe how we used single-cell transcriptomics to create systematic cell type maps of the skin in order to analyze complex molecular processes at single-cell resolution. In the first part of this thesis, I provide an overview of the morphology, function and cellular heterogeneity of the skin. I put particular emphasis on the skin as a self-maintaining tissue and model organ for stem cell research, describing regenerative process such as skin barrier maintenance, cyclical regeneration of hair follicles and cutaneous wound healing in great detail. Then, I introduce single-cell RNA-sequencing as a technique, which has revolutionized the way we analyze and conceptualize cellular heterogeneity in complex tissues. Next, I portray how we championed the application of single-cell transcriptomics in skin biology with three key papers. In Paper I, we used single-cell RNA-sequencing to analyze the mouse epidermis including hair follicles during its resting stage (telogen). We discovered previously unknown cellular heterogeneity in the epidermis and demonstrated that the complexity of this tissue is the result of just two vectors of variation: differentiation stage and spatial position. In Paper II, we analyzed the complete mouse skin, including both epidermal and stromal cells, during hair growth (anagen) and rest (telogen). In addition to describing novel cell types in the stromal part of the skin, we model cellular differentiation and lineage specification in the growing hair follicle at unprecedented resolution. In Paper III, we use single-cell transcriptomics to track molecular changes in different stem cell populations during wound healing and answer several key questions related to stem cell identity and plasticity during regenerative processes. In the last section of this thesis, I demonstrate that our studies have not just allowed us to analyze the cellular heterogeneity of the mouse skin at unprecedented detail, but have also enabled us to address a variety of critical questions such as how stem cell identity is shaped and how regenerative processes are orchestrated in the skin. I thus outline how our endeavors mark the first step towards a systems biology of the skin

    Shared Nearest-Neighbor Quantum Game-Based Attribute Reduction with Hierarchical Coevolutionary Spark and Its Application in Consistent Segmentation of Neonatal Cerebral Cortical Surfaces

    Full text link
    © 2012 IEEE. The unprecedented increase in data volume has become a severe challenge for conventional patterns of data mining and learning systems tasked with handling big data. The recently introduced Spark platform is a new processing method for big data analysis and related learning systems, which has attracted increasing attention from both the scientific community and industry. In this paper, we propose a shared nearest-neighbor quantum game-based attribute reduction (SNNQGAR) algorithm that incorporates the hierarchical coevolutionary Spark model. We first present a shared coevolutionary nearest-neighbor hierarchy with self-evolving compensation that considers the features of nearest-neighborhood attribute subsets and calculates the similarity between attribute subsets according to the shared neighbor information of attribute sample points. We then present a novel attribute weight tensor model to generate ranking vectors of attributes and apply them to balance the relative contributions of different neighborhood attribute subsets. To optimize the model, we propose an embedded quantum equilibrium game paradigm (QEGP) to ensure that noisy attributes do not degrade the big data reduction results. A combination of the hierarchical coevolutionary Spark model and an improved MapReduce framework is then constructed that it can better parallelize the SNNQGAR to efficiently determine the preferred reduction solutions of the distributed attribute subsets. The experimental comparisons demonstrate the superior performance of the SNNQGAR, which outperforms most of the state-of-the-art attribute reduction algorithms. Moreover, the results indicate that the SNNQGAR can be successfully applied to segment overlapping and interdependent fuzzy cerebral tissues, and it exhibits a stable and consistent segmentation performance for neonatal cerebral cortical surfaces

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group

    Quantification of flow impairment in faulted sandstone reservoirs.

    Get PDF
    Abstract unavailable please refer to PD

    Control Architecture Modeling for Future Power Systems

    Get PDF
    Uncontrollable power generation, distributed energy resources, controllable demand, etc. are fundamental aspects of energy systems largely based on renewable energy supply. These technologies have in common that they contradict the conventional categories of electric power system operation. As their introduction has proceeded incrementally in the past, operation strategies of the power system could be adapted. For example much more wind power could be integrated than originally anticipated, largely due to the flexibility reserves already present in the power system, and the possibility of interregional electricity exchange. However, at the same time, it seems that the overall system design cannot keep up by simply adapting in response to changes, but that also new strategies have to be designed in anticipation. Changes to the electricity markets have been suggested to adapt to the limited predictability of wind power, and several new control strategies have been proposed, in particular to enable the control of distributed energy resources, including for example, distributed generation or electric vehicles. Market designs addressing the procurement of balancing resources are highly dependent on the operation strategies specifying the resource requirements. How should one decide which control strategy and market configuration is best for a future power system? Most research up to this point has addressed single isolated aspects of this design problem. Those of the ideas that fit with current markets and operation concepts are lucky; they can be evaluated on the present design. But how could they be evaluated on a potential future power system? Approaches are required that support the design and evaluation of power system operation and control in context of future energy scenarios. This work addresses this challenge, not by providing a universal solution, but by providing basic modeling methodology that enables better problem formulation and by suggesting an approach to addressing the general chicken/egg problem of planning and re-design of system operation and control. The dissertation first focuses on the development of models, diagrams, that support the conceptual design of control and operation strategies, where a central theme is the focus on modeling system goals and functions rather than system structure. The perspective is then shifted toward long-term energy scenarios and adaptation of power system operation, considering the integration of energy scenario models with the re-design of operation strategies. The main contributions in the first part are, firstly, by adaptation of an existing functional modeling approach called Multilevel Flow Modeling (MFM) to the power systems domain, identifying the means-ends composition of control levels and development of principles for the consistent modeling of control structures, a formalization of control-as-a-service; secondly, the formal mapping of fluctuating and controllable resources to a multi-scale and multi-stage representation of control and operation structures; and finally the application to some concrete study cases, including a present system balancing, and proposed control structures such as Microgrids and Cells. In the second part, the main contributions are the outline of a formation strategy, integrating the design and model-based evaluation of future power system operation concepts with iterative energy scenario development. Finally, a new modeling framework for development and evaluation of power system operation in context of energy-storage based power system balancing is introduced.<br/

    Public policy modeling and applications

    Full text link

    On Musical Self-Similarity : Intersemiosis as Synecdoche and Analogy

    Get PDF
    Self-similarity, a concept borrowed from mathematics, is gradually becoming a keyword in musicology. Although a polysemic term, self-similarity often refers to the multi-scalar feature repetition in a set of relationships, and it is commonly valued as an indication for musical ‘coherence’ and ‘consistency’. In this study, Gabriel Pareyon presents a theory of musical meaning formation in the context of intersemiosis, that is, the translation of meaning from one cognitive domain to another cognitive domain (e.g. from mathematics to music, or to speech or graphic forms). From this perspective, the degree of coherence of a musical system relies on a synecdochic intersemiosis: a system of related signs within other comparable and correlated systems. The author analyzes the modalities of such correlations, exploring their general and particular traits, and their operational bounds. Accordingly, the notion of analogy is used as a rich concept through its two definitions quoted by the Classical literature—proportion and paradigm, enormously valuable in establishing measurement, likeness and affinity criteria. At the same time, original arguments by Benoît B. Mandelbrot (1924–2010) are revised, alongside a systematic critique of the literature on the subject. In fact, connecting Charles S. Peirce’s ‘synechism’ with Mandelbrot’s ‘fractality’ is one of the main developments of the present study
    • …
    corecore