5 research outputs found

    On the Cayley digraphs that are patterns of unitary matrices

    Full text link
    A digraph D is the pattern of a matrix M when D has an arc ij if and only if the ij-th entry of M is nonzero. Study the relationship between unitary matrices and their patterns is motivated by works in quantum chaology and quantum computation. In this note, we prove that if a Cayley digraph is a line digraph then it is the pattern of a unitary matrix. We prove that for any finite group with two generators there exists a set of generators such that the Cayley digraph with respect to such a set is a line digraph and hence the pattern of a unitary matrix

    Mixed Moore Cayley Graphs

    Get PDF
    The degree-diameter problem seeks to find the largest possible number of vertices in a graph having given diameter and given maximum degree. There has been much recent interest in the problem for mixed graphs, where we allow both undirected edges and directed arcs in the graph. For a diameter 2 graph with maximum undirected degree r and directed out-degree z, a straightforward counting argument yields an upper bound M(z,r,2)=(z+r)2+z+1 for the order of the graph. Apart from the case r=1, the only three known examples of mixed graphs attaining this bound are Cayley graphs, and there are an infinite number of feasible pairs (r,z) where the existence of mixed Moore graphs with these parameters is unknown. We use a combination of elementary group-theoretical arguments and computational techniques to rule out the existence of further examples of mixed Cayley graphs attaining the Moore bound for all orders up to 485

    Moore mixed graphs from Cayley graphs

    Get PDF
    A Moore (r, z, k)-mixed graph G has every vertex with undirected degree r, directed in- and outdegree z, diameter k, and number of vertices (or order) attaining the corresponding Moore bound M(r, z, k) for mixed graphs. When the order of G is close to M(r, z, k) vertices, we refer to it as an almost Moore graph. The first part of this paper is a survey about known Moore (and almost Moore) general mixed graphs that turn out to be Cayley graphs. Then, in the second part of the paper, we give new results on the bipartite case. First, we show that Moore bipartite mixed graphs with diameter three are distance-regular, and their spectra are fully characterized. In particular, an infinity family of Moore bipartite (1, z, 3)-mixed graphs is presented, which are Cayley graphs of semidirect products of groups. Our study is based on the line digraph technique, and on some results about when the line digraph of a Cayley digraph is again a Cayley digraph.This research has been partially supported by AGAUR from the Catalan Government under project 2021SGR00434 and MICINN from the Spanish Government under project PID2020-115442RBI00.Peer ReviewedPostprint (published version

    Estudi i disseny de grans xarxes d'interconnexió: modularitat i comunicació

    Get PDF
    Normalment les grans xarxes d'interconnexió o de comunicacions estan dissenyades utilitzant tècniques de la teoria de grafs. Aquest treball presenta algunes contribucions a aquest tema. Concretament, presentem dues noves operacions: el "producte Jeràrquic" de grafs i el "producte Manhattan" de digrafs. El primer és una generalització del producte cartesià de grafs i ens permet construir algunes famílies amb un alt grau de jerarquia, com l'arbre binomial, que és una estructura de dades molt utilitzada en algorísmica. El segon dóna lloc a les conegudes Manhattan Street Networks, les quals han estat extensament estudiades i utilitzades per modelar algunes classes de xarxes òptiques. En el nostre treball, definim formalment i analitzem el cas multidimensional d'aquestes xarxes. Estudiem algunes propietats dels grafs o digrafs obtinguts mitjançant les dues operacions esmentades, especialment: els paràmetres estructurals (les propietats de l'operació, els subdigrafs induïts, la distribució de graus i l'estructura de digraf línia), els paràmetres mètrics (el diàmetre, el radi i la distància mitjana), la simetria (els grups d'automorfismes i els digrafs de Cayley), l'estructura de cicles (els cicles hamiltonians i la descomposició en cicles hamiltonians arc-disjunts) i les propietats espectrals (els valors i vectors propis). En el darrer cas, hem trobat, per exemple, que la família dels arbres binomials tenen tots els seus valors propis diferents, "omplint" tota la recta real. A més a més, mostrem la relació del seu conjunt de vectors propis amb els polinomis de Txebishev de segona espècie. També hem estudiat alguns protocols de comunicació, com els enrutaments locals i els algorismes de difusió. Finalment, presentem alguns models deterministes (com les xarxes Sierpinski i d'altres), els quals presenten algunes propietats pròpies de les xarxes complexes reals (com, per exemple, Internet).Large interconnection or communication networks are usually designed and studied by using techniques from graph theory. This work presents some contributions to this subject. With this aim, two new operations are proposed: the "hierarchical product" of graphs and the "Manhattan product" of digraphs. The former can be seen as a generalization of the Cartesian product of graphs and allows us to construct some interesting families with a high degree of hierarchy, such as the well-know binomial tree, which is a data structure very used in the context of computer science. The latter yields, in particular, the known topologies of Manhattan Street Networks, which has been widely studied and used for modelling some classes of light-wave networks. In this thesis, a multidimensional approach is analyzed. Several properties of the graphs or digraphs obtained by both operations are dealt with, but special attention is paid to the study of their structural parameters (operation properties, induced subdigraphs, degree distribution and line digraph structure), metric parameters (diameter, radius and mean distance), symmetry (automorphism groups and Cayley digraphs), cycle structure (Hamilton cycles and arc-disjoint Hamiltonian decomposition) and spectral properties (eigenvalues and eigenvectors). For instance, with respect to the last issue, it is shown that some families of hypertrees have spectra with all different eigenvalues "filling up" all the real line. Moreover, we show the relationship between its eigenvector set and Chebyshev polynomials of the second kind. Also some protocols of communication, such as local routing and broadcasting algorithms, are addressed. Finally, some deterministic models (Sierpinsky networks and others) having similar properties as some real complex networks, such as the Internet, are presented
    corecore