400 research outputs found

    Iris volume change with physiologic mydriasis to identify development of angle closure: the Zhongshan Angle Closure Prevention Trial

    Get PDF
    AIMS: To assess dynamic change of iris area (Iarea) and volume (VOL) with physiologic pupil dilation for progression of primary angle closure suspects. METHODS: Participants underwent baseline examinations including gonioscopy and anterior segment OCT (AS-OCT) as part of the Zhongshan Angle Closure Prevention Trial. The AS-OCT images were obtained both in the dark and light. Progression was defined as development of primary angle closure or an acute angle closure attack. Static ocular biometrics and dynamic changes were compared between progressors and non-progressors and multivariable logistic regression was developed to assess risk factors for progression. RESULTS: A mean 16.8% decrease in Iarea and a mean 6.26% decrease in VOL occurred with pupil dilation, while 22.96% non-progressors and 40% progressors presented VOL increases with pupil dilation. Iarea in light and dark and VOL in light were significantly smaller in progressors. In a multivariable logistic model, older age (p=0.008), narrower horizontal angle opening distance (AOD) 250 µm from the scleral spur (AOD250, p=0.001), flatter iris curvature (IC, p=0.006) and lower loss of iris volume (ΔVOL, p=0.04) were significantly associated with progression. With receiver operating characteristic analysis, the area under the curve for ΔVOL alone was 0.621, while that for the combined index (age, AOD250, IC and ΔVOL) was 0.824. Eyes with elevated intraocular pressure had less VOL loss compared with progressors developing peripheral anterior synechiae alone (p=0.055 for ΔVOL adjusted for pupil enlargement). CONCLUSION: A smaller change in ΔVOL is an additive risk factor to identify eyes more likely to develop angle closure disease. TRIAL REGISTRATION NUMBER: ISRCTN45213099

    A review of the role of ultrasound biomicroscopy in glaucoma associated with rare diseases of the anterior segment

    Get PDF
    Ultrasound biomicroscopy is a non-invasive imaging technique, which allows high-resolution evaluation of the anatomical features of the anterior segment of the eye regardless of optical media transparency. This technique provides diagnostically significant information in vivo for the cornea, anterior chamber, chamber angle, iris, posterior chamber, zonules, ciliary body, and lens, and is of great value in assessment of the mechanisms of glaucoma onset. The purpose of this paper is to review the use of ultrasound biomicroscopy in the diagnosis and management of rare diseases of the anterior segment such as mesodermal dysgenesis of the neural crest, iridocorneal endothelial syndrome, phakomatoses, and metabolic disorders

    Intraoperative Anterior Segment Optical Coherence Tomography in the Management of Cataract Surgery: State of the Art

    Get PDF
    Background: The introduction of non-invasive diagnostic tools in ophthalmology has significantly reshaped current clinical practice in different settings. Recently, different anterior segment (AS) intraoperative optical coherence tomography (i-OCT) systems have been employed for different interventional procedures including cataract surgery. Materials and Methods: A review on the use of AS i-OCT in the management of cataract surgery, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA). The level of evidence according to the Oxford Centre for Evidence-Based Medicine (OCEM) 2011 guidelines, and the quality of evidence according to the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system were assessed for all included articles. Results: Out of 6302 articles initially extracted, 6302 abstracts were identified for screening and 32 of these met the inclusion/exclusion criteria for full-text review; 19 articles were excluded. Conclusions: The use of AS i-OCT in cataract surgery, even if only a few studies have a high level or grade of evidence, may represent a useful tool for novel surgeons approaching phacoemulsification but also for expert ones for teaching purposes and to plan and manage complicated cases

    Estimation of the mechanical properties of the eye through the study of its vibrational modes

    Full text link
    Measuring the eye's mechanical properties in vivo and with minimally invasive techniques can be the key for individualized solutions to a number of eye pathologies. The development of such techniques largely relies on a computational modelling of the eyeball and, it optimally requires the synergic interplay between experimentation and numerical simulation. In Astrophysics and Geophysics the remote measurement of structural properties of the systems of their realm is performed on the basis of (helio-)seismic techniques. As a biomechanical system, the eyeball possesses normal vibrational modes encompassing rich information about its structure and mechanical properties. However, the integral analysis of the eyeball vibrational modes has not been performed yet. Here we develop a new finite difference method to compute both the spheroidal and, specially, the toroidal eigenfrequencies of the human eye. Using this numerical model, we show that the vibrational eigenfrequencies of the human eye fall in the interval 100 Hz - 10 MHz. We find that compressible vibrational modes may release a trace on high frequency changes of the intraocular pressure, while incompressible normal modes could be registered analyzing the scattering pattern that the motions of the vitreous humour leave on the retina. Existing contact lenses with embebed devices operating at high sampling frequency could be used to register the microfluctuations of the eyeball shape we obtain. We advance that an inverse problem to obtain the mechanical properties of a given eye (e.g., Young's modulus, Poisson ratio) measuring its normal frequencies is doable. These measurements can be done using non-invasive techniques, opening very interesting perspectives to estimate the mechanical properties of eyes in vivo. Future research might relate various ocular pathologies with anomalies in measured vibrational frequencies of the eye.Comment: Published in PLoS ONE as Open Access Research Article. 17 pages, 5 color figure

    Imaging in Ophthalmology

    Get PDF

    The role of altered ciliary muscle morphology in refractive error and accommodative function

    Get PDF
    The primary theme of this thesis was to investigate in vivo ciliary muscle morphology in refractive error, and how ciliary muscle parameters are linked with accommodative function in a young adult population. Anterior segment optical coherence tomography was utilised for all ciliary muscle image acquisition to examine morphological differences between eyes. High levels of inter-ocular ciliary muscle symmetry were shown in emmetropes and myopes. Whilst the myopic ciliary muscle was longer and thicker than in emmetropes for both eyes, ciliary muscle length and thickness were linked with axial length in both cohorts. In amblyopes and anisometropes, high levels of inter-eye ciliary muscle symmetry were observed. The ciliary muscle in amblyopic eyes appear to grow in accordance with the axial length of the non-amblyopic eye (P = 0.022, r2 = 0.438). The possibility of diurnal variation in accommodative axial elongation and accommodative error was explored in emmetropes and myopes. Daily stability in these accommodative functions were shown, and between groups there was no difference in accommodative axial elongation (P = 0.884) or accommodative error (P = 0.098). It was demonstrated that ciliary muscle morphology is not linked with accommodative function, disputing the theory that the thickened ciliary muscle has reduced contractility, which initiates hyperopic defocus in myopigenesis. In emmetropes, males had significantly longer ciliary muscle lengths (P = 0.031) and axial length (P = 0.001) compared with females. Novel parameters to analyse the ciliary muscle were investigated; both inner apical angle and ciliary muscle cross-sectional area measures were linked to axial length, as were the area and apical angle. Both measures are highly effective ciliary muscle analysis parameters which demonstrated high repeatability. The studies detailed demonstrated normal ciliary muscle growth with ocular development in myopia, and indicated that the ciliary muscle is not a crucial causative myopigenesis factor

    IN VIVO analysis of ocular morphological changes during phakic accommodation

    Get PDF
    The principal theme of this thesis is the in vivo examination of ocular morphological changes during phakic accommodation, with particular attention paid to the ciliary muscle and crystalline lens. The investigations detailed involved the application of high-resolution imaging techniques to facilitate the acquisition of new data to assist in the clarification of aspects of the accommodative system that were poorly understood. A clinical evaluation of the newly available Grand Seiko Auto Ref/ Keratometer WAM-5500 optometer was undertaken to assess its value in the field of accommodation research. The device was found to be accurate and repeatable compared to subjective refraction, and has the added advantage of allowing dynamic data collection at a frequency of around 5 Hz. All of the subsequent investigations applied the WAM-5500 for determination of refractive error and objective accommodative responses. Anterior segment optical coherence tomography (AS-OCT) based studies examined the morphology and contractile response of youthful and ageing ciliary muscle. Nasal versus temporal asymmetry was identified, with the temporal aspect being both thicker and demonstrating a greater contractile response. The ciliary muscle was longer in terms of both its anterior (r = 0.49, P <0.001) and overall length (r = 0.45, P = 0.02) characteristics, in myopes. The myopic ciliary muscle does not appear to be merely stretched during axial elongation, as no significant relationship between thickness and refractive error was identified. The main contractile responses observed were a thickening of the anterior region and a shortening of the muscle, particularly anteriorly. Similar patterns of response were observed in subjects aged up to 70 years, supporting a lensocentric theory of presbyopia development. Following the discovery of nasal/ temporal asymmetry in ciliary muscle morphology and response, an investigation was conducted to explore whether the regional variations in muscle contractility impacted on lens stability during accommodation. A bespoke programme was developed to analyse AS-OCT images and determine whether lens tilt and decentration varied between the relaxed and accommodated states. No significant accommodative difference in these parameters was identified, implying that any changes in lens stability with accommodation are very slight, as a possible consequence of vitreous support. Novel three-dimensional magnetic resonance imaging (MRI) and analysis techniques were used to investigate changes in lens morphology and ocular conformation during accommodation. An accommodative reduction in lens equatorial diameter provides further evidence to support the Helmholtzian mechanism of accommodation, whilst the observed increase in lens volume challenges the widespread assertion that this structure is incompressible due to its high water content. Wholeeye MRI indicated that the volume of the vitreous chamber remains constant during accommodation. No significant changes in ocular conformation were detected using MRI. The investigations detailed provide further insight into the mechanisms of accommodation and presbyopia, and represent a platform for future work in this field
    • …
    corecore