
 1 

 
 
 
 
 

IN VIVO ANALYSIS OF OCULAR MORPHOLOGICAL CHANGES 

DURING PHAKIC ACCOMMODATION 

 

 

 
AMY LOUISE SHEPPARD 

Doctor of Philosophy 

 

 

 

 

ASTON UNIVERSITY 

November 2010 

 

 

 

 

 

 

 

 

 

 

 

 

 
This copy of the thesis has been supplied on the condition that anyone who consults it is 

understood to recognise that its copyright rests with its author and that no quotation from the 

thesis and no information from it may be published without proper acknowledgement. 



 2 

ASTON UNIVERSITY 

IN VIVO ANALYSIS OF OCULAR MORPHOLOGICAL CHANGES DURING PHAKIC 
ACCOMMODATION 

 
AMY LOUISE SHEPPARD 

Doctor of Philosophy 
September 2010 

 
 
Summary 
The principal theme of this thesis is the in vivo examination of ocular morphological changes during 
phakic accommodation, with particular attention paid to the ciliary muscle and crystalline lens. The 
investigations detailed involved the application of high-resolution imaging techniques to facilitate the 
acquisition of new data to assist in the clarification of aspects of the accommodative system that were 
poorly understood. 
 
A clinical evaluation of the newly available Grand Seiko Auto Ref/ Keratometer WAM-5500 optometer 
was undertaken to assess its value in the field of accommodation research. The device was found to 
be accurate and repeatable compared to subjective refraction, and has the added advantage of 
allowing dynamic data collection at a frequency of around 5 Hz. All of the subsequent investigations 
applied the WAM-5500 for determination of refractive error and objective accommodative responses. 
 
Anterior segment optical coherence tomography (AS-OCT) based studies examined the morphology 
and contractile response of youthful and ageing ciliary muscle. Nasal versus temporal asymmetry 
was identified, with the temporal aspect being both thicker and demonstrating a greater contractile 
response. The ciliary muscle was longer in terms of both its anterior (r = 0.49, P <0.001) and overall 
length (r = 0.45, P = 0.02) characteristics, in myopes. The myopic ciliary muscle does not appear to 
be merely stretched during axial elongation, as no significant relationship between thickness and 
refractive error was identified. The main contractile responses observed were a thickening of the 
anterior region and a shortening of the muscle, particularly anteriorly. Similar patterns of response 
were observed in subjects aged up to 70 years, supporting a lensocentric theory of presbyopia 
development.  
 
Following the discovery of nasal/ temporal asymmetry in ciliary muscle morphology and response, an 
investigation was conducted to explore whether the regional variations in muscle contractility 
impacted on lens stability during accommodation. A bespoke programme was developed to analyse 
AS-OCT images and determine whether lens tilt and decentration varied between the relaxed and 
accommodated states. No significant accommodative difference in these parameters was identified, 
implying that any changes in lens stability with accommodation are very slight, as a possible 
consequence of vitreous support. 
 
Novel three-dimensional magnetic resonance imaging (MRI) and analysis techniques were used to 
investigate changes in lens morphology and ocular conformation during accommodation. An 
accommodative reduction in lens equatorial diameter provides further evidence to support the 
Helmholtzian mechanism of accommodation, whilst the observed increase in lens volume challenges 
the widespread assertion that this structure is incompressible due to its high water content. Whole-
eye MRI indicated that the volume of the vitreous chamber remains constant during accommodation. 
No significant changes in ocular conformation were detected using MRI. 
 
The investigations detailed provide further insight into the mechanisms of accommodation and 
presbyopia, and represent a platform for future work in this field. 
 
 
 
 
 
 
 
Key words: Accommodation, ciliary muscle, crystalline lens, ocular imaging, presbyopia. 
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CHAPTER 1 

OCULAR ACCOMMODATION 
 

1.1. General introduction 

Accommodation is defined as the dynamic change in refractive power of the eye to focus on 

objects at different distances (Millodot, 2008). The existence of an active focusing system 

was first demonstrated in the early seventeenth century by Scheiner, using his classic 

pinhole experiment (cited by Duke-Elder, 1970; Daxecker, 1992; Charman, 2008). Nearly 

four hundred years later, there is a general, but not universal, consensus on the mechanism 

of accommodation (Glasser et al., 2006; Charman, 2008; Schachar and Koivula, 2008). 

Extensive research has so far failed to clarify numerous subtleties relating to the nature of 

accommodation and the inevitable loss of accommodative ability and near visual function 

with age, termed presbyopia (Strenk et al., 1999; Dick, 2005; Glasser, 2008). Difficulties 

associated with imaging the accommodative structures in vivo have led many previous 

researchers to make assertions regarding the mechanism of human accommodation based 

on animal and/ or in vitro findings. However, recent advances in high-resolution ophthalmic 

imaging technology now enable the human accommodative apparatus to be more readily 

visualised in vivo (Baïkoff et al., 2004a; Koretz et al., 2004; Konstantopoulos et al., 2007; 

Wolffsohn and Davies, 2007a). Application of newer in vivo techniques can provide 

important information regarding the structure and function of the accommodative structures, 

whilst avoiding disruption of the complete system, as in ex vivo studies. The overall 

objectives of this thesis are to provide new data regarding the morphology of the key 

components of the human accommodative system, and investigate the biometric changes 

occurring in these structures during phakic accommodation. All of the empirical 

methodologies will involve application of in vivo techniques to examine natural, non-

pharmacologically manipulated ocular accommodation. 

 

Practically, such investigations could have widespread implications in ocular research. A 

more complete understanding of the morphology, action and age-related changes affecting 

the main accommodative structures would be valuable in the extensive and ongoing 

research directed at restoration of accommodation to the presbyopic eye (Charman, 2008; 

Glasser, 2008). All of the strategies currently available to provide dynamic focusing power to 

ageing eyes depend on a functional ciliary muscle, yet it is unclear exactly how the 

configuration and contractile responses of this structure change over time (Strenk et al., 

1999; Park et al., 2008; Strenk et al., 2010). Additionally, information on any refractive-error 

dependent variations in the morphological characteristics or responses of the 
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accommodative structures could be relevant to myopia research. An established link exists 

between myopia and near work/ accommodation (Adams and McBrien, 1992; Drexler et al., 

1998; Mutti et al., 2002; Mutti, 2010), although it is unclear whether near work represents a 

genuine causative factor or is merely an association (Gilmartin, 2004). 

 

Rather than providing an exhaustive review of previous literature related to the 

accommodation, this chapter considers key aspects most relevant to the thesis. The 

anatomy and function of the accommodative apparatus, and the age-related changes 

occurring in these structures, are detailed. An account of the theories of accommodation 

and presbyopia, including matters of continuing controversy, is also presented. 

 

1.2. Historical theories of accommodation 

Scheiner’s simple pinhole experiment of 1619 (cited by Duke-Elder, 1970; Daxecker, 1992) 

confirmed the variable focusing capability of the youthful human eye. A needle viewed 

through two pinholes separated by a distance less than the pupil diameter appears single 

when the eye is focused on it, but doubles if observation is directed to an object at a 

different distance. Three needles are seen with three pinholes, et cetera. Descartes later 

correctly hypothesised in his 1637 Traité de l’Homme that the mechanism of 

accommodation involved changes in the shape and dioptric power of the crystalline lens, 

with an increase in curvature necessary to view near objects (cited by Atchison, 1995; 

Charman, 2008). Popular alternative theories at the time suggested that changes in corneal 

curvature or axial length result in the increased power of the eye when viewing near objects. 

However, in 1801 it was demonstrated that accommodative ability persists when the corneal 

power is neutralised, or the eye clamped to prevent axial length changes, thus the 

crystalline lens must be responsible for accommodation (Young, 1801). Evidence to support 

this conclusion was derived from the Purkinje imaging experiments of Langenbeck (1849) 

and Cramer (1853) that confirmed an increase in anterior lens surface curvature during 

accommodation (cited by Roman, 1995; Strenk et al., 2005). At around the same time, in 

1847, the presence of muscle tissue within the ciliary body was discovered independently by 

Bruecke and Bowman (cited by Duke-Elder, 1961) and subsequent theories included the 

ciliary muscle as a key element of the accommodative system. Cramer hypothesised that 

ciliary muscle contraction acted on the choroid to compress the vitreous and push it 

anteriorly against the posterior lens surface (cited by Fincham, 1937). Resistance to this 

pressure is provided by the iris, so the central part of the anterior lens surface, 

corresponding to the pupillary aperture, moves forwards and steepens, increasing the 

optical power of the eye. However, the demonstration of accommodative ability in an aniridic 

subject by von Graefe in 1861 soon discredited this theory (cited by Atchison, 1995).  
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Investigation of the Purkinje images provided the basis for von Helmholtz’ (1855) now 

classical theory of accommodation. Using two luminous squares as an object and observing 

the Purkinje images when the eye is unaccommodated and then accommodated, he 

observed that the bright corneal Purkinje images remain almost stationary and unchanged, 

but those arising from the lens change position and become smaller with accommodation 

(cited by Duke-Elder, 1970). Crucially, Helmholtz included the zonules in his mechanism of 

accommodation. As the ciliary muscle contracts, the zonular fibres relax and the lens 

assumes a more convex shape, with a concurrent reduction in its equatorial diameter. 

However, this theory was not universally accepted and dissenters included Tscherning, who 

insisted in both of his theories that zonular fibres are under tension during accommodation 

(Tscherning, 1909). The observed downward movement of the lens due to gravity at high 

accommodative levels and the slackened appearance of an intact, but empty, capsule in an 

accommodating subject (Fincham, 1937) provided evidence to oppose Tscherning.  

 

The mechanism described by Helmholtz, and elaborated by Gullstrand to include the 

choroid as the restoring force to ciliary muscle contraction (cited by Strenk et al., 2005 and 

Charman, 2008), forms the basis of modern understanding of accommodation with 

overwhelming scientific evidence in support of the theory (Duke-Elder, 1970; Charman, 

2008; Glasser, 2008). However, some nonconformist ideas continue to exist, notably the 

concept of a Tscherning-type system, whereby the zonules (specifically equatorial zonules) 

are under increased tension during accommodation, causing the lens equator to move 

outwards towards the sclera, with central steepening of the crystalline lens and peripheral 

flattening (Schachar, 2006; Schachar and Koivula, 2008). According to this controversial 

theory, the anterior and posterior zonules (inserting into the lens capsule) provide 

suspension for the lens only, whereas the equatorial zonules are responsible for instigating 

lens shape changes in response to ciliary muscle activity. 

 

1.3. Present understanding of the mechanism of accommodation 

Accommodation is achieved by the alteration in shape of the crystalline lens secondary to 

ciliary muscle contraction; a process governed principally by parasympathetic innervation of 

the ciliary smooth muscle. When the eye is unaccommodated and focus coincides with the 

eye’s far point, the lens is held in a relatively flat and lower-powered state due to tension on 

the zonules. As the ciliary muscle contracts to accommodate, the majority of its mass shifts 

anteriorly and crucially, inwards, towards the optic axis, to reduce the diameter of the ciliary 

muscle collar (Gilmartin, 1995; Strenk et al., 1999; Croft et al., 2001). The decrease in ring 

diameter reduces the tension of the zonular fibres, allowing the elastic capsule enclosing the 
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lens to mould the young, flexible lens into a more convex and dioptrically-powerful form 

(Charman, 2008; Glasser, 2008).  

 

During accommodation, the anterior lens surface undergoes the most significant increase in 

curvature and axial movement, resulting in the anterior chamber becoming shallower. Only 

slight steepening and posterior movement affects the posterior lens surface (Duke-Elder, 

1970; Atchison, 1995; Drexler et al., 1997; Croft et al., 2001). The combined effect of these 

changes is an increase in lenticular axial thickness, and a small anterior shift of the centre of 

mass of the lens (Patnaik, 1967; Drexler et al., 1997; Strenk et al., 2004). The variability in 

response between the two lens surfaces may be attributable to more significant tensional 

changes affecting the anterior zonules and the greater thickness of the anterior capsule 

applying more elastic force to the crystalline lens substance (Ziebarth et al., 2005). 

Additionally, vitreous body inertia may resist posterior movement of the posterior lens 

surface (Charman, 2008). 

  

In conjunction with the axial thickening of the lens during accommodation, the general 

consensus is that lenticular equatorial diameter reduces (Brown, 1973a; Wilson, 1997; 

Strenk et al., 1999; Jones et al., 2007; Ostrin and Glasser, 2007a; Charman, 2008). 

Obtaining in vivo evidence from human subjects to support this assertion has historically 

been hampered by the presence of the iris, preventing direct viewing (by optical methods) of 

the lens periphery and its relationship with the ciliary muscle. Thus, previous investigators 

have relied on data obtained from atypical subjects, such as young albinos and aniridics 

(e.g. Fincham, 1937; Wilson, 1997). High-resolution magnetic resonance imaging (MRI) 

techniques enabling visualisation of the entire lens have been developed relatively recently, 

and indicate that lenticular diameter reduces by approximately 60- 90 µm per dioptre of 

accommodative response (Strenk et al., 1999; Jones et al., 2007; Kasthurirangan et al., 

2008; Hermans et al., 2009). 

 

The possible roles of the iris and vitreous body in the mechanism of human accommodation 

have also been disputed. It has been proposed that the iris sphincter aids accommodation 

by pulling the ciliary body further inwards and forwards to enable greater lenticular rounding 

(Crawford et al., 1990), and pressure changes in the vitreous during accommodation may 

facilitate forward movement of the anterior lens surface to increase the accommodative 

response (Koretz and Handleman, 1982; Coleman, 1986). However, any contribution from 

these structures is likely to be relatively minor as accommodation has been observed in both 

aniridic subjects (Fincham, 1937) and those lacking a vitreous body (Fisher, 1982; Fisher, 

1983).  
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The sequence of events that commences when ciliary muscle contraction ceases may be 

referred to as disaccommodation (Croft et al., 2001; Glasser, 2008). During this process, the 

elastic choroid acts as a restoring force and the ciliary muscle is pulled posteriorly and 

outwards, along the inner scleral surface, into its unaccommodated configuration (Strenk et 

al., 1999; Croft et al., 2001). The rapidly increased tension in the equatorial zonules acts on 

the lens capsule to pull the lens into a flatter state. As the crystalline lens flattens, the 

anterior chamber deepens as the anterior lens surface moves posteriorly away from the 

cornea. A small anterior movement of the posterior lens surface also occurs, thus increasing 

vitreous chamber depth. The flattening of lenticular surface curvatures results in a decrease 

of the dioptric power of the eye (Croft et al., 2001; Glasser, 2008; Davies et al., 2010). 

 

1.4. Anatomy of the accommodative apparatus 

An appreciation of the structure and anatomy of the accommodative apparatus is required to 

fully comprehend the theories and controversies relating to human accommodation, and the 

investigations detailed in Chapters 3- 7. The following section considers in detail the 

anatomy of the crystalline lens, zonules, ciliary body, choroid and the auxiliary 

accommodative structures. Figure 1.1 illustrates the anatomical relationships between the 

major anterior segment components of the accommodative system. 
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Figure 1.1. Schematic diagram of the human accommodative apparatus. As the ciliary muscle contracts during 

accommodation, the majority of its mass shifts anteriorly and inwards, reducing tension on the anterior zonules, 

allowing the elastic capsule to mould the crystalline lens into a more convex form. 

 
1.4.1. Crystalline lens 

The human crystalline lens is a complex, transparent structure, characterised by continuous 

growth throughout life (Koretz et al., 1989; Pierscionek and Weale, 1995; Strenk et al., 2004; 

Truscott, 2009). At 22 days’ gestation, the lens begins as a thickening of surface ectoderm 

tissue known as the lens placode, which in turn, forms the hollow lens vesicle when it 

invaginates and moves below the surface ectoderm (Snell and Lemp, 1998). Primary lens 

fibres then develop, filling the vesicle, as the epithelial cells comprising its posterior wall 

undergo rapid elongation (Stafford, 2001). The fibres are packed with crystallins proteins, 

vital for the refractive properties of the lens, and upon losing their organelles do not divide or 

grow further. U-shaped secondary lens fibres, formed throughout life and which are not 

destroyed, develop from mitosis of anterior epithelial cells at the lens equator (Kaufman and 

Alm, 2003). Lens fibres are closely packed, and typically hexagonal in cross-section 

(Atchison, 1995; Snell and Lemp, 1998). As new fibres develop and cover their 

predecessors, the lens loses its sphericity and becomes more ellipsoidal in shape. The 

foetal secondary lens fibres meet at Y-sutures- simple junctions on either side of the lens. 

Postnatal fibres meet on the lens surfaces in increasingly complex patterns, creating 6 

(simple star), 9 (star) and 12 (complex star) branch formations (Kuszak, 1995).  
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Lifelong growth of the lens results in an obvious change in lenticular dimensions with age. 

The effect of age on measured in vivo lens parameters is detailed in Table 1.1. The data 

highlight the notable increases in lens thickness and anterior surface curvature that occur 

with age. Such changes would be expected to cause an age-dependent increase in the 

optical power of the lens, and therefore a myopic shift in refractive error (Hemenger et al., 

1995). However, the lens actually becomes less powerful with increased age- a 

contradiction known as Brown’s lens paradox (Brown, 1973a; Brown, 1973b; Dubbleman et 

al., 2003). Changes to the refractive index distribution within the lens are believed to 

counteract the propensity for myopia caused by lens growth (Gilmartin, 1995; Koretz et al., 

2004). A gradient protein concentration and hence, gradient refractive index (GRIN) exists 

within the crystalline lens. In vivo high-resolution MRI studies (Jones et al., 2007; 

Kasthurirangan et al., 2008) have identified a central region of high refractive index (1.409 ± 

0.008), accompanied by a sharp reduction in refractive index towards the lens periphery 

(peripheral index of 1.380 ± 0.004). The central and peripheral refractive index values do not 

vary significantly with age, in agreement with in vitro findings (Jones et al., 2005), although 

older subjects exhibit a larger central plateau area of high index (mean change +0.83 mm 

along the axis and +0.56 mm along the equator between the age groups) with a steeper 

peripheral decline in refractive index compared to a younger cohort (Kasthurirangan et al., 

2008).  
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Parameter Author and technique Mean value Change with age 
 
Equatorial 
diameter (mm) 

 
Atchison et al. (2008), 2-D MRI 
 
 
Kasthurirangan et al. (2008), 2-D MRI 
 
 
Jones et al. (2007), 2-D MRI 
 
Strenk et al. (1999), 2-D MRI 

 
Young cohort (19- 28 years): 9.19 ± 0.34. 
Older cohort (61-69 years): 9.51 ± 0.26 
 
Young cohort (19- 29 years): 9.12 ± 0.33. 
Older cohort (60-70 years): 9.39 ± 0.34 
 
9.33 ± 0.33 (from 18-59 years) 
 
9.18 ± 0.29 (from 22-83 years) 

 
Small increase (+0.0075/ year) 
 
 
Small increase (+0.0067/ year) 
 
 
No significant change 
 
No significant change 

 
Central 
thickness (mm) 

 
Atchison et al. (2008), ultrasonography 
 
Kasthurirangan et al. (2008), 2-D MRI 
 
 
Richdale et al. (2008), AS-OCT 
 
Dubbelman et al. (2001), Scheimpflug 
imaging 
 
 
Strenk et al. (1999), 2-D MRI 

 
4.19  ± 0.47 (from 19- 69 years) 
 
Young cohort (19-29 years): 3.78 ± 0.22. 
Older cohort (60-70 years) 4.75 ± 0.38. 
 
4.05 ± 0.20 (from 36- 50 years) 
 
LT = 2.9 + 0.025 * age (cohort aged 16-65 
years), e.g. 3.9 at age 40 
 
3.86 ± 0.46 (from 22-83 years) 

 
Increases (+0.024/ year) 
 
Increases (+0.023/ year) 
 
 
Increases (+0.021/ year) 
 
Increases (+0.024/ year) 
 
 
Increases (r2 = 0.53, P < 0.0001) 

 
Anterior radius 
of curvature 
(mm) 

 
Atchison et al. (2008), Scheimpflug 
imaging 
 
Dubbelman et al. (2001), Scheimpflug 
imaging 
 
 
 
Koretz et al. (2001), Scheimpflug 

 
10.32 ± 1.41 (from 19- 69 years) 
 
R = 12.9 – 0.057 * age (cohort aged 16-65 
years), e.g. 10.62 at age 40. 
 
 
 
 
R = 16.815 – 0.104 * age (cohort aged 18-

 
Decreases (-0.044/ year) 
 
Decreases (-0.057/ year) 
 
 
 
 
 
Decreases (-0.104/ year) 
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imaging 70 years), e.g. 12.66 at age 40. 
 
Posterior radius 
of curvature 
(mm) 

 
Atchison et al. (2008), Scheimpflug 
imaging 
 
Dubbelman et al. (2001), Scheimpflug 
imaging 
 
 
Koretz et al. (2001), Scheimpflug 
imaging 

 
-6.77 ± 0.78 (from 19- 69 years) 
 
R = -6.2 - 0.012 * age (cohort aged 16- 65 
years), e.g.- 5.72 at age 40 
 
R = -8.719 + 0.015 * age (cohort aged 18-
70 years), e.g. -8.12 at age 40. 

 
No significant change 
 
Small decrease (-0.012/ year) 
 
 
Small decrease (-0.015/ year) 

 
Table 1.1. Effect of age on in vivo measured lens dimensions. AS-OCT is anterior segment optical coherence tomography. 



 22 

Viewing the crystalline lens in cross section (e.g. utilising a slitlamp or Scheimpflug camera) 

enables the various anatomical zones to be observed (Dubbleman et al., 2003). Figure 1.2 

shows a cross-sectional anterior segment optical coherence tomography (AS-OCT) scan 

centred on the crystalline lens, of a 30 year old subject.  

 

 
Figure 1.2. AS-OCT image of the crystalline lens of a 30 year old subject. The nucleus and cortex can be easily 

differentiated. 

 

The nucleus is comprised of the oldest lens fibres, present at birth (Dubbleman et al., 2003) 

and is the zone of highest refractive index within the lens due to the peak protein 

concentration of approximately 36% (Fisher and Pettet, 1973). The axial lens thickness 

increase that occurs with accommodation is due solely to the change in shape of the lens 

nucleus; the axial cortical thickness remains constant during accommodation (Hermans et 

al., 2007). The cortex represents the fibre mass added postnatally and may be further 

subdivided according to the Oxford system into four zones of optical discontinuity (Patel and 

Bron, 2002). C1 and C4 are the outermost and innermost cortical areas, respectively. Zones 

C1 and C3 do not significantly thicken with age, despite lens fibres continuously being 

added to the surface of C1α (Dubbleman et al., 2003). New fibres pass through the C1β 

zone and then remain in C2. 

 

The cellular monolayer present over the anterior and equatorial lens cortex is the lens 

epithelium, derived from the original cells of the embryonic lens vesicle (Stafford, 2001). The 

epithelium has a number of functions; production of lens fibres takes place in its periphery, 

with the more central region important for the secretion of the capsular material and also the 

transport of ions and water between the aqueous and lens material (Snell and Lemp, 1998). 

Mitosis continuously occurs in the pre-equatorial region of the epithelium and new cells 

Nucleus 

Anterior chamber 

Cortex 

Capsule 
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move outwards to the lens equator (Atchison, 1995; Augusteyn, 2010). Here, they 

differentiate and are transformed into lens fibres. The new fibres elongate in the anterior 

direction underneath the lens epithelium, and in the posterior direction underneath the lens 

capsule (Snell and Lemp, 1998; Charman, 2008; Augusteyn, 2010), terminating in sutures 

on the anterior and posterior lens surfaces. During the process of elongation, cytoplasmic 

organelles and eventually nuclei, are lost, with only a few mitochondria remaining (Atchison, 

1995; Lim et al., 2009; Augusteyn, 2010).  

 

The process by which new fibres are laid down, traversing the equatorial regions of the lens, 

suggests that lens diameter (in addition to thickness) should increase throughout life. In vitro 

data support this assertion, and indicate that lens diameter increases by over 1.0 mm 

between ages 20 and 95 years (Schachar, 2005; Rosen et al., 2006; Augusteyn, 2010), 

although these data reflect the accommodated lens, free from zonular tension. Aside from 

the results of Atchison (2008; Table 1.1), in vivo MRI data contradict the in vitro 

observations. Strenk et al. (1999) and Jones et al. (2007) found no dependence of lens 

diameter on age, in subjects ranging from 18 to 83 years. Lens diameter, and its change 

with age, therefore remains a contentious issue. 

 

Despite its cellular structure and high protein concentrations, the young human lens 

remarkably transmits nearly 100% of incident light. Optical homogeneity is key to effective 

light transmission (Patel and Bron, 2002; Truscott, 2009). Light scatter and absorption are 

minimised by the paucity of organelles within lens fibres, and the newer fibres containing 

nuclei are located in the equatorial region, screened by the iris. Lens transparency is also 

aided by the organisation of fibres into layers, with little extracellular space and precise 

arrangement of intracellular proteins meaning that there are no significant fluctuations in 

refractive index (Strenk et al., 2005; Truscott, 2009).  

 

The human lens is characterised by high water content throughout life, providing a solvent 

for crystallins proteins. Numerous in vitro investigations have examined the effect of age on 

lens water content, with no clear agreement between studies. Age-related increases in dry 

weight/ protein concentration imply that water must be lost from the central region of the 

lens until approximately 60 years of age (Nordmann et al., 1974; Bours and Fodisch, 1986; 

Augusteyn, 2010), although direct measures of water content do not agree with this 

assertion. Van Heyningen (1972), Fisher and Pettet (1973) and Heys et al. (2005) have all 

measured constant nuclear water content with age, ranging from approximately 63 % 

(Fisher and Pettet, 1973) to 68 % (Heys et al., 2005), whilst Siebinga et al. (1991) measured 

an age-dependent increase in the water content of the human lens nucleus. The high water 
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content has led to the theory that the lens is incompressible, thus its volume would not be 

expected to change during accommodation. Limited MRI data supports this prediction 

(Hermans et al., 2009), although precise geometric modelling of the human lens suggests its 

volume should increase by approximately 2.6 % during accommodation (Gerometta et al., 

2007). 

 

Encasing the whole crystalline lens is the capsule, an elastic basement membrane that 

fulfils the important function of moulding the deformable crystalline lens during 

accommodation (Snell and Lemp, 1998; Strenk et al., 2005). The capsule appears 

structureless on slitlamp examination, but electron microscopy reveals a laminar structure, 

comprising layers of collagen filaments (Stafford, 2001). It is the lamellar arrangement of 

these filaments that results in the highly elastic nature of the capsule. The more dense, 

outer capsular layer contains zonular microfibrils in addition to collagen (Atchison, 1995). As 

the capsule grows throughout life to track the increased size of the crystalline lens, the 

anterior portion, produced by the anterior epithelium, continually thickens, reaching 

approximately 25 µm in adults (Remington, 2005). The thickness of the posterior capsule 

remains fairly constant with time, at approximately 5 µm (Krag and Andreassen, 2003). Into 

the equatorial region of the capsule, zonular fibres insert which connect the lens to the 

ciliary processes (Snell and Lemp, 1998), thus suspending the lens and enabling changes to 

the contractile state of the ciliary muscle to be translated to the lens mass. 

 

1.4.2 Zonules 

The delicate, zonular fibres comprise complex meshworks of fibrils (Kaufman and Alm, 

2003). They are responsible for supporting the lens and facilitating accommodation and 

have been broadly differentiated into two categories: the main fibres (anterior and posterior/ 

vitreous) and the tension or spanning fibres (Rohen, 1979), shown on Figure 1.3. The 

anterior zonules support the lens, extending from the ciliary processes of the anterior ciliary 

body, bridging the circumlenticular space and inserting into the equatorial region of the lens 

capsule, with many fibres crossing over each other (Glasser and Campbell, 1999; Charman, 

2008). Rohen (1979) believed these anterior fibres attach to the lens capsule in three main 

sets, two of which insert 1.5 mm anterior and posterior to the lens equator and a third set of 

finer fibres linked to the equator itself. However, the appearance of three such distinct sets 

in scanning electron microscopy studies is now widely believed to be artefactual and due to 

post mortem tissue handling issues (Glasser and Campbell, 1999; Croft et al., 2001). 

Longer, posterior zonular fibres (also known as vitreous zonules; Lutjen-Drecoll et al., 2010) 

extend from the region of the ora serrata towards the valleys of the ciliary processes 

(Glasser, 2008; Wasilewski et al., 2008; Lutjen-Drecoll et al., 2010). Additionally, the anterior 



 25 

and posterior systems are linked by shorter, intermediate, tension fibres that insert into the 

ciliary epithelium (Rohen, 1979). The exact function of these tensile fibres is not clear, but 

they are believed to behave as a fulcrum, providing precise leverage to enable rapid and 

accurate adjustments to the level of accommodation (Rohen, 1979; Gilmartin, 1995; 

Charman, 2008). Figure 1.3 shows the relationship of the zonules with the other 

accommodative structures. 

 

Lifelong lens growth results in gradual changes to the geometry of zonular insertions into the 

lens capsule (Farnsworth and Burke, 1977; Farnsworth and Shyne, 1979; Sakabe et al., 

1998). Farnsworth and Shyne (1979) identified forward migration of the zonular 

attachments, away from the lens equator, as the lens diameter increases throughout life. 

More recently, Sakabe et al. (1998) have provided further evidence of this forward shift from 

examination of 223 cadaver eyes, observing that the zonular-free region of the anterior lens 

surface decreases in diameter with age. Mathematical and biophysical analysis of the 

relationship between lens and zonule indicates that with continued lens growth, the zonular 

insertions become more tangential to the lens surface, and therefore potentially less able to 

convey tension on the capsule (Koretz and Handelman, 1986; Koretz and Handelman, 

1988). Whilst the geometry of zonular attachments varies throughout life, the extensile 

properties of the zonules remain constant between the ages of 15 -45 years (Fisher, 1986). 

 

 
Figure 1.3. Schematic view of the accommodative structures in the relaxed (unaccommodated) state. The 

anterior zonules (red lines) are stretched by traction from the posterior/ vitreous zonules (green line). The tension 

in the anterior zonules keeps the lens in a flattened state for distance viewing. During accommodation, the 

forwards and inwards shift of ciliary muscle mass enables the shorter, tension fibre system (blue lines) to take up 
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the traction from the posterior zonules and release tension in the anterior zonules. The capsule is then able to 

mould the lens into its more spherical, accommodated form. 

 

1.4.3. Ciliary body 

The ciliary body is a complete ring of tissue that represents the anterior continuation of both 

the retina and choroid. It is roughly triangular in cross-section, the bulk of its mass 

comprising the ciliary muscle (Remington, 2005). The in vitro antero-posterior length of the 

ciliary body is greatest temporally, at approximately 5.76 mm in adults, compared to around 

4.79 mm nasally (Aiello et al., 1992). Functions of the ciliary body include secretion and 

support of zonular fibres, production of aqueous humour and nourishment of the lens, in 

addition to providing musculature for accommodation (Aiello et al., 1992; Atchison, 1995; 

Tamm and Lütjen-Drecoll, 1996; Snell and Lemp, 1998).  

 

The relatively flat, smooth, posterior portion of the ciliary body is the pars plana (orbicularis 

ciliaris), which is covered by longitudinally-oriented zonular fibres and contacts the vitreous 

(Tamm and Lütjen-Drecoll, 1996). In the most posterior region of the pars plana, posterior 

zonular fibres aggregate forming a broad plate connected to the ciliary body internal limiting 

membrane (ILM), which is continuous with the ILM of the retina (Atchison, 1995). The pars 

plicata (corona ciliaris) is the wider, anterior portion of the ciliary body, continuous with the 

posterior surface of the iris. The pars plicata is characterised by approximately 70 to 80 

vascular ridges, the ciliary processes, which protrude freely into the posterior chamber 

(Tamm and Lütjen-Drecoll, 1996). Between ciliary processes, the zonular fibres pass in 

order to join the pars plicata surface. Aqueous humour is produced by the non-pigmented 

epithelium of the pars plicata and secreted into the posterior chamber of the eye from the 

ciliary processes (Kaufman and Alm, 2003). The crystalline lens equator is located 

approximately 1 to 1.5 mm centrally from the ciliary processes (Atchison, 1995; Tamm and 

Lütjen-Drecoll, 1996). 

 

The ciliary body comprises six layers: the supraciliary lamina; ciliary muscle; stroma; basal 

lamina, epithelium and ILM, from the outer (scleral) to the inner (vitreous) aspect (Aiello et 

al., 1992; Tamm and Lütjen-Drecoll, 1996). The supraciliary (or suprachoroidal) lamina is a 

fine layer of loose connective tissue, facilitating movement of the ciliary muscle against the 

sclera (Atchison, 1995; Tamm and Lütjen-Drecoll, 1996). Much of the bulk of the ciliary body 

is composed of the ciliary muscle, beneath the ciliary processes (Pardue and Sivak, 2000; 

Glasser et al., 2001). Human ciliary muscle is classified as a rapidly-reacting multi-unit 

smooth muscle (Pardue and Sivak, 2000). Traditionally, the muscle has been sub-divided 

into three distinct regions, related to the orientation of smooth muscle bundles (Figure 1.4): 
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the longitudinal portion, running along the inner scleral surface and attached anteriorly to the 

scleral spur and trabecular meshwork; radial fibres forming a fan-like configuration from the 

irido-corneal angle towards the ciliary processes and circular fibres, running around the 

globe, parallel with the limbus (Tamm and Lütjen-Drecoll, 1996; Pardue and Sivak, 2000). 

However, detailed in vitro analysis of the muscle has revealed that these regions are not 

truly distinct, and during accommodation a reorganisation of the muscle fibres occurs, with 

the relative proportion of the longitudinal fibres decreasing whilst the proportion of the 

circular fibres increases (Lutjen, 1966). The reorganisation of fibres during accommodation, 

whereby a proportion of the longitudinal fibres are assumed to become radially or circularly 

oriented (Pardue and Sivak, 2000), explains the accommodative movement of the ciliary 

muscle, which is believed to shorten longitudinally, and thicken anteriorly, as the sphincter-

like action of the circular fibres pulls the ciliary body closer to the lens (Duke-Elder, 1961; 

Strenk et al., 1999). 

  
Figure 1.4. Traditional division of human ciliary muscle into three regions, based on the orientation of muscle 

fibres. The longitudinal fibres (L) run along the inner aspect of the sclera, terminating at the scleral spur (S). 

Circular fibres (C) run circularly around the globe, whilst the radial fibres (R) connect the other two groups and 

form a fan-like configuration. 

 

The stroma of the ciliary body is highly vascular and also contains loose connective tissue 

and melanocytes (Mafee et al., 2005). The stromal core of the ciliary processes features 

many leaky capillaries to provide the water and metabolites required for aqueous 

production. The three innermost layers of the ciliary body are relatively thin: the basal lamina 

is the continuation of Bruch’s membrane of the choroid (Tamm and Lütjen-Drecoll, 1996); 

the epithelial layer consists of two single sheets of epithelium, the outer of which is heavily 

pigmented and continuous with the retinal pigment epithelium and anterior iris epithelium, 

whilst the inner non-pigmented layer is continuous with the neural retina and posterior iris 

epithelium. The ciliary body ILM is secreted by the non-pigmented epithelium and is 

continuous with the retinal ILM. 
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Age-related histological and morphological changes in human ciliary muscle have been 

described in detail by several previous authors using in vitro methods (e.g. Lutjen, 1966; 

Nishida and Mizutani, 1992; Tamm et al., 1992a; Tamm and Lütjen-Drecoll, 1996; Pardue 

and Sivak, 2000). In neonate eyes, the ciliary muscle consists of evenly distributed 

individual fibres. Over time however, the fibres form bundles, separated by increasing 

amounts of connective tissue (Pardue and Sivak, 2000). Longitudinal fibres are always the 

most prevalent (Tamm et al., 1992a), accounting for 41-69 % of muscle area, whilst the 

radial and circular fibres account for 25-47 % and 4-24 %, respectively (Pardue and Sivak, 

2000). The relative proportions of the various fibre orientations changes with age (Nishida 

and Mizutani, 1992; Tamm et al., 1992a; Pardue and Sivak, 2000), explaining the broad 

proportional ranges of area occupied by each fibre type. The percentage of circular fibres 

remains relatively stable throughout life, whilst the proportion of longitudinal fibres 

significantly decreases, and the quantity of radial fibres increases (Pardue and Sivak, 2000). 

Morphologically, the overall length and anterior length (distance from the point of maximum 

muscle thickness to the anterior tip) of the ciliary muscle decrease with age (Tamm et al., 

1992a; Pardue and Sivak, 2000), whilst there is a trend for maximum width to increase 

(Pardue and Sivak, 2000). In addition to the age-dependent shortening, there is a reduction 

in the distance from the scleral spur to the inner apex of the muscle, indicating that ageing 

human ciliary muscle adopts a more antero-inwards position, similar to that of the youthful, 

accommodating muscle (Tamm et al., 1992a). 

 

1.4.4. The choroid 

The human choroid is primarily a vascular layer, fulfilling the key function of supplying 

oxygen and nutrients to the outer retina (Nickla and Wallman, 2010). It extends anteriorly, 

from the optic nerve, and is continuous with the pars plana of the ciliary body (Tamm and 

Lütjen-Drecoll, 1996). Throughout life, the choroid thins, from approximately 200 µm at birth, 

to 80 µm by 90 years of age (Ramrattan et al., 1994). In addition to its extensive vascular 

component, the choroid also contains non-vascular smooth muscle cells (or myofibroblasts), 

first documented in the human eye by Mueller in 1859 (cited by Nickla and Wallman, 2010). 

 

The role of the choroid in accommodation was detailed initially by Gullstrand in 1924, 

although there are relatively few recent reports describing the choroidal contribution to the 

mechanism of accommodation. The choroid and zonules together form an elastic system. In 

the relaxed (unaccommodated) state, the choroidal pulling force and the ciliary muscle force 

are in equilibrium with the pull of the lens capsule (Croft et al., 2001). During 

accommodation, traction is taken up from the posterior zonules and choroid, facilitating 
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slackening of the anterior zonules and causing the choroid to slide anteriorly (Gilmartin, 

1995). Mallen et al. (2006) postulated that a compensatory backwards displacement of the 

posterior region of the globe occurs to maintain a constant ocular volume, by transient 

increase in axial length. Mean axial length increases during accommodation of 58 µm in 

myopic subjects, and 37 µm in emmetropes have been reported (Mallen et al., 2006), 

although Drexler et al. (1997) measured smaller changes, of 5.2 and 12.7 µm in myopic and 

emmetropic groups, respectively. During disaccommodation, the elastic choroid acts to 

restore the ciliary muscle to its relaxed, more posterior, configuration. Accommodation has 

therefore been described as a neuromuscular process in youthful eyes which modifies the 

natural tendency towards the unaccommodated state (Kaufman, 1992; Gilmartin, 1995) 

 

1.4.5. Auxiliary accommodative structures 

Some theories of accommodation propose a contributory effect from the vitreous and/ or iris. 

Coleman (1986) described the vitreous as the fourth most important accommodative 

structure after the lens, zonules and ciliary muscle. The vitreous accounts for approximately 

80 % of ocular volume, lying between the posterior lens surface and retina. The outer 

vitreous membrane has elastic properties, resulting in a fairly spherical vitreous body 

configuration (Ljubimova and Eriksson, 2005), with an anterior pit (fossa patellaris) occupied 

by the crystalline lens. According to the theory of Coleman (1970, 1986), the ciliary body, 

zonular fibres and the hyaloid membrane, located between the posterior lens surface and 

the vitreous body, together form a diaphragm which determines the shape of the lens, 

related to vitreous pressure. Changes in the pressure gradient between the aqueous and 

vitreous body following ciliary muscle contraction, in conjunction with the hyaloid membrane 

diaphragm causes the lenticular surfaces to become more steeply curved and facilitates 

forward axial movement of the lens. However, Fisher’s (1983) examination of the 

accommodative ability of a young subject following unilateral vitrectomy surgery provided 

evidence to oppose Coleman’s hydraulic suspension theory. Neither accommodative 

amplitude, nor the magnitude of anterior lens pole movement was reduced in the 

vitrectomised eye, implying that the vitreous is not essential for effective accommodation. 

Furthermore, in vitro experiments have determined that normal accommodative changes in 

lens morphology can occur due to the forces imparted on the lens mass by the capsule 

alone, in the absence of the vitreous body (Glasser and Campbell, 1998; Koopmans et al., 

2003; Roorda and Glasser, 2004). 

 

Weale (1992) cites the iris as an aid to human accommodation. The iris is a thin contractile 

diaphragm, containing a central aperture, the pupil. The iris root is continuous with the 

anterior region of the ciliary body. It is hypothesised that during accommodation, the iris 
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sphincter muscle, responsible for pupillary constriction, acts to pull the ciliary body further 

anteriorly and inwards (Weale, 1989), allowing for greater relaxation of zonular tension, and 

a higher amplitude of accommodation. Whilst accommodation has been observed in aniridic 

subjects (Fincham, 1937), a contributory role of the iris to the mechanism of human 

accommodation cannot be discounted (Charman, 2008).  

 

1.5. Neural mechanism of accommodation 

The accommodative response is primarily driven by a blurred retinal image, which is 

detected by the visual (striate) cortex (Campbell, 1954; Atchison, 1995; Charman, 2008). 

The afferent accommodative loop begins at the retina, from where the defocus signal is 

transmitted through the magnocellular layer of the lateral geniculate nucleus (LGN), and 

relayed to the visual cortex (Kaufman, 1992; Mays and Gamlin, 1995). The signal is also 

transmitted to parieto-temporal regions for further processing. The supranuclear signal is 

relayed to the Edinger-Westphal nucleus of the midbrain, and a motor command is 

formulated (Jumblatt, 1999). The efferent accommodative pathway comprises the 

oculomotor (third cranial) nerve, the ciliary ganglion and post-ganglionic short ciliary nerves, 

stimulating contraction of the ciliary muscle (Kaufman, 1992). 

 

1.5.1. Ciliary muscle innervation 

The autonomic nervous system (ANS) regulates structures that are not under voluntary 

control; for example, exocrine gland cells, cardiac muscle and smooth muscle, including the 

ciliary muscle (Cogan, 1937; Hopkins and Pearson, 2007). In common with most involuntary 

structures, ciliary smooth muscle receives dual innervation from both the parasympathetic 

(cholinergic) and sympathetic (adrenergic) divisions (Törnqvist, 1966; Toates, 1972; 

Gilmartin, 1986; Hopkins and Pearson, 2007), which usually have antagonistic effects. 

However, contraction of the ciliary muscle is induced predominantly by activity of the 

parasympathetic fibres of the third cranial nerve, originating from the Edinger-Westphal 

nucleus of the midbrain. The parasympathetic response, mediated by muscarinic receptors, 

is known to be rapid. Stimulation of the third cranial nerve in monkeys results in maximum 

accommodation after 1-2 seconds (Törnqvist, 1967). Human accommodation is stable after 

around 1 second, following a latent period of approximately 300 milliseconds (Campbell and 

Westheimer, 1960; Kasthurirangan and Glasser, 2006). 

 

The possible role of the sympathetic branch of the ANS in accommodation has been 

disputed over many years. Functional sympathetic control is not proven merely by the 

presence of adrenoreceptors (Gilmartin, 1998). During the 1960s, Törnqvist conducted 

experiments utilising anaesthetised monkeys that provided some insight into this matter. In 
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the first, stimulation of the pre-ganglionic cervical sympathetic nerves caused a hyperopic 

shift in the monkeys that could not be negated by α-adrenoreceptor antagonists, but non-

selective β-blocking drugs inhibited this negative accommodation (Törnqvist, 1966). Thus, 

sympathetic innervation of inhibitory β-receptors in ciliary muscle was proposed as the 

mechanism responsible for distance accommodation. Subsequently, accommodative 

changes following sympathetic nerve stimulation were discovered to develop too slowly to 

respond effectively to rapidly-changing stimuli in real-life situations. Maximal effect was 

reached 10-40 seconds after stimulation (Törnqvist, 1967). Törnqvist additionally observed 

that the magnitude of sympathetic inhibition was directly related to the corresponding level 

of parasympathetic activity. Support of this observation was provided by a later study 

(Hurwitz et al., 1972) involving monkeys that induced positive accommodation by electrical 

stimulation of the midbrain, whilst stimulating and blocking ciliary muscle β-receptors by 

injecting propranolol (a β-receptor antagonist) and isoproterenol (a β- receptor agonist). A 

significant inhibitory effect of isoproterenol was only observed when accommodation levels 

were above 4 D. A comprehensive review of anatomical, physiological, pharmacological and 

clinical evidence regarding sympathetic input to accommodation concluded that the main 

features are that it is inhibitory in nature (mediated by inhibitory β-adrenergic receptors), 

small (less than 2 D), slow (20-40 seconds) and related to the background level of 

parasympathetic activity (Gilmartin, 1986). Additionally, more recent data has concluded that 

only approximately one third of the population have access to sympathetic inhibition during 

sustained near vision (Gilmartin et al., 2002). 

 

 
1.6. Components of accommodation 

Gordon Heath (1956) distinguished four components of accommodation, namely reflex, 

convergence, proximal and tonic.  

 

 
1.6.1. Reflex accommodation 

In response to a blurred stimulus, the automatic adjustment of the dioptric power of the eye 

(over approximately a 2 D range) to maintain a clear retinal image of the object of regard is 

known as reflex accommodation (Charman, 2008). Heath (1956) proposed that reflex 

accommodation is the only component of accommodation to be influenced by retinal image 

quality. 
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1.6.2. Convergence accommodation 

The near triad comprises accommodation, convergence and pupil miosis. The synkinesis of 

these systems is a result of their neural connection. Convergence accommodation describes 

the accommodation induced automatically by a change in convergence (Charman, 2008; 

Millodot, 2008), the magnitude of which is governed by an individual’s convergence 

accommodation/ convergence (CA/ C) ratio.  

 

1.6.3. Proximal accommodation 

Proximal accommodation results from knowledge of an object’s distance, or belief in its 

proximity (Heath, 1956; Rosenfield and Ciuffreda, 1991; Millodot, 2008). It may be elicited 

by the simple presentation of a near object, or when utilising a device such as a closed-view 

autorefractor (instrument myopia). Voluntary accommodation may be considered a form of 

proximal accommodation as a subject merely “thinking near” can stimulate an 

accommodative response (Provine and Enoch, 1975; Rosenfield and Ciuffreda, 1991). 

 

1.6.4. Tonic accommodation 

The slightly myopic state that occurs in the absence of an adequate visual stimulus e.g. 

darkness (Gilmartin et al., 1984), ganzfeld (structureless/ empty field; Schor et al., 1986), 

reduced visual acuity (Heath, 1956), low spatial frequency target (Kotulak and Schor, 1987) 

or pinhole viewing (Rosenfield et al., 1991), is a result of the accommodative mechanism 

adopting an intermediate state of approximately 1 D (Heath, 1956; Millodot, 2008). The term 

tonic accommodation was initially used to describe this phenomenon because it was 

believed to result from the dual innervation of ciliary muscle, whereby an intermediate 

dioptric position would be assumed in the absence of an accommodative stimulus 

(Rosenfield et al., 1993). However, the term is likely to be a misnomer as the probable 

explanation of the response is multifactoral, including non-optical aspects, such as auditory 

and vestibular input and mental imagery (Rosenfield et al., 1993). 

 

1.7. Accommodative microfluctuations 

Rapid fluctuations about the mean level of accommodation when a subject fixates a 

stationary near object were first described in 1937 by Collins, using his pioneering infra-red 

optometer (cited by Charman and Heron, 1988). Accommodative microfluctuations are 

typically less than 0.25 D in magnitude (Collins et al., 1995) and occur at a range of 

frequencies between 0 - 3 Hz (Heron and Schor, 1995). The temporal variations in the 

accommodative response are concentrated over two main frequency bands- a low 

frequency component (LFC) of <0.6 Hz and a high frequency component (HFC) of 1.0 – 2.3 

Hz (Gray et al., 1993b). Rather than representing instability in steady-state accommodation, 
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microfluctuations may have a functional role in maintaining the optimum mean 

accommodative response (Charman and Heron, 1988). 

 

A range of investigations have studied the potential sources of the LFCs and HFCs and the 

factors that influence the incidence and magnitude of these components, drawing 

conclusions regarding the possible functional significance of accommodative 

microfluctuations. Several groups have observed an increase in low frequency fluctuations 

with smaller pupil sizes (Gray et al., 1993a; Owens et al., 1994; Stark and Atchison, 1997), 

although the HFC appears to be independent of pupil size, suggesting that LFCs may have 

a role in the accommodative feedback loop, providing maintenance of optimal retinal image 

contrast during steady viewing of a near target (Winn and Gilmartin, 1992). The LFC is also 

affected by target luminance (Gray et al., 1993b), with very low luminance levels (0.002 – 

0.004 cd m-2) leading to an obvious increase in power of this component. Again, the HFC is 

not altered by variation in this parameter, suggesting that HFCs are not under neurological 

control. Evidence to support this assertion has been provided from studies that have 

identified a significant correlation between arterial pulse rate and HFC frequency by 

simultaneously recording ocular accommodation and vascular pulse (Winn et al., 1990; 

Collins et al., 1995). The mechanism causing arterial pulse to impact the HFC is not yet 

known, but rhythmic variations in blood flow may affect the ciliary muscle ring diameter or 

the intraocular pressure pulse may displace the crystalline lens (Collins et al., 1995). Thus, it 

is apparent that the source of HFCs is derived from arterial pulse effects (Winn et al., 1990), 

although one study has identified an association between LFCs and the respiration cycle 

(Collins et al., 1995). 

 

Stimulus vergence is known to affect accommodative microfluctuations (Charman and 

Heron, 1988; Day et al., 2006), with a number of authors having reported an increase in 

magnitude of the fluctuations as target vergence increases (Arnulf and Dupuy, 1960; 

Denieul, 1982; Kotulak and Schor, 1986). The study investigating the largest range of 

stimulus vergences (-9 to +3 D) identified an increase in the amplitude of microfluctuations 

up to -3 D, but then a subsequent decrease as target vergence rose further, with the 

fluctuations disappearing at stimulus vergences of  approximately -6 D (Miege and Denieul, 

1988). The reason proposed to explain this finding was based upon the lens zonules, with 

moderately relaxed zonules able to transmit the continuous tremor of the ciliary muscle, but 

the fully relaxed zonules at higher levels of accommodation are not able to do this.  

 

To summarise, accommodative fluctuations may be categorised into LFCs and HFCs and 

the source of these components is different. The HFC appears to be derived from the effect 
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of arterial pulse and is independent of pupil size and target luminance. The LFC is a 

consequence of neurological control, although a link between LFCs and the respiration cycle 

may exist. LFCs may be important in maintenance of steady-state accommodation. 

 

1.8. Presbyopia 

The inevitable decline in accommodative amplitude begins well before adulthood is reached 

(Charman, 2008), although presbyopia does not usually manifest in North American and 

European individuals until approximately 42-48 years of age (Millodot, 2008). By age 55 

years, the ability to accommodate is essentially non-existent. No standard definition of 

presbyopia exists, however a person may be considered presbyopic when near vision clarity 

is insufficient for their requirements (Gilmartin, 1995), usually corresponding to an 

accommodative amplitude below 3 D (Weale, 2000). Figure 1.5 summarises the results of 

notable published studies that have measured subjective monocular accommodative 

amplitude as a function of age. The results of the studies are remarkably similar and 

generally indicate a linear reduction in accommodative amplitude from childhood until the 

manifestation of presbyopia. Although a universal problem, the development of presbyopia 

and the relative contribution of age-related changes in the components of the 

accommodative system are not fully understood (Atchison, 1995; Pierscionek and Weale, 

1995; Charman, 2008). A number of possible mechanisms have been described which may 

be broadly classified into lenticular and extralenticular theories. 
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Figure 1.5. Results of cross-sectional studies on the mean monocular subjective amplitude of accommodation 

as a function of age. Data obtained from Duane (1922), Turner (1958), Ayrshire Study Circle (1964) and Ostrin 

and Glasser (2004). 
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1.8.1. Lenticular theories  

Presbyopia is attributed to age-related changes in the crystalline lens and its capsule in the 

various lenticular theories. The continued growth of the lens during life and changes in the 

GRIN structure have been described previously (section 1.4.1) and Table 1.1 summarises 

the effect of growth on lens dimensions. Numerous in vitro experiments have investigated 

the mechanical properties of the lens and capsule (Fisher, 1969; Beers and Van der Heijde, 

1994; Krag et al., 1997; Glasser and Campbell, 1999; Weeber et al., 2007), and it is clear 

that lens stiffening and a reduction in capsular elasticity are key factors in the development 

of presbyopia (Glasser, 2008), although many aspects of the accommodative system 

undergo age-related changes  (Gilmartin, 1995; Charman, 2008). Nearly 40 years ago, 

Fisher discovered that Young’s modulus of elasticity of the capsule decreases by around 

50% between ages 20 and 40 years (Fisher, 1969). More recent experimentation has shown 

that the lens becomes more resistant to deformation by the capsule in older eyes (Glasser 

and Campbell, 1999). In vitro removal of the capsule has minimal effect on the lens shape 

after approximately age 50 years, but in younger eyes, capsular removal results in a 

significant reduction in lens power. As the water content of the human lens is believed to 

remain stable throughout life (Fisher and Pettet, 1973; Siebinga et al., 1991; Heys et al., 

2005), altered lenticular mechanical characteristics have been attributed to adhesion and 

compaction of nuclear fibres (Fisher and Pettet, 1973; Pau and Kranz, 1991). 

 

Lenticular theories of presbyopia may be further categorised into those that state presbyopia 

is essentially due to mechanical changes occurring in the lens and capsule with age (Hess-

Gullstrand and Duane-Fincham theories) and the geometric theory, in which presbyopia is 

attributed to changes in lens size and shape. According to the Hess-Gullstrand theory, the 

ciliary muscle maintains its strength and the level of contraction required to produce a given 

dioptric change in accommodation remains constant throughout life. In the accommodating 

eye, as age advances, lens stiffness results in an increasing latent region of ciliary muscle 

contraction after the accommodative amplitude is reached, so further contraction would not 

influence the level of accommodation (Atchison, 1995; Strenk et al., 1999). Evidence to 

support this hypothesis has been obtained from impedance cyclography studies that have 

measured the electrical resistance across the ciliary muscle (Swegmark, 1969) and 

concluded that ciliary muscle contraction remains normal until the age of 60 years. However, 

these data have been criticised as it is unclear exactly what the measurements represent, 

and it has been shown that a given level of accommodative demand does not consistently 

produce the same impedance (Saladin and Stark, 1975).  
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In contrast to the Hess-Gullstrand theory, weakening of the ciliary muscle has been 

implicated as the process leading to presbyopia (Duane, 1922; Duane, 1925). Instillation of 

highly diluted atropine drops was found to reduce the accommodative amplitude more 

rapidly in older subjects. Such findings would not be expected if ageing eyes had more 

ciliary muscle contraction in reserve at their amplitude of accommodation, compared to 

youthful eyes. Duane attributed his findings to an age-related weakening of the ciliary 

muscle. However, recent in vivo MRI investigations have demonstrated that the human 

ciliary muscle retains its contractile ability throughout life (Strenk et al., 1999; Strenk et al., 

2006; Strenk et al., 2010), as the ciliary muscle ring diameter reduces upon viewing a near 

stimulus, even in advanced presbyopes. 

 

The lenticular explanation of presbyopia postulated by Fincham also involves ciliary muscle 

contraction (Fincham, 1937). Akin with the Hess-Gullstrand theory, Fincham proposed that 

the changes in the lens and capsule are important, but the contractile force necessary for 

each dioptre of accommodative response increases with age and the ciliary muscle is 

maximally contracted at the amplitude of accommodation, with no latency. Today, this 

proposal is commonly known as the Duane-Fincham theory and is supported by recent 

evidence that suggests older lenses require greater force to be exerted on the lens and 

capsule to induce a specific accommodative change (Glasser and Campbell, 1998; Glasser 

and Campbell, 1999). 

 

Geometric theories attribute presbyopia to changes in the size and shape of the lens with 

age, rather than to changes in its mechanical characteristics. The increased size of the lens 

throughout life impacts on the geometry of zonular attachments (Farnsworth and Shyne, 

1979; Gilmartin, 1995; Charman, 2008). A comprehensive study of 223 cadaver eyes 

demonstrated an age-related shift of the anterior zonular insertions, away from the lens 

equator (Sakabe et al., 1998). The migration of lens zonules results in their insertions 

becoming more tangential to the lens surface, thus the ability of the zonules to impart 

tension on the capsule may be reduced in older eyes (Koretz and Handleman, 1986), 

although no experimental evidence exists to substantiate this hypothesis (Croft et al., 2001). 

 

The Modified Geometric Theory of presbyopia development (Strenk et al., 2005) also states 

that lenticular growth results in the reduced ability of the lens to change shape and is 

consistent with in vivo MRI studies of accommodation that have documented an age-

dependent reduction in ciliary ring diameter (Strenk et al., 1999; Strenk et al., 2006), 

maintenance of a constant lens diameter (Strenk et al., 1999; Jones et al., 2007), 

undiminished ciliary muscle contractile ability (Strenk et al., 1999; Strenk et al., 2010) and 
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antero-inward displacement  of the ciliary muscle (Strenk et al., 2010). According to this 

relatively new theory, the uveal tract acts as a complete unit in response to lens growth. The 

lens applies force onto the pupillary margin, which is translated to the iris root and ciliary 

muscle. A tangential force is also provided, as a result of scleral curvature. The combined 

effect of these forces is to cause an anterior and inwards shift of the ciliary muscle and iris 

root. The associated reduction in pupil diameter draws the pupil margin closer to the thicker, 

central region of the lens, accentuating the effect of lens thickness on ciliary muscle antero-

inward displacement. As circumlental space diminishes due to the shift in ciliary muscle 

position, zonular tension is reduced in the unaccommodated state, causing both increased 

lens curvature and a decline in lens accommodative response.  

 

Of the recent theories attempting to explain the mechanism resulting in presbyopia, it is that 

postulated by Schachar (1994; 2006) which is associated with the greatest controversy. Not 

only does this theory oppose more generally-accepted ideas, but Schachar performs 

presbyopia-correction surgery based upon his hypothesis. He asserts that as the lens 

grows, an increase in lens equatorial diameter, with an accompanying reduction in 

extralenticular space, causes a decline in zonular tension that limits accommodation. Scleral 

expansion surgery aiming to permanently restore resting equatorial zonular tension is 

available (Schachar, 2000), with subjective amplitudes of accommodation of up to 11.11 D 

reported post-operatively (Schachar, 1992). However, independent and objective analyses 

of patients following scleral expansion surgery have failed to identify an increase in 

accommodative amplitude in these subjects, compared to age-matched controls (Mathews, 

1999; Ostrin et al., 2004). Furthermore, these surgical techniques are based on the 

assumption that the ageing lens mass would still be capable of sufficient morphological 

change to increase the amplitude of accommodation. 

 

1.8.2. Extralenticular theories 

The numerous extralenticular theories attribute human presbyopia to ciliary muscle 

dysfunction or changes in the elastic properties of the zonules and/ or ciliary body. Ciliary 

muscle weakness was suggested by Duane (1925), although the work of Fisher (1977) on 

cadaver eyes indicated that the force of contraction of human ciliary muscle peaks at 

approximately 45 years of age, when the decline in accommodative amplitude is nearly 

complete (Ostrin and Glasser, 2004). Confirmation of the ability of ageing human ciliary 

muscle to contract has been provided by in vitro examination of muscle tissue exposed to 

pharmacological agents (Pardue and Sivak, 2000), and in vivo studies applying techniques 

such as ultrasound biomicroscopy (UBM; Park et al., 2008) and MRI (Strenk et al., 1999; 

Strenk et al., 2006; Strenk et al., 2010). Whilst there is strong evidence to support 
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maintenance of the contractual ability of ciliary muscle in presbyopic eyes, the muscular 

configurational changes could vary with age. Cataract surgery involving removal of the age-

enlarged lens mass and implantation of an intraocular lens (IOL), allows the anteriorly-

displaced ageing ciliary muscle to be restored to its youthful, more posterior position (Strenk 

et al., 2010) and may also enhance its contractual response (Park et al., 2008). 

 

Decline in tissue elasticity is an established feature of ageing (Atchison, 1995), leading to 

the assertion that changes in ciliary body and choroidal elastic components could contribute 

to presbyopia. Bito and Miranda (1989) hypothesised that presbyopia is a loss of 

disaccommodative ability. According to their theory, in the young unaccommodated eye, the 

elastic antagonists of the ciliary body and choroid maintain tension on the lens and 

surrounding capsule via the zonules. With ciliary muscle contraction, the tension is released 

allowing the lens to assume a more spherical shape. In presbyopic eyes however, the 

elastic antagonists are unable to maintain tension, causing the lens to maintain a curved 

state, even in the absence of ciliary muscle contraction. Whilst this theory disregards 

possible age-related changes in lenticular and capsular elastic properties, it is consistent 

with the steepening of lens surface curvatures throughout life (Brown, 1974a; Dubbelman 

and Van der Heijde, 2001; Atchison et al., 2008). 

 

 
1.9. Summary 

Human ocular accommodation functions reasonably effectively from around 4 months of age 

(Banks, 1980; Brookman, 1983), providing adequate near visual ability until the 

establishment of presbyopia, usually in the fifth decade of life. There is broad acceptance of 

the Helmholtzian mechanism of accommodation, with much empirical evidence to support 

this theory. However, a notable alternative model of accommodation has been proposed by 

Schachar, supported by mathematical substantiation (Schachar et al., 1993b; Chien et al., 

2006) and limited experimental data (Schachar et al., 1993a; Schachar and Cudmore, 1994; 

Schachar et al., 1996; Schachar et al., 2007; Schachar and Koivula, 2008). Difficulties 

associated with imaging the accommodative apparatus in vivo using high-resolution 

techniques have confounded efforts to invalidate Schachar’s controversial theory, and the 

exact roles played by several ocular structures in accommodation remain unclear.  

 

Further debate surrounds the processes responsible for presbyopia. Alterations in the 

viscoelastic properties of the enlarged lens mass, reducing its ability to be moulded by its 

capsule appear crucial, but the complete mechanism is likely to involve additional factors, 

including changes in extralenticular elastic tissue and the configuration of the ageing ciliary 
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muscle. Improved understanding of lenticular and extralenticular contributions to 

accommodation and presbyopia may be important in informing the development of 

strategies aiming to restore accommodative function to presbyopic eyes, particularly as 

currently-available methods generally target only the stiffened lens mass. 

 

1.10. Aims of the thesis 

The literature review presented in this chapter has highlighted numerous uncertainties 

relating to both the mechanism of accommodation, and the age-related changes affecting 

the accommodative structures which may be implicated in presbyopia development. 

Consequently, this thesis will address five pertinent topics related to accommodation and 

presbyopia, using only in vivo techniques that can visualise accommodative changes 

occurring in the natural, undisturbed system. The specific aims of the thesis are as follows: 

 

 1. To analyse the morphological characteristics and contractile responses of 

 youthful human ciliary muscle in vivo, with regards to axial length/ ametropia. 

 

2. To determine the age-related configurational and contractile changes affecting  the 

ciliary muscle, which could be relevant to the development of presbyopia. 

 

3. To devise a novel method to allow determination of lenticular tilt and decentration, 

relative to the cornea, using AS-OCT and apply this technique to investigate if lens 

stability changes during accommodation.  

 

4. To develop and apply novel three-dimensional MRI techniques to analyse 

changes in lenticular morphology with accommodation. Of particular interest are the 

effects of accommodation on lens equatorial diameter, surface area and volume. 

  

5. To utilise novel three-dimensional MRI methods to analyse changes in the 

 posterior eye with accommodation amongst a cohort of youthful subjects.  

 

The research will involve application of relatively new and complementary high-resolution 

imaging techniques that permit visualisation of the accommodative apparatus in vivo. The 

use of such methodologies will allow a high level of precision in examining the morphology 

of the accommodative structures, which has been difficult to achieve previously in vivo. A full 

account of the instrumentation used and validation of the techniques is provided in 

subsequent chapters. Previous experimental work has provided great insight into human 
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accommodation and presbyopia, but numerous questions remain unanswered. The thesis 

therefore seeks to provide clarification of a selection of related issues. 
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CHAPTER 2 

INSTRUMENTATION FOR IN VIVO ANALYSIS OF THE 

ACCOMMODATIVE STRUCTURES 
 

2.1. Introduction 

The experimental chapters of the thesis involve the application of a range of advanced 

instrumentation to enable in vivo analysis of changes in both the anterior and posterior 

segments of the eye with accommodation. An account of the hardware used is provided in 

this chapter, with particular attention paid to anterior segment optical coherence tomography 

(AS-OCT) and high-resolution magnetic resonance imaging (MRI). Relevant findings from 

previously published studies utilising these techniques are included, in addition to full details 

of a new autorefractor validation study, performed prior to the acquisition of objective 

accommodative response and refractive error data.  

 

2.2. Instrumentation for determination of refractive error and objective 

accommodation measurement 

Each investigation detailed in the thesis describes changes in one or more of the ocular 

structures with accommodative effort. The accommodative response of an individual to 

particular stimulus vergence levels will vary due to a variety of factors including subject age 

(Duane, 1922; Atchison et al., 1994), voluntary effort (Provine and Enoch, 1975) and the 

well-known phenomenon of accommodative lag, particularly for high amplitude targets 

(Wold et al., 2003; Benjamin, 2006). Thus, it is important to measure the objective 

accommodative response to targets of various negative vergence, rather than assuming that 

stimulus demand is equivalent to response, as in many previously published studies (e.g. 

Dubbleman et al., 2003; Baïkoff et al., 2004b; Jones et al., 2007; Schachar and Koivula, 

2008), or using subjective measurements of accommodation, which are known to 

overestimate the true amplitude (Rosenfield and Cohen, 1996; Wold et al., 2003; Ostrin and 

Glasser, 2004). 

 

The term optometer describes any instrument designed to measure the refractive power of 

the eye (Millodot, 2008). Objective optometers, also known as autorefractors, calculate the 

vergence of light reflected from the retina to infer refractive error (Benjamin, 2006). In 

addition to on-axis refraction, autorefractors may be employed in accommodation research 

to determine peripheral refractive error (Dunne et al., 1993; Davies and Mallen, 2009), 

accommodative responses to varying stimulus vergence levels (Manny et al., 1993; 
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Richdale et al., 2008) and microfluctuations (Winn and Gilmartin, 1992; Day et al., 2006) 

that occur around the mean response level.  

 

2.3. Validation of the Grand Seiko Auto Ref/ Keratometer WAM-5500 

Previously-published studies have established that the majority of modern autorefractors are 

reliable and highly accurate compared to subjective refraction (McBrien and Millodot, 1985; 

Kinge et al., 1996; Elliott et al., 1997; Bullimore et al., 1998; Mallen et al., 2001; Davies et 

al., 2003; Cleary et al., 2009). Autorefractor readings are generally utilised as a starting 

point for subjective refraction in clinical practice, with previous studies indicating that 

prescribing from the objective findings alone results in limited patient satisfaction (Bullimore 

et al., 1996; Strang et al., 1998). As research interest in pseudophakic accommodation, 

particularly accommodating intraocular lenses (AIOLs) grows, it is of greater importance to 

measure accommodation objectively, rather than relying on subjective techniques that 

cannot differentiate between pseudoaccommodation and true accommodation. 

Pseudoaccommodation occurs due to a summation of non-accommodative influences 

including pupillary constriction leading to increased depth-of-field (Nakazawa and Ohtsuki, 

1983); low-magnitude myopia (Elder et al., 1996) or against-the-rule myopic astigmatism 

(Huber, 1981; Vezella and Calossi, 1993) and higher-order ocular aberrations (Pepose, 

2008). 

 

Most commercially available autorefractors utilise fixed internal targets in conjunction with 

fogging mechanisms to relax accommodation. However, this closed-view environment may 

induce instrument myopia (Smith, 1983; Rosenfield and Ciuffreda, 1991) and also restricts 

such devices to measurement of distance refractive error only. Therefore, the most 

appropriate autorefractors for research purposes should permit binocular viewing of external 

fixation targets in open-view formats. Additional features necessary for accommodation 

studies include a system to alter the vergence demand of near targets and the ability to 

measure refraction through small pupils due to the pupillary constriction that accompanies 

accommodative effort (Wolffsohn et al., 2004; Win-Hall et al., 2007). Only a very limited 

number of commercially available autorefractors meet these requirements, including the 

Shin-Nippon SRW-5000/ Grand Seiko WV-500 (Mallen et al., 2001); the Shin-Nippon 

NVision-K 5001/ Grand-Seiko WR-5100K (Davies et al., 2003) and the Tracey Visual 

Function Analyzer (Cleary et al., 2009). Minimum pupil sizes stated by the manufacturers for 

these instruments are 2.9 mm, 2.3 mm and 2.5 mm, respectively. 

 

 
 



 43 

2.3.1. The Grand Seiko Auto Ref/ Keratometer WAM-5500 

The Grand Seiko Auto Ref/ Keratometer WAM-5500 (Grand Seiko Co. Ltd., Hiroshima, 

Japan) is a binocular open-field autorefractor and keratometer that also permits dynamic 

recording of refraction and pupil size by connection to an external PC via an RS-232 port. 

Refractive error is calculated in two stages, as with the SRW-5000/ WV-500, and details of 

the process have been described previously (Mallen et al., 2001). An image of an infra-red 

measurement ring, which reflects strongly off the retina, is initially brought into rough focus 

by rapid movement of a lens on a motorised track. Subsequently, the toroidal refractive 

prescription is calculated by digital analysis of the image in multiple meridians. The 

instrument can measure refraction in the range of ± 22 D sphere and ± 10 D cylinder in 

increments of 0.01, 0.12 or 0.25 D for power, and 1° for cylinder axis. Central corneal radius 

is calculated by image analysis of an infra-red ring reflected off the cornea, the diameter of 

which is measured in 3 meridians separated by 60º. Corneal radii in the range 5.0 – 10.0 

mm (0.01 mm steps) with refractive power of 33.75 – 67.50 D may be measured. 

Adjustment of vertex distance (to 0, 10, 12, 13.5 or 15 mm) is possible, and the 

manufacturer’s specified minimum pupil diameter for refraction measurement is 2.3 mm. 

Pupil size data can be captured in both static and dynamic modes, by automatic detection of 

the iris boundary and subsequent superimposition of a best-fit circle. Measurement data are 

displayed on an internal 5.6 inch colour monitor, which permits visualisation of the pupil to 

enable alignment of the instrument with the subject’s visual axis. Hard copies of data are 

available from the in-built thermal printer. In high-speed mode, mean spherical equivalent 

refractive error (MSE; equal to spherical component + cylindrical power/2) and pupil 

diameter can be recorded at a rate of 5 Hz by interfacing with a PC running the WAM 

communication system (WCS-1) software, allowing the objective measurement of a 

subject’s dynamic accommodative response to a target. 
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Figure 2.1. Operation of the Grand Seiko Auto Ref/ Keratometer WAM-5500. 

 

2.3.1a Methods 

The purpose of this study was to determine the accuracy and repeatability of distance 

refraction and corneal curvature measurements obtained using the WAM-5500 in non-

cyclopleged adult eyes by comparison with subjective refraction and Javal-Schiotz 

keratometry, performed by a qualified UK optometrist. Additionally, the ability of the 

instrument to provide dynamic recording of the accommodative response and pupil size with 

regards to use in accommodation research was assessed. 

 

The study was approved by the Aston University ethics committee and the research 

followed the tenets of the declaration of Helsinki. Written, informed consent was obtained 

from all participants, following explanation of the nature and possible consequences of the 

study. Seventy-five subjects (54 female and 21 male), ranging in age from 18 to 69 years 

(mean: 25.12 ± 9.03 years) were recruited from the staff and student body of the Aston 

University Optometry Department.  

 

WAM-5500 Static Mode 

All subjects underwent an orthodox refraction routine on both eyes at 6 m, performed by an 

optometrist (ALS) masked to the participant’s habitual prescription. Non-cycloplegic 

refraction was used, as this is the mainstay for adult prescribing by optometrists (Borish, 

1975; Edwards and Llewellyn, 1988). Streak retinoscopy was followed by cross cylinder to 
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locate the cylindrical axis (in 2.5° increments) and its power (in 0.25 D increments). The 

spherical component was refined (in 0.25 D increments) with best sphere and binocular 

balancing. Endpoint criteria of maximum plus sphere and minimum minus cylinder power 

consistent with best visual acuity were used. Following subjective refraction, keratometry 

was performed on all eyes by a second optometrist (LND), with the Javal-Schiotz style 

keratometer (Topcon, Japan). Corneal radius of curvature (in 0.05 mm increments) and axis 

(in 2.5º increments) were measured in both the horizontal (from 0 – 42.5º and 135-180º) and 

vertical (45 – 132.5º) meridians following focusing of the instrument prior to each reading. 

 

Autorefraction and autokeratometry were carried out at a second visit within 14 days of the 

subjective refraction, using the WAM-5500. Objective measurements were obtained utilising 

the same letter chart and testing room as the subjective refractions. The instrument was 

aligned with the visual axis of the eye being measured by instructing the subject to view a 

distance letter target, of the smallest size resolved binocularly without refractive correction. If 

the binocular unaided vision was less than 6/12, participants were asked to view the distant 

spotlight to minimise eye movements. Five refraction readings and single corneal curvature 

measures were obtained from each eye automatically when the instrument was adequately 

aligned with the eye being tested. Use of the automatic mode removes the need for the 

operator to judge subjectively when the measurement ring appears focused. Objective 

measurement of refractive error and corneal curvature on both eyes took less than 2 

minutes per subject.  Repeatability of these measures was determined by evaluating the 

differences between the 5 refraction readings taken per eye and additionally by repeating 

the autorefraction and autokeratometry on 44 eyes at a subsequent session, within a week 

of obtaining the initial results.  

 

 

Statistical Techniques 

Subjective and objective refraction results were entered into a spreadsheet in negative 

cylindrical form and the mean spherical equivalent (MSE) of each refraction was 

determined. Analysis of the astigmatic component of the results is problematic when 

standard clinical notation is used e.g. -1.75 DC x 135 (Bullimore et al., 1998), thus two 

Jackson cross-cylinders were computed (Thibos et al., 1997): at axis 0 (with power J0; 

Equation 1) and at axis 45 (with power J45; Equation 2). 

 

   J0 = -(cylinder/2)cos(2*axis)    Equation 1 

   J45 = -(cylinder/2)sin(2*axis)    Equation 2 
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Agreement between the WAM-5500 and subjective methods was evaluated for each of the 

components measured, by calculation of the mean of the differences (i.e. the bias) between 

the techniques, and the 95% confidence limits, as described by Bland and Altman (1986). 

Mixed-factor analysis of variance (ANOVA) was used to compare measures, with the two 

eyes of each subject considered as dependent variables. 

 

WAM-5500 Dynamic Mode 

The ability of the WAM-5500 to measure refraction accurately in its dynamic mode of 

operation was evaluated using the manufacturer’s supplied model eye (of power -4.50 D), to 

avoid confounding effects such as subject head and eye movement that may occur with a 

cyclopleged human participant. The instrument was connected to a PC running the WCS-1 

software via an RS-232 cable with the WAM-5500 set to Hi-Speed (continuous recording) 

mode, which allows refractive data collection at a temporal resolution of 5 Hz. No operator 

input is required during dynamic data collection, except depressing the WAM-5500 joystick 

button once to start recording, and once to stop at the end of the desired time frame. The 

software records dynamic results, including time (in seconds) of each reading; pupil size and 

MSE refraction, in the form of an Excel Comma Separated Values (CSV) file.  

 

With the model eye positioned in its holder on the instrument chin rest, the measurement 

ring was brought as clearly into focus as possible by longitudinal movement of the 

autorefractor head. At this point, 10 continuous refraction recordings, each of 30 seconds 

duration were made to enable determination of the accuracy of the instrument in its dynamic 

mode. Additionally, the focusing tolerance of the WAM-5500 in continuous mode was 

evaluated by obtaining 50 dynamic refraction measures at 1 mm intervals of longitudinal 

shift as the instrument head was moved nearer and further from the model eye, resulting in 

increased blur of the measurement ring. Recordings were made across the full range of 

longitudinal movement that allowed measurements to be captured. 

 

An investigation of the ability of the instrument to record refractive and pupil size responses 

dynamically to accommodative targets was made using a functionally emmetropic pre-

presbyopic subject, corrected with hilafilcon B daily disposable soft contact lenses. The 

subject switched focus at 5 second intervals from a distant (Snellen letter) target to a 4 D 

high contrast (90%) Maltese cross accommodative stimulus.  

 

 
2.3.1b Results 
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Subjectively-determined refractive errors ranged from -6.38 to +4.88 D MSE (mean MSE = -

1.25 ± 2.18 D). The maximum level of astigmatism was 3.00 D. Corneal radii of curvature, 

measured by Javal-Schiotz keratometry, ranged from 7.2 to 9.1 mm (mean 7.81 ± 0.29 mm). 

 

Validity 

Validity of an autorefractor is generally expressed in terms of its agreement with subjective 

findings (Elliott et al., 1997; Mallen et al., 2001; Davies et al., 2003). On average, the mean 

WAM-5500 prescriptions were similar to those found by subjective refraction (MSE: 

difference between WAM and subjective, -0.01 ± 0.38 D (F(1, 148); = 0.09; p = 0.77); spherical 

component, difference 0.04 ± 0.41 D (F(1, 148); = 1.60; P= 0.21). The cylindrical component 

was more negative than found by subjective refraction: difference -0.10 ± 0.34 D (F(1, 148); = 

13.9; P = <0.001), although J45 cylindrical vectors were very similar between the techniques 

(J45 difference 0.00 ± 0.15 D (F (1, 148); = 0.01; P = 0.92)). The J0 vector showed a slight 

statistically, but not clinically, significant positive bias of 0.04 ± 0.17 D (F(1, 148); = 7.87; P = 

0.01). 

 

Figures 2.2a and 2.2b show the differences in the spherical component and MSE, 

respectively, between subjective and objective techniques, compared to the mean. Whilst 

there appears to be good agreement between WAM and subjective results for the majority 

of mean refractions between +1.00 D and -6.25 D, the outliers in the data sets are principally 

hyperopes above +2.00 D. Approximately 61 % of WAM-5500 spherical components were 

within ± 0.25 D of the subjective findings, and 74 % within ± 0.50 D (Figure 2.3a). For MSE, 

57% of autorefractor readings were within ± 0.25 D of the subjective, and 73% within ± 0.50 

D (Figure 2.3b). 
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Mean Refractive Error (WAM and Optometrist; D)
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Figure 2.2. Difference in spherical component (A) and MSE (B) between the WAM-5500 and subjective, 

compared to the mean refractive error. Mean bias is indicated by the solid lines and the 95% confidence intervals 

by the dashed lines. 

A 

B 
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Difference between WAM and Subjective Spherical Component (D)
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Difference between WAM and Subjective MSE (D)
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Figure 2.3. Comparison of the frequency of differences between the objective and subjective refraction 

techniques (n = 150 eyes) for spherical component (A) and MSE (B). 

A 

B 



 50 

 

 All prescriptions with a 
cylindrical component n = 125 

Prescriptions with a subjective cylindrical 
component ≥0.75 D n = 44 

± 5° 42 (34 %) 24 (55 %) 

± 10° 66 (53 %) 35 (80 %) 

± 15° 82 (66 %) 40 (91 %) 

± 20° 88 (70 %) 42 (95 %) 
 
Table 2.1. Comparison of the axis of the cylindrical component measured with the WAM-5500 and by subjective 

refraction. 

 

Table 2.1. details the agreement between subjective and autorefractor determination of 

cylinder axis. For all cylinder powers, 70 % of WAM-5500 axes were within ± 20º of those 

found subjectively. However, for cylinder powers ≥0.75 D, the assessment of cylinder axis 

by the WAM 5500 was much improved, with 80 % within ± 10°, and 95% within ± 20° of the 

subjective findings. Figures 2.4 and 2.5 show the differences in cylindrical component, and 

vectors J0 and J45 compared to the mean values, respectively. Seventy-four percent of WAM 

cylinder components were within ± 0.25 D of the subjective findings, and 93 % within ± 0.50 

D. Observation of the graphical data shows no clear bias in the difference in cylinder 

component determined by the WAM-5500 and subjectively with increasing magnitude of 

cylindrical component. In terms of cylinder vectors, there is an increase in positive bias of 

the J0 component with increasing positive mean vector power, although no such bias is 

apparent for the J45 vector. 
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Mean cylindrical component (D)
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Figure 2.4. Difference in cylindrical components measured with the WAM-5500 and by subjective refraction (n = 

150 eyes, although many of the data points overlie each other). The solid line represents the mean bias, and the 

95 % confidence intervals are indicated by the dotted lines. 
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Figure 2.5. Difference in J0 and J45 vectors between the WAM-5500 and subjective refraction, compared to the 

mean (n = 150 eyes). The solid line represents the mean bias for the J0 vector, and the dotted lines show the 95 

% confidence limits. The mean bias for the J45 vector was 0.00 ± 0.15 D. 
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Corneal curvature measured by the WAM-5500 was steeper than that determined 

subjectively by Javal-Schiotz keratometry (Figure 2.6). For the horizontal meridian, mean 

WAM-5500 bias was -0.05 ± 0.07 mm (F(1, 148); = 73.33; p = <0.001), and for the vertical 

meridian, -0.06 ± 0.08 mm (F(1, 148); = 95.14; p = <0.001). Generally good agreement was 

shown between the keratometric and WAM axes, with 49 % within ± 5º, 70% within ± 10°, 81 

% within ± 15º, and 87 % within ± 20°. More consistent agreement between the WAM-5500 

and Javal-Schiotz axes was found as corneal astigmatism increased. For corneal toricity 

≥0.25 mm (on Javal-Schiotz), the mean difference between the Javal-Schiotz and WAM-

5500 axes was 16.6 ± 20.3°. However, for coreal toricity below this magnitude, the mean 

difference between Javal-Schiotz and WAM-5500 axes was 33.5 ± 21.7º. 

 

Calibrated spheres of radii 6.34, 7.93 and 8.72 mm were used to assess the accuracy and 

repeatability of keratometry readings obtained from the subjective and objective techniques. 

The mean bias of the optometrist using the Javal-Schiotz keratometer was slightly flat at 

+0.003 ± 0.012 mm, whereas the mean bias of the WAM-5500 was of greater magnitude 

and steeper by -0.023 ± 0.025 mm. 
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Figure 2.6. Difference in the horizontal and vertical corneal radii between the WAM-5500 and Javal-Schiotz 

keratometry compared to the mean (n = 150 eyes). The mean bias for the vertical meridian is indicated by the 

solid line (-0.06 mm), and the 95% confidence limits are shown by the dotted lines. The mean bias for the 

horizontal meridian was smaller, at -0.05 mm. 
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Repeatability 

Both the intratest and intertest variability can be examined to evaluate the repeatability of 

automated refraction. The intratest variability was determined by calculation of the standard 

deviation of the 5 repeated readings acquired from each subject in one session. Mean 

intrasession repeatability was 0.09 D for the spherical component, 0.14 D for the cylindrical 

component, 0.09 for the MSE, 0.07 D and 0.06 D for the J0 and J45 vectors, respectively. 

 

 Sphere Cylinder MSE J0 J45 

Mean difference (D) -0.04 -0.07 -0.07 -0.04 -0.01 

SD of differences 
(D) 

± 0.26 ± 0.29 ± 0.26 ± 0.16 ± 0.14 

Within ± 0.12 D (%) 30 36 25 - - 

Within ± 0.25 D (%) 75 66 73 - - 

Within ± 0.50 D (%) 93 95 91 - - 

Within ± 1.00 D (%) 100 100 100 - - 

 
Table 2.2. Intertest variability of the refractive results obtained from the final WAM-5500 autorefractor 

prescription. 

 

Intertest variability is arguably of greater importance (Mallen et al., 2001; Davies et al., 

2003) as it requires realignment and remeasuring of subjects at a separate session. Table 

2.2 details the intertest repeatability values for each of the refractive components measured. 

A slight myopic bias was demonstrated for all prescription elements on retesting (-0.04 D, -

0.07 D, -0.07 D, -0.04 D and -0.01 D for sphere, cylinder power, MSE, J0 and J45, 

respectively). For sphere, cylinder power and MSE, over 90 % of retest values fell within ± 

0.50 D of initial testing, and 100 % of retest values were within ± 1.00 D. Keratometric 

parameters were also found to have high intertest repeatability, with 63 % of all corneal radii 

within ± 0.05 mm of the initial value on retest, and 93 % within ± 0.10 mm. Mean 

intersession differences for the horizontal and vertical components were 0.00 ± 0.06 mm 

and 0.00 ± 0.07 mm, respectively. 

 

 

 

Dynamic (high-speed) mode 
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Using the supplied model eye to record dynamically, the root-mean-square of the refractive 

fluctuations (i.e. the inherent noise level associated with dynamic recording) was 0.005 ± 

0.0005 D, which is lower than measured by previous authors with both the Canon R-1 

Autoref (Owens, 1991) and the SRW-5000/ WV-500 (Wolffsohn et al., 2001). Figure 2.7 

shows the tolerance of the WAM-5500 to longitudinal movements away from the position of 

optimum focus whilst in dynamic mode, recording from the model eye. Beyond an 8 mm 

backwards movement, the device was unable to record dynamic data, although data capture 

was possible over the full physical range of forwards movement (+16 mm) of the instrument 

head. The focusing tolerance of the WAM-5500 was found to be good, as even a 1 mm 

movement in either axial direction was enough to cause noticeable blurring of the 

measurement ring on the internal monitor, the effect on the accuracy of the refractive data 

obtained was relatively minor. Even at the most anterior location possible, 16 mm from the 

position of optimum focus, the accuracy of the dynamic data collected was still within -0.25 

D, despite the measurement ring being barely visible. Anterior or posterior movements from 

the point of optimum focus generally caused a negative shift in the accuracy of refraction 

data, although from 1- 5 mm of anterior movement, a positive shift is evident, which reduces 

to +0.004 D at 6 mm. 
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Figure 2.7. Tolerance of the WAM-5500 to longitudinal movements from the position of optimum focus whilst in 

high-speed (dynamic recording) mode. The WCS-1 software was unable to record any dynamic data beyond 8 

mm of backwards movement, although data could be obtained until the instrument head was pushed fully 

forwards (to +16 mm). 

 

Forward movement Backward movement 
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Figure 2.8 illustrates graphically the refractive and pupil size data collected from a young 

subject switching fixation between a distance and near target. Pupil miosis associated with 

accommodation is evident. However, pupil size measures are not necessarily captured at 

every data collection point, which is visible on Figure 2.8 by the gaps in the pupillary size 

plot. The accuracy of WAM-5500 pupil diameter measures was assessed using calibrated 

artificial pupils, ranging in size from 4.49 to 7.46 mm. The results shown in Table 2.3 

indicate a tendency for the instrument to slightly overestimate pupil size (except for the 

smallest diameter evaluated, with a mean bias of WAM-5500 pupil measures of +0.11 ± 

0.19 mm.  The temporal resolution of the WAM-5500 in high-speed mode was found to be 

4.2- 4.8 Hz when recording with the model eye and human subject, which is slightly lower 

than the 5 Hz stated by the manufacturer. 
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Figure 2.8. The dynamic refractive and pupillary response of a pre-presbyopic subject alternating attention 

between a distant (0.17 D) and near (4 D) fixation target. The gaps in the pupil size plot indicate times at which 

the WAM-5500 did not collect and record this data. The accommodation spike at 43 seconds is a blink artefact. 

 

 

 

Pupil diameter measured 
using digital callipers 

Pupil diameter determined Difference between WAM-
5500 and digital calliper 
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(mm) by WAM-5500 (mm) pupil diameter (mm) 

4.49 ± 0.01 4.30 ± 0.00 -0.13 

5.14 ± 0.01 5.30 ± 0.00 +0.16 

5.95 ± 0.00 6.27 ± 0.06 +0.32 

7.46 ± 0.02 7.60 ± 0.02 +0.14 

 
Table 2.3. Accuracy of WAM-5500 pupil diameters assessed using calibrated artificial pupils. Three measures 

were taken using the two techniques on each artificial pupil .The mean bias of WAM-5500 pupil measures was 

+0.11 ± 0.19 mm. 

 

2.3.1c Discussion 

The WAM-5500 enables rapid, automatic and simultaneous acquisition of refractive, pupil 

size and keratometric data. Generally good agreement was found between the refractive 

techniques, with 57 % of WAM-5500 MSE values and 74 % of cylindrical components falling 

within ± 0.25 D of the subjective results. Similar levels of validity have been demonstrated 

with alternative autorefractors (McBrien and Millodot, 1985; Mallen et al., 2001; Davies et 

al., 2003; Cleary et al., 2009). The significant underestimation of hyperopia by the WAM-

5500 in a small number of subjects, compared to subjective refraction (Figures 2.2a and 

2.2b), is likely due to their accommodation not being fully relaxed, despite the binocular, 

open-view design of the WAM-5500. McBrien and Millodot (1985) suggest a green spotlight 

as an effective target to relax accommodation when using an open-view autorefractor.  

 

Accurate determination of cylinder axis by the WAM-5500 was notably improved for levels of 

astigmatism ≥ 0.75 D (Table 2.1.), where precise axis location is vital, as significant errors 

are likely to have > 0.1 logMAR effect on distance acuity. Corneal curvature data showed 

close agreement in terms of axis between the WAM-5500 and traditional keratometry, with 

half of all objective axes within ± 5° of those found with the Javal-Schiotz keratometer. There 

was a negative bias of approximately -0.05 mm (in both horizontal and vertical meridians) in 

corneal radii of curvature measured by the WAM-5500 compared to Javal-Schiotz 

keratometry, which is unlikely to affect soft contact lens  choices, but could be important 

when selecting appropriate rigid gas permeable lenses, where back optic zone radii are 

generally specified in 0.05 mm steps. 

 

Intertest repeatability of the WAM-5500 was high, with 75% of spherical components, 66% 

of cylindrical components, and 73 % of MSEs falling within ± 0.25 D of the initial 

measurement on retesting. These values compare favourably with other commercially 

available autorefractors (Mallen et al., 2001; Davies et al., 2003; Cleary et al., 2009). 
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As well as being a valid, repeatable and rapid autorefractor for use in general optometric 

practice, the additional features of the WAM-5500 make it a potentially valuable tool for 

accommodation research. Preparing the instrument for dynamic recording of refraction and 

pupil size is simple and quick, with no requirements for significant user modification of the 

machine or bespoke software, as may be necessary with alternative autorefractors (Pugh 

and Winn, 1988; Wolffsohn et al., 2004). Straightforward recording of dynamic refractive and 

pupil size data may be beneficial in post-operative evaluation of the performance of 

implanted accommodating intraocular lenses, as true accommodative dioptric power 

changes could be distinguished from pseudo-accommodation which may result from an 

increased depth of focus e.g. due to pupil miosis (Wold et al., 2003; Glasser, 2008). Despite 

this potential use of the WAM-5500 in accommodation research, the temporal resolution of 

4.2- 4.8 Hz is too low to enable evaluation of accommodative microfluctuations. The 

characteristics, source and role of these microfluctuations have received much research 

interest over recent years (e.g. Charman and Heron, 1988; Winn and Gilmartin, 1992; Heron 

and Schor, 1995; Stark and Atchison, 1997; Gray et al., 2000; Day et al., 2006). Sampling 

well above the Nyquist frequency, which is twice the highest frequency of interest present in 

the signal, is necessary to avoid errors in studying accommodative microfluctuations (Pugh 

et al., 1987). Previous studies have used sampling rates of 35 Hz and above (Gray et al., 

1993a Heron and Schor, 1995; Stark and Atchison, 1997; Day et al., 2006), which is far 

higher than currently possible with the WAM-5500. Furthermore, the possible research uses 

of the instrument could be extended by the manufacturer in future designs by modification of 

the instrument head to allow measurement of a wider range of peripheral refractive errors. 

Peripheral refraction is believed to be relevant in eye development and myopia progression 

(Hoogerheide et al., 1971; Atchison et al., 2006; Mutti et al., 2007; Davies and Mallen, 2009) 

and consequently, interest in the measurement of these off-axis refractions has recently 

grown (Fedtke et al., 2009). The present binocular open-view design allows measurement of 

peripheral refraction to a horizontal eccentricity of around 30° only, due to the casing that 

frames the viewing window. Modification of the design of the viewing window could allow the 

maximum peripheral testing angle to be extended to levels greater than 30º, which is 

possible using alternative techniques such as peripheral retinoscopy (Anderson and Thibos, 

1999) and manual optometers (Millodot, 1981).  

 

Thus, the WAM-5500 Auto Ref/ Keratometer represents a reliable and valid objective 

refraction tool for both general optometric practice and research allowing collection of data 

including on-axis and peripheral refraction, pupil diameter and low temporal frequency 

dynamic recordings. 
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2.4. Instrumentation for in vivo imaging of ocular accommodation  

Imaging may be defined as the visual representation of an object, typically in the form of an 

objective recording (Wolffsohn and Peterson, 2006). Following the advent of retinal 

photography in the late nineteenth century (Jackman and Webster, 1886), a range of 

advanced techniques have been developed to image ocular structures. The ability to 

visualise and objectively record both internal and external regions of the eye is important for 

detecting, monitoring and recording ocular disease, abnormality and trauma 

(Konstantopoulos et al., 2007; Wolffsohn and Davies, 2007b; Nolan, 2008). Additionally, the 

use of these techniques as research tools enables a better understanding of the anatomy 

and physiology of ocular structures, particularly when in vivo imaging is possible. The ability 

to visualise the active human accommodative apparatus in vivo is advantageous, as in vitro 

investigations may be affected by post mortem tissue changes (Weale, 1999; 

Kasthurirangan et al., 2008) in addition to storage and handling processes (Strenk et al., 

2004; Werner et al., 2008). 

 

The key techniques currently employed for in vivo imaging of the accommodative structures 

that also permit quantification of biometric changes are Scheimpflug imaging (Brown, 1972; 

Brown, 1974a; Koretz et al., 2001; Dubbleman et al., 2005); ophthalmophakometry  (Phillips 

et al., 1988; Kirschkamp et al., 2004); ultrasound biomicroscopy (UBM; Beers and Van der 

Heijde, 1994; Van der Heijde et al., 1996); AS-OCT (Baïkoff et al., 2004b; Baϊkoff et al., 

2005; Davies et al., 2008; Richdale et al., 2008) and high-resolution MRI (Strenk et al., 

1999; Strenk et al., 2006; Jones et al., 2007).  

 

2.4.1. Scheimpflug Imaging 

Scheimpflug devices use a camera perpendicular to a slit-beam creating an optic section of 

the cornea and crystalline lens to image the anterior segment (Koretz et al., 2004). The 

technique has been used to assess corneal thickness (Morgan et al., 2002) and topography 

(Abad et al., 2007), anterior chamber depth (Buehl et al., 2006) and lens surface curvatures 

(Koretz et al., 2001), in addition to evaluating intraocular lenses (de Castro et al., 2007). An 

unprocessed Scheimpflug image is subject to two types of distortion; the first is due to the 

geometry of the Scheimpflug system and the tilt of the camera and can be remedied easily 

(Dubbleman et al., 2005). The other mode of distortion arises because optical structures are 

imaged through the preceding optical surfaces (Wolffsohn and Davies, 2007b) and is not 

constant, varying with factors including corneal curvature, anterior chamber depth and lens 

curvature. Previous studies of anterior segment biometry have not always corrected for this 

second type of distortion. 
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Scheimpflug photography was employed by Brown during the 1970s to conduct his 

pioneering research into accommodation and lens ageing. Increases in lens thickness and 

surface curvatures with accommodation and ageing were established (Brown, 1972; Brown, 

1974a). More recent studies, utilising Scheimpflug images corrected for both types of 

distortion have demonstrated that the anterior lens surface assumes a more hyperbolic 

shape during accommodation and the lens equivalent refractive index increases by 0.0013 ± 

0.0009 per dioptre of accommodation (Dubbleman et al., 2005). Scheimpflug evaluation of 

the lens internal structure determined that increased lens thickness with accommodation is 

due solely to changes in the lens nucleus, the cortical thickness remaining constant. 

Additionally, the increased thickness of the cortex with age is attributable to changes in the 

C2 zone only. Zones C1 and C3 do not alter appreciably with age (Dubbleman et al., 2003). 

 

Recent Scheimpflug imaging systems, such as the Pentacam (Oculus, Germany) are able to 

create three-dimensional representations of the anterior chamber by rotating around the 

visual axis and acquiring multiple images (Rabsilber et al., 2006). Although excellent quality 

images may be obtained non-invasively (Baϊkoff, 2006), Scheimpflug imaging does not 

permit visualisation of the lens equator, zonular fibres and ciliary body as these structures 

are screened by the iris (Koretz et al., 2004). 

 
2.4.2. Ophthalmophakometry 

Since their initial description in 1832, the Purkinje images reflected from the anterior and 

posterior corneal surfaces (PI and PII, respectively) and the anterior and posterior lens 

surfaces (PIII and PIV, respectively), have been utilised to measure properties of the cornea 

and crystalline lens (Rosales and Marcos, 2006; de Castro et al., 2007). Linear equations 

have been proposed (Phillips et al., 1988) that relate the positions of PI, PIII and PIV relative 

to a central reference point (e.g. pupil centre), as a function of eye rotation and also 

crystalline lens tilt and decentration. More recent studies have provided validation of this 

methodology (Barry et al., 2001) and employed the linear equations. Ocular surface 

alignment appears to be independent of accommodative state (Kirschkamp et al., 2004) and 

it is possible using only ophthalmophakometry to non-invasively assess corneal and 

crystalline lens alignment (Dunne et al., 2005). The tilt and decentration of both the natural 

crystalline lens (Dunne et al., 2005) and implanted IOLs (de Castro et al., 2007) have been 

assessed using ophthalmophakometry. 

 

2.4.3. Ultrasound Imaging 
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Ophthalmic ultrasound imaging is a contact technique based on the reflection of high 

frequency acoustic pulses, generated by piezoelectric components (Wolffsohn and Davies, 

2007b), from ocular tissue interfaces and the resultant detection of reflected sound waves 

(Konstantopoulos et al., 2007) to generate an A-scan. B-scan sectional imaging is facilitated 

by scanning the probe across the eye. High frequency ultrasound biomicroscopy (UBM) of 

the anterior segment has been in use since the early 1990s (Pavlin et al., 1992) and utilises 

an approximately 50 MHz transducer (compared to 10-20 MHz for whole-eye 

ultrasonography) to image ocular structures, permitting visualisation behind opaque 

corneas. Higher frequency UBM permits a tissue penetration of just 4-5 mm, but with 

improved resolution: axial resolution is around 25 µm and transverse resolution 

approximately 50 µm (Nolan, 2008). UBM typically requires the subject to be supine as the 

eye is immersed in a saline bath using an eye cup positioned directly onto the globe, which 

can be uncomfortable for the patient and may also potentially distort angle structures 

(Konstantopoulos et al., 2007).  High frequency UBM has been employed in recent studies 

to assess the movement of implanted IOLs (Muftuoglu et al., 2005; Stachs et al., 2006).  

 

A-scan ultrasound imaging enables accommodative changes in lens thickness (LT), anterior 

chamber depth (ACD) and anterior segment length (LT + ACD) to be measured. Static 

ocular biometric changes with accommodation induced either pharmacologically or by 

Edinger-Westphal nucleus electrical stimulation, have been assessed with A-scan 

ultrasonography in rhesus monkeys (Koretz et al., 1987a). Continuous A-scan ultrasound 

biometry has enabled measurement of dynamic accommodative biometric changes in 

humans (Van der Heijde et al., 1996) and rhesus monkeys (Vilipuru and Glasser, 2005). 

However, human studies involving natural accommodative responses, induced by viewing 

near targets, are hindered by the problem of the ultrasonography probe covering the eye 

being measured meaning it is not possible to simultaneously record accommodative 

refractive and biometric changes in the same eye (Van der Heijde et al., 1996; Vilipuru and 

Glasser, 2005). 

 

 

 
2.4.4. Anterior Segment Optical Coherence Tomography 
OCT enables non-invasive in vivo cross-sectional imaging of ocular structures (Baïkoff, 

2006; Wolffsohn and Davies, 2007a; Werner et al., 2008). The technique is available for 

retinal or anterior segment imaging (Drexler and Fujimoto, 2007). Since the first device 

became commercially available in 1995, OCT has been used extensively for evaluation of 

retinal disease (Drexler, 2007), including diabetic retinopathy (Polito et al., 2006), macular 
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hole (Bakri et al., 2007) and macular degeneration (Pieroni et al., 2006) as the technique 

allows sectioning through the retinal layers (Wolffsohn, 2008). Anterior segment OCT is a 

more recent development, first conceived in 1994 (Izatt et al., 1994), becoming a reality in 

2001, when a high speed AS-OCT providing good quality images became available. 

Clinically, AS-OCT has a range of applications, including determination of corneal thickness 

(Li et al., 2006) and anterior chamber depth (Baïkoff et al., 2004a; Baϊkoff, 2006), accurate 

sizing of phakic IOLs (Goldsmith et al., 2005), evaluation of implanted IOLs (Wirbelauer et 

al., 2005; Baϊkoff, 2006), corneal grafts (Ardiomand et al., 2007) and trabeculectomy blebs 

(Singh et al., 2007) and the detection of angle-closure glaucoma (Radhakrishnan et al., 

2005; Nolan et al., 2007). 

 

OCT technology utilises a light source split into a reference beam, which undergoes 

reflection by a mirror, and a measurement beam that is reflected by the ocular structures 

(Wolffsohn, 2008). If light from the reference beam and the measurement beam travel 

identical optical distances before being recombined, coherent (positive) interference occurs, 

which is measured by an interferometer (Wolffsohn and Davies, 2007b). Varying the optical 

length of the reference path at each scanning spot determines the axial depth of tissues, 

building an A-scan. The scanning spot moves laterally across the eye, and multiple A-scans 

are aligned to construct a two-dimensional cross-sectional image that may be measured or 

used for diagnostic purposes. The AS-OCT light source is a long wavelength (1310 nm) 

superluminescent diode. The longer wavelength (compared to 830 nm for retinal imaging) 

affords better penetration of light-scattering tissues such as the sclera, thus the iridocorneal 

angle and ciliary body can be visualised (Konstantopoulos et al., 2007). However, the 

pigmented iris blocks the 1310 nm wavelength, preventing imaging of the lens equator and 

zonules (Wolffsohn and Peterson, 2006). 

 

Currently, two AS-OCT instruments are commercially available (Nolan, 2008): the Visante 

stand-alone OCT (Carl Zeiss Meditec Inc., Dublin, CA, USA) and the slit-lamp OCT 

(Heidelberg Engineering, GmbH, Heidelberg, Germany) which combines a slit-lamp and AS-

OCT. Only the former of these devices is employed in the investigations detailed in the 

thesis, so the slit-lamp OCT will not be considered further, although many of the following 

details and issues are relevant to both machines. The Visante OCT offers standard imaging 

and high resolution corneal imaging modes. Standard mode utilises 256 A-scans per line 

sampling, with an image width of 16 mm, and depth of 6 mm (Zeiss, 2006) to provide a 

broad view of the anterior segment. High resolution 10 mm x 3 mm corneal scanning 

employs 512 A-scans per line sampling. Scanning is rapid, with up to 2048 A-scans per 
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second, and according to the manufacturer, optical axial and transverse resolutions are 

down to 18 µm and 60 µm, respectively.   

 

 
Figure 2.9. The Zeiss Visante AS-OCT showing a cross-sectional scan of the anterior segment, including the 

cornea and anterior portion of the crystalline lens. 

 

Any technique involving the passage of light or sound waves through media with curved 

surfaces and varying refractive indices is subject to optical distortion (Wolffsohn, 2008), and 

AS-OCT is no exception. The in-built Visante software (versions 1.0 or 2.0) reduces this 

distortion by using edge detection algorithms to identify and fit the corneal surfaces and 

subsequently assigns appropriate refractive indices to each portion of the image- an index of 

1.000 (air) is applied to the region anterior to the cornea, 1.338 (cornea) for the area within 

the corneal boundaries, and 1.343 (aqueous humour) for structures posterior to the cornea. 

Despite the improved accuracy provided by the software for measuring the ocular 

components, compared to using uncorrected images, some error remains. A relatively 

recent study (Dunne et al., 2007) utilising physical model eyes with known dimensions 

determined, for example, that corneal thickness is overestimated by approximately 60 µm 

with the AS-OCT software; this represents a significant inaccuracy given that central corneal 

thickness is generally in the region of 550 µm (Lackner et al., 2005; Buehl et al., 2006). AS-

OCT instrument distortion correction factors have been derived to reduce the errors in 

measurement of axial distances, and a scheme developed to enable determination of 

surface curvatures with clinically-acceptable accuracy (Dunne et al., 2007). 
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AS-OCT is a useful modality for assessing anterior eye changes with accommodation. The 

image capture procedure is non-contact and simple to perform, with the patient seated and 

fixating an internal pinwheel target. Target vergence is adjustable in 0.25 D increments to 

compensate for the subject’s spherical equivalent refractive error, or to provide an 

accommodative stimulus for the eye being imaged (Baïkoff et al., 2004a; Baïkoff et al., 

2004b; Richdale et al., 2008). Despite the lens equator and zonules not being visible, a 

variety of factors which may vary with accommodation can be measured from the cross-

sectional images obtained, including anterior chamber depth in phakic and pseudophakic 

eyes (Baïkoff et al., 2004b; Davies et al., 2008), lens axial thickness (Baïkoff et al., 2004a; 

Davies et al., 2008; Richdale et al., 2008) and surface curvatures (Dunne et al., 2007), pupil 

diameter (Baïkoff et al., 2004a) and ciliary body thickness (Bailey et al., 2008). The supplied 

Visante software includes a calliper tool, allowing anterior segment dimensions (but not 

curvatures) to be rapidly determined, without the need for exporting images from the 

machine.  

 

To date, relatively few studies have utilised AS-OCT to examine ocular biometric changes 

with accommodation despite its relative ease of use and potential for measuring a wide 

range of variables. Table 2.4 summarises notable AS-OCT investigations into 

accommodation. In addition to quantifying the expected increase in lens thickness with age 

(Richdale et al., 2008) and accommodation (Baïkoff et al., 2004a; Davies et al., 2008; 

Richdale et al., 2008), Davies et al., (2008) demonstrated using AS-OCT data that 

accommodative biometric changes appear to be non-linear and biphasic. Forward shifting of 

the anterior lens surface was identified as the primary accommodative change until 

approximately 1.5 D response, with minimal movement of the posterior surface. Beyond 1.5 

D response, the posterior lens surface moved backwards, but to a lesser degree than the 

forwards movement of the anterior surface. Schachar and Koivula (2008) analysed the light 

intensity of the anterior lens surface in a small cohort of subjects implanted with phakic 

IOLs. Increased reflectance of light from the anterior lens surface was observed with 

accommodation. The authors postulated that this change was due to increased zonular 

tension with ciliary muscle contraction, leading to greater stress on the anterior lens surface, 

and contradicting the Helmholtzian theory of accommodation.  
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Author & study title Cohort 
characteristics 

Results Implications 

Baïkoff et al. 2004 

Static and dynamic analysis of 
the anterior segment with optical 
coherence tomography. 

n = 56 

(range 7 – 82 years) 

Per dioptre of accommodative stimulus, the 
crystalline lens anterior pole moves 
forwards by 30 µm, pupil diameter 
decreases by 0.15 mm and anterior lens 
radius of curvature steepens by 0.3 mm. 

AS-OCT is a useful, relatively simple method 
of examining biometric changes with 
accommodation. 

Good image quality is possible even with 
opacified corneas. 

Davies et al. 2008 

In vivo biometric evaluation of 
phakic and pseudophakic eyes 
during accommodation with 
optical coherence tomography. 

n = 32 phakic (aged 
18 – 36 years) and 
15 pseudophakic 
(aged 44- 85 years) 
implanted with the 
Kellen Tetraflex 
accommodating IOL 

Lens thickness increases by 72.6 µm/ D 
accommodation in the phakic cohort. 
Biometric changes demonstrated a non-
linear biphasic response. Anterior chamber 
depth (ACD) decreases by 52.8 µm/ D and 
increases by 353.8 µm/ D in the phakic and 
pseudophakic groups, respectively. 

Crystalline lens biometric changes, 
particularly regarding the posterior lens 
surface (PLS) are non-linear and biphasic. Up 
to 1.5 D response, forwards movement of the 
anterior lens surface (ALS) is the main 
component of the response- after this point, 
backward shift of the PLS also contributes 

Richdale et al. 2008 

Lens thickness with age and 
accommodation by optical 
coherence tomography. 

n = 22 (range 36 – 50 
years) 

Lens thickness increases by 51 ± 19 µm/ D 
of accommodation and increases with age 
by 21 µm/ year.  

Lens thickness changes reported compare 
well with previous ultrasound and Scheimpflug 
measures. 

Schachar and Koivula, 2008 

The stress on the anterior lens 
surface during human in vivo 
accommodation. 

n = 9 (range 25 – 38 
years), all implanted 
with a phakic 
refractive IOL 

Stress on the lens capsule was inferred 
from the intensity of light reflected from this 
structure on AS-OCT images. During 
accommodation, the intensity of the anterior 
lens surface increased significantly, 
suggesting an increase in zonular tension 

Contradicts the Helmholtzian mechanism of 
accommodation, implying that zonular tension 
increases with accommodation. 

Table 2.4. Summary of notable previous studies that have utilised AS-OCT to analyse ocular biometric changes with accommodation. 
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2.4.5. Magnetic Resonance Imaging 
Unlike other imaging techniques, high-resolution MRI enables in vivo visualisation of the 

whole crystalline lens and its relationship with other anterior segment structures (Strenk et 

al., 1999; Strenk et al., 2006). Soft tissue contrast is excellent, and images free from optical 

distortion can be acquired in any plane (Strenk et al., 2004; Jones et al., 2007). Clinically, 

MRI has been used in the diagnosis and management of a number of ocular disorders, 

including space-occupying lesions (Ben Simon et al., 2005), soft tissue injury (Kolk et al., 

2005), extraocular muscle abnormalities (Sa et al., 2005) and congenital abnormalities 

(Chaudhry et al., 2007). Despite a number of advantages, the clinical and research 

applications of MRI have been limited (Singh et al., 2006), partly due to its expense (Strenk 

et al., 2006; Wolffsohn and Davies, 2007b).  

 

MRI uses the principle of nuclear magnetic resonance to image the internal structures of the 

body (Wolffsohn and Davies, 2007b). The nuclear spins of protons within tissues usually 

have no fixed orientation, but when surrounded by a strong magnetic field, for example, 

when a patient enters an MRI scanner, the nuclear spins tend to align along the field 

(Hornak, 2008). Application of a radiofrequency (RF) pulse with a specific frequency results 

in the spins being flipped out of the longitudinal plane, and into the transverse plane; a 90° 

RF pulse application (Liney, 2005a). When the pulse terminates, the RF coil is able to detect 

a spatially localised signal as the spins dephase (T2 decay and T1 recovery) and return to 

their initial state of equilibrium (T1 relaxation). The intensity of the signal is dependent on 

several factors, including the RF pulse and varying magnetic field gradient, in addition to 

tissue characteristics and proton density. Application of linear changes to the magnetic field 

enables an image to be constructed. 

 

The appearance of various tissues and how an image is weighted is governed by pulse 

sequences controlling the RF pulse. MRI images may be T1-weighted, T2-weighted or proton 

density-weighted (Liney, 2005a; Hornak, 2008). Normal soft tissue structures are shown 

optimally on T1-weighted images; fat appears bright, whilst water and fluids appear as 

intermediate signal intensity. T1-weighted images can be acquired with relatively fast 

scanning times (Obata et al., 2006). T2-weighted images (e.g. Figure 2.10) show optimally 

fluids and pathology (including inflammation or tumours), with fluids appearing bright and fat 

dark. Proton density-weighted images minimise T1 and T2 weighting, with signal contrast 

dependent only on the density of spins within a tissue. 
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Fig. 2.10. Axial T2- weighted MR image of both eyes and surrounding structures from a subject aged 26 years. 

The fluid filled chambers of the eye appear hyperintense, whilst the crystalline lenses are dark. 

 

MRI is a safe imaging modality, involving no ionising radiation. The magnetic fields required 

for MRI are very powerful, typically 0.3 to 3 Teslas (compared to the Earth’s average 

magnetic field strength of 50 picoTeslas; Wolffsohn and Davies, 2007) and implanted metal 

in devices including pacemakers and cochlear implants, represent the main contraindication 

to the technique. Ferromagnetic material can become displaced causing injury to internal 

organs and may also lead to imaging artefacts (Hornak, 2008). 

 

Since the late 1990s, high-resolution two-dimensional (2D) MRI has been employed in a 

range of in vitro and in vivo investigations related to accommodation and accommodative 

structures. In vitro MRI studies of isolated crystalline lenses have provided some important 

information regarding optical and physical lenticular changes with age. Refractive index 

maps of excised human crystalline lenses generated from high-resolution MR images, have 

indicated an age-dependent flattening of the central profile and steepening of the equatorial 

peripheral region, with a possible reduction in the index of the nucleus (Moffat et al., 2002; 

Jones and Pope, 2004; Jones et al., 2005), providing a plausible explanation for Brown’s 

lens paradox (Brown, 1974a; Brown, 1974b).  A primary advantage of in vitro lenticular 

studies is the fact that lenses may be carefully aligned within the scanner and long scan 

times are not a problem as there is no potential for motion artefacts due to blinking or 

fixational eye movements (Kasthurirangan et al., 2008). However certain methodological 
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problems are associated with in vitro studies, including tissue handling and storage, and 

post mortem deformation of the lens (Weale, 1999; Koretz et al., 2004; Ziebarth et al., 

2008). Additionally, zonular tension is absent in the excised lens and it is not possible to 

obtain information on physiological changes with accommodation, or the relationship of the 

lens with other anterior eye structures (Jones et al., 2005; Jones et al., 2007). 

 

In vivo MRI studies into accommodation have exploited the fact that it is possible to present 

stimuli of varying accommodative demands within the confines of the scanner, using targets 

positioned in close proximity to the eyes (Strenk et al., 1999; Jones et al., 2007; 

Kasthurirangan et al., 2008) or minus-powered trial lenses to view a distant target through a 

mirror (Hermans et al., 2009). The resultant changes to the accommodative structures in 

one or both of a subject’s eyes may be imaged. All previous MRI studies of accommodation 

have utilised a distant target of minimal accommodative demand, in addition to a single near 

stimulus with a vergence close to, or exceeding, the accommodative amplitude of the 

subjects. Such an approach may have represented the only option to visualise the 

physiological changes that occur with accommodation if there were imaging limitations 

arising from poor signal to noise ratios (SNRs) or in-plane resolution. However, use of just 

two demand levels provides no information relating to the dose-effect of accommodative 

structural changes with varying stimulus vergence. 

 

The key findings of these in vivo studies include more evidence to support the Helmholtzian 

mechanism of accommodation, as increased lens axial thickness with accommodation 

appears to be accompanied by a concurrent reduction in equatorial diameter (Strenk et al., 

1999; Jones et al., 2007; Hermans et al., 2009). With both accommodation and advancing 

age, increases in the cross-sectional area of the crystalline lens are confined to its anterior 

portion. Posterior lens cross-sectional area appears to be independent of both age and 

accommodation (Strenk et al., 2004). Significantly, 2-D MRI studies have demonstrated that 

although the ciliary ring diameter decreases with age, the ciliary muscle maintains its 

contractile ability long after the development of presbyopia (Strenk et al., 1999; Strenk et al., 

2006). The lenticular theory of presbyopia is supported by this finding, which may also have 

implications for attempts to restore accommodative function to presbyopic eyes. 

 

With the exception of the Hermans et al., (2009) study, all of the in vivo accommodative MRI 

studies have imaged a single, 3 mm thick axial slice of the eye in its relaxed and 

accommodated states. Some debate exists over the validity of this 2-D approach, as it is 

possible that the MRI acquisition planes could vary as a result of subject head motion and 

the natural convergent and excyclotorsional eye movements that accompany 
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accommodation, leading to erroneous conclusions to be drawn regarding the magnitude of 

the physiological changes observed (Pope et al., 2008; Schachar et al., 2008). Furthermore, 

Demer et al. (2003) imaged the human extraocular muscles of 8 subjects during 

accommodation and convergence using this method and found no statistically significant 

difference in equatorial lens diameter between the relaxed and accommodated states. 

 

To negate problems associated with finite slice thickness in 2-D imaging, three-dimensional 

(3-D) MRI techniques have been proposed to image the accommodative structures (Strenk 

et al., 1999; Singh et al., 2006; Hermans et al., 2009; Langner et al., 2010). Singh et al., 

(2006) first described the shape of the whole eye in 3-D following acquisition of MRI data 

with high resolution in all three directions. Previous authors had only surmised 3-D shape 

from several 2-D slices (e.g. Cheng et al., 1992; Chau et al., 2004; Atchison et al., 2005). A 

3-D approach to analysing the accommodative structures with high-resolution MRI would 

remove the error associated with finite slice thickness and provide more robust data 

regarding change in lens equatorial diameter with age and accommodation, in addition to 

addressing the question of lens volume and surface area. To date, one previously published 

study has used 3-D MRI to analyse these factors with varying stimulus demand. On a cohort 

of five young subjects, Hermans et al., (2009) inferred lens volume from 3-D MRI data 

divided into eight parts. A Canny filter was applied to determine the lenticular boundaries in 

these regions, allowing a subsequent calculation of volume. No change in lens volume was 

measured between relaxed and maximal accommodative effort, whilst lens equatorial 

diameter decreased with accommodation. Two further recent studies (Richdale et al., 2009; 

Langner et al. 2010) have used ultra-high field 7-Tesla MRI to image the ocular structures in 

3-D. Richdale et al. (2009) utilised a voxel size of 0.038 mm3 to examine the in vivo human 

eye. However, field variability from the air-tissue interface along the eyelid margin at 7 T 

resulted in considerable image artefacts, thus it was necessary to tape the eyelids closed. 

Whilst the high-resolution images obtained could provide information regarding structural 

changes with age, the closed eye environment currently limits the application of this 

approach in accommodation research.  Langner et al. (2010) assessed the anterior segment 

of several species, including humans, ex vivo, and the rabbit eye in vivo at 7.1 T, providing 

data on lens volume and surface area. The techniques described in this investigation could 

not be applied to human eyes in vivo due to the small inner tube diameter (200.5 mm) of the 

ultra- high field scanner. Furthermore, the 30 minute scan acquisition time would be 

unsuitable for assessing multiple vergence demand levels. 
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2.5. Summary 

Both AS-OCT and high-resolution MRI are potentially valuable tools in accommodation 

research. AS-OCT is widely available and comfortable for subjects, but is affected by optical 

distortion and does not allow visualisation of the lens equator. Despite its expense, MRI 

overcomes these disadvantages, allowing imaging of the entire lens and its surrounding 

structures. MRI scanning protocols do require careful planning to permit high resolution and 

SNRs, whilst maintaining reasonable scan acquisition times. Regardless of the imaging 

technique(s) used, it is important to measure the objective accommodative responses to 

enable accurate quantification of the change in biometric variables per dioptre of 

accommodation. 

 

 

 

Supporting publication: Sheppard, A. L. and Davies, L. N. (2010a). Clinical evaluation of 

the Grand Seiko Auto Ref/ Keratometer WAM-5500. Ophthalmic and Physiological Optics. 

30, 143-151.  
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CHAPTER 3 

IN VIVO ANALYSIS OF CILIARY MUSCLE MORPHOLOGICAL 

CHANGES WITH ACCOMMODATION AND AXIAL AMETROPIA 
 

3.1. Introduction   

The exact mechanism of accommodation and the changes in the accommodative apparatus 

that lead to presbyopia are yet to be elucidated. Despite over 150 years of continuing 

research since von Helmholtz (1855) proposed his classical theory of accommodation, 

precise details of factors including how ciliary muscle contraction influences zonular tension, 

and the roles of the posterior zonules, iris and vitreous body remain unclear (Coleman, 

1986; Atchison, 1995; Croft et al., 2001; Charman, 2008). The process of accommodation is 

undisputedly governed by ciliary muscle contraction (von Helmholtz, 1855; Glasser et al., 

2006; Ostrin and Glasser, 2007a), with the resultant forward and inward shift of its mass 

towards the lens equator causing a reduction in zonular tension (Glasser and Kaufman, 

1999; Charman, 2008), allowing the elastic capsule to mould the young lens into a thicker, 

more convex and dioptrically powerful form (von Helmholtz, 1855; Ehrmann et al., 2008). 

  

To gain a more complete understanding of the mechanism of accommodation, the structure 

and function of human and animal (particularly primate) ciliary muscle has been examined in 

detail by previous authors using both in vitro and in vivo techniques. The position of the 

ciliary body, screened by the iris, has traditionally hindered in vivo observation of its 

morphology and accommodative movements (Pardue and Sivak, 2000; Strenk et al., 2006; 

Park et al., 2008). In vivo primate studies, utilising iridectomised animals allow direct 

visualisation of the ciliary muscle and its relationship with the lens equator (Neider et al., 

1990). The rhesus monkey (Macaca mulatta) is considered to be the optimum animal model 

for the study of human accommodation due to close similarities in accommodative 

structures (Koretz et al., 1987b; Ostrin and Glasser, 2007b) and mechanism (Koretz et al., 

1987a; Glasser and Kaufman, 1999; Glasser et al., 2006), and the development of 

presbyopia on comparable relative timescales (Bito et al., 1982; Kaufman et al., 1982; 

Wasilewski et al., 2008). Furthermore, implantation of an electrode into the Edinger-

Westphal nucleus, which provides parasympathetic innervation of the ciliary muscle via the 

ciliary ganglion, permits accurate control of both the amplitude and duration of the 

accommodative response by application of a controlled stimulus current (Crawford et al., 

1989; Neider et al., 1990; Vilipuru and Glasser, 2005). Studies utilising Edinger-Westphal 

stimulation of accommodation in the rhesus monkey have demonstrated linear associations 

between accommodative response and various ocular biometric correlates including anterior 
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chamber depth and lens thickness (Vilipuru and Glasser, 2005), and movements of the 

ciliary processes and lens edge (Ostrin and Glasser, 2007a). Further studies have 

concluded that whilst the ciliary body maintains much of its ability to move centripetally with 

accommodative effort (Croft et al., 2008), the forward shift of the ciliary body is lost with age 

in the rhesus monkey (Croft et al., 2006a; Croft et al., 2009). Glasser et al. (2001) performed 

ultrasound biomicroscopy of the ciliary region in cyclopleged monkeys in vivo, revealing 

several significant nasal versus temporal biometric asymmetries. The ciliary body was found 

to be longer, with a larger area and greater zonule length temporally, compared to the nasal 

aspect. To date, nasal/ temporal asymmetry of the ciliary body has not been detected in vivo 

in humans.  

 

In vitro monkey studies have analysed post-mortem ciliary muscle sections to attempt to 

identify age-dependent changes, which could contribute to the development of presbyopia. 

Isolated ciliary muscle strips from both young and presbyopic monkeys continue to contract 

in response to pharmacological agents (Tamm et al., 1992b; Poyer et al., 1993) and there is 

no decrease in the quantity or affinity of muscarinic receptors with age (Bito et al., 1982). 

However, presbyopic monkey samples in which the posterior attachment of the ciliary 

muscle is intact do not contract in response to muscarinic agonists (Tamm et al., 1992b).  

Additionally, the elastic tendons forming the posterior attachments become thicker with age 

and show increased levels of microfibrils (Tamm et al., 1991). These findings indicate that 

decreased compliance of the posterior insertion of rhesus monkey ciliary muscle, which is 

essential to allow its forwards and inwards accommodative movement and the restoration of 

its position during disaccommodation (Tamm and Lütjen-Drecoll, 1996), could be an 

important factor in the development of presbyopia.  

 

In humans, analysis of post-mortem ciliary body tissue from eyes exposed to high doses of 

pharmacological agents before dissection has demonstrated that the muscle maintains its 

ability to contract throughout life (Pardue and Sivak, 2000). Eyes from donors of 1 day to 

107 years of age exhibited shortening of the ciliary muscle length and narrowing of the width 

at the thickest point in response to pilocarpine administration. Further in vitro studies have 

identified nasal versus temporal asymmetry in human ciliary body morphology, with the 

temporal aspect being significantly longer at all ages (Streeten, 1985; Aiello et al., 1992). To 

date, this nasal/ temporal disparity has not been observed in vivo. Total in vitro ciliary body 

length in adult subjects is approximately 4.79 mm nasally, and 5.76 mm temporally (Aiello et 

al., 1992). Table 3.1 summarises the key findings of significant in vitro and in vivo 

investigations of human ciliary muscle morphology. 

 



 72 

More recently, several investigations have employed ultrasound biomicroscopy to analyse in 

vivo the morphology and configurational changes of the human ciliary muscle with 

accommodation. In youthful eyes, with accommodative effort, Ma and Chen (2004) 

observed that the thickness of the anterior, but not the posterior, portion of the ciliary body 

increased. In presbyopic subjects, the contractility of the ciliary muscle (as inferred by its 

centripetal movement) in response to pilocarpine administration significantly increases 

following cataract extraction (Park et al., 2008). Lenticular sclerosis may, therefore, hinder 

ciliary body contractility by exerting tension via the zonules. The effects of cataract surgery, 

whereby the thickened, presbyopic lens mass is removed and a significantly thinner 

intraocular lens (IOL) is implanted into the capsular bag, which undergoes postoperative 

fibrosis and contraction, may alter anterior segment geometry in such a way to allow the 

centripetal movement to be restored. 
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Authors & study title Study type Cohort characteristics Key findings Implications 
Aiello et al. 1992 
Postnatal development 
of the ciliary body and 
pars plana  

In vitro histologic investigation n = 76 children’s eyes 
(donor ages 0 – 6 years) 
n = 5 adult eyes for 
comparison 

Mean CB lengths: 
Age <6 months = 3.06 mm 
(nasal), 3.31 mm (temporal) 
Adults = 4.79 mm (nasal), 5.76 
mm (temporal) 

Temporal ciliary body is longer than 
nasal at all ages. Ciliary body is 
substantial in length at birth, but 
continues to grow into adulthood. 
 

Pardue and Sivak, 
2000 
Age-related changes 
in human ciliary 
muscle 

In vitro  
Eyes treated with atropine or 
pilocarpine to simulate 
relaxed and accommodated 
ciliary muscle (CM) states. 
Eyes subsequently dissected 
and CM examined by light 
microscopy 

n = 16 pairs of eyes 
(donor ages 0 – 107 
years) 

Main pilocarpine induced 
change was shortening of CM 
at all ages. Mean CM length 
with atropine = 3.87 mm and 
with pilocarpine = 3.51 mm 

Isolated CM maintains its contractile 
ability throughout life and shortens 
with accommodation. 

Marchini et al. 2003 
Effects of 0.005 % 
latanoprost on ocular 
anterior structures and 
ciliary body thickness 

In vivo, with ultrasound 
biomicroscopy (UBM). Ciliary 
body (CB) morphology 
analysed before and after 
treatment with topical 
latanoprost 

n = 30 ocular 
hypertensives/ primary 
open angle glaucoma 
patients (mean age 59.3 
years) 

CB2 = 434 µm before 
treatment, and 536 µm after 
treatment 

Topical latanoprost causes CB 
thickening, supporting the theory of 
increased aqueous outflow through 
extracellular CM spaces to reduce 
intraocular pressure.  

Oliveira et al. 2005 
Ciliary body thickness 
increases with 
increasing axial 
myopia 

In vivo, with UBM  n = 75 (mean age 51.8 
years) 

Mean CB2 values vary with 
refractive error status: 
Myopes = 490 µm 
Emmetropes = 362 µm 
Hyperopes = 317 µm 

Strong association between CB2 
and refractive error. CB2 increases 
with axial length and myopia. 

Bailey et al. 2008 
Ciliary body thickness 
and refractive error in 
children 

In vivo, with anterior segment 
optical coherence 
tomography (AS-OCT) 

n = 53 children (mean 
age 11.8 years) 

Mean CB in myopes = 630 µm 
and emmetropes = 574 µm. 
CB2 strongly correlated with 
axial length and myopia 

Hypertrophy of ciliary muscle could 
be implicated in myopigenesis, as it 
could cause accommodative 
dysfunction which is central to the 
retinal defocus model of myopia 
development. 

Table 3.1. Key findings from in vitro and in vivo studies of human ciliary muscle morphology. CB2 is ciliary body thickness, measured 2 mm posterior to the scleral spur. 
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In addition to changes with accommodation, the morphologic characteristics of the ciliary 

muscle have been studied with regard to refractive error in vivo utilising ultrasound 

biomicroscopy (Oliveira et al., 2005; Muftuoglu et al., 2009) and AS-OCT (Bailey et al., 

2008). Oliveira et al. (2005) first reported increased ciliary body thickness in adults with 

high axial myopia, contravening the intuitive expectation that this structure would be 

attenuated in longer, more myopic eyes, and the findings of van Alphen (1986), who 

demonstrated significant thinning of human ciliary muscle with in vitro expansion of the 

globe. The association between axial myopia and greater ciliary body thickness has been 

confirmed in subjects with unilateral high myopia (Muftuoglu et al., 2009), and children 

aged 8 to 15 years (Bailey et al., 2008; Schultz et al., 2009), although the reason for this 

thickening is unclear. Bailey et al., (2008) suggest that ciliary muscle hypertrophy and 

thickening may lead to poorer contractile responses and the accommodative dysfunction 

which is central to the hyperopic defocus model of myopigenesis, where the resultant 

retinal defocus is accompanied by axial elongation and myopia (Hung and Ciuffreda, 

2000; Gwiazda et al., 2005; Langaas et al., 2008). However, it is not known whether 

accommodative dysfunction constitutes a cause or effect of myopia (Gwiazda et al., 1993; 

Mutti et al., 2006).  

 

The morphology and accommodative configuration of the human ciliary muscle is 

therefore of significant interest, in relation to the mechanism of accommodation and, as a 

consequence of recent findings, its link with refractive error. Whilst in vitro studies have 

furthered understanding of human and primate accommodation, the precise impact of post 

mortem tissue changes cannot be known (Strenk et al., 2004; Werner et al., 2008) and  

samples from dissected eyes may not represent normally-responding ciliary muscle. 

Additionally, the effects of ischaemia may alter the response of the muscle to topically-

applied pharmacological agents such as pilocarpine (Pardue and Sivak, 2000). Thus, in 

vivo approaches to analysing the ciliary body may be more valid, particularly because the 

entire accommodative apparatus remains intact. Hitherto, UBM has been most frequently 

used to acquire high resolution in vivo images of the relaxed and accommodating ciliary 

body in humans (e.g. Stachs et al., 2002; Marchini et al., 2003;  Ma and Chen, 2004; Park 

et al., 2008) and primates (e.g. Glasser et al., 2001; Croft et al., 2006a; Wasilewski et al., 

2008). However, the contact nature of the technique and requirement for the subject to be 

supine could potentially alter anterior segment geometry (Fledelius, 1997; 

Konstantopoulos et al., 2007).   

 

AS-OCT represents a relatively new methodology for imaging the anterior segment, 

including the ciliary body (Bailey et al., 2008; Schultz et al., 2009). The non-contact nature 
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of the technique is advantageous, and subjects can sit in a natural, upright position. In 

high-resolution corneal imaging mode, axial resolution of 8 µm is possible (Nubile et al., 

2008). Ocular biometric changes with accommodation, including anterior chamber depth, 

lens thickness and anterior segment length have been studied by previous authors 

(Davies et al., 2008; Richdale et al., 2008) using the Visante (Carl Zeiss Meditec Inc., 

Dublin, California, USA) device. However, Richdale et al. plotted accommodative 

biometric changes against stimulus, rather than response, which may lead to 

underestimation of physiological responses per dioptre of accommodation. Whilst the 

relaxed ciliary body has been imaged with AS-OCT to investigate the link between 

thickness and refractive error (Bailey et al., 2008; Schultz et al., 2009), no previously-

published study has analysed accommodative changes in this structure with AS-OCT.   

 

The aim of this in vivo study is to further the author’s previous work (Sheppard and 

Davies, 2009a; 2009b) and use AS-OCT to provide new data regarding human ciliary 

muscle morphology and accommodative characteristics. Furthermore, nasal versus 

temporal asymmetry in ciliary muscle morphology and response will be investigated, along 

with a possible link to axial ametropia.  

 

3.2. Methods  
3.2.1 Sample size estimation 

Prior to recruitment of subjects for the main study, a pilot investigation was conducted in 

order to highlight potential problems with the protocol and to acquire initial data to assist in 

the determination of required sample size for the project.  Pilot data were necessary for 

sample size estimation in this instance to determine standard deviations of the 

accommodative biometric measures (Eng, 2003), which have not previously been studied 

in this manner in vivo. Fifteen young subjects (mean age 23.2 ± 3.1 years) participated in 

the pilot study, and were imaged in both the relaxed state and at 4.0 D stimulus vergence. 

The differences in means between the two demand levels, and standard deviations of 

ciliary muscle thickness and length parameters were used in sample size calculations, 

carried out with SigmaPlot statistical and graphing software (Version 11, Systat Software 

Inc., Chicago, Illinois, USA). The maximum number of subjects required for any of the 

individual parameters was 23, which was therefore used as a minimum level for subject 

recruitment, to ensure adequate statistical power of results, and also to allow for attrition.  
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3.2.2 Subjects 

50 pre-presbyopic volunteers (29 female, 21 male), aged 19 to 34 years of age (mean age 

25.8 ± 4.5 years) with no previous history of ocular abnormality or intraocular surgery 

were recruited using email announcements at Aston University. Participants in the pilot 

study were remeasured during the main investigation, which took place several months 

later. Subjects with all types of refractive error were included, provided their prescription 

(including astigmatic component, if applicable) was amenable to correction with daily 

disposable soft contact lenses (Focus Dailies and Focus Dailies Toric: nelfilcon A, 69 % 

water content; Ciba Vision, Duluth, Georgia, USA). The parameter ranges for these 

contact lenses meant subjects with spherical refractive errors greater than -10.00 DS or 

+6.00 DS were excluded from the investigation, as were those with oblique cylinders > 

0.50 DC, or orthogonal cylinders > 1.50 DC. The study was approved by the Ethics 

Committee of Aston University (see Appendix 1) and was performed in accordance with 

the tenets of the Declaration of Helsinki. Written, informed consent was obtained from all 

participants (see Appendix 2 for copy of consent form) following explanation of the nature 

and possible consequences of the study. 

 

3.2.3 Measurements 

Refractive error was determined in both eyes from the mean of five open-view distance 

autorefractor readings obtained with the Grand Seiko Auto Ref/ Keratometer WAM-5500 

(Grand Seiko Co. Ltd., Hiroshima, Japan). The WAM-5500 is a binocular open-field 

autorefractor and keratometer which has been validated and found to be repeatable and 

accurate compared to subjective refraction (Sheppard and Davies, 2010a). Subjects with 

spherical or astigmatic refractive error > 0.50 D in either eye were corrected with Focus 

Dailies or Focus Dailies Toric disposable soft contact lenses. Functional emmetropia was 

necessary to ensure near-identical accommodative demand for each subject. All further 

measurements were taken from the right eye only.  

 

Objective accommodative responses were determined using the WAM-5500 autorefractor 

whilst subjects fixated Maltese cross targets in free space at -4 D and -8 D stimulus 

vergences, presented in random order. The targets subtended a constant angular 

subtense of 4.6º. Average target luminance and Michelson contrast values were 34.0 

cd/m2 and 82 %, and 30.5 cd/m2 and 80 %, for the 4 D and 8 D stimuli, respectively. Static 

accommodation responses have been found to be comparable across this range of target 

luminances (Johnson, 1976). The left eye was occluded with a patch during measurement 

of the response and subjects were instructed to “carefully focus” (Stark and Atchison, 

1994) on the centre of the Maltese cross to induce both voluntary and reflex 



 77 

accommodation (Radhakrishnan and Charman, 2007a). It was ensured at this stage that 

participants had sufficient subjective accommodative amplitude to maintain clarity of the 

8.0 D stimulus, required for ciliary muscle imaging.  Five readings were obtained at each 

stimulus level, and the mean of these values was used in conjunction with the distance 

autorefractor results to determine the objective accommodative response. 

  

Axial lengths were obtained from the mean of five partial coherence laser interferometry 

(PCI) readings, using the commercially-available IOLMaster (Carl Zeiss Meditec, Inc., 

Dublin, CA). The IOLMaster is a high-resolution non-contact device developed principally 

for determination of ocular biometry prior to cataract extraction with intraocular lens 

implantation (Santodomingo-Rubido et al., 2002) and has a resolution of 0.01 mm for axial 

length measures (Drexler et al., 1998; Mallen et al., 2006). For subjects corrected with soft 

contact lenses, axial length measurement was conducted at the end of data collection, 

following lens removal. 

 

3.2.4 Ciliary Muscle Image Acquisition and Analysis 

Images were obtained of nasal and temporal ciliary muscle of the right eye at stimulus 

vergence levels of -0.19 D, -4 D and -8 D. The high vergence level of -8 D was selected to 

induce near-maximal non-pharmacologically induced accommodative changes in ciliary 

muscle. The AS-OCT was set to high-resolution corneal mode for all imaging, providing 

axial resolution of approximately 8 µm (Baϊkoff, 2006). The device employs low-coherence 

interferometry, with a 1310 nm superluminescent light-emitting diode. The scanning spot 

moves rapidly across the eye, acquiring 512 A-scans in 0.25 seconds in high resolution 

mode, to generate a 2-dimensional image covering an area measuring 10 mm in width 

and 3 mm in depth. The scanning plane was set horizontally, at 0°, throughout the 

investigation. 

 

Maltese cross targets were used for fixation, positioned at an angle of 40°, such that the 

eccentric gaze of the subject, whilst their head was in the primary position on the chin and 

forehead rest, allowed images centred on the ciliary muscle, rather than the cornea, to be 

captured. 40° represented the minimum level of horizontal eye movement needed to view 

the distant targets, beyond the AS-OCT device, and meant that the optical axis of the 

instrument was through the sclera, rather than the cornea, reducing optical distortion. The 

distant target was viewed through a mirror, resulting in a stimulus vergence of -0.19 D. 

Near targets, subtending 4.6º, were suspended in free space from an adjustable 

apparatus mounted on the AS-OCT headrest (Figure 3.1). Average luminance and 

Michelson contrast values were 38 cd/m2 and 81 %, and 32 cd/m2 and 78 % for the 4 D 
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and 8 D stimuli, respectively. For each of the two sides of the eye imaged, all targets were 

positioned along the same axis, with subjects asked to ensure that the near stimuli 

appeared directly over the distant Maltese cross to reduce the possibility of varying 

acquisition planes. Targets of the varying stimulus vergence levels were presented in 

random order, and multiple images were acquired of nasal and temporal ciliary muscle in 

each accommodative state, ensuring good visibility of the muscle in at least three images 

wherever possible. During the image capture process, which lasted approximately 5-10 

seconds per scan, subjects were again asked to “carefully focus” on the centre of the 

cross. A code was used to store the multiple image sets for each subject on the AS-OCT 

hard-drive, such that the examiner performing post hoc analysis of ciliary muscle biometry 

was masked to the stimulus demand level and the refractive error of the individual. 

 

 

 
 
Figure 3.1. Schematic diagram of laboratory set-up for imaging nasal ciliary muscle using the AS-OCT. The 

subject views a near Maltese cross (N) at either -4.0 or -8.0 D stimulus vergence, attached to an adjustable 

apparatus (A) mounted on the AS-OCT headrest. Angle α = 40°. To image the relaxed ciliary muscle, the near 

target is removed from the apparatus, allowing the subject to view via a mirror (M), a distant Maltese cross (D) 

positioned on the laboratory wall, resulting in a stimulus vergence of -0.19 D. For clarity, the mirror and distant 

target used for imaging temporal ciliary muscle have been omitted from the diagram, although these were 

present throughout the investigation. 
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Image analysis was performed by one examiner (ALS) using the inbuilt Visante software 

(version 2.0), which utilises edge detection algorithms to locate corneal surfaces and 

assign appropriate refractive indices to each portion of the image and adjust its 

dimensions (Baïkoff et al., 2004a). An index of 1.000 (air) is applied to the region anterior 

to the cornea, 1.338 (cornea) for the area within the corneal boundaries, and 1.343 

(aqueous humour) for structures posterior to the cornea (Richdale et al., 2008). A 

refractive index of 1.000 was applied to the whole image prior to taking measurements, 

using the “Edit Surfaces” option. Following adjustment of the applied refractive index, the 

Visante callipers were used to measure a range of ciliary muscle biometric characteristics. 

The software allows up to seven callipers to be positioned simultaneously on each image, 

with the option of hiding from view those not required, for example, if obscuring the region 

required for another measure. Overall visible ciliary muscle length was defined as the 

antero-posterior distance from the scleral spur, representing the anterior insertion, to the 

posterior tip of the ciliary muscle (Fig. 3.2). Due to intra-individual variability in the relative 

visibility of these landmarks on different images, each subject’s images for one stimulus 

vergence level were examined before measurements were taken, with adjustment of 

brightness and contrast settings where necessary, to facilitate localisation of these points. 

Additionally, Visante software version 2.0 allows the operator to magnify the image, and 

more accurately place the callipers. Anterior length was measured from the point of 

maximum width of the ciliary muscle to the scleral spur. To obtain this measurement, a 

calliper was first placed along the widest portion of the ciliary muscle, and a second 

calliper, perpendicular to the first, was used to determine the distance from the widest 

region to the scleral spur (Fig. 3.2). In addition to lengths, a range of width measurements 

were obtained, judged from the ciliary muscle-sclera boundary, to the pigmented ciliary 

epithelium. Width measurements (including determination of maximum width) were always 

obtained using a calliper positioned perpendicular to the ciliary muscle-sclera boundary. 

Three key width measures were acquired, selected because of the known anterior shift of 

the ciliary muscle with contraction (Duke-Elder, 1961; Tamm and Lütjen-Drecoll, 1996; Ma 

and Chen, 2004). Using knowledge of the pre-determined overall length, the width of the 

muscle was determined at the point 25 % of the total length posterior to the scleral spur 

(CM25; Fig.3.3). Similar measures were obtained at locations 50 % and 75 % of the 

overall ciliary muscle length posterior to the scleral spur (CM50 and CM75, respectively; 

Fig. 3.3). Additionally, the ciliary muscle thickness at a set location 2 mm posterior to the 

scleral spur was determined (CM2). Bailey et al. (2008) included this width measurement 

in image analysis, and found it was negatively correlated with refractive error in children. 
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Figure 3.2. Measurement of ciliary muscle length, from the scleral spur to posterior visible limit (here, 4.16 mm) 

and ciliary muscle anterior length, from the point of maximum width (indicated by the calliper 0.82 mm in length) 

to the scleral spur (here, 0.54 mm; double-ended arrow) 

 

 
Figure 3.3. Measurement of ciliary muscle width parameters (in same eye as Fig. 3.2). CM25, CM50 and CM75 

are ciliary muscle widths at 25, 50 and 75 % of total ciliary muscle length, respectively. Here, CM25 is 0.56 mm, 

CM50 is 0.25 mm and CM75 is 0.12 mm. 

 

The refractive index of 1.000 applied during image analysis would not be appropriate for 

analysis of thickness measures, and would cause an overestimation of these parameters, as 

the index of the ciliary muscle is significantly higher than this value. Reports in the literature 

suggest the refractive index of the ciliary muscle to be in the region of 1.382 (Tearney et al., 

1995; Dirckx et al., 2005), so all thickness measures were divided by this value to provide 

more realistic data. Following analysis of the three images of nasal and temporal ciliary 

muscle for each accommodative state, in which the muscle appeared best defined, mean 

values for each of the length and width parameters (adjusted for refractive index) were 

entered into a spreadsheet (Excel; Microsoft, Redmond, WA) and used for statistical 

analyses. Knowledge of the objective responses to the -4 D and -8 D stimuli allowed 

determination of the changes in ciliary muscle parameters per dioptre of accommodation for 

CM25 
CM75 CM50 
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each subject. Using mean values of ciliary muscle response per dioptre of objective 

accommodation, from all 50 participants, allows description of the cohort as a whole. 

 

3.2.5 Statistical Analysis 

The relationship between axial length and both ciliary muscle overall length and anterior 

length was determined using linear regression analysis, performed with SigmaPlot graphing 

software (Version 11, Systat Software Inc., Chicago, Illinois, USA). To assess the 

differences in ciliary muscle parameters with accommodation, and to determine whether any 

changes observed were dependent on either axial length or nasal/ temporal aspect, two-way 

mixed factor Analyses of Variance (ANOVAs) were performed using SPSS statistical 

software (Version 15, SPSS Inc., an IBM Company, Chicago, Illinois, USA). Eyes were 

classified into tertiles based on axial length for ANOVA purposes. Demand, the within 

subjects factor, was assigned three levels, of 0.19, 4 and 8 D, whilst the side (nasal or 

temporal) and axial length (short, medium or long) were designated between-subjects 

factors. A significance level of α = 0.05 was used throughout analysis.  

 
3.2.6 Repeatability 

The repeatability of ciliary muscle measures and examiner interpretation was assessed 

initially by imaging and analysing the ciliary muscle of a single subject ten times at -0.19 D 

stimulus vergence. The subject removed and repositioned their head on the AS-OCT 

forehead and chin rest before each image was acquired. Furthermore, to assess 

intersession repeatability, the temporal ciliary muscle of a subset of ten subjects was 

imaged at -0.19 D (minimal) and 8.0 D (maximal) stimulus vergence at a second session, 

within  two weeks of the initial visit. The temporal ciliary muscle aspect was chosen for 

intersession repeatability measures as it has been shown that the scleral spur is most easily 

discernible on the nasal side (Sakata et al., 2008), thus it would be expected that temporal 

ciliary muscle measures would be associated with greater variability. The bias for each 

ciliary muscle parameter was calculated from the mean difference in measures between 

visits and paired t-tests used to determine whether the levels of bias were significantly 

different from zero. The limits of agreement (LoA), i.e. the interval over which 95 % of the 

differences between the two visits lie (Altman and Bland, 1983; Bland and Altman, 1986) 

were established using the standard deviation (SD) of differences with the following formula: 

 

                                       LoA = bias ± (1.96 * SD of differences)                  Equation 3 
 

3.3. Results 



 82 

A wide range of refractive error was found amongst the cohort, from -9.50 to +0.88 D mean 

sphere equivalent (MSE; mean -2.00 ± 2.62 D) and consequently, axial lengths were 

broadly spread, from 22.17 to 28.12 mm (mean 24.49 ± 1.13 mm). Mean objective 

accommodative responses to the 4.0 and 8.0 D stimuli were 2.82 ± 0.58 D and 5.44 ± 0.97 

D, respectively. The general characteristics of ciliary muscle biometric parameters at 

stimulus levels of 0.19, 4.0 and 8.0 D are summarised in Table 3.2. 

 

NASALNASAL TEMPORAL  
CM parameter 

0.19 D 4.0 D 8.0 D 0.19 D 4.0 D 8.0 D 

Overall length (µm) 4630 ± 
470 

4470 ± 
460 

4440 ± 
480 

4810 ± 
690 

4620 ± 
590 

4520 ± 
610 

Anterior length (µm) 860 ± 120 780 ± 110 750 ± 130 900 ± 140 740 ± 150 680 ± 150 

CM25 (µm) 535 ± 51 550 ± 51 564 ± 58 550 ± 51 571 ± 58 586 ± 72 

CM50 (µm) 297 ± 43 297 ± 36 297 ± 43 347 ± 43 333 ± 43 333 ± 51 

CM75 (µm) 152 ± 22 152 ± 15 152 ± 22 174 ± 22 166 ± 22 166 ± 22 

CM2 (µm) 347 ± 58 340 ± 58 340 ± 58 405 ± 58 384 ± 65 384 ± 65 

Table 3.2. Mean values (± S.D.) for nasal and temporal ciliary muscle parameters with accommodative stimulus 

level. n = 50 eyes.  

 
 
3.3.1 Repeatability 
 
The repeatability results of ciliary muscle measures assessed by imaging and analysing a 

single subject ten times at -0.19 D stimulus vergence are shown in Table 3.3, whilst 

intersession repeatability is summarised in Table 3.4. None of the amounts of bias reported 

in table 3.4 are statistically significantly different from zero, (using paired t-tests) at either the 

minimal or maximal accommodative stimulus level. 
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CM Parameter Mean value and S.D. (µm) 

Overall length  4570 ± 32.2 

Anterior length  870 ± 26.4 

CM25  485 ± 9.6 

CM50  326 ± 11.4 

CM75  166 ± 5.1 

CM2 369 ± 27.5 

Table 3.3.  Repeatability of ciliary muscle biometric measures, assessed by imaging and analysing a single 

subject ten times at the minimal accommodative state.  

 

 0.19 D stimulus level 8 D stimulus level 

Parameter Bias SD of 
differences 

95 % LoA Bias SD of 
differences 

95 % LoA 

Overall length 
(µm) -15.0 105.9 -222.8, 

+192.8 -39.7 95.8 -227.5, 
+148.1 

Anterior length 
(µm) -4.0 46.0 -94.2, +86.2 18.3 16.3 -13.7, +50.3 

CM25 (µm) -5.8 11.4 -28.1, +16.4 5.6 10.3 -14.7, +25.8 

CM50 (µm) 2.9 12.4 -21.3, +27.2 2.5 10.3 -17.6, +22.6 

CM75 (µm) 0.3 3.7 -6.9, +7.5 0.6 10.3 -19.5, +20.7 

CM2 (µm) -3.5 12.1 -27.4, +20.2 6.8 15.5 -23.5, +37.1 

Table 3.4. Intersession repeatability data of ciliary muscle biometric parameters measured at 0.19 D and 8.0 D 

accommodative demand levels. None of the measures of bias are significantly different from zero (paired t-tests).  

 

3.3.2 Ciliary Muscle Biometry and Changes with Accommodation 

Mean relaxed ciliary muscle overall length was 4630 ± 470 µm and 4810 ± 690 µm on the 

nasal and temporal aspects, respectively, although the difference between sides was not 

significant (F = 1.67, P = 0.2). Anterior length comprised on average, 18.5 % of overall 

ciliary muscle length in the relaxed state, and was also independent of nasal/ temporal 

aspect (F = 2.18, P = 0.12). A positive correlation was identified between axial length and 

both overall ciliary muscle length and anterior length (Figure 3.4; r = 0.34, P = 0.02 and r = 



 84 

0.49, P <0.001, respectively). Figure 3.5 shows a sample image of ciliary muscle 

morphology on the temporal side in a long eye (axial length 28.12 mm) and an emmetropic 

eye in the shortest tertile (axial length 23.70 mm). The overall ciliary muscle length and 

anterior length are both noticeably greater in the longer eye. 

 

A statistically significant reduction in both overall ciliary muscle length, and anterior length 

was found with accommodative effort (Figure 3.4; F = 42.9, P <0.001 and F = 177.2, P 

<0.001, respectively). The shortening with accommodation was not dependent on axial 

length for either overall or anterior length ciliary muscle measures (F = 0.43, P = 0.79 and F 

= 0.60, P = 0.67), although the anterior length showed a significantly greater 

accommodative reduction on the temporal, compared to the nasal, side (F = 20.6, P 

<0.001). The greatest magnitude of changes in ciliary muscle overall length and anterior 

length occurred between the 0.19 to 4.0 D, rather than 4.0 to 8.0 D, stimulus levels. For the 

temporal aspect, overall length decreased on average by 80 ± 100 µm and 50 ± 120 µm per 

dioptre of accommodative response between the 0.19 to 4.0, and 4.0 to 8.0 D demand 

levels, respectively. Anterior length reduced by 60 ± 40 µm and 30 ± 30 µm per dioptre of 

response between the lower and higher demand levels, respectively. It is therefore apparent 

that most of the shortening in overall ciliary muscle length is as a result of a reduction in the 

anterior portion, which constitutes only approximately 19 % of overall length in the relaxed 

state. The mean reductions in anterior length were significantly smaller on the nasal side: -

30 ± 14 µm from 0.19 to 4.0 D and -20 ± 20 µm from 4.0 to 8.0 D. 
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Figure 3.4. Ciliary muscle total length and anterior length in relaxed state and in response to 8 D stimulus. Both 

ciliary muscle length measures, particularly anterior length, show a positive correlation with axial length. With 

accommodation, a contractile shortening of ciliary muscle occurs, the majority of which is accounted for by a 

reduction in the anterior length, which comprises only approximately 19 % of overall length in the relaxed state. 

 

 
 
Figure 3.5.  Sample images of temporal ciliary muscle morphology in a long, myopic eye (axial length 28.12 mm; 

upper image) and an emmetropic eye (axial length 23.7 mm; lower image). Ciliary muscle overall length (6580 

µm and 4800 µm in the long and short eyes, respectively) and anterior length (from the thickest point to the 

α 

β 

r = 0.37, r2 = 0.14, P < 0.01 

r = 0.34, r2 = 0.11, P < 0.05 

r = 0.49, r2 = 0.24, P <0.001 

r = 0.51, r2 = 0.26, P <0.001 
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scleral spur; 1030 µm and 810 µm in the long and short eyes, respectively) are both noticeably greater in the 

longer eye. Additionally, the ciliary muscle inner apical angle is larger in the myopic eye (α = 138°, β = 92°). 

 

Considering ciliary muscle thickness, the most anterior portion measured, namely CM25, 

represented the thickest region at all accommodative stimulus levels, with the more 

posterior CM50 and CM75 becoming progressively thinner (Table 3.2). The proportional 

measures of ciliary muscle thickness (CM25, CM50 and CM75) were not dependent on axial 

length (CM25: F = 0.16, P = 0.86; CM50: F = 0.83, P = 0.44; CM75: F = 2.17, P = 0.12), 

although CM50 and CM75 were significantly thicker on the temporal, compared to the nasal, 

aspect (F = 21.2, P <0.001 and F = 15.3, P <0.001 for CM50 and CM75, respectively). 

There was a trend for CM25 to be thicker also on the temporal side, although this was not 

statistically significant (F = 3.16, P = 0.08). With accommodative effort, there was a 

statistically significant thickening of CM25 (F = 46.2, P <0.001) but neither CM50 nor CM75 

changed significantly with accommodation (F = 1.90, P = 0.15; F = 1.84, P = 0.16, 

respectively). A mean increase in CM25 of 7.1 ± 6.4 µm per dioptre of accommodative 

response was identified.  

 

CM2 thickness measures, taken at a constant 2 mm posterior to the scleral spur are 

unrelated to the overall length of the ciliary muscle. A trend for CM2 to increase with axial 

length was identified, although this was not statistically significant at the 0.05 level (F = 2.84, 

P = 0.06). CM2 was found to be significantly thicker on the temporal side, compared to the 

nasal aspect (F = 17.8, P <0.001). Mean values in the relaxed state were 347 ± 58 µm and 

405 ± 58 µm, on the nasal and temporal sides, respectively. Accommodative effort caused a 

statistically significant thinning of CM2 (F = 13.1, P <0.001), particularly on the temporal side 

(F = 3.4, P = 0.04), with the vast majority of the change occurring between the 0.19 to 4.0 D 

stimuli, rather than 4.0 to 8.0 D. Mean changes in CM2 thickness per dioptre of 

accommodative response were -2.2 ± 11 µm from 0.19 to 4.0 D and 0 ± 19 µm from 4.0 to 

8.0 D on the nasal side. Temporally, these changes were greater, at -7.0 ± 13 µm/ D of 

accommodative response from 0.19 to 4.0 D stimuli and -1.1 ± 12 µm between the 4.0 and 

8.0 D levels.  

 

3.4. Discussion 
There is a paucity of literature documenting in vivo changes in human ciliary muscle 

biometry with accommodation. Recent advances in ophthalmic imaging technology allow the 

ciliary muscle to be more easily visualised, and imaged with sufficient resolution to detect 

accommodative changes. To date, this study is the largest reporting the relaxed and 
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accommodated morphological characteristics of ciliary muscle biometry in an adult 

population, using AS-OCT. 

 

In the unaccommodated state, the ciliary muscle was found to be significantly longer, both in 

terms of overall length and anterior length, in eyes with a greater axial length. No statistically 

significant nasal versus temporal difference in ciliary muscle length measures was identified. 

The proportional measures of ciliary muscle thickness (CM25, CM50 and CM75) were not 

dependent upon axial length, although CM2, measured at a fixed distance of 2 mm posterior 

to the scleral spur, showed a trend towards being thicker in longer eyes (F = 2.84, P = 0.06). 

Regarding nasal versus temporal thickness characteristics, CM50, CM75 and CM2 were all 

significantly greater temporally. For the most anterior location measured, CM25, the nasal/ 

temporal asymmetry was less pronounced (F = 3.16, P = 0.08). Nasal versus temporal 

differences in human ciliary muscle thickness have not been reported in an in vivo study 

previously, and the relevance of this asymmetry is unclear. It is feasible that a stronger 

contractile response would occur on the side where the ciliary muscle is thickest; the greater 

accommodative shortening of the anterior portion of the ciliary muscle on the temporal side 

(F = 20.6, P <0.001) observed in this study supports this premise. Nasal/ temporal variation 

in ciliary muscle morphology and contractile response could have implications in strategies 

being developed to surgically restore accommodation to presbyopic eyes, such as 

accommodating intraocular lenses and capsular bag refilling. Ocular asymmetry in the 

anatomy of the ciliary region has been documented in living rhesus monkeys (Glasser et al., 

2001), and it has been suggested that nasal/ temporal anatomical variations may be a 

functional necessity in primates, enabling alignment of the lenticular axes on the object of 

regard and maintaining binocular single vision during the convergent eye movements that 

accompany accommodation.  

 

Previously published studies have identified a strong negative correlation between refractive 

error/ axial length and ciliary body thickness, particularly at the point 2 mm posterior to the 

scleral spur (CB2). Bailey et al. (2008) used AS-OCT with an applied refractive index of 

1.000 to measure ciliary body thickness in children. After adjustment of their results to the 

1.382 index used in the present investigation, they found the mean nasal CB2 to be 415 µm 

in emmetropes and 455 µm in myopes, whilst Schultz et al.  (2009) reported a mean nasal 

CB2 of 437 µm in children with refractive errors from -6.00 to +3.44 D, but of the same age 

range. Using equivalent methodology as these investigations, the present study has 

identified a considerably thinner mean nasal CM2 (equivalent to CB2) in adults aged 19 – 34 

years, of 340 µm in emmetropes, and 356 µm in myopes. AS-OCT findings therefore, imply 

that the ciliary muscle is at its thickest during childhood and becomes thinner in adulthood, 
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when eye growth has ceased, and refractive error stabilised. UBM analysis of a cohort of 

adults of average age 51.8 years identified mean CB2 to be 490 µm in myopes, and 362 µm 

in emmetropes, but did not assess youthful subjects (Oliveira et al., 2005). Further 

investigation using identical methodology across a broad range of age groups is needed to 

clarify the effect of age on ciliary muscle thickness and the possible implications this may 

have on refractive error development. Furthermore, thickness measurements taken at a 

fixed distance from the scleral spur do not take into account the fact that ciliary muscle 

overall length varies significantly with refractive error, so a point 2 mm from the scleral spur 

may represent an anatomically different region of the ciliary body in varying refractive error 

groups. Proportional thickness measures employed in the present investigation (such as 

CM25, CM50 and CM75) may be more valid in analysing subjects of different refractive error 

and ensuring that similar regions of the ciliary muscle are compared.  

 

Whilst the present investigation has identified a weaker association between ciliary muscle 

thickness measures and refractive error than previously published studies, a positive 

correlation between ciliary muscle length and axial length was found (Fig. 3.4). The 

correlation with axial length was greater for anterior length measures (r = 0.49, r2 = 0.24, P 

<0.001) than for overall ciliary muscle length (r = 0.34, r2 = 0.11, P = 0.017). A possible 

explanation for this observation is that the scleral spur was more readily identifiable in many 

images than the posterior limit of the ciliary muscle, meaning that the anterior length 

measures were associated with slightly reduced variability compared with the overall values 

of muscle length, as indicated by the standard deviations of the repeatability measurements 

(Table 3.3 and Table 3.4). 

 

Hitherto, no in vivo study has documented human ciliary muscle lengths. However, the 

mean overall relaxed ciliary muscle length measures determined in this investigation of 4.63 

mm nasally, and 4.81 mm temporally, are in accordance with previous in vitro reports. 

Pardue and Sivak (2000) found a mean ciliary muscle length of 3.87 mm in atropine-treated 

eyes, whilst Aiello et al. (1992) determined mean lengths of 4.79 mm on the nasal side, and 

5.76 mm temporally, although their sample consisted of just 5 adult eyes. The finding that 

the ciliary muscle is longer in myopic eyes is unsurprising: one would expect the morphology 

of the ciliary body to alter with elongation of the globe. van Alphen (1986) observed marked 

thinning of the ciliary body with in vitro globe expansion, although the findings of the present 

study indicate that the ciliary muscle is not simply stretched as the eye elongates. The ciliary 

muscle was not found to be attenuated in myopic subjects as would be predicted from 

stretching alone, in fact, no significant relationship between ciliary muscle thickness and 

refractive error was identified. It seems likely, therefore, that axial elongation is 
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accompanied by some radial growth/ thickening of the ciliary muscle during myopigenesis. 

The greater anterior ciliary muscle length in longer eyes indicates that the structure grows in 

the antero-posterior direction as the globe elongates, with the scleral spur as the fixed 

anchor point. Figure 3.5 supports this assertion: the inner apical angle of the ciliary muscle 

is clearly larger in the myopic eye compared to the emmetropic subject. However, in vivo 

measurements of this angle are required to confirm the finding. 

 

The key accommodative changes in ciliary muscle morphology identified in the present 

investigation are a contractile shortening of both overall length and anterior length, and a 

thickening of CM25; the most anterior of the thickness measures. These observations 

support the generally-accepted model of ciliary muscle action during accommodation, 

whereby the majority of the muscle mass shifts anteriorly and inwards to reduce zonular 

tension (von Helmholtz, 1855; Atchison, 1995; Croft et al., 2001; Charman, 2008). Whilst the 

accommodative forward shift of ciliary muscle has been observed in vivo in rhesus monkeys 

using UBM (Croft et al., 2006a; Wasilewski et al., 2008), the movement has not been 

visualised previously in human subjects, as the iris normally prevents exploration of the 

ciliary region with most available imaging techniques. Furthermore, a recently-published 

human in vivo MRI study found no change in the antero-posterior position of the ciliary 

muscle with accommodative effort in either young or presbyopic subjects (Strenk et al., 

2010), suggesting that only a centripetal rather than a forward and centripetal shift of muscle 

mass occurs during accommodation. A case report of accommodation in a 19 year old 

albino using AS-OCT also failed to observe a concurrent forward shift of the ciliary body with 

its centripetal accommodative movement (Baïkoff et al., 2004b). However the images were 

not centred on the ciliary region, nor captured in high-resolution mode, and accommodative 

changes in a single albino subject cannot be considered representative of the population as 

a whole. The present study found that anterior ciliary muscle length decreased significantly 

with accommodation, while CM25 thickened. Between 0.19 and 4 D stimulus levels, anterior 

length reduced on average by 30 ± 30 µm per dioptre of response nasally, and 60 ± 40 µm/ 

D of accommodation, temporally. This shortening of anterior length represents a movement 

of the thickest region of the ciliary muscle towards the cornea, i.e. evidence of forward shift 

of the main muscle mass, whilst the thickening of CM25 by approximately 11 ± 16 µm/ D of 

response on both sides is indicative of the centripetal ciliary muscle movement.  

 

Therefore, in vivo support of anterior, as well as centripetal, ciliary muscle movement with 

accommodation in a relatively large cohort of human subjects is provided for the first time. 

However, in addition to the implications of the study, there are limitations which should also 

be considered. Firstly, the objective measures of accommodation were acquired prior to AS-
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OCT scanning and may not represent the precise level of accommodation exerted by each 

subject during image capture. Simultaneous measurement of refraction and ciliary muscle 

imaging would be preferable, particularly because of the eccentric (40°) angle required for 

image acquisition. However, the dimensions of the Visante device, which screens much of 

the subject’s face, may hinder such attempts. An appliance mounted on the AS-OCT 

headrest, employing a beam splitter linked to an autorefractor is being considered and could 

be custom-manufactured in the future to facilitate simultaneous measurement of 

accommodation during scanning. 

 

In order to visualise the complete ciliary muscle, it was necessary for subjects to view an 

eccentrically-positioned target, at an angle of 40°. Therefore, the images of temporal ciliary 

muscle were captured during convergence, but the nasal muscle was imaged during 

abduction, which does not represent the natural convergent state of the eye during 

accommodation. It is not possible to image the entire right nasal ciliary muscle during 

convergence, with AS-OCT. However, peripheral refraction measures have been found not 

to vary depending on whether a subject moves their eye or their head (Radhakrishnan and 

Charman, 2008) implying that the state of convergence does not directly alter refraction. 

Neither the accommodative response therefore, or the ciliary muscle parameters should 

have been significantly confounded by state of convergence. 

 

In the present investigation and other previously published studies (e.g. Bailey et al. 2008; 

Schultz et al. 2009), optical distortion arising from imaging the ciliary muscle through the 

overlying sclera has not been accounted for. Consequently, the absolute values of the ciliary 

muscle parameters described may not accurately reflect the true measures. However, the 

effect of optical distortion would not vary between the relaxed and accommodated states, 

meaning that the observations of accommodative changes (e.g. shortening of length and 

anterior length, and thickening of the anterior portion) are valid. It is also feasible that 

significant inter-individual differences in scleral thickness could alter the level of optical 

distortion, and therefore the measurement of ciliary muscle parameters. Similar future 

investigations could therefore measure scleral thickness, and potentially exclude 

participants with unusually thick or thin scleras. 

 

As with any two-dimensional imaging technique, there is the potential for image acquisition 

planes to vary between measurements. To reduce the associated impact, multiple images 

were acquired and analysed at each stimulus level, and the average values used for 

statistical analyses. Whilst data collection for this study was underway, an update to the 

Visante software was released (Version 2.0). All analysis was performed with the new 
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software, which gives the option of zooming whilst viewing images, allowing for easier 

identification of ciliary muscle boundaries. However, the software update also includes a 

novel enhanced high resolution imaging mode which takes several scans and automatically 

generates an averaged image of improved quality than was previously possible. As the 

majority of data had been collected by the time the new software was released, the 

enhanced mode was not used for imaging, rather the original high resolution imaging mode 

was employed to maintain consistency. For future ciliary muscle imaging the authors intend 

to utilise the enhanced acquisition mode and it is anticipated that the improved detail will 

reduce the variability of measurements. Even with enhanced image acquisition, 

determination of the ciliary muscle boundaries, e.g. the posterior visible limit, could still 

occasionally prove problematic, as in this study. The post hoc measurement of ciliary 

muscle parameters using the manufacturer’s software is relatively simple and could be 

performed by any researcher with access to the Visante device, although the subjective 

nature of the technique is not ideal. The authors are currently exploring the possibility of 

using custom-developed software with edge detection algorithms to derive objective 

measures of ciliary muscle parameters. An objective method of analysing the images could 

enable multiple images to be analysed and averaged more rapidly and reliably than at 

present. 

 

3.5 Conclusion 
In summary, this study has reported for the first time in vivo biometric characteristics of 

relaxed and contracting human ciliary muscle amongst a relatively large adult cohort, using 

AS-OCT. The ciliary muscle is longer in eyes with axial myopia, and there are nasal/ 

temporal asymmetries in both morphology and accommodative changes in all refractive 

error groups. The main accommodative changes observed were a shortening of muscle 

length, particularly in the anterior portion and a thickening of CM25. These findings support 

the broadly-accepted theory of anterior as well as inward shift of human ciliary muscle mass 

during accommodation. AS-OCT is a valid and accessible tool for analysing human ciliary 

muscle, and could be further employed to analyse morphological and contractile 

characteristics of the muscle with age, which could be relevant to the development of 

presbyopia. 
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CHAPTER 4 

THE EFFECT OF AGEING ON IN VIVO CILIARY MUSCLE 

MORPHOLOGY AND CONTRACTILITY 
 

4.1. Introduction 

Despite widespread ongoing research directed at restoring accommodation to the ageing 

eye, the processes responsible for the development of presbyopia are not fully understood 

(Gilmartin, 1995; Strenk et al., 2005; Charman, 2008; Glasser, 2008). Although lenticular 

changes are generally accepted to be of major importance (Glasser, 2008; Ziebarth et al., 

2008; Truscott, 2009), the precise effects of age on the other components of the 

accommodative system, and the possible interactions between these changes, remain 

unclear (Atchison, 1995; Pierscionek and Weale, 1995; Charman, 2008). The crystalline 

lens is known to increase in mass and axial thickness throughout life, as a consequence of 

the continual formation of cortical lens fibres (Davson, 1990; Dubbleman et al., 2003). In 

vitro experimentation has demonstrated that the isolated human lens becomes more 

resistant to deformation with age (Glasser and Campbell, 1999), and thus unable to change 

shape to provide variable dioptric power. Although much evidence exists to support the 

lensocentric view of presbyopia development, age-related changes in associated structures 

including the ciliary muscle (Pardue and Sivak, 2000), choroid (Tamm et al., 1991; Tamm et 

al., 1992b) and vitreous body (Harocopos et al., 2004) are also likely to have a contributory 

effect. Of particular relevance is the effect of ageing on ciliary muscle configuration and 

function, as all of the potential strategies aimed at restoring accommodation to the 

presbyopic eye, including capsular refilling and increasingly-popular accommodating 

intraocular lens implants (AIOLs; Glasser, 2008; Sheppard et al., 2010), rely on the 

continued action of this muscle throughout life. 

 

Age-related changes in ciliary muscle have been documented previously, from a range of 

primate studies and in vitro investigations. In vivo data describing the effects of age on 

human ciliary muscle morphology and function are scarce (Strenk et al., 2005), as the iris 

prevents direct visualisation of the ciliary region (Park et al., 2008). Post mortem 

microscopic examination of human ciliary body tissue sections has revealed that the ciliary 

muscle decreases in both length and area with age (Tamm et al., 1992a; Pardue and Sivak, 

2000). Pardue and Sivak (2000) found that anterior ciliary muscle length (measured 

perpendicular from the line of maximum muscle thickness, to the scleral spur) showed a 

greater reduction with age than overall length measures: in a relatively small sample of 16 

pairs of eyes, mean anterior length was approximately 680 µm in donors aged under 34 
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years, and 550 µm in older eyes aged up to 107 years. Furthermore, the age-related trends 

for maximum muscle thickness to increase (Pardue and Sivak, 2000), whilst the distance 

from the scleral spur to the inner apex of the ciliary muscle decreases (Tamm et al., 1992a), 

indicate that the human ciliary muscle adopts a more anterior-inward position with 

advancing age. In vivo MRI data support this assertion: reductions in both ciliary muscle ring 

diameter (Strenk et al., 1999; Strenk et al., 2006) and axial distance from cornea to muscle 

apex (Strenk et al., 2010) have been observed in presbyopic subjects.  

 

In the primate eye, age-related nasal/ temporal biometric asymmetry develops in the ciliary 

region. In vivo ultrasound biomicroscopic examination of rhesus monkey eyes has identified 

a more significant reduction in temporal, compared to nasal, circumlental space (CLS) with 

age (Glasser et al., 2001; Croft et al., 2006b). Additionally, age and temporal CLS (but not 

nasal CLS) are together a better indicator of accommodative amplitude than age alone 

(Croft et al., 2006b), suggesting that some process linked to presbyopia development may 

predominantly impact the temporal aspect of the eye. No such age-related asymmetry has 

been detected in the human eye using either in vitro or in vivo methods, although previous 

authors have failed to clarify the region of ciliary muscle investigated (e.g. Tamm et al., 

1992a; Pardue and Sivak, 2000; Strenk et al., 2006). Chapter 3 reports significantly greater 

ciliary muscle thickness and contractile response (as inferred by reduced anterior length), on 

the temporal side, compared to the nasal aspect. The observed differences in both 

morphology and contraction highlight the need to consider nasal and temporal ciliary muscle 

regions separately. 

 

Ciliary muscle contractile changes with age have previously been more widely studied in the 

primate eye, partly because surgical iridectomy permits visualisation of the ciliary body 

(Croft et al., 2006b). In vivo investigations have indicated that ageing rhesus monkey ciliary 

muscle maintains its centripetal contractile response (Croft et al., 2008), but the associated 

forwards movement is significantly reduced (Croft et al., 2006a; Croft et al., 2009). 

Furthermore, in vitro, the pharmacologically-induced contractile responses of isolated strips 

of monkey ciliary muscle do not vary markedly with age (Tamm et al., 1992b; Poyer et al., 

1993), but in ocular sections where the posterior limit of the muscle is undisturbed, the 

response to muscarinic agonists is lost in older eyes (Tamm et al., 1992b). An age-related 

accumulation of inelastic collagenous material has been postulated to cause reduced 

compliance of the posterior insertion of the ciliary muscle, restricting anterior mobility and 

contributing to presbyopia (Tamm et al., 1991). 
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Conversely, in the human eye, the effects of age on ciliary muscle contractility are 

contentious, with some contradictory findings in previously published studies. Human ciliary 

muscle has been shown in vitro to maintain its contractile response to pilocarpine 

administration, demonstrating a reduction in length and maximum width, even in eyes with 

advanced presbyopia (Pardue and Sivak, 2000). However, in vitro studies alone are 

insufficient to confirm the contractile changes in ciliary muscle with age (Strenk et al., 1999). 

Post mortem tissue changes and ischaemic effects could alter the response of the muscle to 

topically-applied pharmacological agents (Pardue and Sivak, 2000). Furthermore, samples 

from sectioned eyes may not accurately reflect the in vivo responses of human ciliary 

muscle.  

 

Hitherto, high resolution MRI (Strenk et al., 1999; Strenk et al., 2006; Strenk et al., 2010) 

and ultrasound biomicroscopy (UBM; Park et al., 2008) have been utilised to analyse in vivo 

the contractility of ageing ciliary muscle. Park et al. (2008) observed minimal inwards ciliary 

body movement following pilocarpine administration in a cohort of 15 presbyopic subjects 

(mean age 65.3 years) prior to cataract surgery. Post-operatively, pharmacologically-

induced centripetal movement significantly increased, suggesting that lenticular sclerotic 

changes may hinder ciliary muscle contractility in older eyes, due to altered anterior 

segment geometry. In contrast to these findings, published MRI data indicate that the 

inwards contractile movement of the ciliary muscle is undiminished by age (Strenk et al., 

1999; Strenk et al., 2006), and not affected by intraocular lens (IOL) implantation (Strenk et 

al., 2006). Human ciliary muscle ring diameter decreases by approximately 0.025 mm per 

year, but the mean reduction of 0.64 ± 0.05 mm in this parameter in response to an 8 D 

stimulus was found to be independent of subject age. In pseudophakic eyes, the contractile 

change in ciliary muscle ring diameter was statistically identical to contralateral phakic eyes 

(Strenk et al., 2006). A further, recently-published, MRI study analysing ciliary muscle action 

in vivo identified an age-independent increase in ciliary muscle thickness with 

accommodation, in volunteers aged from 22- 91 years (Strenk et al., 2010). However, no 

anterior contractile movement of the muscle apex was observed in any of the 32 phakic 

subjects, challenging the generally-accepted model of accommodation, in which a 

concurrent forwards and inwards shift of ciliary muscle mass acts to reduce tension on the 

zonules (von Helmholtz, 1855; Croft et al., 2001; Charman, 2008).  

 

The majority of available evidence, therefore, from both in vitro and in vivo studies, indicates 

that human ciliary muscle maintains its contractile ability long after the onset of presbyopia, 

although whether the nature of the response varies with age is less obvious. Pilocarpine is 

known to cause powerful ciliary muscle contraction and act as a superstimulus to 
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accommodation (Koeppl et al., 2005; Kriechbaum et al., 2005; Uthoff et al., 2009), so the 

use of such pharmacological agents should ideally be avoided to analyse natural ciliary 

muscle function in vivo. The findings detailed in Chapter 3 provide support for an anterior, as 

well as centripetal, shift of ciliary muscle mass during stimulus-driven accommodation, but 

whether this pattern of response persists in older eyes is unknown.  

 

Regarding ciliary muscle morphology, age-related reductions in length (particularly of the 

anterior portion) and area have been documented in vitro, but not yet confirmed in vivo. In 

vitro and MRI data indicate that the human ciliary muscle increases in maximum width 

throughout life, and slowly adopts a more anterior-inward position. Possible nasal versus 

temporal variations in age-dependent morphological changes have not previously been 

investigated in the human eye, although asymmetry has been shown to develop in the 

monkey ciliary region. There is a lack of published in vivo data collected using the same 

high-resolution methodology across a broad range of age groups documenting the effects of 

age on human ciliary muscle morphology and contractility. Anterior segment optical 

coherence tomography (AS-OCT) has been shown in Chapter 3 to be a valid tool for 

analysis of ciliary muscle biometry, with an axial resolution of up to 8 µm (Nubile et al., 

2008), which is superior to the values of 0.156 mm (Strenk et al., 1999; Strenk et al., 2006) 

and more recently, 0.078 mm (Strenk et al., 2010), reported in previous MRI based studies.  

 

The aim of this study, therefore, is to provide new high-resolution in vivo data on the age-

related changes in human ciliary muscle morphology, utilising AS-OCT. The possible 

development of nasal versus temporal asymmetry in these changes will be explored, with a 

consideration of the implication on presbyopia development. Furthermore, the 

accommodative responses of ageing ciliary muscle will be compared to those of young eyes 

to attempt to clarify the effects of age on contractility. An improved understanding of ciliary 

muscle morphology and function with advancing age would assist in the development of 

strategies aimed at restoring accommodation to the presbyopic eye. 

 

4.2. Methods 
4.2.1 Subjects 

A cohort aged 35 years and over was required for the study, to investigate ciliary muscle 

characteristics from incipient presbyopia onwards. The data acquired from this sample were 

compared with the young cohort described in Chapter 3 (Sheppard and Davies, 2010b), 

aged 19- 34 years (mean 25.8 ± 4.5 years). Twenty nine older volunteers aged 35- 70 

years, with no history of ocular abnormality or intraocular surgery were recruited for the 

study, using email announcements at Aston University. The mean age of older participants 



 97 

was 46.3 ± 10.2 years. Subjects with all types of refractive error were included, provided 

their distance prescription (including astigmatic component, if applicable) was amenable to 

correction with daily disposable soft contact lenses (Focus Dailies and Focus Dailies Toric: 

nelfilcon A, 69 % water content; Ciba Vision, Duluth, Georgia, USA). The parameter ranges 

for these contact lenses meant subjects with spherical refractive errors greater than -10.00 

DS or +6.00 DS were excluded from the investigation, as were those with oblique cylinders 

> 0.50 DC, or orthogonal cylinders > 1.50 DC. The study was approved by the Ethics 

Committee of Aston University (see Appendix 1) and was performed in accordance with the 

tenets of the Declaration of Helsinki. Written, informed consent was obtained from all 

participants (see Appendix 2 for copy of consent form) following explanation of the nature 

and possible consequences of the study. 

 

The younger and older cohorts together comprised 79 subjects (40 female, 39 male) aged 

19-70 years (mean 33.3 ± 12.2 years). The complete sample therefore represented youthful 

ciliary muscle, through to incipient and established presbyopia. 

 

4.2.2 Measurements 

Data were collected from the older cohort using the methods detailed in Chapter 3 

(Sheppard and Davies, 2010b). In brief, the process involved initial determination of 

objective refractive error in both eyes using the Grand Seiko Auto Ref/ Keratometer WAM-

5500 (Grand Seiko Co. Ltd., Hiroshima, Japan; Sheppard and Davies, 2010a). Subjects with 

spherical or astigmatic error >0.50 D in either eye were corrected with Focus Dailies or 

Focus Dailies Toric disposable soft contact lenses to provide functional emmetropia at 

infinity, ensuring the accommodative demand was comparable for all participants. All further 

measurements were taken from the right eye only. 

 

Objective responses to 4.0 and 8.0 D accommodative stimuli (Maltese crosses) were 

determined with the WAM-5500, whilst the left eye was occluded with a patch. Many of the 

older participants were unable to attain/ maintain clarity of either the 4.0 or 8.0 D targets, but 

were instructed to concentrate on the Maltese cross and make an effort to focus on it (Stark 

and Atchison, 1994). Blurred targets have been shown to stimulate ciliary muscle 

contraction, even in advanced presbyopes (Strenk et al., 1999; Strenk et al., 2006; Strenk et 

al., 2010). Axial length was next determined from the mean of 5 readings obtained with the 

Zeiss IOLMaster (Santodomingo-Rubido et al., 2002). For those subjects corrected with soft 

contact lenses, axial length was measured once the lenses had been removed, following 

ciliary muscle image acquisition. 
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AS-OCT images were obtained of nasal and temporal ciliary muscle in the relaxed state and 

whilst viewing 4.0 and 8.0 D accommodative stimuli, as previously described in section 3.2. 

All participants were instructed to “carefully focus” on the accommodative stimuli during 

image acquisition, even if they were unable to maintain a clear image of the target. Imaging 

was performed with the AS-OCT in high-resolution corneal mode throughout.  

 

4.2.3 Image analysis 

In the same manner described in section 3.2, image analysis was performed by one 

examiner (ALS) using the inbuilt Visante software (version 2.0). The examiner was masked 

to the accommodative state of subjects by use of a code to save image sets following scan 

acquisition. A refractive index of 1.000 was manually applied to all images prior to analysis. 

In addition to the ciliary muscle length and thickness measures detailed in Chapter 3, two 

further parameters, which may be relevant to the development of presbyopia, were 

determined from the OCT images. Ciliary muscle maximum thickness (Figure 4.1a) was 

measured using a calliper extending from the inner apex of the muscle to the muscle/ sclera 

boundary. As with all thickness measures detailed in the investigation, the calliper was 

positioned perpendicular to the muscle/ sclera interface. The distance from the scleral spur 

to the inner apex of the muscle (Figure 4.1b) was also determined to investigate the age-

related shift in ciliary muscle location. 

 

 
Figure 4.1a. Measurement of temporal ciliary muscle maximum thickness. A calliper positioned at the inner apex 

(IA) is extended to the ciliary muscle/ sclera interface. Here, maximum thickness = 0.66 mm (emmetropic 

subject, aged 26 years). 

 

IA 
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Figure 4.1b. Measurement of distance from inner apex (IA) to scleral spur (SS) on the temporal side. Here, 

distance from inner apex to scleral spur = 1.08 mm (same eye as Fig. 4.1a). 

 

Following analysis of the three nasal and temporal images in which the ciliary muscle was 

most clearly defined, using an applied refractive index of 1.000, all width measures were 

divided by 1.382, which is a more valid index for the ciliary muscle (Tearney et al., 1995; 

Dirckx et al., 2005). Mean values for all length and width measures (adjusted for refractive 

index) were entered into a spreadsheet (Excel; Microsoft, Redmond, Washington, USA) and 

used for statistical analyses.  

 

4.2.4 Statistical analysis 
Linear regression analysis using SigmaPlot graphing software (Version 11, Systat Software 

Inc., Chicago, Illinois, USA) was performed to determine the effect of age (independent 

variable) on nasal and temporal ciliary muscle morphological characteristics. The mean and 

standard deviation for each parameter was calculated if significant correlation with age was 

not found at the α = 0.05 level. To investigate the effect of age on ciliary muscle contractile 

responses, the difference between CM25, overall length and anterior length (the main 

parameters which showed an accommodative change in Chapter 3) at 0.17 and 8.0 D was 

calculated for each subject. Linear regression analysis was then used to determine any 

dependence of the magnitude of response with age. 

 

Emmetropic and myopic eyes were considered separately, whilst the few hyperopic 

participants were analysed in conjunction with the emmetropes, as these eyes have not 

undergone myopic axial elongation, which has been proposed as a cause of altered ciliary 

muscle characteristics (Sheppard and Davies, 2010b) 

 

 

 

 

IA 

SS 
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4.3. Results 

The total cohort of 79 subjects comprised 45 emmetropes/ hyperopes (mean spherical 

equivalent; MSE: -0.75 to +2.33 D) with a mean age of 34.7 ± 12.8 years, and 34 myopes 

(MSE > -0.75 D), with a mean age of 31.5 ± 11.5 years. A wide range of refractive error was 

found amongst the whole cohort, ranging from -9.50 D to +2.33 D MSE, which was reflected 

by the broad spread of axial lengths, from 21.75 to 28.12 mm (mean 24.31 ± 1.20 mm). 

Mean refractive error and axial length values for the emmetropic participants (including the 6 

hyperopes, with MSE > +1.00 D) were +0.31 ± 0.70 D and 23.68 ± 0.83 mm, respectively, 

and -3.87 ± 2.21 D and 25.00 ± 1.17 mm, respectively, for the myopes. Table 4.1 

summarises the effect of age on nasal and temporal ciliary muscle biometric characteristics. 
 

4.3.1 Ciliary muscle morphology 

Regarding ciliary muscle length measures, neither total length nor anterior length 

demonstrated a significant dependence on age in myopic eyes, for either the nasal (total 

length: r = 0.325, P = 0.065; anterior length: r = 0.113, P = 0.523) or temporal (total length: r 

= 0.253, P = 0.150; anterior length: r = 0.183, P = 0.300) aspects. In emmetropic eyes, 

ciliary muscle anterior length decreased significantly with age both nasally (r = 0.461, P = 

0.001) and temporally (r = 0.619, P <0.001), whilst no age-related change in overall length 

was identified for either the nasal (r = 0.232, P = 0.126) or temporal (r = 0.009, P = 0.952) 

side. 

 

Changes in thickness measures with age also displayed some refractive-group dependent 

asymmetry. CM2, measured at a fixed 2 mm position posterior to the scleral spur, did not 

demonstrate a significant age-related change in myopic eyes, either nasally (r = 0.119, P = 

0.504), or temporally (r = 0.196, P = 0.266). However, in emmetropic eyes, CM2 reduced 

with age on the temporal side, by 2.08 µm/ year (r = 0.387, P = 0.009), but remained 

constant nasally (r = 0.193, P = 0.009), with a mean value of 327 ± 59 µm. 
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Table 4.1. Change in ciliary muscle morphological characteristics with age. n = 45 emmetropes/ hyperopes (MSE -0.75 - +2.33 D), mean age 34.7 ± 12.8 years, and 34 

myopes (MSE < -0.75 D), mean age 31.5 ± 11.5 years 

 Change with age Ciliary muscle parameter 

Side Emmetropes Myopes 

Nasal No significant change. Mean = 4.53 ± 0.57 mm  No significant change. Mean = 4.84 ± 0.65 mm Total length 

Temporal No significant change. Mean = 4.69 ± 0.66 mm No significant change. Mean = 5.07 ± 0.77 mm 

Nasal Decreases: Nasal AL (mm) = 0.989-(0.00546 * age).               
R = 0.461, P = 0.001 

No significant change. Mean = 0.91 ± 0.15 mm Anterior length 

Temporal Decreases: Temporal AL (mm) = 1.080-(0.00895 * age).       
R= 0.619, P < 0.001  

No significant change. Mean = 0.92 ± 0.15 mm 

Nasal No significant change. Mean = 528 ± 44 µm No significant change. Mean = 541 ± 62 µm CM25 

Temporal No significant change. Mean = 541 ± 50 µm No significant change. Mean = 546 ± 66 µm 

Nasal No significant change. Mean = 284 ± 42 µm No significant change. Mean = 304 ± 43 µm CM50 

Temporal Decreases: Temporal CM50 (µm) = 383 – (1.940 * age).         
R = 0.448, P = 0.002 

Decreases: Temporal CM50 (µm) = 581 – (3.810 * age).         
R = 0.538, P = 0.001 

Nasal No significant change. Mean = 143 ± 22 µm No significant change. Mean = 157 ± 22 µm CM75 

Temporal Decreases: Temporal CM75 (µm) = 184 – (0.760 * age).         
R = 0.380, P = 0.010 

Decreases: Temporal CM50 (µm) = 276 – (1.26 * age).           
R = 0.410, P = 0.016 

Nasal No significant change. Mean = 327 ± 59 µm No significant change. Mean = 372 ± 72 µm CM2 

Temporal Decreases: Temporal CM2 (µm) = 434 – (2.079 * age).          
 R = 0.387, P = 0.009 

 

 

No significant change. Mean = 419 ± 74 µm 
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Regarding the proportional measures of ciliary muscle thickness, the most anterior of 

these parameters, CM25, did not show any dependence on age either nasally 

(emmetropes: r = 0.149, P = 0.365; myopes: r = 0.019, P = 0.917) or temporally 

(emmetropes: r = 0.009, P = 0.956; myopes: r = 0.211, P = 0.231), for either refractive 

group. The more posterior CM50 and CM75 parameters showed an age dependent 

reduction in thickness on the temporal side for both refractive error groups (CM50: 

emmetropes r = 0.365, P = 0.022; myopes r = 0.538, P = 0.001. CM75: emmetropes r = 

0.338, P = 0.036; myopes r = 0.410, P = 0.016), although nasally, no significant age-

related change was identified for either of these measures (CM50: emmetropes r = 0.076, 

P = 0.647; myopes r = 0.129, P = 0.469. CM75: emmetropes r = 0.037, P = 0.821; 

myopes r = 0.288, P = 0.100).  

 

Ciliary muscle maximum width and distance from inner apex to scleral spur measures 

were obtained from only 37 of the 79 participants, due to technical problems encountered 

with the Visante device (hard-drive failure and unrecoverable image files). Despite the 

reduced data sets, the power of all statistical tests performed to ascertain the effect of age 

on these parameters was 0.80 or above. Ciliary muscle maximum width increased 

significantly with age, by 2.8 µm/ year nasally (r = 0.54, P <0.001) and 3.0 µm/ year 

temporally (r = 0.44, P = 0.007). No significant difference between nasal and temporal 

maximum width measures was identified (P = 0.673).  Figure 4.2 illustrates graphically the 

effect of age on maximum ciliary muscle width. 
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Figure 4.2.  Nasal and temporal ciliary muscle maximum width versus age. n = 37 participants. 
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The distance from the inner apex of the ciliary muscle to the scleral spur decreased 

significantly with age on both the nasal and temporal aspects (r = 0.47; P = 0.004 and r = 

0.43; P = 0.009, respectively). The reduction was similar on both sides: the decrease was 

4.7 µm/ year nasally, and 4.1 µm/ year temporally. No significant difference was identified 

between the nasal and temporal inner apex to scleral spur measures (P = 0.550). Figure 

4.3 illustrates the relationship between age and ciliary muscle inner apex to scleral spur 

values. 
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Figure 4.3. Nasal and temporal inner apex to scleral spur values versus age. n = 37 subjects. 

 

4.3.2 Ciliary muscle contractile response 

CM25 (shown in Chapter 3 to increase significantly with accommodation in youthful eyes) 

thickens in response to an accommodative stimulus throughout life. Figure 4.4 illustrates 

graphically the change in nasal and temporal CM25 with accommodative effort versus 

age. Linear regression analysis revealed the magnitude of accommodative thickening of 

CM25 was not dependent on age for either the nasal or temporal aspects (r = 0.001, r2 = 

0.000, P = 0.994 and r = 0.202, r2 = 0.041, P = 0.090, for nasal and temporal CM25, 

respectively). 
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Figure 4.4. Nasal (A) and temporal (B) CM25 versus age for minimum accommodation (open circles and 

dashed regression line) and in response to an 8.0 D stimulus (filled circles and solid regression line). n = 79 

subjects. 

 
In conjunction with the thickening of CM25, Chapter 3 highlighted a shortening of ciliary 

muscle anterior length and overall length measures during accommodation. Both overall 

length and anterior length continue to reduce with accommodative effort throughout life. 

Figures 4.5 and 4.6 illustrate the change in nasal and temporal ciliary muscle anterior 

length in response to an 8.0 D accommodative stimulus against subject age in 

emmetropes and myopes, respectively. In both refractive groups, the magnitude of 

change in anterior length during near vision is statistically unchanged with age on both the 

nasal (r = 0.254, P = 0.161 and r = 0.056, P = 0.755, for emmetropes and myopes 

respectively) and temporal (r = 0.061, P = 0.741 and r = 0.116, P = 0.514, for emmetropes 

and myopes respectively) sides. Furthermore, the reduction in overall length during 

accommodative effort also remains statistically constant with age both nasally (r = 0.049, 

P = 0.750 and r = 0.073, P = 0.680, for emmetropes and myopes respectively) and 

temporally (r = 0.075, P = 0.624 and r = 0.047, P = 0.791, for emmetropes and myopes 

respectively). Figures 4.7 and 4.8 show the effect of age on nasal and temporal ciliary 

muscle overall length changes in response to an 8.0 D accommodative stimulus. 
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Figure 4.5. Nasal (A) and temporal (B) anterior ciliary muscle length in emmetropes versus age for minimum 

accommodation (open circles and dashed regression line) and in response to an 8.0 D stimulus (filled circles 

and solid regression line). n = 45 subjects. 
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Figure 4.6. Nasal (A) and temporal (B) ciliary muscle anterior length in myopes versus age for minimum 

accommodation (open circles and dashed regression line) and in response to an 8.0 D stimulus (filled circles 

and solid regression line). n = 34 subjects. 
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Figure 4.7. Nasal (A) and temporal (B) ciliary muscle total length in emmetropes versus age for minimum 

accommodation (open circles and dashed regression line) and in response to an 8.0 D stimulus (filled circles 

and solid regression line). n = 45 subjects. 
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Figure 4.8. Nasal (A) and temporal (B) ciliary muscle total length in myopes versus age for minimum 

accommodation (open circles and dashed regression line) and in response to an 8.0 D stimulus (filled circles and 

solid regression line). n = 34 subjects. 

 

 

4.4. Discussion 

There are limited published data documenting the effect of age on human ciliary muscle 

morphology and contractility. Previous in vitro and in vivo studies of ciliary muscle biometry 

have used narrow age-bands of subjects and/ or small cohort sizes. The present 

investigation represents the largest in vivo study to date to investigate relaxed and 

contracted ciliary muscle characteristics across a broad range of subject ages.  

 

In the relaxed state, the anterior portion of the ciliary muscle becomes thicker throughout 

life, as reflected by the age-related increase in maximum width values, of approximately 3 

µm/ year. More posteriorly, CM25 is unchanged in both refractive groups with age, whilst 

CM50 and CM75 become progressively thinner temporally. Regarding ciliary muscle 

lengths, the overall length is unchanged with age for both refractive groups, whilst anterior 

length measures decrease on both sides in emmetropic, but not myopic, eyes. Furthermore, 

the distance from the muscle inner apex to the scleral spur demonstrates a significant 

reduction with age, of approximately 4 µm/ year. Overall, the observed changes reflect a 

general antero-inwards shift of ciliary muscle mass throughout life. The anterior thickening of 

the ciliary muscle is in agreement with a recent in vivo MRI study (Strenk et al., 2010) and 

earlier in vitro data (Pardue and Sivak, 2000). Increased thickness of the anterior portion of 

the muscle may be a consequence of the age-related build-up of connective tissue observed 

in human post mortem samples (Pardue and Sivak, 2000), particularly in the radial and 

circular regions (Nishida and Mizutani, 1992; Tamm et al., 1992a), and/ or a change in the 

relative proportions of different fibre orientations. The quantity of circular (Nishida and 
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Mizutani, 1992) and radial (Pardue and Sivak, 2000) fibres, compared to the longitudinal 

portion, may increase with age, resulting in a bulging of the anterior portion of the ciliary 

muscle. Thinning of the posterior region of the human ciliary muscle has not previously been 

documented, although the present study has identified a significant reduction in temporal 

CM50 and CM75 in both refractive groups. Chapter 3 highlighted increased thickness of 

CM50 and CM75 parameters on the temporal side, compared to the nasal aspect, in 

youthful eyes. The age-dependent decrease in posterior thickness may be a consequence 

of a reduction in longitudinally-orientated muscle fibres, compared to radial and circular 

fibres, on the temporal side. Tamm et al. (1992a) measured an in vitro decrease in the 

cross-sectional area of the longitudinal portion of the muscle in older eyes, but did not state 

from which region of the globe (i.e. nasal/ temporal/ superior/ inferior) the samples were 

obtained. 

 

Hitherto, age-dependent changes in ciliary muscle length and distance from the inner apex 

to scleral spur have been observed in several in vitro investigations, but not previously 

reported in vivo. The reduction in distance from inner apex to scleral spur is in accordance 

with the in vitro data of Tamm et al. (1992a) from donor eyes aged 33- 87 years. No other 

previously published study has investigated the change in this parameter in the human eye 

with age. Ciliary muscle length changes with age have been more widely investigated, with 

some disagreement between studies. Tamm et al. (1992a) documented a continuous and 

significant decline in overall length with age, whereas Pardue and Sivak (2000) found no 

statistically significant change in this parameter, although the length of the anterior portion 

showed a substantial reduction. The present study has identified no significant age-

dependent change in ciliary muscle total length with age, in either emmetropes or myopes, 

although the anterior length reduced significantly in the emmetropic group. Chapter 3 

identified a positive correlation between axial length and both anterior and overall length 

measures, suggesting that the ciliary muscle elongates during myopigenesis. The 

maintenance of a constant anterior muscle length with age in myopic subjects suggests that 

the forces responsible for elongation of the globe are still present in later life, and inhibit the 

anterior shift of ciliary muscle mass that occurs in emmetropes.  

 

The mechanism responsible for the age-related anterior shift in ciliary muscle mass is 

unclear. According to the Modified Geometric Theory of presbyopia development, postulated 

by Strenk et al. (2005), growth of the lens results in antero-inwards movement of the uveal 

tract, through forces transmitted via the pupillary margin to the iris root. As the lens becomes 

progressively thicker throughout life, ever-increasing force is applied to the pupillary margin 

(which is in contact with the anterior lens surface) and translated to the iris root and ciliary 
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muscle. In addition to an anterior movement of the ciliary muscle, an inwards displacement 

simultaneously occurs, due to the constraining effect of the curved sclera. The antero-

inwards movement of the uvea leads to reduced pupil diameter, causing the pupillary margin 

to become increasingly nearer to the thicker part of the lens, and augmenting the forces 

applied by the lens. An alternative possible explanation for age-related anterior and inwards 

displacement of the ciliary muscle is based on the migration of zonules over the surface of 

the lens throughout life. Pardue and Sivak (2000) hypothesised that the forward migration of 

zonular insertions into the lens capsule (Farnsworth and Shyne, 1979; Sakabe et al., 1998) 

due to lens thickening with advancing age, causes an anterior and inwards pull on the ciliary 

body. Regardless of the cause of the altered position of the ciliary body with advancing age, 

the results of the present study imply that the anterior shift of muscle mass in emmetropic 

eyes is insignificant to the development of presbyopia, as myopes (in which a reduction in 

anterior length is not seen) also lose all accommodative ability by approximately 50-55 years 

of age. 

 

Regarding ciliary muscle function in the ageing eye, the results of the present study suggest 

that there is no significant decrease in the contractile ability of the muscle, even in eyes with 

established presbyopia. The main accommodative changes in ciliary muscle morphology 

observed in Chapter 3 were a reduction in overall length and anterior length measures, with 

a concurrent thickening of CM25. Figures 4.4 to 4.8 inclusive indicate that these parameters 

show the same changes in response to a near stimulus throughout life: linear regression 

analysis of the change in each measure between the minimal and 8.0 D stimulus levels 

versus age showed no statistical dependence of the magnitude of change on subject age. 

The data support a lensocentric model of presbyopia development, whereby continued 

growth and alterations in lenticular viscoelastic properties reduce the ability of the capsule to 

mould the lens into an accommodated form. Furthermore, the anterior migration of zonular 

insertions over the enlarged lens, such that they become more tangential to the lenticular 

surface with advancing age, may act to reduce the ability of the zonules to impart tension on 

the capsule. The observed ciliary muscle configurational changes appear to be passive 

elements in the development of presbyopia, particularly due to the refractive group 

asymmetry of anterior length changes. 

 

In considering the findings of the current investigation, attention must be paid to the 

limitations of the study. The technical problems encountered with the AS-OCT meant it was 

not possible to obtain ciliary muscle maximum width and inner apex to scleral spur 

measures from all participants. Due to the reduced data set, it was not feasible to compare 

the age-related changes in these parameters in emmetropes versus hyperopes. Whilst inner 
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apex to scleral spur measures decreased with age (in n = 37 participants, mixed refractive 

errors), suggesting an anterior displacement of the ciliary muscle with age, the anterior 

length was found to significantly decrease only in emmetropic eyes. It is possible that 

refractive group differences exist in the age-related changes in inner apex to scleral spur 

and maximum thickness measures, which were not detected in the current study. Additional 

further investigation could serve to clarify this matter.  

 

The current study was limited to investigation of ciliary muscle biometry in phakic volunteers. 

However, the impact of cataract extraction and intraocular lens (IOL) implantation on ciliary 

muscle configuration and contractility is relevant to the attempted correction of presbyopia 

with accommodating IOLs that rely on continued function of the ciliary muscle throughout life 

to induce either axial movement of an optic, or a change in surface curvature, to generate 

an increase in dioptric power. Previous studies that have analysed ciliary muscle 

morphology and contraction in phakic and pseudophakic eyes have produced some 

contradictory results. Park et al. (2008) used ultrasound biomicroscopy to evaluate 

centripetal ciliary muscle movement following pilocarpine administration to stimulate 

accommodation. Minimal centripetal movement was observed in patients prior to cataract 

surgery, but significant movement was restored following IOL implantation. However, the 

MRI data of Strenk et al. (2006) suggested that ciliary muscle contractility (as inferred by 

reduction in ciliary muscle ring diameter in response to a near stimulus) remained constant 

throughout life, and was unaffected by cataract surgery with IOL implantation. Further MRI 

data from the same group (Strenk et al., 2010) adds further uncertainty to the matter, as 

ciliary muscle thickening with accommodative effort was only observed in phakic volunteers 

aged 22- 91 years; pseudophakes showed no ciliary muscle thickening in response to a 

near visual stimulus, suggesting at least a partial reduction in ciliary muscle response 

following cataract surgery. To provide clarification of these issues, the methodology 

employed in the present study could be applied to a cohort of phakic versus pseudophakic 

volunteers, or alternatively, to a group of patients awaiting cataract surgery to compare pre- 

and post-operative ciliary muscle morphology and contractility. 

 

4.5 Conclusion 

The human ciliary muscle undergoes age-dependent changes in morphology that suggest 

an antero-inwards displacement of muscle mass, particularly in emmetropic eyes. The 

morphological changes observed appear not to affect the ability of the muscle to contract, 

even in established presbyopes, thus supporting a lenticular model of presbyopia 

development. Further work is required to investigate the effect of cataract extraction with 

IOL implantation on ciliary muscle biometric characteristics. Such data would be valuable in 
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the development of strategies aimed at restoring accommodative function to presbyopic 

eyes.  

 

Supporting Publication: 
Sheppard A. L. and Davies L. N. (2010). The effect of ageing on in vivo human ciliary 

muscle morphology and contractility. Investigative Ophthalmology and Visual Science (In 

press). 
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CHAPTER 5 

PHAKIC LENS TILT AND DECENTRATION WITH ACCOMMODATION 

UTILISING ANTERIOR SEGMENT OPTICAL COHERENCE 

TOMOGRAPHY 
 

5.1. Introduction 

Recent clinical literature includes many studies of post-operative intraocular lens (IOL) tilt 

and decentration, using a range of methodologies (e.g. Guyton et al., 1990; Hayashi et al., 

1997; Mutlu et al., 1998; Kim and Shyn, 2001; Mutlu et al., 2005; de Castro et al., 2007; 

Verbruggen et al., 2007). As both cataract surgical procedures and implant designs have 

progressed, measures of IOL tilt and decentration, which may degrade retinal image quality 

(Atchison, 1991; Mester et al., 2009), have developed greater clinical significance. However, 

less attention has been directed towards measurement of lens tilt and alignment in the 

healthy, phakic eye. Despite a paucity of data describing natural crystalline lens tilt and 

decentration, such information could be valuable in IOL research, as perfect alignment of 

the implant with the cornea may not be necessary, or feasible, in all eyes (Dunne et al., 

2005). 

 

Hitherto, the most frequently used technique to determine tilt and decentration of the phakic 

crystalline lens is phakometry, although one recent investigation reports findings from a 

small cohort utilising magnetic resonance imaging (MRI; Chang et al., 2007). Table 5.1 

provides a summary of recently published studies that have analysed natural lens tilt and 

alignment in vivo. Reported mean lens tilt values from these studies are variable, ranging 

from a minimal 0.2 ± 0.8° temporally (Kirschkamp et al., 2004) to 4.62 ± 3.18° temporally 

(Schaeffel, 2008). The broad range of values documented could be a result of several 

factors, either individually or interacting to produce a greater effect. True population 

differences could be present, although it is impossible to exclude potential technical 

discrepancies without some subjects being analysed with more than one of the described 

methodologies. Furthermore, with the exception of the Dunne et al. (2005) study, lens tilt 

has been determined from relatively small cohorts, leading to the problem of one or two 

outliers causing a significant increase in the calculated mean values. The results of 

Schaeffel (2008), based on 11 subjects, include an individual with a measured phakic lens 

tilt of 10.24°, a value far exceeding that observed by other authors. While reported absolute 

values vary, Table 5.1 highlights a tendency for lens tilt to be in the temporal direction in the 

phakic human eye. Temporal lens tilt has been suggested to be an evolutionary remnant 

from non-binocular mammalian ancestors (Schaeffel, 2008). 
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Table 5.1. Summary of recent studies of phakic human lens tilt and decentration.  H and V are the horizontal and 

vertical directions, respectively. Regarding lens tilt, positive values of horizontal tilt indicate tilt to the temporal 

side, whilst positive values of vertical tilt signify that the superior edge of the lens is nearer to the cornea than the 

inferior edge (forwards tilt). For decentration, positive horizontal values indicate temporal decentration, whilst 

positive vertical values signify upwards displacement. Regarding the data of Chang et al., (2007) the direction of 

mean tilt was not specified, but ALS and PLS are the anterior and posterior lens surfaces, respectively 

 

Regarding phakic lens decentration, published studies indicate generally good alignment 

between the cornea and crystalline lens, although direct comparisons are not possible, due 

to the variations in definition of decentration between authors. Kirschkamp et al. (2004), 

Dunne et al. (2005) and Rosales and Marcos (2006) defined decentration as the distance 

between the lens tilt axis and corneal axis; Chang et al. (2007) measured the distance from 

the lens centre to corneal axis, whilst Schaeffel (2008) determined the distance from lens 

centre to pupil centre. Use of pupillary centre as the reference point from which to judge lens 

decentration may lead to a temporal bias in results, as the pupil is generally displaced 

nasally, by approximately 0.25 mm (Rabbetts, 1998). Reported horizontal lens decentrations 

range from just 0.1 ± 0.1 mm temporally (Dunne et al., 2005) to 0.28 ± 0.12 mm nasally 

(Rosales and Marcos, 2006). Although no consensus exists over whether horizontal 

decentration is usually nasal or temporal, in the vertical meridian, the lens appears to be 

inferiorly displaced. Table 5.1 highlights that all studies reporting vertical alignment have 

identified a downwards displacement, ranging from a minimal 0.06 ± 0.08 mm (Rosales and 

Author Method Cohort 
size 

Mean lens tilt (°) Mean lens 
decentration (mm) 

Kirschkamp et 
al. (2004) 

Phakometry, 
keratometry & 

ultrasonography 

9 H = +0.2 ± 0.8  H = -0.1 ± 0.2 
 

Dunne et al. 
(2005) 

Phakometry 45 H = +0.2 ± 1.8  
 

H = +0.1 ± 0.1 
 

Rosales & 
Marcos (2006) 

Phakometry 17 H = -0.87 ± 2.16 
V = +2.3 ± 2.33 

H = -0.28 ± 0.12  
V = -0.06 ± 0.08 

Relative to pupil centre 
 

Chang et al. 
(2007) 

MRI 6 3.0 ± 2.4 (ALS) 
2.7 ± 1.6 (PLS) 

H = +0.05 ± 0.14 
V = -0.29 ± 0.45 

 

Schaeffel 
(2008) 

Phakometry 11 H = +4.62 ± 3.18  
V = -1.7 ± 0.49 

Relative to fixation 
axis 

H = +0.10 ± 0.08 
V = -0.31 ± 0.09 
Relative to pupil 

centre 
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Marcos, 2006)  to approximately 0.3 mm (Chang et al., 2007; Schaeffel, 2008), potentially 

due to the effects of gravity (Schaeffel, 2008).  

 

Rather than measuring phakic lens tilt and decentration at just one fixed vergence level, or 

not controlling accommodative demand, several previous authors have documented lens 

position in the monkey and human eye during accommodation, through direct or indirect 

methods. Potential changes in lens tilt and alignment are significant as instability of the lens 

during accommodation implies reduced zonular tension with ciliary muscle contraction, 

providing additional evidence to support Helmholtz’ theory of accommodation (von 

Helmholtz, 1855). Furthermore, variation in lens position may account for the changes in 

wavefront aberrations that occur during accommodation (He et al., 2000; Sokolowska and 

Thorn, 2003). 

 

In the rhesus monkey, Glasser and Kaufman (1999) observed movement of a lenticular 

opacity under the influence of gravity, regardless of head position, through slitlamp video 

recording of a single accommodating specimen. More recently, Rosales et al. (2008) 

performed phakometry on 4 eyes of 2 monkeys in the relaxed and accommodated states. 

Contrary to the observations of Glasser and Kaufman (1999), no significant change in lens 

centration was detected during accommodation, although tilt around the horizontal axis 

changed at a rate of 0.15 ± 0.25 °/ D. Similar confounding results have been documented in 

the accommodating human eye. Phakometry- based studies (Sokolowska and Thorn, 2003; 

Kirschkamp et al., 2004) have shown no change in lens centration during accommodation to 

a 4 D stimulus, although Sokolowska and Thorn (2003) measured a change in horizontal tilt 

during near vision. No variation in lens tilt with accommodation was detected by Kirschkamp 

et al. (2004). However, He et al. (2010) measured saccadic lens instability during ciliary 

muscle contraction utilising a dual Purkinje image eye tracker to compare the positions of 

Purkinje image 1 (P1; anterior corneal surface) and P4 (posterior lens surface). The 

saccadic “lens wobble artifact” (Deubel and Bridgeman, 1995) was found to increase with 

stimulus demand in the presbyopic cohort examined, indicating that lens stability does 

reduce during accommodation, as a consequence of slackened zonular tension.  

 

Additionally, increases in astigmatic refractive error have been postulated as indirect 

evidence of lens tilting with accommodation in humans (Fletcher, 1951; Radhakrishnan and 

Charman, 2007b). The reported levels of astigmatic change during accommodation do, 

however, differ significantly from one another. In relatively recent studies, Tsukamoto et al. 

(2000) found the greatest change, with 0.8 D of with-the-rule astigmatism induced by a 2 D 

stimulus. Cheng et al. (2004) and Radhakrishnan and Charman (2007b) identified more 
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modest increases, of 0.021 DC per dioptre of response and 0.036 DC/ D, respectively, 

whilst Mutti et al. (2001) observed no significant change in astigmatism during 

accommodation.  

 

In summary, in vivo studies of phakic human lens tilt and alignment, and changes in these 

parameters with accommodation, are scarce. The results of the few studies to date show no 

consensus on levels of natural tilt and decentration, although the unaccommodated lens 

appears to be inferiorly displaced (Rosales and Marcos, 2006; Chang et al., 2007; 

Schaeffel, 2008). In the accommodated eye, according to the mechanism described by 

Helmholtz (1855), an increase in lenticular tilt and decentration would be expected, as a 

result of lens instability whilst zonular tension is reduced. However, only one study that has 

directly measured lens stability with accommodation has identified an accommodative 

increase in instability (He et al., 2010). Interestingly, this is the study that employed the 

greatest range of stimulus vergences: up to -8.0 D, compared to the 4.0 D demand level 

utilised by Sokolowska and Thorn (2003) and Kirschkamp et al. (2004). The outcome 

measure reported by He et al. (2010) was lens wobble, which unfortunately does not 

differentiate between tilt and decentration. Increased with-the-rule astigmatism during near 

viewing (Tsukamoto et al., 2000; Cheng et al., 2004) provides further, indirect, evidence for 

accommodative lens tilting (Radhakrishnan and Charman, 2007b), but the refractive 

changes observed could potentially result from other factors such as narrowing of the 

palpebral aperture (Han et al., 2007) or natural eye movements (Steffen et al., 2000; 

Buehren et al., 2003). 

 

Hitherto, the methods used to analyse directly phakic human lens tilt and alignment in vivo 

have been limited to phakometry-based techniques and MRI. MRI is an expensive and 

relatively inaccessible imaging methodology, and potential subjects could be precluded from 

participation due to risk factors such as migraines, heart disease and implanted metal 

devices/ fragments. Whilst phakometry requires less sophisticated equipment, the set-ups 

described in previous studies are bespoke, and as such, may be time-consuming to 

develop. Anterior segment optical coherence tomography (AS-OCT) is a commercially 

available high-resolution imaging technique that has been suggested for use in analysis of 

IOL positioning (Montes-Mico et al., 2009), although no published study to date has 

measured lens tilt and decentration with this method. 

 

The aim of this study is to develop an AS-OCT based technique that permits measurement 

of phakic crystalline lens tilt and alignment, relative to the cornea. The methodology will be 

applied to analyse phakic lens tilt and decentration in youthful eyes, in the relaxed and 
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accommodated states. It is anticipated that the data will assist in clarifying the natural 

alignment and tilt of the crystalline lens in vivo. Use of a high vergence stimulus (-8.0 D) 

should make accommodative changes in these parameters more obvious. It is feasible that 

sectorial differences in ciliary muscle contractility could have a significant impact on lens 

stability during accommodation (Radhakrishnan and Charman, 2007b). Results will 

therefore be considered in light of the findings detailed in Chapter 3, of a thicker (and 

possibly more powerful) ciliary muscle on the temporal aspect of the eye, thus building on 

the author’s previous work. 

 

5.2. Methods 
5.2.1 Protocol development 

To determine phakic lens tilt and decentration, relative to the cornea, using AS-OCT, it is 

necessary to acquire images including both corneal and both lenticular surfaces. In Anterior 

Segment Single mode, the axial field of view of the Visante device permits visualisation of 

both corneal surfaces along with the anterior lens surface only. It is therefore necessary to 

capture a second image, penetrating further into the eye, showing both lenticular surfaces 

(but not the cornea). The anterior and posterior scans described (Figs. 5.1a and 5.1b, 

respectively) are needed in conjunction with one another for the calculation of phakic lens tilt 

and decentration. Image sets can be rapidly obtained along any desired meridian using AS-

OCT. The manufacturer’s supplied software (version 1.0) allows post hoc distance 

measurements using callipers, and angle determination, but no tools exist that would enable 

assessment of lenticular tilt and alignment. It was therefore necessary to develop a bespoke 

semi-automated computer programme to calculate lens tilt and alignment, relative to the 

cornea, from exported AS-OCT images. 
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Figure 5.1. Anterior (A) and posterior (B) AS-OCT images for analysis of lens tilt and decentration. The anterior 

image includes both corneal surfaces and the anterior lens surface, whilst image B contains both lens surfaces. 

The common features on the two images are the irido-corneal angles. 

 

5.2.2. Development of a computer programme for determination of lens tilt and 
decentration from AS-OCT images 
A Liberty Basic 4.0 (Shoptalk Systems, Framingham, Massachussets, USA) computer 

programme was written by the author to facilitate the analysis of AS-OCT extracted bitmap 

images and determine lens tilt and decentration relative to the cornea. Manual input is 

required throughout running of the programme, as the user is asked to define various 

landmarks on the images using left and right mouse clicks. All AS-OCT data for analysis are 

exported as 816 * 638 pixel bitmaps, thus the x and y co-ordinates of selected points can be 

used for the calculations performed automatically during execution of the programme. The 

three key stages of the programme can be summarised as follows: 

 

 1. Determination of corneal axis from analysis of the anterior image. 

 2. Location of lenticular axis, using the posterior image.  

 3. Calculation of lens tilt and decentration relative to the cornea. 

 

 
 

A 

B 
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5.2.2a Determination of corneal axis 

Stage one initially prompts the user to locate the irido-corneal angles (Figure 5.2; small 

white squares) on the anterior image, which are used by the programme as anatomical 

landmarks to divide the cornea into 12 equally-sized segments with 13 visible lines. The 

intersections of the anterior and posterior corneal surfaces with the vertical lines are 

specified by the user (Fig. 5.2; red spots indicate the defined points) and the programme 

determines the x and y co-ordinates of the midpoints between the anterior and posterior 

corneal intersections: these values are used to determine the regression coefficient 

(Equation 4) of the line formed by the corneal midpoint coordinates. 

 

  
 





 2

xx

yyxx
b   

Equation 4 

The constant a is estimated by: 
 

xbya                                                                                                                    
                      Equation 5 
 
The fitted regression line is therefore: 
 

bxay   
Equation 6 

 

 
Figure 5.2. Execution of the initial stage of the computer programme. Following location of the irido-corneal 

angles (white squares), the user specifies the points at which the 13 vertical lines dividing the cornea into 12 

equal segments intersect the anterior and posterior corneal surfaces (red dots). 
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Having calculated the slope of the line formed by the corneal midpoint values, the 

programme draws a movable line with the same slope on the anterior scan (Figure 5.3; red 

line). The operator moves the line using ↑ and ↓ keyboard input, and specifies the location of 

the anterior and posterior corneal apices (i.e. the most anterior, and least posterior points at 

which the line touches the corneal surfaces). The midpoint of these locations (in both the x 

and y directions) is calculated, and a line of an angle 90° to that of the corneal slope is 

drawn (Fig. 5.4; bold red line) from this point; it is this line that represents the corneal axis.  

 

As the corneal surfaces are not visible in the more posterior scan, to be used for the later 

stages of analysis, it is necessary for the user to again locate the irido-corneal angles, 

between which a line is drawn. Identifying the point at which the corneal axis crosses this 

line provides a reference point that allows the axis to be redrawn, provided the angles are 

visible, on the posterior image.  

 

 
Figure 5.3. A movable line of calculated slope is used to locate the anterior and posterior corneal apices. 
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Figure 5.4. The corneal axis (bold red line) is automatically drawn following location of the anterior and posterior 

corneal apices. 

 

5.2.2b Location of lenticular axis 

Following selection and opening of the more posterior bitmap image, the operator is 

prompted to indicate the visible limits of the crystalline lens (i.e. the widest horizontal portion 

of the lens where it is possible to visualise both the anterior and posterior surfaces, normally 

corresponding to the pupillary aperture), to allow 9 vertical lines to be automatically drawn 

that pass through both the anterior and posterior lenticular surfaces (Fig. 5.5). In the same 

manner as described previously, the intersections of these lines with the anterior and 

posterior lens surfaces are identified by the user (Fig. 5.5; red dots), enabling the 

programme to determine the midpoints of these locations (Fig. 5.5; purple spots). Equations 

4, 5 and 6 are used to calculate the slope of the line formed by these midpoint values and 

the lenticular axis (Fig. 5.6; purple line) is determined in the same way as the cornea, 

following operator location of the anterior and posterior lens apices. 

 

 
Figure 5.5. Location of the intersections of the 9 vertical lines with the anterior and posterior lens surfaces (red 

dots). The programme calculates the slope of the line formed by the midpoint values (purple dots). 
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Figure 5.6. Lens tilt is the calculated difference in angles between the lenticular axis (purple) and the corneal 

axis (yellow). Lens decentration relative to the cornea is the horizontal separation of the corneal axis and the lens 

centre (i.e. horizontal distance from red dot to white cross). 

 

5.2.2c Calculation of lens tilt and decentration relative to the cornea 

Following identification of the lenticular axis, it is necessary to redraw the corneal axis on the 

posterior image for determination of lens tilt and alignment. The operator is again required to 

indicate the locations of the irido-corneal angles, and using the previously determined co-

ordinates for the point at which the corneal axis intersects a line between these points, the 

programme draws the corneal axis (Fig. 5.6; yellow line). Lens tilt is defined as the angular 

difference between the corneal and lenticular axes, and the result is displayed in the 

dialogue box (Fig. 5.7), which is open throughout execution of the programme.   

 

Finally, to determine lens decentration, the user is required to indicate the intersection of the 

corneal axis with a horizontal line originating from the lens centre (Fig. 5.6). The horizontal 

distance between these points corresponds to the lens decentration. A previously 

determined pixel to millimetre conversion factor of 1 pixel = 0.022 mm (Dunne et al., 2007) is 

used to calculate lens decentration, the result of which is displayed in the dialogue box (Fig. 

5.7). 
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Figure 5.7. Dialogue box open during execution of the programme, displaying results for lens tilt and 

decentration relative to the cornea. 

 

Measures of tilt and decentration may produce positive or negative values. According to the 

programme, for horizontal scans, negative values for tilt indicate nasal tilt (i.e. the nasal 

aspect of the lens is displaced backwards relative to the cornea), whilst negative 

decentration indicates that the lens is decentred nasally (relative to the cornea). For vertical 

scans, negative tilt indicates that the superior edge of the lens is tilted backwards, whilst 

negative decentration represents superior displacement of the lens relative to the cornea. 

 

5.2.3 Validity of programming 

Before application of the programme to images of human eyes, it was necessary to confirm 

accuracy of the computer programming (particularly regarding the automated calculations 

performed) and validity of the methods involved, by conducting a small pilot investigation. 

Simplified schematic images, based upon AS-OCT scans, of eyes incorporating 0, 5 and 10° 

of lenticular tilt, and 0 mm of lens decentration, relative to the cornea (e.g. Fig. 5.8) were 

constructed using Powerpoint presentation software (Microsoft, Redmond, Washington, 

USA) and converted to 816 * 638 bitmap files. The sample images were analysed 10 times 

to provide an indication of the inherent error involved in execution of the programme, which 

requires significant user input. Table 5.2 summarises the results of the pilot study, which 

confirmed accuracy of the computer programming, and also demonstrated that the error 

associated with user input is relatively small, compared to previously-published mean values 

of lens tilt and decentration (Table 5.1). 
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Figure 5.8. Simplified schematic image constructed to confirm validity of the bespoke computer programme to 

measure lens tilt and decentration, relative to the cornea. Here, lens tilt = -5° and lens decentration = 0 mm.  

 

 

Actual lens tilt and 
decentration, relative to cornea 

0°, 0 mm -5°, 0 mm -10°, 0 mm 

Calculated mean lens tilt (± SD) 0.093 ± 0.078° -5.102 ± 0.090° -9.892 ± 0.074° 

Calculated mean lens decentration 
(± SD) 

-0.033 ± 0.052 mm 0.032 ± 0.069 mm 0.039 ± 0.091 mm 

 
Table 5.2. Results of small pilot investigation to verify accuracy of the computer programme and associated 

methods. Images were constructed of eyes incorporating 0, 5 and 10° of lens tilt, with 0 mm decentration, relative 

to the cornea. Each image was analysed 10 times to indicate the error associated with user input. 

 

5.2.4. Main investigation 

20 pre-presbyopic volunteers (12 females, 8 males), aged 19 to 34 years of age (mean age 

26.5 ± 4.5 years) with no previous history of ocular abnormality or intraocular surgery were 

recruited using email announcements at Aston University. A young cohort was selected to 

ensure participants had high amplitudes of accommodation. Subjects with all types of 
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refractive error were included, provided the mean spherical equivalent refractive error (MSE) 

of their right eye was within the range that could be corrected by the Visante optometer to 

allow both the internal pinwheel target to be seen clearly in the unaccommodated state, and 

the stimulus vergence to be adjusted to -8.0 D. Volunteers with an MSE outside of the broad 

range of -27.00 to +20.00 D were therefore excluded from the study, as were participants 

with cylindrical powers exceeding 0.75 DC, as the Visante optometer cannot make 

adjustment for astigmatic refractive errors. The study was approved by the Ethics 

Committee of Aston University (see Appendix 1), and was performed in accordance with the 

Declaration of Helsinki. Written, informed consent was obtained from all subjects (see 

Appendix 2 for copy of consent form) following explanation of the nature and possible 

consequences of the study. 

 

5.2.5 Measurements 

All measurements were taken from the right eye only. Refractive error was determined from 

the mean of five open-view distance autorefractor readings, obtained with the Grand Seiko 

Auto Ref/ Keratometer WAM-5500 (Grand Seiko Co. Ltd., Hiroshima, Japan; Sheppard and 

Davies, 2010a). Objective accommodative response to an 8.0 D stimulus was measured 

with the WAM-5500, whilst subjects fixated a Maltese cross target in free space at a 

distance of 12.5 cm from the right eye. The Maltese cross had an angular subtense of 4.6° 

and the average target luminance and Michelson contrast of the stimulus was 30.5 cd/ m2 

and 80 %, respectively. The left eye was occluded with a patch during measurement of the 

accommodative response, and it was ensured at this stage that subjects had sufficient 

monocular amplitude of accommodation to maintain clarity of the 8.0 D stimulus, as would 

be required for AS-OCT imaging. 

 

5.2.6 Image acquisition 

Images of the right eye only were obtained, whilst the left eye was occluded by a patch. All 

imaging was performed in Anterior Segment Single mode, which provides sufficient 

horizontal field of view to visualise the entire cornea and the irido-corneal angles on the left 

and right of the image. 256 A-scans, penetrating to a tissue depth of 6mm, are performed in 

this mode to generate each 2-D image (Zeiss, 2006). Subjects were instructed to keep their 

heads as still as possible throughout scan acquisition. Scans were initially obtained in the 

unaccommodated state, whilst participants fixated the internal pinwheel target, which is 

automatically adjusted by the Visante depending on the specified distance refractive error. 

Images were acquired in the relaxed state first to avoid the problem of incomplete relaxation 

of accommodation confounding the results. Anterior images featuring the whole cornea, iris 

and anterior lens surface (Fig. 5.1a), and posterior images, comprising the limbal region, iris 
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and both crystalline lens surfaces (Fig. 5.1b) were captured with the scan line direction set 

at 0° (horizontal) and 90° (vertical). It is possible to set the scan line at any orientation from 

0- 359°, however 0 and 90° angles were selected to enable quantification of lens tilt and 

decentration relative to the cornea, in the horizontal and vertical meridians, allowing 

comparison with previously-published data (e.g. Kirschkamp et al., 2004; Dunne et al., 2005; 

Rosales and Marcos, 2006; de Castro et al., 2007; Schaeffel, 2008). The same image set 

was subsequently acquired from each subject in the accommodated state, with the stimulus 

power set to Distance MSE – 8.00 D (e.g. -9.00 D for a -1.00 DS myope). 

 

5.2.7 Image analysis 

Scans were exported from the AS-OCT as bitmap files following adjustment of the refractive 

index applied by the Visante software (version 1.0.12.1896), which uses edge detection 

algorithms to identify the corneal surfaces and assign an appropriate refractive index to 

each region of the image (Dunne et al., 2007; Bailey et al., 2008). As the posterior image did 

not contain either corneal surface, an index of 1.000 was manually applied to all regions of 

both images. Image analysis was performed on a PC running the bespoke programme. For 

each subject, the programme was executed to calculate lens tilt and decentration relative to 

the cornea in the horizontal and vertical meridians, at both the 0 and 8.0 D stimulus demand 

levels. Data were entered into a spreadsheet (SigmaPlot Version 11; Systat Software Inc., 

Chicago, Illinois, USA) for statistical analyses. 

 

5.2.8 Statistical analysis 
Statistical analysis was performed using SigmaPlot graphing software. Paired t-tests were 

used to identify significant differences in lens tilt and/ or decentration between the relaxed 

and accommodated states, with the significance level set at α = 0.05 throughout analysis. 

 

5.2.9 Repeatability 

The repeatability of both the analysis technique (applied to human data) and the complete 

experimental protocol was examined. Firstly, to determine the repeatability of human image 

analysis with the bespoke programme, the images of a single subject in the 

unaccommodated state, acquired with the scan line direction set at 0°, were analysed 10 

times. The mean values of both tilt and decentration were calculated, in addition to the 

standard deviation (SD) and standard error (SE) of the measures.  

 

To assess intersession repeatability of the entire protocol, a subset of ten participants 

returned within a fortnight of their initial visit, and were rescanned at both the 0 and 8.0 D 

stimulus levels. The bias for horizontal lens tilt and decentration relative to the cornea at 
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each demand level was calculated from the mean difference in measures between visits and 

paired t-tests used to determine whether the levels of bias were significantly different from 

zero. The limits of agreement (LoA), i.e. the interval over which 95 % of the differences 

between the two visits lie (Altman and Bland, 1983; Bland and Altman, 1986) were 

established using the standard deviation (SD) of differences with the following formula: 

 

LoA = bias ± (1.96 * SD of differences)  
Equation 3 

 

5.3. Results 
5.3.1 Repeatability 

The results obtained from analysing a single image set ten times are displayed in Table 5.3, 

whilst the intersession repeatability data regarding the complete methodology are shown in 

Table 5.4. A small degree of error associated with the analysis technique is highlighted by 

table 5.3, probably reflecting the requirement of the operator to manually locate various 

landmarks on the AS-OCT images. The intersession repeatability of the entire technique is 

fair, with none of the degrees of bias reported in table 5.4 being significantly different to zero 

(paired t-tests). 

 

Repeat Lens tilt (°) Lens decentration (mm) 
1 0.320 -0.132 
2 0.220 -0.143 
3 0.578 -0.154 
4 0.526 -0.154 
5 0.330 -0.176 
6 0.277 -0.154 
7 0.541 -0.110 
8 0.489 -0.132 
9 0.323 -0.176 

10 0.403 -0.088 
Mean 0.401 -0.142 

SD 0.125 0.028 
SE 0.040 0.009 

 
Table 5.3.  Repeatability of image analysis techniques. A single subject was analysed 10 times at the 0 D 

stimulus level, with the scan line direction set at 0°. 

 

 

 0 D stimulus level 8 D stimulus level 

Parameter Bias SD of 
differences 

95 % LoA Bias SD of 
differences 

95 % LoA 
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Horizontal lens    tilt (°) -0.067 0.247 -0.551, 
+0.417 

-0.051 0.292 -0.623, 
+0.521 

Horizontal lens 
decentration (mm) 

-0.032 0.178 -0.381, 
+0.317 

+0.060 0.108 -0.152, 
+0.272 

 
Table 5.4. Intersession repeatability data. Ten subjects attended two sessions, 7- 14 days apart. Horizontal lens 

tilt and decentration were analysed, by setting the scan line direction to 0°. 

 

5.3.2 Main investigation 

A broad range of refractive error was identified amongst the cohort of 20 youthful subjects, 

from -9.50 to +0.88 D mean sphere equivalent (MSE; mean -2.21 ± 2.78 D). Mean objective 

accommodative response to the 8.0 D stimulus was 5.48 ± 0.95 D, reflecting the lag of 

accommodation known to occur at high vergence demands. Table 5.5 summarises the 

results of lens tilt and decentration, relative to the cornea, in the relaxed and accommodated 

states for the complete cohort. 

 

 Lens tilt (°) Lens decentration (mm) 

Demand level 0 D 8.0 D 0 D 8.0 D 

Horizontal -0.185               

± 0.845 

-0.262               

± 0.758 

-0.111               

± 0.271 

-0.110               

± 0.189 

Vertical 0.411                

± 0.628 

0.455                

± 0.639 

 0.102               

± 0.196 

 0.121               

± 0.226 

 
Table 5.5. Mean values for lens tilt and decentration, relative to the cornea in relaxed and accommodated states. 

n = 20 youthful subjects. For horizontal scans, negative values of tilt indicate nasal tilt (i.e. nasal edge of lens 

displaced backwards), whilst negative values for decentration represent nasal displacement of the lens, relative 

to the cornea. For vertical scans, positive values of lens tilt indicate that the superior edge of the lens is moved 

forwards, whilst positive values of decentration indicate inferior displacement of the lens, relative to the cornea. 

 

The mean values stated in Table 5.5 indicate that the crystalline lens is tilted slightly nasally 

and forwards in both the relaxed and accommodated states. Figure 5.9 graphically 

illustrates the lens tilt in both conditions for all subjects, and highlights significant variation 

between individuals in lens tilt, ranging from -1.25 to +1.91° horizontally, and -0.96 to +1.58° 

vertically in the unaccommodated state. There was no significant difference in lens tilt 
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between the relaxed and accommodates conditions for either the horizontal or vertical 

meridians (t = 0.656, P = 0.518 and t = -0.576, P = 0.571, respectively).  

 

Regarding lenticular decentration, the lens was found on average, to be displaced slightly 

inferiorly and nasally. Again, there was significant variation between subjects with 

decentration in the unaccommodated state ranging from -0.80 to +0.30 mm horizontally, and 

-0.22 to +0.34 mm vertically. Figure 5.10 illustrates lens decentration for all participants in 

the relaxed and accommodated conditions. No significant difference was identified in lens 

decentration, relative to the cornea, between the unaccommodated and accommodated 

states, in either the horizontal or vertical meridian (t = -0.011, P = 0.992 and t = -0.500, P = 

0.623, respectively).  

 

Horizontal lens tilt (°)

-2 -1 0 1 2

Ve
rt

ic
al

 le
ns

 ti
lt 

(°
)

-2

-1

0

1

2

Relaxed state
Accommodated state

 
Figure 5.9. Lens tilt in the unaccommodated state, and in response to an 8.0 D stimulus. n = 20 young subjects. 

No significant accommodative difference was identified in either horizontal or vertical lens tilt. 
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Figure 5.10. Lens decentration in the unaccommodated state, and in response to an 8.0 D stimulus. n = 20 

young subjects. No significant difference was identified in either horizontal or vertical lens decentration relative to 

the cornea, with accommodation. 

 

5.4. Discussion 

There is a paucity of published data reporting the effects of accommodation on phakic lens 

tilt and alignment relative to the cornea. This study is the first to describe a method for 

analysis of lenticular tilt and decentration using AS-OCT. Whilst most previous investigations 

into human ocular surface alignment have required bespoke apparatus (e.g. Barry et al., 

2001; Kirschkamp et al., 2004; Rosales and Marcos, 2006; He et al., 2010), this study is 

based upon use of a non-modified commercially available instrument.  

 

The data indicate relatively good alignment between the lens and cornea in the 

unaccommodated state, with mean tilt values of 0.185 ± 0.845° horizontally (i.e. nasal tilt) 

and 0.411 ± 0.628° vertically (i.e. superior edge of lens moved forwards). The lens was, on 

average, displaced inferio-nasally by 0.111 ± 0.271 mm (nasal displacement) and 0.102 ± 

0.196 (inferior displacement), relative to the cornea. However, there was significant inter-

individual variation in these parameters, as reflected by the standard deviations of the 

measures, and depicted in Figures 5.8 and 5.9. The mean values and standard deviations 

obtained in this study for lens tilt are similar to those obtained using phakometry by 

Kirschkamp et al. (2004), Dunne et al. (2005) and Rosales and Marcos (2006; Table 5.1), 
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although significantly smaller than the values reported by Chang et al. (2007) using MRI and 

Schaeffel (2008), utilising phakometry. Furthermore, the decentration values reported here 

compare well with the results of all of the investigations summarised in Table 5.1, although 

the standard deviations of decentration measures are generally higher in the present study. 

A variety of factors could contribute to these discrepancies: the definitions of tilt and 

decentration vary between studies, for example, Schaeffel (2008) describes tilt relative to 

the fixation axis, rather than the corneal axis, as applied in the present study. The measures 

of lens decentration reported by Rosales and Marcos (2006) and Schaffel (2008) are relative 

to the pupil centre, whereas the current study describes decentration from the corneal axis. 

The findings of Chang et al. are obtained from a cohort of just 6 participants (possibly due to 

the expense and time-consuming nature of MRI), thus the results should be considered with 

caution. Higher standard deviations of lens decentration reported here, compared to earlier 

studies could be due to either genuine population differences or the combination of factors 

in the present study which could lead to variability in the data, including operator input in 

manual location of landmarks during image analysis and the potential for subject head 

movements between collection of the anterior and posterior images (although participants 

were instructed to keep their heads as still as possible during data acquisition, and scans 

were repeated if head motion was suspected). 

 

Accommodation to an 8.0 D target was found to cause no significant difference in either lens 

tilt or decentration, relative to the cornea. These findings are in agreement with the 

phakometry-based study of Kirschkamp et al. (2004), which utilised a 4.0 D accommodative 

stimulus. According to the broadly-accepted Helmholtzian mechanism of accommodation, 

the reduction in zonular tension following ciliary muscle contraction would be expected to 

cause reduced lens stability and a change in lens tilt and centration due to gravity. Previous 

investigations that have failed to identify a significant change in lens stability during 

accommodation (Sokolowska and Thorn, 2003; Kirschkamp et al., 2004; Schachar et al., 

2007) have been cited as evidence in support of the mechanism of accommodation 

proposed by Schachar (Schachar, 2006; Schachar, 2007), which is based upon an increase 

in zonular tension with accommodation. Although the present study has not measured a 

significant accommodative difference in lens tilt and decentration, there are other plausible 

explanations for the findings: it is possible that any changes in lens tilt and decentration are 

too small to be detected using the methodology developed here, given the inherent 

variability of the technique resulting from the semi-automated image analysis techniques. 

Additionally, significant changes in lens stability may only occur when the zonules are 

maximally slackened, i.e. at the subjective amplitude of accommodation. The present 

investigation utilised a standard accommodative demand level of 8.0 D which is below the 
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subjective amplitude that would be expected for many of the participants (Duane, 1922; 

Turner, 1958). A further possibility is that the lens is offered some degree of support during 

accommodation by the vitreous, meaning that reduced zonular tension does not result in 

significant lenticular instability. Several previous authors have proposed that vitreous 

support may be a key element in the mechanism of accommodation and assist in bringing 

about lenticular shape changes (Coleman, 1970; Coleman, 1986; Ljubimova and Eriksson, 

2005). The data obtained in the present study could provide support for such hypotheses. 

 

In addition to the potential sources of error previously identified, namely, subject head 

movements between scans and subjective operator input during image analysis, there are 

several further limitations to be addressed. The analysis programme is based on the 

assumption that the corneal and lenticular surfaces are rotationally symmetric. Non-

rotationally symmetric surfaces would affect the determination of the corneal and lenticular 

axes, and lead to error in the calculated values of tilt and decentration. The subjective 

identification of surface apices can be difficult, particularly for the anterior lens surface, 

which is relatively flat, meaning that precise location of the most anterior portion is less 

accurate, adding to the variability in results associated with user input. Furthermore, due to 

the process by which the anterior and posterior surfaces of the lens are located by the 

operator in order to identify the midpoint values for determination of the lens axis, an 

artefactual level of lens tilt would be calculated, in the presence of lenticular decentration 

alone. Therefore, eyes with zero lens tilt but significant decentration, relative to the cornea, 

would produce a measurement of lens tilt, using the protocol described. In order to 

investigate the maximum possible effect this factor could have on the data, a sample image 

based on an AS-OCT scan was constructed using PowerPoint presentation software and 

analysed with the bespoke programme. The lens in the sample image was assigned zero 

lens tilt, but was decentred by the equivalent of 0.3 mm to reflect the maximum mean lens 

decentration reported by previous investigators (Table 5.1). The decentration of 0.3 mm 

resulted in an artificial value of 0.36° of lens tilt, representing the greatest amount one could 

expect lenticular tilt values to vary due to decentration alone. 

 

A number of assumptions and sources of error associated with the methodology have been 

identified and discussed, with an attempt to quantify the effect on the data wherever 

possible. Whilst the factors described could affect the absolute values of lens tilt and 

decentration obtained, the same confounding factors would apply in both the relaxed and 

accommodated states. Therefore, the ability of the technique to identify changes in lens tilt 

and decentration, which are relevant to the mechanism of accommodation, should not be 

impaired as a consequence. 
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5.5. Conclusion 

Estimates of lens tilt and decentration relative to the cornea can be obtained from AS-OCT 

images and application of the image analysis software developed by the author. The lens 

appears generally well aligned with the cornea in both the relaxed and accommodated 

states. The data suggest that the lens does not demonstrate significant instability during 

accommodation, which could be interpreted as evidence favouring a model centred on 

increased zonular tension with ciliary muscle contraction, although there are a number of 

alternative explanations for the findings. Further work enabling visualisation of the lens 

equatorial region, using high-resolution three dimensional MRI techniques, could provide 

further clarification of the effect of ciliary muscle contraction on zonular tension, by 

examination of changes in lens diameter with accommodation. 
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CHAPTER 6 

THREE-DIMENSIONAL MAGNETIC RESONANCE IMAGING OF THE 

PHAKIC CRYSTALLINE LENS DURING ACCOMMODATION 
 

6.1. Introduction 

For over a decade, high resolution magnetic resonance imaging (MRI) techniques have 

been available for in vitro and in vivo analysis of the accommodative structures. As issues 

such as inadequate resolution and signal to noise ratio (SNR) limitations have been 

overcome through use of higher field strengths and specialised radiofrequency (RF) coils, 

application of this technique in accommodation and presbyopia research has become 

relatively more common (Strenk et al., 1999; Richdale et al., 2009). MRI offers several 

notable advantages over conventional ocular imaging techniques such as Scheimpflug 

photography, ultrasound biomicroscopy (UBM) and anterior segment optical coherence 

tomography (AS-OCT) in that images free from optical distortion may be acquired non-

invasively in any desired plane (Strenk et al., 1999; Jones et al., 2007). Furthermore, the 

entire crystalline lens and its relationship with neighbouring ocular structures can be 

visualised. 

 

Hitherto, the majority of published MRI studies relating to phakic accommodation have 

utilised a two-dimensional (2-D) approach, imaging a single axial slice of finite thickness, 

through the eye. Particular attention has been paid to the crystalline lens and ciliary muscle, 

and the accommodative and age-dependent changes that occur in these structures. Table 

6.1 summarises the results and implications of notable in vivo MRI accommodation studies. 

Strenk et al. (1999) provided firm evidence for the first time that the human ciliary muscle 

maintains its in vivo contractile ability well into old age. The diameter of the ciliary muscle 

ring was found to reduce in response to an 8.0 D accommodative stimulus, even in 

advanced presbyopes, and furthermore, a significant age-dependent reduction in this 

diameter was identified. A later study (Strenk et al., 2006) with a larger cohort confirmed 

these findings and established that the accommodative and age-dependent reductions in 

ciliary muscle ring diameter were not affected by IOL implantation. Persistence of ciliary 

muscle contractile ability in the ageing eye supports the Hess-Gullstrand theory (Hess, 

1896; von Gullstrand, 1924) of presbyopia development which states that lenticular changes 

underlie the loss of accommodation and that the ciliary muscle loses its ability to modify lens 

shape as a result of increased lenticular stiffness. 
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More recently, the antero-posterior position of the ciliary muscle apex during 

accommodation has been analysed using MRI. Strenk et al. (2010) observed no forward 

accommodative movement of the muscle apex in subjects aged 22-91 years, contravening 

the widely-accepted theory that the ciliary muscle moves anteriorly and inwards during 

accommodation to reduce tension on the zonules. However, AS-OCT findings reported in 

Chapter 3, using a stimulus of the same vergence (-8.0 D) as Strenk and colleagues, 

indicate that the ciliary muscle does move anteriorly with accommodation, by 110 ± 86 µm, 

and 223 ± 108 µm on the nasal and temporal sides, respectively. Changes of this magnitude 

may be difficult to detect using MRI: Strenk et al. (2010) stated the absolute error of their 

technique to be 78 µm.  

 

In addition to ciliary muscle studies, MRI has provided a wealth of information on the optical 

and morphological changes in the crystalline lens with age and accommodation. Techniques 

to map the refractive index distribution throughout the lens have been developed (Moffat et 

al., 2002a; Moffat et al., 2002b; Jones and Pope, 2004) and applied to human eyes in vitro 

(Jones et al., 2005) and in vivo (Jones et al., 2007; Kasthurirangan et al., 2008). A central 

plateau region of high refractive index, surrounded by a zone of sharp decline is present 

throughout life, although the peripheral reduction is steepest in older lenses (Jones et al., 

2005; Kasthurirangan et al., 2008). The equatorial diameter of the central plateau zone 

increases with age, and decreases with accommodation (Kasthurirangan et al., 2008). 
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Author & study title Cohort 
characteristics 

Demand 
levels 

Results Implications 

Strenk et al. 1999 
Age-related changes in human 
ciliary muscle and lens: a 
magnetic resonance imaging 
study. 

n = 25 (range 22-
83 years). 

 

0.1 and 8.0 D In unaccommodated state, ciliary muscle 
(CM) ring diameter decreases with age. 
CM retains contractile ability with age. 
Lens ability to change shape in response to 
CM contraction, reduces to zero with age. 

Supports lenticular theory of 
presbyopia. CM remains active after 
loss of accommodation. 
Lenticular changes could be secondary 
to reduced tension resulting from 
decreased CM ring diameter with age. 
 

Strenk et al. 2004 
Magnetic resonance imaging 
study of the effects of age and 
accommodation on the human 
lens cross-sectional area. 
 

n = 25 (range 22-
50 years) 

0.1 and 8.0 D Total lens cross-sectional area (CSA) and 
CSA of anterior portion increase with age in 
both accommodative states. 
CSA of posterior portion not dependent on 
either age or accommodative state.  

Lens growth during life appears 
confined to the anterior portion of the 
lens. 
Properties of the anterior capsule, the 
position of zonular attachments or the 
location of foetal nucleus may be 
responsible for lens CSA changes being 
confined to anterior portion. 
 

Strenk et al. 2006 
Magnetic resonance imaging 
of aging, accommodating, 
phakic, and pseudophakic 
ciliary muscle diameters. 

n = 40 (range 22-
91 years) 
32 phakic, 

8 pseudophakic 

0.1 and 8.0 D Change in CM diameter with accommodative 
effort not altered by age or intraocular lens 
implantation. 

Strategies to restore accommodation 
may rely on a functioning ciliary muscle, 
but must also take into account the 
effect of decreased CM diameter on 
zonular tension. 
 

Jones et al. 2007 
Changes in lens dimensions 
and refractive index with age 
and accommodation 

n = 44 (range 18-
59 years) 

. 

0.17 and     
6.67 D 

Unaccommodated lens thickness (LT) 
increases with age. Lens diameter (LD) is 
independent of age. 
LT and LD change by +0.050 ± 0.024 and       
-0.067 ± 0.030 mm/ D with accommodation. 
 

Findings are consistent with the 
Helmholtzian mechanism of 
accommodation. 

Kasthurirangan et al. 2008 
In vivo study of changes in 

n = 30, 
15 young (19-29 

0.16 D and 
maximum 

A central region of high refractive index and 
sharp peripheral decline is present in all ages. 

Lens central refractive index does not 
change with age or accommodation. 
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refractive index distribution in 
the human crystalline lens with 
age and accommodation. 

years) and 15 
older (60-70 

years) 

subjective 
amplitude 

Peripheral decline in refractive index is 
steepest in older lenses.  
Equatorial diameter of central plateau 
increases with age, and decreases with 
accommodation 
 

The central plateau region of high 
refractive index increases in size with 
age.  

Hermans et al. 2009 
Constant volume of human 
lens and decrease in surface 
area of capsular bag during 
accommodation: an MRI and 
Scheimpflug study. 

n = 5 (range 18- 
35 years) 

0.5 D and 
maximum 
subjective 
amplitude 

Lens volume unchanged during 
accommodation, but lens surface area 
decreases by mean of 8.4 mm2 from 0.5 D to 
maximum stimulus level. 

Lens material appears to be 
incompressible, and capsular bag 
undergoes elastic deformation during 
accommodation. 
Findings should be interpreted with 
caution as small cohort size and no 
repeatability data is provided for the 3-D 
MRI technique employed. 
 

Strenk et al. 2010 
Magnetic resonance imaging 
of the anteroposterior position 
and thickness of the aging, 
accommodating, phakic and 
pseudophakic ciliary muscle 
 

n = 32 phakic, 
and 8 

pseudophakic 
(range 22-91 

years) 

0.1 and 8.0 D CM shifts anteriorly, towards cornea with age. 
No anterior movement of CM during 
accommodation observed at any age. 
CM is restored to its youthful position by 
cataract surgery with IOL implantation. 

Contradicts classic theory that CM 
moves anteriorly and inwards during 
accommodation. 
Forces created as a result of continued 
lens growth are removed by cataract 
surgery, allowing choroidal elasticity to 
restore the CM to a more posterior 
position. 

 
Table 6.1. Summary of notable in vivo MRI studies of human phakic accommodation. 

 

 



 136 

The accommodative morphological changes of the crystalline lens observed from 2-D MRI 

studies to date have provided evidence to support von Helmholtz’ (1855) theory of 

accommodation. Several authors have documented a significant increase in lens axial 

thickness, and reduction in equatorial diameter during accommodation (Strenk et al., 

1999; Jones et al., 2007; Kasthurirangan et al., 2008). Jones et al. (2007) reported mean 

changes in lens thickness and equatorial diameter of +0.050 ± 0.024 mm/ D and -0.067 ± 

0.030 mm/ D, respectively, although these values relate to stimulus demand level, rather 

than objective accommodation response. Analysis of lens cross-sectional area (CSA; 

Strenk et al., 2004) shows an accommodative increase, with changes confined to the 

anterior portion of the lens. The increase in lens CSA with accommodation was 

hypothesised to be a result of lens compression in the unaccommodated state, and 

expansion when zonular tension reduces following ciliary muscle contraction. However, 

changes in CSA do not necessarily correspond to a change in lens volume (Judge and 

Burd, 2004; Hermans et al., 2009). 

 

Whilst the published MRI studies to date have undoubtedly furthered understanding of the 

action and ageing of accommodative structures, 2-D approaches have inherent 

limitations. Image acquisition planes could potentially vary between the relaxed and 

accommodated states, as a result of subject head movements, and the convergent and 

excyclotorsional eye movements that accompany accommodation. Schachar et al. (2008) 

analysed the MR images included in the publication of Jones et al. (2007) of an eye in the 

relaxed and accommodated states, finding that the globe diameter was smaller in the 

accommodating eye. As globe size does not decrease during accommodation (Drexler et 

al., 1998; Ziebarth et al., 2005; Mallen et al., 2006), Schachar postulated that the 

accommodative reduction in lens diameter observed by Jones et al. (2007) was due to 

methodological error, which would have confounded the results of previous authors (e.g. 

Strenk et al., 1999; Kasthurirangan et al., 2008). It may be unlikely that image planes 

would vary significantly compared to overall slice thickness (usually 3 mm), but it is 

apparent that there is ongoing debate over the validity of 2-D methodologies to study lens 

equatorial diameter. Furthermore, 2-D data cannot provide direct information on lens 

volume. Several authors have utilised in vitro techniques to calculate lens volume, but in 

vivo measures are much more difficult to acquire. The lens is widely believed to be 

incompressible due to its high water content, thus its volume would not be expected to 

vary during accommodation. However, Gerometta et al. (2007) predicted a 2.6 % 

accommodative increase in human lens volume from a geometric model developed using 

published data on lenticular dimensions, and Strenk et al. (2004) suggested that reduced 

CSA in the unaccommodated state was due to lens compression. Furthermore, bovine 
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lenses have been shown in vitro to expand during simulated accommodation using a 

lenticular stretching device (Zamudio et al., 2008). A completely 3-D high-resolution MRI 

methodology is required to provide clarification on in vivo changes in lens volume and 

equatorial diameter during human accommodation. 

 

Singh et al. (2006) provided the first description of the shape of the whole eye in 3-D from 

MRI data. Previous authors had only assumed 3-D shape from a limited number of 2-D 

slices, but the acquisition of MRI data with high resolution in all three dimensions 

facilitated the generation of complete 3-D surface models, providing information on ocular 

volume, surface area, axial length and width. In addition to describing variations in human 

eye shape, the image analysis techniques described by Singh et al. (2006) have been 

applied to the developing chick eye, scanned with a 9.4 Tesla (T) small animal scanner 

(Goodall et al., 2009). In vivo human eye studies have generally used lower field strengths 

(typically 1.5 or 3.0 T), although Richdale et al. (2009) have recently reported a protocol to 

generate optimised 3-D images of the human eye at 7.0 T. The very high resolution MR 

scans, with a voxel size of 0.1 x 0.1 x 0.5 mm allowed fine structures such as the ciliary 

body and iris to be clearly visualised. However, the protocol required subjects to have 

their eyelids taped closed to reduce motion artefacts due to blinking, thus the 

methodology described could not be used to examine accommodative changes in ocular 

structures in response to visual stimuli. Furthermore, Langner et al. (2010) have examined 

in vivo rabbit eyes and several species of ex vivo eyes (including a single human eye) in 

three dimensions at 7.1 T, providing volumetric and surface area data. The protocol 

utilised a small inner-tube diameter (200.5 mm) scanner, unsuitable for examination of 

human subjects in vivo.  

 

To date, one published study has reported accommodated and unaccommodated lens 

dimensions, including volume, obtained using a 3-D MRI approach. Hermans et al. (2009) 

generated estimates of lens volume and surface area in 5 subjects using a 1.5 T scanner 

to acquire T1- weighted 3-D MRI scans. Application of a Canny filter to the images to 

determine the lens interface in eight principle meridians, and calculation of volume and 

surface area of each of the eight segments allowed summation of these values to 

describe the parameters of the whole lens. No significant accommodative change in lens 

volume was observed (mean 160.1 ± 2.8 mm3 in the relaxed state), although surface area 

decreased with accommodation (mean 175.9 ± 2.5 mm2 and 167.5 ± 2.9 mm2 in the 

relaxed and fully accommodated states, respectively). The findings imply that the human 

crystalline lens mass is indeed incompressible, and the capsular bag undergoes elastic 

deformation during accommodation. However, the results should be considered with 



 138 

caution due to the very small cohort size, and the lack of reported repeatability data 

relating to the 3-D imaging and analysis techniques. 

 

MRI, therefore, represents a unique methodology permitting visualisation of the entire lens 

and surrounding structures in scans free from optical distortion. The majority of previously-

published MRI studies on accommodation have utilised a 2-D approach, but collection of 

data with high resolution in all three dimensions is now possible. 3-D MRI techniques have 

been used to model in vivo the complete human eye (Singh et al., 2006; Richdale et al. 

2009), rabbit eye (Langner et al. 2010), and more recently, the human lens during 

accommodation (Hermans et al., 2009). All previous accommodation studies based on 

MRI have analysed just two stimulus vergence levels (usually minimal, and near maximal 

subjective amplitude), providing no information on the rate of change of various lenticular 

parameters. 

 

The aim of this study is to develop an MRI protocol enabling 3-D imaging of the complete 

crystalline lens during accommodation. The protocol will be applied to a larger cohort than 

the previously-published 3-D study of accommodation, and intermediate stimulus levels 

will be explored for the first time using MRI. Changes in lenticular dimensions will be 

considered in relation to objectively-measured accommodative response rather than 

stimulus demand, providing a more valid description of changes occurring in the human 

lens during accommodation. The study develops the author’s previous work by utilising an 

additional advanced in vivo technique to analyse biometric changes during 

accommodation, and overcomes some of the limitations of AS-OCT, most significantly, 

the lack of ability to visualise the lens equator. 

 

6.2. Methods 

Prior to the main investigation, it was necessary to conduct developmental work to 

standardise a protocol for MR imaging of the lens at sufficiently high, isotropic resolution, 

to enable 3-D analysis and generation of complete lenticular surface models. The study 

was a collaboration between Aston University’s Ophthalmic Research Group (ORG) and 

neuroimaging physicists from the School of Psychology at Cardiff University. Subject 

recruitment and preliminary data collection took place at Aston University, whilst all MRI 

work was conducted at the Cardiff University Brain Repair and Imaging Centre (CUBRIC). 

The ethics committees of both Aston University and Cardiff University approved the study, 

which was performed in accordance with the tenets of the Declaration of Helsinki. Written, 

informed consent was obtained from all participants following explanation of the nature 

and possible consequences of the study. Subjects consented to the initial stages of the 
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study at Aston University (see Appendix 2 for consent form), and completed MRI initial 

screening and consent forms (see Appendix 4) to ensure suitability for the subsequent 

stages of the investigation. A second screening form (see Appendix 4) was completed at 

CUBRIC, immediately before scanning.  

                     

6.2.1 MRI Protocol Development 

Generation of complete ocular surface models from MRI data has been previously 

described by Singh et al. (2006). However, to apply similar analysis techniques for 

smaller, lenticular models, a novel scanning protocol was required, optimised for imaging 

the crystalline lens. Furthermore, it was necessary to develop a method of presenting 

accommodative stimuli within the confines of the scanner. 

 

Rather than using the body coil integrated into the 3.0 T General Electric HDx system, a 

birdcage-design head coil was needed to improve the signal to noise ratio (SNR), which 

also acted as a mount for a mirror, positioned at an angle of 45°, to allow supine subjects 

to see out of the scanner (Figure 6.1). Cushioned pads were positioned between the head 

coil and the subject to minimise head movements. A static, high-contrast (85 %) Maltese 

cross target, visible through the mirror during scanning, was used for fixation, positioned 

on the window of the MRI control room, providing a stimulus vergence of -0.17 D for 

emmetropic subjects. Functional emmetropia was ensured for ametropic subjects by the 

wearing of disposable soft contact lenses (Focus Dailies or Focus Dailies Toric: nelfilcon 

A, 69 % water content; Ciba Vision, Duluth, Georgia, USA). A static cross target was used 

to avoid possible saccadic eye movements during scanning, which can cause motion 

artefacts. Accommodative stimulus levels of 4.0 and 8.0 D were selected to complement 

the author’s previous work on ciliary muscle morphology (detailed in Chapters 3 and 4) 

which used the same vergence demands. To vary accommodative demand, subjects wore 

a non-metallic trial frame under the head coil, into which an occluder was placed in the left 

aperture, and a -4.00 or -8.00 DS trial lens in front of the right eye. The left eye was 

occluded to avoid convergent eye movements, and only the right eyes of all subjects were 

analysed. Figure 6.1 illustrates the subject set-up for MRI data collection. 

 

Initial MRI work involved scanning sample subjects multiple times over several weeks to 

ascertain the ideal protocol that allowed images of sufficient resolution to be obtained, 

whilst keeping scan times down to a comfortable duration. MRI parameters including 

bandwidth, acquisition matrix, field-of-view, slice thickness, number of slices and number 

of signal averages were adjusted to optimise the protocol. Sagittal, axial and coronal 

localiser (scout) scans were performed initially on each subject to verify the location of the 
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crystalline lens and inform slice placement for the main scan. After the first and second 

major scans, subjects were moved out of the scanner to enable the trial lens to be altered 

to adjust stimulus vergence. A further localiser scan was therefore necessary before 

imaging the second and third accommodative states in case subject head movement had 

occurred whilst being moved out of, and back into, the scanner. T2-weighted images, in 

which the fluid-filled regions of the eye appear hyperintense, were required for analysis 

purposes and were collected using the vendor’s fast-spin echo (FSE) sequence, the most 

commonly used pulse sequence in current MRI protocols (Liney, 2005a).  

 

The final protocol involved twenty-four oblique-axial slices of 0.8 mm thickness, with no 

inter-slice gaps, to visualise the crystalline lens fully in all three dimensions. FSE images 

were acquired with a bandwidth of ± 15.63 kHz, echo train length 24, sequence repetition 

time 8580 ms and echo time 500 ms. The acquisition matrix was square; 256 * 256, with a 

205 mm field of view. Voxels within the images therefore had a 0.8 mm isotropic 

resolution. Three signal averages were performed, resulting in a total scan duration of 5 

minutes 18 seconds. Although increasing the number of signal averages would provide 

improved SNR by reducing the effects of random artefacts, an unacceptable scan duration 

of 10 minutes per accommodative state would have resulted from 4 averages. Local 

shimming was performed prior to each scan to eliminate inhomogeneities in the magnetic 

field around the eyes, which cause geometric distortions (Liney, 2005b; Singh et al., 

2006). Total time spent in the scanner for each subject was approximately 45- 60 minutes, 

comprising of localiser scans, main scans, and repetition of longer scans, if necessary, 

due to blink/ motion artefacts. 

 

The inherent motion sensitivity of the MRI protocol necessitated a means of eliminating 

blinking from the scans. A single blink during the main scan resulted in significant motion 

artefacts (due to the low number of signal averages) which would have rendered the 

images unsuitable for analysis. Initial experimental planning involved the use of topical 

corneal anaesthetic (e.g. benoxinate 0.4 %) to reduce the blink reflex. Although the blink 

reflex is suppressed by anaesthetics, it is not completely eliminated, as required for the 

scans. Furthermore, the Troxler effect, which causes a stimulus to disappear during 

prolonged viewing (Lou, 2008) and could result in unpredictable eye movements, would 

not have been solved by topical anaesthetic. A system was therefore developed to allow 

the scan to be paused as required for blinking and refixation. Subjects were provided with 

a button box (Fig. 6.1), connected to a PC in the MRI control room, that when pressed 

caused the monitor to change colour from grey to white, and back to grey when released. 
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Participants could therefore alert the MRI operator to pause the scan as frequently as 

required for blinking, and recommence once refixated on the stimulus. 

 

 
Figure 6.1. Subject set-up for MRI. Participants viewed a distant (-0.17 D) Maltese cross target, through a 

mirror (M), mounted at 45°, on the head coil (H). The left eye was occluded during scanning and -4.00 D and -

8.00 DS trial lenses were inserted into the trial frame (T) to stimulate accommodation. Participants alerted the 

MRI operator when blink pauses were required by using a button box (B) connected to a PC in the control 

room. 

 
6.2.2 Main protocol 

Nineteen pre-presbyopic volunteers (7 male, 12 female), aged 19 to 30 years (mean age 

25.8 ± 4.5 years) with no previous history of ocular abnormality or intraocular surgery 

were recruited using general email announcements at Aston University. Subjects with all 

types of refractive error were included, provided their prescription was amenable to 

correction with daily disposable soft contact lenses (Focus Dailies and Focus Dailies 

Toric). The parameter ranges for these contact lenses meant subjects with spherical 

refractive errors greater than -10.00 DS or +6.00 DS were excluded from the investigation, 

as were those with oblique cylinders > 0.50 DC, or orthogonal cylinders > 1.50 DC. 

Additionally, potential subjects were asked to complete an initial MRI screening form 

which excluded participants with implanted metallic devices (e.g. pacemakers, metal 

plates), those with possible metal fragments in the eyes or elsewhere in the body, 

migraine sufferers and females who may have been pregnant, for safety reasons. 

B 
H 

M 
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All measurements were taken from the right eye only. Refractive error was determined 

from the mean of five open-view distance autorefractor readings obtained with the Grand 

Seiko Auto Ref/ Keratometer WAM-5500 (Grand Seiko Co. Ltd., Hiroshima, Japan; 

Sheppard and Davies, 2010a). Subjects with spherical or astigmatic refractive error > 0.50 

D were corrected with disposable soft contact lenses. Functional emmetropia was 

necessary to ensure near-identical accommodative demand for each subject.  

 

Objective accommodative responses were determined using the WAM-5500 autorefractor 

whilst subjects fixated Maltese cross targets in free space at -4 D and -8 D stimulus 

vergences, presented in random order. The targets subtended a constant angular 

subtense of 4.6º. Average target luminance and Michelson contrast values were 34.0 

cd/m2 and 82 %, and 30.5 cd/m2 and 80 %, for the 4 D and 8 D stimuli, respectively. The 

left eye was occluded with a patch during measurement of the response and subjects 

were instructed to “carefully focus” (Stark and Atchison, 1994) on the centre of the 

Maltese cross to induce both voluntary and reflex accommodation (Radhakrishnan and 

Charman, 2007a). It was ensured at this stage that participants had sufficient subjective 

accommodative amplitude to maintain clarity of the 8 D stimulus, which would be required 

for subsequent MRI data collection.  Five readings were obtained at each stimulus level, 

and the mean of these values was used in conjunction with the distance autorefractor 

results to determine the objective accommodative response. Axial lengths were obtained 

from the mean of five partial coherence laser interferometry (PCI) readings, using the 

IOLMaster (Carl Zeiss Meditec, Inc., Dublin, California, USA; Santodomingo-Rubido et al., 

2002). For those subjects corrected with soft contact lenses, axial length measurement 

was conducted at the end of initial data collection, following lens removal. 

 

MRI data collection took place approximately 2 weeks later, depending on scanner 

availability, at CUBRIC. Participants completed a second MRI screening form to ensure 

none of the initial responses had changed, and a CUBRIC consent form. While 

undergoing scanning, ametropic subjects wore contact lenses of the specification 

determined in the earlier stage of the study. Scans were performed according to the 

protocol previously described, at randomly-ordered stimulus vergence levels of -0.17, -4.0 

and -8.0 D. 

 

6.2.3 MRI data analysis 

Image analysis was performed using a specially modified version of the freeware software 

package mri3dX (www.jiscmail.ac.uk/lists/mri3dX.html), described by Singh et al. (2006) 
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for semi-automated 3-D characterisation of complete eye shape. The T2-weighted images, 

in which the fluid-filled regions of the eye appear hyperintense, are loaded into mri3dX, 

and the dark crystalline lens manually identified (Fig. 6.2a). A 3-D flood-filling algorithm is 

used to label the voxels comprising the lens and shade them yellow (Fig. 6.2b). 

Thresholds for voxel intensity were set at 0-73 for all crystalline lenses in the study 

following analysis of pilot MRI data from 3 subjects. This range was found to most 

accurately shade the lenticular region, although manual editing (to a precision of 0.1 mm) 

of the shaded area can be performed if necessary, in all three dimensions, to ensure 

complete characterisation of the lens. Manual editing of the shaded crystalline lens was 

only required for approximately 25 % of images. Subsequently, the operator manually 

identifies the crystalline lens anterior pole with the cursor, and a sphere consisting of 32, 

768 triangular polygons is automatically generated to completely envelop the shaded lens 

voxels. An iterative shrink-wrap process is executed until the vertices of each polygon 

intersect a shaded voxel. The ensuing polygonal model appears ribbed, due to tight 

wrapping of the mesh to surface voxels, thus a rapid smoothing process is executed to 

average local vertex positions and generate a more regular 3-D representation of the lens. 

The number of smoothing iterations is user-defined, and was set at 200 throughout the 

investigation as pilot analysis found this level to produce the most realistic 3-D lens 

models; insufficient smoothing (0-100 iterations) caused a bumpy lens surface, whilst 

excessive smoothing (>300 iterations) resulted in a blocky lens model.  

 

Three-dimensional lens representations are visualised using freeware Geomview software 

(www.geomview.org), allowing the model to be rotated and viewed at any orientation. The 

parameters of lens surface area; volume; anterior and posterior radii of curvature; axial 

thickness and equatorial diameter are displayed in the Geomview window, along with the 

lens model (Fig. 6.3). The radius of the area over which surface curvature is described is 

defined by the operator, and was set at 3.5 mm for all analysis to ensure that the whole 

region (of 7.0 mm in diameter) fitted onto the lens model surface. 
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Figure 6.2. Image analysis using mri3dX. The lens is identified by the operator on the T2-weighted images (A), 

and a flood filling algorithm is employed to shade the crystalline lens voxels yellow (B). 

 

 
Figure 6.3. Visualisation of 3-D lens model using Geomview freeware software. The programme allows the 

lens be rotated and viewed from any orientation, in addition to providing the calculated values of area, volume, 

thickness, diameter and anterior and posterior radii of curvature. 

 

6.2.4 Repeatability 

The repeatability of both the image analysis methodology and the complete MRI 

experimental protocol were investigated as this study is the first to examine the crystalline 

lens in 3-D utilising the techniques described. Firstly, to determine the repeatability of 

semi-automated image analysis with mri3dX, the images of a single, randomly-selected 

A B 
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subject at the 0.17 D demand level, were analysed 10 times. The mean value of each of 

the 6 lens parameters was calculated, in addition to the standard deviation (SD) and 

standard error (SE) of the measures.  

 

To assess intersession repeatability of the entire MRI protocol, a single subject was 

imaged five times at the 0.17 D and 4.0 D accommodative states. Multiple repetitions of 

the 8.0 D level were not feasible due to the problem of subject fatigue. Whilst assessing 

repeatability, the participant was removed from the scanner after the acquisition of each 

long scan. Images were analysed for the two accommodative states, and the mean, 

standard deviation and standard error of each parameter was calculated. 

 

6.2.5 Statistical analysis 

The relationships between axial length/ refractive error and the six lens parameters 

measured were explored using linear regression analysis, performed with SigmaPlot 

graphing and statistical software (Version 11, Systat Software Inc., Chicago, Illinois, USA). 

One-way repeated measures ANOVAs, using SPSS statistical software (Version 15, 

SPSS Inc., an IBM Company, Chicago, Illinois, USA) were executed to determine if 

accommodation caused significant changes in lens biometric characteristics. Demand, the 

within subjects factor, was assigned three levels, of 0.19, 4.0 and 8.0 D. A significance 

level of α = 0.05 was used throughout analysis. 

 

6.3. Results 
6.3.1 Repeatability 

The results obtained from analysing a single image set ten times are displayed in Table 

6.2, whilst the intersession repeatability data of the complete MRI technique are shown in 

Table 6.3. Both the image analysis and complete MRI techniques appear robust, with 

intersession standard deviation (SD) and standard error (SE) values for lens thickness, 

diameter and anterior and posterior radii being within the voxel size of the original scans. 

Interestingly, the SDs and SEs of lens parameters are very similar at the 0 D and 4 D 

levels (Table 6.3), suggesting that subject fatigue in the accommodated state is not of 

significant detriment to the results. Use of the button box to pause scanning as necessary 

may reduce fatigue, providing more consistent data. 
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Repeat Surface 
area (mm2) 

Volume 
(mm3) 

Axial 
thickness 

(mm) 

Equatorial 
diameter 

(mm) 

Anterior 
radius of 
curvature 

(mm) 

Posterior 
radius of 
curvature 

(mm) 
1 172.24 177.00 4.04 9.94 13.87 6.32 
2 172.46 177.27 4.03 9.90 14.13 6.36 
3 172.46 177.27 4.04 10.00 13.82 6.3 
4 172.46 177.27 4.04 10.14 13.96 6.38 
5 172.46 177.27 4.04 9.92 13.77 6.42 
6 172.46 177.27 4.04 10.10 13.75 6.27 
7 172.46 177.27 4.02 9.90 13.86 6.29 
8 174.24 179.87 4.06 10.16 14.13 6.34 
9 172.46 177.27 4.05 10.14 13.64 6.31 

10 172.46 177.27 4.04 10.08 13.47 6.22 
Mean 172.62 177.50 4.04 10.03 13.84 6.32 

SD 0.58 0.84 0.01 0.11 0.20 0.06 
SE 0.18 0.26 0.01 0.03 0.07 0.02 

Table 6.2. Repeatability of mri3dX image analysis techniques. A single image set was analysed 10 times. 

 

 Surface 
area (mm2) 

Volume 
(mm3) 

Axial 
thickness 

(mm) 

Equatorial 
diameter 

(mm) 

Anterior 
radius of 
curvature 

(mm) 

Posterior 
radius of 
curvature 

(mm) 
Mean: 0 D 172.45 177.45 3.95 9.78 11.18 6.42 

SD 1.45 1.11 0.08 0.09 0.61 0.40 
SE 0.73 0.56 0.04 0.04 0.31 0.20 

Mean: 4 D 168.17 177.35 4.09 9.60 10.20 5.95 
SD 2.11 1.45 0.09 0.12 0.58 0.32 
SE 0.95 0.65 0.04 0.05 0.26 0.14 

Table 6.3. Intersession repeatability of complete MRI technique. A single subject was scanned 5 times at the 

0 D and 4 D stimulus levels, and images analysed with mri3dX. 

 
6.3.2 Main investigation 

Mean spherical equivalent (MSE) refractive error of the 19 participants ranged from -6.00 

to +0.19 D (mean -2.38 ± 2.09 D). Mean objective accommodative responses to the 4.0 D 

and 8.0 D stimuli were 2.91 ± 0.66 D and 5.65 ± 1.12 D, respectively. Images of sufficient 

clarity for analysis purposes were obtained from all subjects at the 3 stimulus levels, 

although occasional motion artefacts required a proportion of scans (approximately 15 %) 

to be repeated, during the same session. Figure 6.4 is an example of the raw T2-weighted 

axial images of a single subject at the -0.17 and -8.0 D vergence levels, and the resultant 

3-D lens models generated by mri3dX. The accommodated lens is visibly thicker (4.24 

versus 4.09 mm), with a smaller equatorial diameter (9.88 versus 9.50 mm).  
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Figure 6.4. Raw T2-weighted axial images (left) of a 20 year old subject scanned at the 0.17 and 8.0 D 

stimulus levels, and the corresponding 3-D lens models generated by mri3dX (right). The coloured bands on 

the 3-D models relate to axial distance from the anterior lens apex. Lens thickness measures in the relaxed 

and accommodated states were 4.09 mm and 4.24 mm, respectively, whilst lens equatorial diameters were 

9.88 mm (0.17 D level) and 9.50 mm (8.0 D level). 

 

Across the whole cohort, mean unaccommodated lens thickness was 3.75 ± 0.35 mm, 

which significantly increased with accommodation (F = 33.39, P < 0.001) at both of the 

accommodative vergence levels. From the 0.17 to 4.0 D level, mean change in lens 

thickness was +0.06 ± 0.08 mm per dioptre of accommodative response (DResp), whilst 

between the 4.0 and 8.0 D levels, the increase was 0.09 ± 0.12 mm/ DResp. Figure 6.5 

illustrates the change in lens thickness (and equatorial diameter) with accommodation. 

Mean lens equatorial diameter was 9.49 ± 0.45 mm in the relaxed state, with a significant 

accommodative reduction observed (F = 24.00, P < 0.001), which was greatest between 

the 0.17 and 4.0 D levels. Between the 0.17 and 4.0 D levels, mean change in lens 

equatorial diameter was -0.14 ± 0.17 mm/ DResp, but between the 4.0 and 8.0 D levels, the 

mean change was much smaller, at -0.01 ± 0.16 mm/ DResp. No significant correlation was 

identified between either unaccommodated lens thickness or equatorial diameter and axial 

length/ refractive error. 

0.17 D 

0.17 D 

8.0 D 

8.0 D 
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Figure 6.5.  Change in lens equatorial diameter (green symbols) and lens thickness (red symbols) with 

accommodation. n = 19 young subjects. Error bars represent ± 1 standard deviation. A statistically significant 

reduction in lens equatorial diameter, and increase in lens thickness was observed with accommodation. 

 

Regarding surface curvatures, the posterior lens surface was steeper at all three demand 

levels. In the relaxed state, mean anterior and posterior radii of curvature were 11.89 ± 

2.75 mm and 6.12 ± 0.75 mm, respectively. Linear regression analysis identified a 

significant negative correlation between MSE refractive error and anterior lens radius of 

curvature (R = 0.53, P = 0.02), but no such relationship was present for the posterior lens 

radius (R = 0.09, P = 0.71). Furthermore, neither the anterior or posterior radius of 

curvature demonstrated a correlation with axial length (r = 0.08, P = 0.75; r = 0.19, P = 

0.44, for the anterior and posterior surfaces, respectively). Both lens surfaces, but 

particularly the anterior surface, showed a significant reduction in radius with 

accommodation (F = 21.78, P < 0.001; F = 13.81, P < 0.001, for anterior and posterior 

surfaces, respectively). Mean reductions in anterior radius were 0.82 ± 1.04 mm/ DResp 

between the 0.17 and 4.0 D stimulus levels, and 0.63 ± 1.19 mm/ DResp between the 4.0 

and 8.0 D levels. The posterior lens surface curvature steepened by 0.15 ± 0.23 mm/ 

DResp and 0.46 ± 1.45 mm/ DResp between the 0.17 to 4.0 D, and 4.0 to 8.0 D levels, 
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respectively. Figure 6.6 illustrates the change in anterior and posterior lens surface 

curvature with accommodation. 
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Figure 6.6. Change in anterior (green symbols) and posterior (red symbols) lens surface radii of curvature 

during accommodation. Error bars represent ± 1 standard deviation. A statistically significant reduction in both 

surface curvatures was identified during accommodation, although the anterior lens surface showed the 

greatest steepening. 

 

Mean lens surface area in the relaxed state was 157.72 ± 11.59 mm2, which reduced 

significantly with accommodation (F = 7.04, P = 0.003). Between the 0.17 and 4.0 D 

levels, lens surface area reduced on average by 4.75 mm2, which represents a decrease 

of 1.73 ± 2.01 mm2/ DResp. Between 4.0 and 8.0 D, a small increase in lens surface area 

was measured, of 0.69 ± 3.27 mm2, although a paired t-test indicated that this change was 

not statistically significant (t = -0.41, P = 0.68). Figure 6.7 shows the change in lens 

surface area with accommodation. 
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Figure 6.7. Change in lens surface area with accommodation. Error bars represent ± 1 standard deviation. 

Overall, a significant reduction in surface area was observed with accommodation, although the change 

consisted of a large, significant reduction between 0.17 and 4.0 D, accompanied by a small and insignificant 

increase between the 4.0 and 8.0 D levels. 

 

Whilst lens surface area demonstrated an overall reduction with accommodation, mean 

lens volume increased significantly (F = 6.06, P = 0.005), from 154.52 ± 19.00 mm3 in the 

relaxed state to 158.08 ± 22.89 mm3 at 8.0 D stimulus vergence, a mean change of +0.65 

± 1.62 mm3/ DResp. The overall mean increase in volume from the relaxed state to 8.0 D 

level was composed of a large increase between the 4.0 and 8.0 D stimulus levels, of 2.36 

± 5.71 mm3/ DResp, which was preceded by a non-significant (t = 1.73, P = 0.11) reduction 

in volume of -1.24 ± 3.13 mm3/ DResp from the relaxed state to the 4.0 D level. Figure 6.8 

illustrates the change in lens volume measured during accommodation. 
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Figure 6.8. Change in lens volume with accommodation. Error bars represent ± 1 standard deviation. A 

significant increase in lens volume between the relaxed state and the 8.0 D demand level was identified. 
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Mean value in relaxed state and accommodative change reported previously Lens Parameter Mean value at 0.17 D 
and accommodative 
change observed in 

present study Relaxed Accommodative change and author/ study type 

Axial thickness 3.75 ± 0.35 mm 

+0.08 ± 0.05 mm/ DResp 

3.66 ± 0.14 mm 

3.78 ± 0.22 mm 

4.05 ± 0.20 mm 

3.73 mm* 

3.63 ± 0.07 mm 

3.70 ± 0.10 mm 

3.63 ± 0.26 mm 

+0.06 ± 0.03 mm/ DResp (3-D MRI; Hermans et al. 2009) 

+0.07 ± 0.04 mm/ DResp (2-D MRI; Kasthurirangan et al. 2008) 

+0.05 ± 0.02 mm/ DResp (AS-OCT; Richdale et al. 2008) 

+0.05 ± 0.02 mm/ DStim (2-D MRI; Jones et al. 2007) 

+0.04 ± 0.01 mm/ DStim (Scheimpflug; Dubbelman et al. 2005) 

+0.05 ± 0.03 mm/ DStim (A-scan ultrasound; Kirschkamp et al. 2004) 

+0.05 ± 0.04 mm/ DStim
** (2-D MRI; Strenk et al. 1999) 

Equatorial diameter 9.49 ± 0.45 mm 
-0.09 ± 0.065 mm/ DResp 

9.58 ± 0.26 mm 

9.12 ± 0.33 mm 

9.33 ± 0.33 mm 

9.21 ± 0.29 mm 

-0.07 ± 0.01 mm/ DResp (3-D MRI; Hermans et al. 2009) 

-0.09 ± 0.08 mm/ DResp (2-D MRI; Kasthurirangan et al. 2008) 

-0.07 ± 0.03 mm/ DStim (2-D MRI; Jones et al. 2007) 

-0.08 ± 0.04 mm/ DStim
** (2-D MRI; Strenk et al. 1999) 

Anterior radius of 
curvature 

11.89 ± 2.75 mm 
-0.63 ± 0.50 mm/ DResp 

11.45 ± 1.7 mm 

12.3 ± 0.8 mm 

11.25 ± 0.4 mm 

-0.51 ± 0.50 mm/ DResp (3-D MRI; Hermans et al. 2009) 

-0.93 ± 0.30 mm/ DStim (Phakometry; Kirschkamp et al. 2004) 

-0.61 ± 0.15 mm/ DStim (Scheimpflug; Dubbelman et al. 2001 & 2005) 

Posterior radius of 
curvature 

6.12 ± 0.75 mm 
-0.15 ± 0.18 mm/ DResp 

6.11 ± 1.4 mm 

6.10 ± 0.2 mm 

-0.14 ± 0.13 mm/ DResp (3-D MRI; Hermans et al. 2009) 

-0.20 ± 0.05 mm/ DStim (Phakometry; Kirschkamp et al. 2004) 

Surface area 157.72 ± 11.59 mm2 

-0.54 ± 1.08 mm2/ DResp 

175.9 ± 2.8 mm2 -1.4 ± 0.2 mm2/ DResp (3-D MRI; Hermans et al. 2009) 
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Volume 154.52 ± 19.0 mm3 

+0.65 ± 1.62 mm3/ DResp
 

160.1 ± 2.5 mm3 No significant accommodative change (3-D MRI; Hermans et al. 2009) 

 
Table 6.4. Mean values (± standard deviation) of the six lens parameters measured in the current investigation, and the change in these parameters with accommodation, 

(assuming a linear response profile from the 0.17 to 8.0 D levels). Previously published data are provided for comparison. DResp and DStim are dioptres of accommodative 

response, and dioptres of stimulus demand, respectively.  * Based on linear regression results, for a 25- year old subject. ** Based on reported values for the ten youngest 

participants (aged 22- 31 years). 
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6.4. Discussion 

Advances in MRI data collection and image analysis tools have recently facilitated complete 

3-D modelling of the human crystalline lens in vivo. MRI overcomes several disadvantages 

associated with conventional ocular imaging techniques, and may now be utilised to 

measure lenticular changes with accommodation. To date, this study is the largest to 

provide data on crystalline lens biometric characteristics, in the relaxed and accommodated 

states, using an in vivo 3-D MRI methodology. 

 

The crystalline lens accommodative changes observed are in accordance with the widely-

accepted Helmholtzian theory. A statistically significant accommodative increase in lens 

thickness and reduction in equatorial diameter was accompanied by a steepening of surface 

curvatures. The increase in lens thickness with accommodation has been well documented 

previously, using in vivo imaging techniques including MRI (Strenk et al., 1999; Jones et al., 

2007; Kasthurirangan et al., 2008; Hermans et al., 2009), Scheimpflug photography 

(Dubbleman et al., 2005), AS-OCT (Richdale et al., 2008) and ultrasonography (e.g. 

Kirschkamp et al., 2004). However, the inability to view the equatorial region of the lens, due 

to the presence of the iris, has hindered in vivo determination of the effect of 

accommodation on human lens diameter. Previous 2-D MRI studies reporting a reduction in 

lens equatorial diameter during accommodation (Strenk et al., 1999; Jones et al., 2007) 

have received criticism for the possibility that the lenticular changes observed were due to 

differing acquisition planes, rather than accommodative state (Levy, 2000; Schachar et al., 

2008). According to the theory postulated by Schachar (1994; 2006), accommodation 

causes the lens equator to move outwards towards the sclera, secondary to increased 

equatorial zonular tension. However, the results of the present 3-D study, in which the errors 

associated with imaging just a single slice of finite thickness are removed, provide evidence 

in direct opposition to Schachar’s non-conformist theory. Between the 0.17 and 8.0 D 

stimulus levels, the mean change in equatorial diameter with accommodation was -0.09 ± 

0.07 mm/ DResp, representing an overall mean reduction of 4.95 %.  

 

The protocol enabled anterior and posterior lens surface curvatures to be measured without 

the need to correct for optical distortion. A significant negative correlation (r = 0.53, P = 

0.02) was identified between anterior lens radius of curvature and refractive error (i.e. higher 

myopes have flatter anterior lens surfaces). No such relationship was found regarding the 

posterior lens surface. Previous authors have identified no dependence of anterior lens 

radius on refractive error using phakometry (Goss et al., 1997) and corrected Scheimpflug 

imaging (Dubbelman and Van der Heijde, 2001). However, the crystalline lens is known to 

become more steeply curved with age (Brown, 1974; Olbert, 1988; Dubbelman and Van der 



 155 

Heijde, 2001), so it is possible that any relationship between anterior lens curvature and 

refractive error would be most apparent in young subjects, such as the participants in this 

study. Further investigation using alternative imaging methodology, to allow a greater 

volume of data to be collected, is required to confirm a link between anterior lens radius and 

refractive error, and explore the cause of any relationship, although such work is beyond the 

scope of the present investigation. 

 

The observed decreases in lens radii of curvature with accommodation were most 

significant for the anterior lens surface, although the posterior surface remained steeper at 

all stimulus levels. Previous authors have described similar accommodative changes in lens 

surface curvatures, using Scheimpflug imaging (Koretz et al., 2002; Dubbleman et al., 2005) 

and phakometry (Garner and Yap, 1997; Kirschkamp et al., 2004). The present study 

indicates that MRI represents a further methodology for analysis of changes in lens radii 

during accommodation. The measured curvature changes were non-linear in nature, 

particularly for the posterior lens surface. Between the 0.17 and 4.0 D levels, the anterior 

and posterior radii decreased by 0.82 ± 1.04 and 0.15 ± 0.23 mm/ DResp, respectively, whilst 

from the 4.0 to the 8.0 D levels, there was a small reduction in the anterior surface 

response, to -0.63 ± 1.19 mm/ DResp, but a three-fold increase in the posterior radius change, 

to -0.46 ± 1.45 mm/ DResp. Previous AS-OCT data regarding lenticular surface position 

during accommodation (Davies et al., 2008) has suggested that significant accommodative 

changes in the posterior lens surface only occur above the 1.5 D response level; before this, 

lenticular changes are limited to the anterior portion of the lens. Further investigation is 

required to confirm the nature of the accommodative response of the posterior lens surface, 

through application of techniques such as AS-OCT, phakometry and Scheimpflug imaging to 

a substantial cohort of young subjects, with high amplitudes of accommodation, at a range 

of intermediate vergence levels. 

 

The creation of fully 3-D lens models allowed determination of in vivo lens surface area and 

volume changes during accommodation, in the largest cohort described to date. A 

significant overall reduction in surface area (P = 0.003), and an increase in lens volume (P = 

0.005) was observed. A mean 4.78 % accommodative decrease in lens surface area, but 

maintenance of constant lens volume was measured by Hermans et al. (2009), with MRI 

data from 5 subjects. The present study has identified a mean reduction in lens surface area 

of 1.82 % from the relaxed state to the 8.0 D stimulus, with an increase in volume of 2.30 %. 

The results suggest that the capsular bag undergoes elastic deformation during 

accommodation, causing reduced surface area, whilst the volumetric changes oppose the 

theory that the lens is incompressible due to its high water content. During distance viewing, 
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when the zonules are taut, the lens appears to be compressed, with expansion occurring 

when zonular tension reduces during accommodation. The data support the assertion that 

lens mechanics cannot be modelled as a simple incompressible fluid-filled sac (Weale, 

1989). The observed 2.3 % increase in lens volume is in accordance with the theoretical 

+2.6 % accommodative change calculated by Gerometta et al. (2007), based on geometric 

modelling of the human lens. The dual occurrence of increased volume, and reduced 

surface area, has been predicted previously by Zamudio et al. (2008) by further 

mathematical modelling of mammalian and human lenses, based on their elliptical forms. 

The present study is the first to provide in vivo support of the theory developed by 

Gerometta et al. (2007) and modified by Zamudio et al. (2008).  

 

For comparison purposes, the results of the present study are summarised in Table 6.4, 

along with recent in vivo studies that have applied MRI and alternative imaging techniques 

to measure changes in lens parameters with accommodation. It is apparent that the 

unaccommodated lens dimensions reported here compare well with previously published 

data, providing further evidence for the validity of the novel MRI acquisition and image 

analysis techniques described. Furthermore, the measured changes in lens thickness, 

equatorial diameter and radii of curvature are very similar to those documented by earlier 

studies that have reported differences based on accommodative response, rather than 

stimulus demand. Only one previous study has described in vivo lens surface area and 

volume characteristics. Hermans et al. (2009) reported larger values for both mean surface 

area (175.9 ± 2.8 mm2 versus 157.7 ± 11.6 mm2) and lens volume (160.1 ± 2.5 mm3 versus 

154.5 ± 19.0 mm3) than the present investigation, with lower associated standard deviations, 

a possible consequence of the smaller sample size. No alternative technique to MRI, for 

validation of the measures, is currently available for measurement of lens volume and 

surface area in vivo.   

 

Whilst evaluating the results and implications of the current study, it is also important to 

consider also the limitations of the protocol. The strong field strength used in MRI, 

preventing use of metallic machinery in the scanning room, and the physical limitations of 

the scanner borehole, prohibit measurement of accommodative response during image 

acquisition. Accommodative responses to the 4.0 and 8.0 D stimuli were therefore 

determined before the MRI session, with the subject sitting upright. The supine scanning 

position however, may reduce accommodative amplitude by over a dioptre (Fincham, 1937; 

Atchison et al., 1994) due to backward movement of the accommodated lens under gravity. 

Whilst it may be technically difficult to objectively record the accommodative response of a 



 157 

supine subject, future studies should ensure that participants have sufficient subjective 

amplitude to maintain clarity of the stimuli whilst lying down, with the head facing upwards. 

 

Although the results compare favourably with previously-published data, the resolution of 

the technique is limited by the 0.8 mm isotropic voxel size. Image acquisition with 0.7 mm 

voxels reduced the SNR unacceptably for data analysis purposes. Image quality, and 

potentially variability of the results, could have been improved by increasing the number of 

signal averages to 4, but the required scan length of 10 minutes per accommodative state 

was too demanding for participants and resulted in greater variability. Thus, a compromise 

in image quality was needed to limit acquisition times. Richdale et al. (2009) have recently 

described 7.0 T 3-D imaging of the human eye in vivo with superior resolution and 

visualisation of the crystalline lens, although the scanning protocol requires subjects to have 

their eyelids taped closed to minimise motion artefacts, thus preventing the viewing of 

accommodative stimuli. However, pharmacological manipulation of accommodative state, 

with use of topical agents such as cyclopentalate and pilocarpine, to prevent and induce 

accommodation, respectively would permit imaging of the relaxed and maximally 

accommodated lens, using their 7.0 T protocol. Similar analysis techniques to the current 

investigation could be applied to describe more precisely the relaxed and fully 

accommodated lens in 3-D, using MRI. 

 

6.5 Conclusion 

3-D MRI techniques are now available for modelling the relaxed and accommodated 

crystalline lens in vivo. The accommodative changes observed support the classic 

Helmholtzian theory of accommodation and are in agreement with the findings of previous 2-

D MRI investigations. An overall decrease in lens surface area, and increase in lens volume 

with accommodation has been observed for the first time in vivo. The findings suggest that 

the lens material is compressed in the unaccommodated state, and undergoes expansion 

when zonular tension reduces secondary to ciliary muscle contraction.  
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CHAPTER 7 

IN VIVO ANALYSIS OF ACCOMMODATIVE MORPHOLOGICAL 

CHANGES IN THE POSTERIOR SEGMENT 
 

7.1. Introduction 

There is a clear association between refractive error and ocular conformation, with myopic 

eyes generally exhibiting longer axial lengths, as a result of enlargement of the vitreous 

chamber (Curtin, 1985; Wildsoet, 1998; Stone and Flitcroft, 2004). An axial bias to the 

expansion of the vitreous chamber during myopigenesis has been identified (Zhou et al., 

1996; Mutti et al., 2000; Atchison et al., 2004; Logan et al., 2004), causing the myopic eye to 

exhibit a relatively prolate posterior profile. In contrast, hyperopic eyes tend to be more 

oblate, and emmetropic eyes either spherical or oblate (Mutti et al., 2000; Seidemann et al., 

2002).  

 

The mechanism responsible for the prolate distortion of myopic eyes is unclear, although 

previous investigators have suggested a number of possible explanations. It is feasible that 

anatomical factors could restrict ocular expansion in the equatorial, but not axial direction 

(Mutti et al., 2000; Atchison et al., 2004). The orbital walls are in closer proximity to the 

globe in the vertical, compared to the horizontal, direction (Atchison et al., 2004), meaning 

that soft tissues surrounding the eye including the extraocular muscles, orbital fat and 

connective tissue, could limit ocular growth. Alternatively, restrictive forces exerted by the 

extraocular muscles and distributed unevenly over the globe could be important; surgical 

modification of the tone of the extraocular muscles in the rabbit eye causes variation in the 

degree of artificially induced myopia (Mohan et al., 1977). A further potential explanation is 

that local retinal regions control ocular growth, such that the axial and transverse 

dimensions are regulated differently (Atchison et al., 2004; Logan et al., 2004). Evidence to 

support a model of regional control is provided by animal studies that have induced myopia 

in a particular sector of the field, dependent upon visual experience. Chicks raised in a low-

ceiling environment demonstrate significantly more myopia in the upper field than control 

animals inhabiting a high-ceiling location (Miles and Wallman, 1990). Additionally, partial 

occlusion of the retina (with hemifield occluders) in the chick induces myopia only in the 

deprived region of the retina; the non-deprived portion remains virtually emmetropic 

(Wallman et al., 1987). In nature, several species of bird, including the pigeon (Fitzke et al., 

1985), quail, chick and crane (Hodos and Erichsen, 1990) are known to exhibit lower field 

myopia, allowing the ground to be kept in focus during foraging, whilst simultaneously 
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monitoring distance locations for predators. It is plausible that this lower field myopia is the 

result of regional growth induced by hyperopic defocus in early life.  

 

Although the chick has been extensively used in previous myopia research, and appears to 

demonstrate an axial bias to myopic expansion similar to humans (Rada et al., 2002), the 

chick eye has an additional scleral cartilaginous layer. This layer is lacking from the fibrous 

human sclera, and may be important in myopigenesis in chicks (Kusakari et al., 2001), thus 

chick models of myopia may not be directly applicable to humans. Mutti et al. (2000) 

proposed a further theory for prolate distortion of the myopic eye, based on data from 822 

children, whereby the crystalline lens fails to thin during growth of the globe, creating tension 

within the lens, ciliary body and choroid. It is hypothesised that ocular growth in the 

equatorial plane is restricted by tension at the equator, whilst axial elongation is accelerated.  

 

Hitherto, ocular shape has been most frequently inferred indirectly, from measures of 

peripheral refractive error, relative to the visual axis. More direct analysis of ocular 

conformation has been performed using techniques such as magnetic resonance imaging 

(MRI; Cheng et al., 1992; Atchison et al., 2004; Singh et al., 2006), x-ray measurement 

(Deller et al., 1947) and computed tomography (CT) scanning (Zhou et al., 1996). Ferree et 

al. (1931) made the first measures of peripheral refractive error, and highlighted that the 

data could be used to describe the conformation of the retinal surface (Ferree and Rand, 

1933). Myopic eyes generally demonstrate relative peripheral hyperopia, as a consequence 

of axial elongation, whereas hyperopic eyes are typically relatively myopic in the periphery 

(Rempt et al., 1971; Millodot, 1981; Mutti et al., 2000; Logan et al., 2004; Stone and Flitcroft, 

2004; Atchison et al., 2005; Mutti et al., 2007). Children (Mutti et al., 2007) and young adults 

(Hoogerheide et al., 1971) with relative peripheral hyperopia are at high risk of myopia 

development, and it is hypothesised that peripheral hyperopic defocus may activate 

compensatory ocular growth and axial myopia. In support of this model, infant rhesus 

monkeys with lens-induced relative peripheral hyperopia become myopic, even following 

laser ablation of the fovea (Smith et al., 2009), highlighting the importance of peripheral 

refraction on development of central refractive errors. According to this theory, spectacle or 

contact lens correction of axial myopia would increase axial expansion and myopia, by 

restoration of relative peripheral hyperopia. 

 

A range of methodologies have been applied to determine peripheral ocular refractive error, 

including subjective refraction (Ronchi, 1971; Thibos et al., 1996; Lundstrom et al., 2005), 

retinoscopy (Hoogerheide et al., 1971; Rempt et al., 1971; Lotmar and Lotmar, 1974), 

manual optometers (Ferree et al., 1931; Millodot and Lamont, 1974; Dunne and Barnes, 
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1990), the double-pass technique (Jennings and Charman, 1978; Navarro et al., 1993; 

Gustaffson et al., 2001), photorefraction (Seidemann et al., 2002; Lundstrom et al., 2005), 

autorefraction (Dunne et al., 1993; Mutti et al., 2000; Logan et al., 2004; Calver et al., 2007) 

and aberrometry (Navarro et al., 1998; Atchison and Scott, 2002; Atchison, 2004). Of these 

techniques, autorefraction has been the most widely used, with commercially available 

binocular open-view instruments (e.g. Canon Autoref R-1, Shin-Nippon SRW5000 and Shin 

Nippon NVision-K 5001) requiring no modification for determination of horizontal peripheral 

refraction, except for a method of presenting stimuli at a range of eccentricities. Although 

simple and rapid to perform, autorefractor determination of peripheral refractive error is 

limited to a maximum horizontal eccentricity of approximately 35- 40° (Wang et al., 1996; 

Love et al., 2000; Logan et al., 2004) due to the design of the viewing window and 

surrounding casing (Sheppard and Davies, 2010a), which also hinders vertical assessment. 

In contrast, horizontal peripheral refraction measures at eccentricities of 60- 80° have been 

reported using retinoscopic techniques (Rempt et al., 1971; Leibowitz et al., 1972; Johnson 

and Leibowitz, 1974), and Tabernero and Schaeffel (2009) have recently reported 

measurements out to 90° with a fast scanning infrared photoretinoscope. Regardless of the 

technique used, peripheral refraction measures represent an indirect measurement of retinal 

contour. Published studies generally consider peripheral refraction in terms of the mean 

spherical equivalent (MSE; sphere + cylinder/ 2), and it is assumed that the image shell is 

spherical, which is probably an oversimplified approach (Dunne, 1995; Logan et al., 1995; 

Stone and Flitcroft, 2004). Furthermore, levels of peripheral astigmatism are influenced by 

numerous variables including the gradient index of the crystalline lens, misalignment of the 

ocular components, and ocular surface asphericity.  

 

Relatively few studies have made direct measurements of the conformation of the retinal 

surface across various refractive groups. An x-ray based investigation of 15 subjects (Deller 

et al., 1947) indicated a prolate retinal contour in myopes, as axial length was found to be 

the longest ocular dimension. Emmetropes and hyperopes exhibited oblate, spherical or 

prolate ocular shapes. More recent studies utilising B-scan echography (Vohra and Good, 

2000), CT scanning (Zhou et al., 1996) and MRI (Atchison et al., 2004) have typically 

supported these findings, although Cheng et al. (1992) concluded from the MRI data of 21 

participants that myopic eyes expanded equally in all dimensions, and were not distorted 

into a prolate shape. 

 

Recent advances in MR imaging, including scanning at higher field strengths and use of 

newer-design radiofrequency (RF) coils have facilitated the acquisition of ocular shape data 

with high resolution in all three dimensions (Singh et al., 2006). Application of specialist 
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analysis techniques to ocular MRI data now permits construction of complete 3-D surface 

models of animal (Goodall et al., 2009) and human eyes (Singh et al., 2006; Gilmartin et al., 

2007; Nagra et al., 2009), and acquisition of volumetric data. The first description of a 

methodology to completely characterise the conformation of the eye in 3-D, using MRI data, 

was provided by Singh et al. (2006). Previous studies that had inferred 3-D ocular shape 

(e.g. Cheng et al., 1992; Atchison et al., 2004; Atchison et al., 2005) had done so from just a 

limited number of 2-D slices through the eye. The data of Singh et al. (2006) highlighted that 

the absolute size of eyes could vary significantly, even in subjects with similar refractive 

errors. Amongst the cohort of seven participants, no clear relationship was evident between 

axial length and refractive error, although nasal-temporal asymmetry in ocular shape, 

previously reported in the eyes of whites (Logan et al., 2004), could be identified with the 

technique. Subsequent 3-D MR imaging has indicated ocular sphericity, regardless of 

refractive error, between 25 and 75 % of overall axial length, with just the conformation of 

the posterior quartile speculated to be affected by vision-dependent growth (Gilmartin et al., 

2007). Significant steepening or flattening was identified in the majority of subjects in the last 

quartile, the angular subtense of which is approximately equal to the region of overlap in 

visual field with the fellow eye. More recently, a tendency for a temporal bulge in the ocular 

shape of myopes, compared to emmetropes, has been identified (Nagra et al., 2009). 

 

Although high-resolution MRI techniques now facilitate the acquisition of 3-D data regarding 

ocular shape, the associated expense and relative inaccessibility are limitations to large-

scale studies. Additionally, a proportion of potential subjects could be excluded from 

participation on safety grounds (e.g. implanted metal devices, previous penetrating metallic 

injuries, migraneurs). Mallen and Kashyap (2007) described an adaptation of the 

commercially available Zeiss IOLMaster (Carl Zeiss Ltd., Welwyn Garden City, 

Hertfordshire, UK) to allow direct measurement of the central 80° of retinal contour (40° 

superior, inferior, nasal and temporal to fixation). The IOLMaster is a non-contact device that 

employs partial coherence interferometry (PCI) to measure axial lengths, with a resolution of 

0.01 mm and high repeatability (Santodomingo-Rubido et al., 2002). Conventionally, axial 

length measures are acquired along the visual axis, whilst the subject fixates an internal 

light. An apparatus consisting of a 50 % transmission/ 50 % reflection beamsplitter; a Badal 

optometer providing correction of ametropia and enabling stimulation of accommodation; a 

high-contrast Maltese cross target, and a goniometer to allow the angle of measurement to 

be varied, may be mounted on the IOLMaster headrest to acquire peripheral measurements 

(Mallen and Kashyap, 2007). The arrangement of these components is shown in Figure 7.1. 

Pilot data provided by Mallen and Kashyap (2007) provided further evidence of nasal versus 

temporal asymmetry in ocular conformation amongst myopic subjects. 
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In addition to the variation in eye shape with refractive error, accommodation is now known 

to cause a temporary change in ocular conformation (Smith et al., 1988; Drexler et al., 1998; 

Walker and Mutti, 2002; Uozato et al., 2003; Calver et al., 2007; Davies and Mallen, 2009; 

Charman and Radhakrishnan, 2010). Direct and indirect measures have indicated that the 

eye elongates and becomes more prolate in shape during accommodation. It is 

hypothesised that these transient changes are due to the contracting ciliary muscle applying 

an inward pulling force to the neighbouring choroid and sclera (Drexler et al., 1998). A 

backwards movement of the most posterior region of the globe is hypothesised to occur in 

order to maintain a constant ocular volume (Mallen et al., 2006).  

 

Several studies have identified a correlation between refractive error, and amount (Adams 

and McBrien, 1992; Parsinnen and Lyyra, 1993; Mutti et al., 2002) or intensity (Ip et al., 

2008) of accommodation/ near work. Possible links between myopia, ocular conformation 

and near work/ accommodation represent a justification for the study of change in ocular 

shape with accommodation. Investigations based on peripheral refraction measures have 

shown that peripheral astigmatism increases (Smith et al., 1988) and that relative peripheral 

refractive error (RPRE) becomes increasingly hyperopic with accommodation (Mutti et al., 

2002; Walker and Mutti, 2002), indicating a more prolate ocular conformation.  

 

Regarding differences between refractive groups with accommodation, both Calver et al. 

(2007) and Davies and Mallen (2009) found no significant relationship between refractive 

error and changes in peripheral refraction induced by accommodation. However, direct 

measurement of the change in axial length with accommodation, using PCI, indicates 

possible differences in the response between emmetropes and myopes. Drexler et al. 

(1998) concluded that elongation of the globe during accommodation was more pronounced 

for emmetropes than myopes. The mean changes observed in axial length when viewing a 

target at the near point, compared to the far point, were 12.7 µm and 5.2 µm for the 

emmetropic and myopic groups, respectively. The results of Mallen et al. (2006) contradict 

this study, with axial elongation found to be significantly greater amongst the myopic cohort. 

Mean change in axial length in response to a 6 D stimulus was 37 µm in emmetropes, and 

58 µm in myopes. A possible explanation for the discrepancy in results is that Drexler et al. 

(1998) used an accommodative stimulus at the subjective near point, whereas Mallen et al. 

(2006) used a fixed 6 D stimulus vergence. It is feasible that the near point was not 

accurately determined amongst the myopic subjects in the earlier study, due to the close 

proximity of this point to the eye in young myopes, thus the true accommodative demand 

was different between refractive groups.  



 163 

 

Whilst it is well-known that accommodation induces changes in ocular conformation, 

whether these changes are dependent upon refractive error is less obvious. Indirect 

measures of retinal contour (peripheral refractions) indicate no notable differences between 

emmetropes and myopes, whilst direct measurements using PCI imply that considerable 

differences between refractive error groups may exist. To date, direct measurements of 

posterior ocular shape change with accommodation have been limited to on-axis 

determination of axial length using PCI. New high-resolution MRI techniques allow the 

acquisition of 3-D data to describe ocular shape, but these methods have been applied only 

to the unaccommodated eye.  

 

The aim of this study, therefore, is to investigate the potential value of 3-D MRI techniques 

to analyse changes in ocular conformation with accommodation. MRI offers the key 

advantages of being free from optical distortion, and able to characterise the shape of the 

complete eye. The technique could therefore represent a novel and powerful method for 

analysis of accommodative changes in globe conformation. Youthful subjects, with high 

accommodative amplitudes will be investigated, as it is feasible that any changes will be 

more obvious when a high degree of accommodation is exerted. 

 

7.2. Methods 

Eight pre-presbyopic participants (aged 19.3- 31.5 years) with no history of ocular 

abnormality or intraocular surgery were recruited for the investigation using email 

announcements at Aston University. The cohort comprised 4 emmetropes and 4 axial 

myopes, with refractive errors amenable to correction with single use disposable soft contact 

lenses (Focus Dailies and Focus Dailies Toric: nelfilcon A, 69 % water content; Ciba Vision, 

Duluth, Georgia, USA). The parameter ranges for these contact lenses meant subjects with 

spherical myopic refractive errors greater than -10.00 DS were excluded from the 

investigation, as were those with oblique cylinders > 0.50 DC, or orthogonal cylinders > 1.50 

DC.  

 

The study was a collaboration between Aston University’s Ophthalmic Research Group 

(ORG) and neuroimaging physicists from the School of Psychology at Cardiff University. 

Subject recruitment and preliminary data collection took place at Aston University, whilst all 

MRI work was conducted at the Cardiff University Brain Repair and Imaging Centre 

(CUBRIC). The ethics committees of both Aston University and Cardiff University approved 

the study, which was performed in accordance with the tenets of the Declaration of Helsinki. 

Written, informed consent was obtained from all participants following explanation of the 
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nature and possible consequences of the study. Subjects consented to the initial stages of 

the study at Aston University (see Appendix 2 for consent form), and completed an MRI 

initial screening form (Appendix 4) to ensure suitability for the subsequent stages of the 

investigation. Volunteers with implanted metallic devices (e.g. pacemakers, metal plates), 

those with possible metal fragments in the eyes or elsewhere in the body, migraine sufferers 

and females who may have been pregnant, were excluded from the investigation for safety 

reasons. A second screening form (Appendix 4) and MRI consent form (Appendix 4) was 

completed at CUBRIC, immediately before scanning.  

 

The initial visit involved determination of objective refractive error and accommodative 

responses and direct analysis of retinal contour with accommodation, using the IOLMaster. 

All measurements were taken from the right eye only. Refractive error was determined from 

the mean of five open-view distance autorefractor readings obtained with the Grand Seiko 

Auto Ref/ Keratometer WAM-5500 (Grand Seiko Co. Ltd., Hiroshima, Japan; Sheppard and 

Davies, 2010). Subjects with spherical or astigmatic refractive error > 0.50 D were corrected 

with Focus Dailies or Focus Dailies Toric disposable soft contact lenses. Functional 

emmetropia was necessary to ensure near-identical accommodative demand for each 

subject.  

 

Objective accommodative responses were measured using the WAM-5500 autorefractor 

whilst subjects fixated Maltese cross targets in free space at -4 D and -8 D stimulus 

vergences, presented in random order. The targets subtended a constant angular subtense 

of 4.6º. Average target luminance and Michelson contrast values were 34.0 cd/m2 and 82 %, 

and 30.5 cd/m2 and 80 %, for the 4 D and 8 D stimuli, respectively. The left eye was 

occluded with a patch during measurement of the response and subjects were instructed to 

“carefully focus” (Stark and Atchison, 1994) on the centre of the Maltese cross to induce 

both voluntary and reflex accommodation (Radhakrishnan and Charman, 2007). It was 

ensured at this stage that participants had sufficient subjective accommodative amplitude to 

maintain clarity of the 8 D stimulus, which would be required for subsequent IOLMaster and 

MRI data collection.  Five readings were obtained at each stimulus level, and the mean of 

these values was used in conjunction with the distance autorefractor results to determine 

the objective accommodative response. 

Direct determination of horizontal peripheral ocular dimensions in the relaxed and 

accommodated states was performed with the Zeiss IOLMaster and the adaptation 

described by Mallen and Kashyap (2007), shown in Figure 7.1. Myopic subjects removed 

their contact lenses prior to acquisition of these data. The Badal optometer features a lens 

of power 20.8 D, enabling correction of ametropia and stimulation of accommodation. Eye 
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length measures were recorded at nasal and temporal eccentricities of 0, 10, 20 and 30°, in 

the relaxed state, and at 4.0 and 8.0 D accommodative demand levels. Demand level and 

eccentricity were randomly ordered. For measurement of unaccommodated eye length, the 

illuminated Maltese cross was positioned in the Badal system at the most positive/ least 

negative point that allowed the subject to see the target clearly. Following determination of 

this position within the system, the Maltese cross could be adjusted to provide each subject 

with 4.0 and 8.0 D accommodative demand levels. Subjects were instructed to maintain 

clarity and “carefully focus” on the cross target during data acquisition. The mean of 5 

measures (with a signal to noise ratio; SNR, of at least 2.0) at each eccentricity and demand 

level was used for analysis purposes. 

 

Intersession repeatability of relaxed and accommodated peripheral retinal contour measures 

with the IOLMaster was explored as this is the first study to apply the technique to the 

accommodating eye. Temporal eye length measures in the unaccommodated state, and at 

8.0 D stimulus vergence, were acquired at 0, 10, 20 and 30° eccentricities from 10 youthful 

volunteers. Participants returned for the second data collection session within a week of the 

initial measures. The bias for each eccentricity at both vergence levels, was calculated from 

the mean difference in measures between visits, and paired t-tests used to determine 

whether the levels of bias were significantly different to zero. The limits of agreement (LoA) 

were established using the standard deviation (SD) of differences with the following formula: 

 

                                     LoA = bias ± (1.96 * SD of differences)                               Equation 3 
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Figure 7.1. Adaptation of the Zeiss IOLMaster for determination of horizontal peripheral ocular dimensions. A 

movable internal Maltese cross target (M) is viewed via a beam splitter (B), through which the measurement 

beam of the IOLMaster also passes. A goniometer (G) attached to the instrument forehead rest using retort 

clamps (R) allows the illuminated Maltese cross, Badal lens (L) and beam splitter to be rotated around the 

vertical axis, so that the eye rotates relative to the IOLMaster measurement axis. 

 

Three-dimensional MRI data collection took place approximately 2 weeks later, depending 

on scanner availability, at CUBRIC. Participants completed a second MRI screening form to 

ensure none of the initial responses had changed, and a CUBRIC consent form. Whilst 

undergoing scanning, ametropic subjects wore contact lenses of the specification 

determined in the earlier stage of the study. The subject set-up for MRI was as detailed in 

Chapter 6, and participants were scanned at 0.17, 4.0 and 8.0 D demand levels, using the 

blink-pause box. The scanning protocol was adjusted to enable acquisition of high resolution 

images featuring the entire eye in all three dimensions. The whole-eye protocol involved 54 

oblique-axial slices of 0.7 mm thickness, with no inter-slice gaps, to visualise the complete 

eye in all three dimensions. FSE images were acquired with a bandwidth of ± 23.40 kHz, 

echo train length 24, sequence repetition time 25000 ms and echo time 300 ms. The 

acquisition matrix was square; 192 * 192, with a 134 mm field of view. Voxels within the 

images therefore had a 0.7 mm isotropic resolution. One signal average was performed, 
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resulting in a total scan duration of 3 minutes 45 seconds. Overall time spent in the scanner 

for each subject was approximately 40- 60 minutes, comprising of localiser scans, main 

scans, and repetition of longer scans, if necessary, due to blink/ motion artefacts. 

 
7.2.1. MRI data analysis 

The initial stages of MRI data analysis were conducted using a similar methodology to that 

described in Chapter 6. T2-weighted 3-D MR images were loaded into mri3dX 

(www.jiscmail.ac.uk/lists/mri3dX.html), and the approximate centre of the globe manually 

identified. A 3-D flood filling algorithm was used to shade voxels of intensities between 55 

and 128, corresponding to the fluid-filled regions of the eye. The shaded volume was 

manually edited to include the crystalline lens, and ensure complete characterisation of the 

eye. Following subsequent location of the anterior pole, a sphere consisting of 32,768 

triangular polygons was automatically generated to completely envelop the shaded voxels. 

An iterative shrink-wrap process was executed until the vertices of each polygon intersected 

a shaded voxel, then a rapid smoothing process performed on the polygonal model to 

average local vertex positions and generate a more regular 3-D characterisation of the eye. 

The number of smoothing iterations was set at 200 throughout the investigation. 

 

Three-dimensional ocular representations (Fig. 7.2) were visualised using Geomview 

software (www.geomview.org), allowing the model to be rotated and viewed at any 

orientation. Overall ocular volume at the 0.17 D demand level was obtained from the 

Geomview window, in addition to the surface curvature around the posterior pole of the eye 

at all vergence levels. The radius of the area over which surface curvature was described 

was set at 8.0 mm for all analyses to identify any change which would indicate local 

changes in posterior ocular conformation with accommodation. 

 

Measures of vitreous volume and anterior eye volume were additionally acquired using 

mri3dX. To obtain vitreous volume at 0.17, 4.0 and 8.0 D stimulus levels, initial shading was 

performed as previously described, but the editing process was used to eliminate voxels 

shading the anterior region of the eye. The vitreous volume at 0.17 D, obtained from viewing 

the resultant 3-D model with Geomview, was subtracted from the overall ocular volume to 

determine anterior eye volume (corresponding to the lens and anterior chamber) in the 

relaxed state. 

 

Further analysis of the MRI data was performed in order to explore accommodative changes 

in the conformation of the nasal and temporal quadrants (the superior and inferior quadrant 

data were not used for analysis purposes), and identify any regional asymmetry which could 
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be linked to the findings of Chapter 3 of a greater contractile response of the temporal, 

compared to nasal, ciliary muscle aspect. Following the iterative shrink-wrap and smoothing 

processes, mri3dX produces a text file of the x and y surface co-ordinates of the nasal, 

temporal, superior and inferior quadrants. Each quadrant is represented by over 8,000 sets 

of co-ordinates, thus the data were copied into an Excel spreadsheet (Microsoft, Richmond, 

Washington, USA) and a systematic sampling process employed to reduce the volume of 

data by a factor of 10. The x and y co-ordinates representing the region from 25- 75 % of 

overall axial length were then plotted using SigmaPlot (Version 11; Systat Software Inc., 

Chicago, Illinois, USA) graphing and statistical software and a second order polynomial 

(represented by the equation y = ax2 + bx + c) fitted to the data. In order to determine the 

co-ordinates of the maximum point of the polynomial (and minimal point for the temporal 

polynomial), x was derived from the equation x = -b/ 2a, and subsequently used to calculate 

y, given that y = ax2 + bx + c. The process was repeated for the nasal and temporal 

quadrants at each accommodative state to ascertain whether the locus of the vertex 

changed significantly with accommodation. 

 

7.2.2. Statistical analysis 

Regarding 3-D MRI data, the relationships between axial length and unaccommodated 

ocular volume parameters (complete eye volume, anterior volume and vitreous volume) 

were explored using linear regression analysis, performed with SigmaPlot graphing and 

statistical software (Version 11, Systat Software Inc., Chicago, Illinois, USA). One-way 

repeated measures analyses of variance (ANOVAs), using SPSS statistical software 

(Version 15, SPSS Inc., an IBM Company, Chicago, Illinois, USA) were conducted to 

determine if accommodation caused any significant change in vitreous volume, curvature of 

the posterior region of the eye, or the x and y co-ordinates of the vertex of the second order 

polynomial fitted to the MRI data representing 25- 75 % of overall axial length on the nasal 

and temporal sides. Demand, the within subjects factor, was assigned three levels, of 0.19, 

4.0 and 8.0 D for ANOVA purposes. A significance level of α = 0.05 was used throughout 

analysis. 

 

 

 

 

 

7.3 Results 

Mean spherical equivalent (MSE) refractive error of the 8 participants ranged from -6.00 to 

+0.19 D (mean -2.07 ± 2.19 D). Mean objective accommodative responses to the 4.0 D and 
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8.0 D stimuli were 2.64 ± 0.37 D and 5.69 ± 0.99 D, respectively. MRI data indicated that 

complete eye volume varied widely amongst the cohort, from 5288 to 6898 mm3 in the 

unaccommodated state. Ocular volume was significantly and positively correlated with axial 

length (r = 0.85, P = 0.007), as was vitreous volume (r = 0.86, P = 0.006). Mean complete 

eye volume was 5999 ± 515 and 6444 ± 328 mm3 in the emmetropic and myopic groups, 

respectively, whilst mean vitreous volume in the same refractive groups was 5611 ± 474 and 

6027 ± 261 mm3. Anterior ocular volume was not dependent on axial length (r = 0.343, P = 

0.406), with a mean of 388 ± 105 mm3 across the whole cohort. During accommodation, 

vitreous volume was statistically unchanged (F = 0.608, P = 0.558). Figure 7.2 illustrates 

sample vitreous and whole eye models for a single subject, at the 0.17 D demand level. 

 

 
 
Figure 7.2. Sample 3-D models of the vitreous body (left) and complete eye (right) of a 20 year old emmetrope, 

viewed using Geomview software. The fossa patellaris (FP) is clearly visible on the vitreous model. 

 

 

 

 

 

 

 

 

 

7.3.1. IOLMaster derived retinal contour 

Table 7.1 details the intersession repeatability of temporal retinal contour measures in the 

relaxed and accommodated states. None of the amounts of bias reported are statistically 

significantly different from zero, at either the minimal or maximal accommodative stimulus 

level. 

FP 

Vitreous Complete eye 
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 0 D stimulus level 8 D stimulus level 

Eccentricity 
(°) 

Bias 
(mm) 

SD of 
differences 

95 % LoA Bias 
(mm) 

SD of 
differences 

95 % 
LoA 

0 
0.00 0.04 -0.078, 

0.078 -0.02 0.04 -0.098, 
0.058 

10 
-0.02 0.03 

-0.079, 

0.039 
0.00 0.03 -0.059, 

0.059 

20 0.01 0.05 -0.088, 
0.108 -0.01 0.03 -0.088, 

0.108 

30 
-0.01 0.03 -0.068, 

0.049 -0.01 0.05 
-0.108, 

0.088 
 
Table 7.1. Intersession repeatability of temporal retinal contour measures with the IOLMaster, in the relaxed and 

accommodated states. Ten participants attended two data acquisition sessions, separated by no longer than a 

week. 

 

Amongst the main cohort, there was a significant difference in axial length measures 

between the refractive groups, with myopes exhibiting the longest eyes (mean axial lengths 

were 23.67 ± 0.64 and 25.08 ± 0.81 mm for the emmetropic and myopic groups, 

respectively; P = 0.013). Figure 7.3 illustrates graphically the relationship between field 

angle and mean eye length in the relaxed and accommodated states, for both refractive 

groups. Temporal retinal contour in the relaxed state is visibly steeper in the myopic eyes 

(Fig. 7.3b) than the emmetropes (Fig. 7.3a; P = 0.045), with no significant difference 

between refractive groups on the nasal side (P = 0.96).  

 

Across the whole cohort, accommodation was associated with a statistically significant 

increase in eye length measures at all eccentricities except at 10° and 20° nasally. Table 7.2 

details mean eye lengths and the mean changes in eye length in response to 4.0 and 8.0 D 

stimuli for each eccentricity measured. 

 

 

Eccentricity 
(°) 

Mean eye 
length at 0.0 

D (mm) 

Mean change 
from 0.0 to 
4.0 D (µm) 

Mean change 
from 0.0 to 
8.0 D (µm) 

F P 

-30 24.02 + 7.5 ± 13 + 26 ± 23 5.989 0.013* 

-20 24.18 + 15 ± 17 + 50 ± 30 13.012 0.001* 

-10 24.25 + 28 ± 24 + 48 ± 36 8.273 0.004* 
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0 24.37 + 15 ± 12 + 55 ± 52 7.223 0.007* 

10 24.21 + 48 ± 58 + 46 ± 26 3.353 0.065 

20 23.95 + 21 ± 21 + 48 ± 18 21.078 <0.001* 

30 23.66 + 38 ± 65 + 54 ± 75 2.070 0.169 
 
Table 7.2. Mean eye length measures, and change with accommodation measured with the IOLMaster. Negative 

eccentricities correspond to temporal measures of eye length. * indicates a statistically significant change with 

accommodation, as determined by repeated measures ANOVA. 

 

7.3.2 MRI derived ocular conformation 

Figure 7.4 illustrates the nasal and temporal quadrant shapes from 25- 75% of overall axial 

length of a single participant at the three demand levels. The polynomials appear very 

similar for all accommodative levels, a finding which was consistent amongst the 8 

participants. One-way repeated measures ANOVA testing found no significant change with 

accommodation in the location of either the x or y co-ordinates of the maxima or minima of 

the polynomials representing the nasal (F = 0.828, P = 0.457, and F = 2.006, P = 0.200, for 

x and y, respectively) and temporal (F = 0.907, P = 0.908, and F = 0.553, P = 0.587, for x 

and y, respectively) quadrants. 

 

Regarding the surface curvature of the circular area with an 8.0 mm radius, centred on the 

most posterior region of the eye, the curvature in the relaxed state was found to be 

significantly and positively linked refractive error (r = 0.715, P = 0.046), with myopic eyes 

demonstrating steeper posterior ocular contours. Posterior curvature ranged from 10.23 to 

12.87 mm at the 0.17 D demand level, and did not change significantly with accommodation 

(F = 0.569, P = 0.579). 
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Figure 7.3. Mean eye length (obtained from the IOLMaster) as a function of field angle for emmetropic (A; upper 

plot) and myopic (B; lower plot) subjects at 0, 4 and 8 D stimulus vergences. Negative field angles correspond to 

the temporal side, and positive angles, the nasal aspect. 
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Figure 7.4. Polynomial plots of nasal and temporal ocular contours from 25-75 % of axial length at 0.17 (yellow 

line), 4.0 (green line) and 8.0 D (blue line) stimulus levels. Myopic subject (MSE -2.50 D), aged 19 years. Note 

the plot for the 0.17 D demand level is mostly obscured by that for the 4.0 D level. 

 

7.4. Discussion 

Advances in MRI have allowed several previous authors to investigate the relationship 

between ocular shape and refractive error. However, this is the first study to apply 3-D MRI 

techniques to explore accommodative changes in ocular conformation. Furthermore, reports 

of axial length changes with accommodation, measured using PCI, have been limited 

hitherto to on-axis measurements. The present study provides data on retinal contour to an 

eccentricity of 30° in the nasal and temporal directions, using the adaptation to the 

IOLMaster described by Mallen and Kashyap (2007). 

 

The 3-D MRI data highlights a significant dependence of both vitreous volume and complete 

ocular volume, on axial length in the unaccommodated state. However, no relationship 

between anterior volume and axial length was identified. This finding is in agreement with 
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the recently published data of Read et al. (2010), based on optical low coherence 

reflectometry measures of ocular biometric characteristics in emmetropes and myopes. No 

significant relationship was identified between anterior axial distances (central corneal 

thickness, anterior chamber depth, lens thickness and anterior segment length) and 

refractive error group, but both vitreous chamber depth and axial length were significantly 

greater in the myopic participants. 

 

IOLMaster eye length data were obtained from all participants at eccentricities up to 30° 

nasally and temporally in the present study. Pupil size limitations prevented acquisition of 

eye length data at greater eccentricities, particularly for the accommodated states. A 

significant increase in eye length with accommodation was determined at all eccentricities, 

except for 10° and 30° nasally, which may be a consequence of the relatively small cohort 

size. Whilst no previous study has measured directly the changes in peripheral eye length 

values with accommodation, the values for on-axis elongation (0° eccentricity) are generally 

comparable with previously published data. The present study observed mean increases in 

axial length across the whole cohort of 15 ± 12 µm and 55 µm ± 52 µm for the 4.0 and 8.0 D 

stimulus levels, respectively. Drexler et al. (1998) detected mean axial elongations of 12.7 

µm in emmetropes and 5.2 µm in myopes, in response to a target at the near point. 

Conversely, Mallen et al. (2006) observed the greatest axial length changes in myopic 

subjects, with a mean increase of 58 µm, compared to 37 µm in emmetropes, when viewing 

a 6 D stimulus. Most recently, Read et al. (2010) documented a mean axial length increase 

of 24.1 ± 22.7 µm in response to a 6.0 D stimulus, with no significant difference in response 

between emmetropes and myopes. The accommodative axial elongation observed in 

previously published studies has been suggested as a mechanism allowing the 

maintenance of a constant ocular volume whilst contraction of ciliary smooth muscle pulls 

the choroid and sclera adjacent to the ciliary body inwards (Drexler et al., 1998; Mallen et 

al., 2006). Three-dimensional MRI data from the present investigation provides the first in 

vivo evidence to support the assertion that vitreous chamber volume remains unchanged 

during accommodation.  

 

Nasal and temporal quadrant MRI data indicated no significant change with accommodation 

in either the x or y co-ordinates of the maximum or minimum points of the polynomials fitted 

to the data points. The maintenance of a constant ocular profile during accommodation on 

both the nasal and temporal sides of the globe implies that changes in ocular conformation 

with accommodation may be limited to the posterior region of the eye (as axial length is 

known to increase with accommodation). In this case, it would be expected that the surface 

curvature of the posterior region of the eye would increase during accommodation. 
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However, the 3-D MRI data indicated no significant accommodative change in curvature of 

the posterior portion of the eye.  

 

It is feasible that the changes occurring in the posterior segment of the eye during 

accommodation are very slight, and are likely overestimated by the raw IOLMaster data. 

The IOLMaster uses an average refractive index within the eye, which would vary with 

accommodation, due to the axial thickening of the crystalline lens and reduction in anterior 

chamber depth. Atchison and Smith (2004) proposed a formula to reduce the error 

associated with determining accommodative axial length changes, which requires input of 

lens thickness and the change in lens thickness with accommodation. However, precise 

values for these parameters were not available in the present investigation as the IOLMaster 

does not provide lens thickness measurements and the only internal measurement provided 

by the device from PCI is axial length. Read et al. (2010) have recently reported corrected 

values of axial length changes during accommodation, obtained using the commercially 

available LenStar LS900 (Haag-Streit Koeniz, Switzerland; Buckhurst et al., 2009). This 

instrument employs optical low coherence reflectometry (OLCR) to acquire anterior chamber 

depth, lens thickness and axial length measures, thus the data obtained can more readily 

adjusted to account for variations in ocular refractive index during accommodation. The 

corrected data of Read et al. (2010) identified a mean increase in axial length of 7.4 ± 18.9 

µm to a 6 D stimulus, compared to the mean of uncorrected values of 24.1 ± 22.7 µm. This 

7.4 µm mean corrected increase in axial length is approximately 8 times smaller than the 

elongation reported in the present investigation (to an 8.0 D stimulus) and in myopic 

subjects (to a 6.0 D stimulus) by Mallen et al. (2006), from raw IOLMaster data. The LenStar 

could be modified, therefore, with a similar adaptation to that used with the IOLMaster in the 

present investigation to provide more realistic corrected values of eye length changes during 

accommodation.  

 

The current investigation employed 3.0 T MRI scanning, although Richdale et al. (2009) 

have described 3-D MRI of the human eye in vivo at 7.0 T. The improved image quality from 

scans acquired at 7.0 T may provide more accurate data regarding ocular conformation in 

the relaxed state. However, such high-field techniques are not currently applicable to the 

study of natural accommodative changes in ocular conformation due to the requirement of 

the lids to be taped closed during scanning to minimise motion artefacts, thus preventing the 

viewing of visual stimuli. Pharmacological stimulation of accommodation could be employed, 

although pilocarpine is a known superstimulus to accommodation, and does not reflect the 

normal physiological response (Kriechbaum et al., 2005). 
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7.5. Conclusion 

The present study sought to explore the worth of 3-D MRI techniques in the analysis of 

posterior ocular changes during accommodation. The volume of the vitreous appears to 

remain constant with accommodation, as has been predicted by previous authors, but not 

supported hitherto with empirical data. Changes in ocular conformation during 

accommodation were not detected using the 3-D MRI techniques employed, although PCI 

data indicated a small accommodative elongation of the eye, in alignment with previously 

published studies. Methodologies based upon OLCR or PCI may be more appropriate than 

current MRI techniques for the study of accommodative changes in ocular conformation. 

However, optical data regarding the effect of accommodation on eye length require post hoc 

correction to avoid significantly overestimating the magnitude of the changes induced. 
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CHAPTER 8 

CONCLUSIONS AND PLANS FOR FUTURE WORK 
 

8.1. General conclusions 
The central experimental theme of the thesis has been in vivo analysis of ocular 

morphological changes during human accommodation, with particular attention paid to the 

ciliary muscle and crystalline lens. The in vivo investigations have avoided the use of 

pharmacological agents in order to examine the natural, physiologic accommodative 

system. Application of newly developed techniques, such as three dimensional magnetic 

resonance imaging (MRI) and anterior segment optical coherence tomography (AS-OCT), 

have provided an improved insight into human phakic accommodation. 

 

AS-OCT has been employed for the first time to examine the morphology of human ciliary 

muscle during accommodation, and to assess the refractive and age-dependent 

characteristics of this structure (Chapters 3 and 4). The ciliary muscle was found to be 

longer, both in terms of overall length, and anterior length, in eyes with axial myopia, 

implying that the muscle grows in the antero-posterior direction as the globe elongates, with 

the scleral spur as the fixed anchor point. The muscle does not, however, appear to be 

simply stretched during axial elongation, as suggested by the in vitro globe expansion work 

conducted by van Alphen (1986), as the myopic ciliary muscle was not found to be thinner 

than in emmetropic subjects, indeed no relationship between muscle thickness and 

refractive error was identified. With accommodative effort, the ciliary muscle demonstrates a 

contractile shortening, and thickening of the anterior region, even in eyes with established 

presbyopia, supporting a lensocentric model of presbyopia development. Nasal versus 

temporal asymmetries in ciliary muscle characteristics have been documented for the first 

time in vivo, notably thickening of the muscle, and greater contractile response, on the 

temporal side. 

 

The observed regional differences in ciliary muscle characteristics could potentially impact 

on lens stability during accommodation, thus a bespoke methodology allowing quantification 

of lens tilt and decentration, relative to the cornea, using AS-OCT data was developed and 

is described in Chapter 5. Although AS-OCT has been suggested as a useful tool for 

analysis of IOL position (Montes-Mico et al., 2009), there are no previous accounts in the 

literature of this technique being employed in the determination of phakic lens tilt and 

centration. Application of the novel technique in a cohort of young subjects indicated that the 

lens is generally well aligned with the cornea, in both the relaxed and accommodated states. 
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The implied stability of the lens during accommodation may be as a consequence of 

vitreous support, rather than indicative of increased equatorial zonular tension following 

ciliary muscle contraction, as predicted by Schachar (1994; 2006).  

 

Support for the Helmholtzian mechanism of accommodation is provided from 3-D MRI of the 

phakic crystalline lens (Chapter 6). In addition to axial thickening and steepening of surface 

curvatures, the equatorial diameter of the lens was observed to decrease significantly during 

accommodation. The 3-D techniques used negated the potential problem of varying 

acquisition planes between the relaxed and accommodated states, and the findings are in 

direct opposition to Schachar’s theory of accommodation, which is based upon increased 

equatorial zonular tension during accommodation, causing a movement of the lens edges 

outwards towards the sclera, increasing lenticular diameter (Schachar, 1994; Schachar, 

2006). 

 

The creation of fully 3-D lens models enabled in vivo determination of lens surface area and 

volume changes during accommodation, in the largest cohort described to date. The 

volumetric data suggest that the crystalline lens is compressed in its unaccommodated 

state, and undergoes expansion during accommodation, challenging the assumption that 

this structure is incompressible due to its high water content. The capsular bag appears to 

undergo elastic deformation, causing its surface area to reduce with accommodation. The 

dual occurrence of reduced lenticular surface area and increased volume has been 

predicted from mathematical modelling of primate lenses (Gerometta, 2007; Zamudio, 

2008), but the data presented in Chapter 6 is the first in vivo support of this theory. 

 

Whilst 3-D MRI techniques are clearly of great value in the study of lenticular changes with 

accommodation (Chapter 6) and analysis of complete eye shape (Singh et al. 2006; 

Gilmartin et al. 2007; Nagra et al. 2009), their current worth in the investigation of changes 

in ocular conformation with accommodation appears limited. The MRI data presented in 

Chapter 7 showed no significant change in nasal and temporal ocular conformation in the 

region from 25- 75 % of total axial length, or surface curvature of the area centred on the 

posterior pole. Amongst the same cohort, IOLMaster results demonstrated significant axial 

elongation at the majority of eccentricities measured, although these data are likely to 

overestimate true axial length changes due to the accommodative thickening of the 

crystalline lens and the impact this has on the mean refractive index of the ocular media. 

Investigation of changes in ocular shape with accommodation is unfortunately still restricted 

to indirect measures (peripheral refraction) and devices such as the IOLMaster and Lenstar 

which require adaptation to acquire off-axis data.  
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8.2. Evaluation of experimental work: suggestions for improvement and plans for 
future research 

Ciliary muscle biometry was investigated using the Visante AS-OCT, for which a software 

update (Version 2.0) became available during the data acquisition phase of the thesis. The 

new software update provides a novel enhanced high resolution imaging mode which 

generates images of improved quality by automatically averaging the data from several 

scans. Future ciliary muscle imaging with the Visante will be conducted in this mode, rather 

than the standard high-resolution setting to reduce the variability of measurements. 

Furthermore, the development of bespoke image analysis software employing edge 

detection algorithms to enable automated determination of ciliary muscle boundaries is 

planned by the author, thus improving on the current subjective technique. 

 

The investigation of ageing ciliary muscle detailed in Chapter 4 was limited to phakic 

volunteers, yet the impact of cataract extraction and intraocular lens (IOL) implantation on 

ciliary muscle morphology and contractility is very relevant to research directed at 

restoration of accommodation to presbyopic eyes. All techniques currently available to 

provide accommodation to the ageing eye rely on continued function of the ciliary muscle 

throughout life. Previous studies of the effect of cataract surgery on ciliary muscle action 

have provided some contradictory results, for example, Park et al. (2008) identified a 

significant increase in ciliary muscle centripetal movement in response to pilocarpine post-

operatively, whereas the MRI data of Strenk et al. (2010) identified no thickening of the 

ciliary muscle in pseudophakic eyes with accommodative effort. Phakic volunteers aged up 

to 91 years however, showed an accommodative thickening, suggesting that cataract 

surgery causes at least a partial reduction in ciliary muscle response. Comparison of age-

matched phakic and pseudophakic volunteers, or cataract patients pre- and post-

operatively, utilising the methodology detailed in Chapters 3 and 4 could provide clarification 

of the effects of cataract surgery and IOL implantation on the contractile response of human 

ciliary muscle. 

 

The 3-D MRI and analysis methodology detailed in Chapter 6 allowed the in vivo 

determination of lens equatorial diameter with a good level of intersession repeatability. The 

data confirmed an accommodative reduction in lens diameter, consistent with the 

Helmholtzian theory of accommodation. However, due to time and cost constraints, the 

study was limited to youthful subjects. Further research could apply the techniques 

described to a larger cohort, with a wider age range, to ascertain the effect of age on lens 

equatorial diameter. These data would be valuable in the understanding of the mechanism 

responsible for presbyopia development, particularly because the scientific basis of scleral 
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expansion surgery (Schachar, 2000) which aims to reverse the reduction in zonular tension 

that occurs secondary to an age-related increase in lens diameter, remains unproven.  

 

MRI data presented in Chapters 6 and 7 is based upon the assumption that subjects exert 

the same degree of accommodation whilst sitting upright at an autorefractor, and supine 

during MRI scanning. It is possible that the supine position necessary for MRI data 

acquisition may reduce accommodative amplitude due to posterior movement of the 

accommodated lens under the influence of gravity, whilst zonular tension is relaxed. No 

previously published studies have quantified the degree of posterior displacement of the 

accommodating human crystalline lens. The recently developed LenStar LS900 (Haag-Streit 

Koeniz, Switzerland; Buckhurst et al., 2009) ocular biometry device utilises optical low 

coherence reflectometry to measure axial distances including corneal thickness, anterior 

chamber depth, crystalline lens thickness and axial length, and could be adapted to allow 

assessment of supine subjects. Mallen and Kashyap (2009) described modification of the 

IOLMaster by replacement of the chinrest with a headrest to support the subject’s head 

horizontally and incorporation of a mirror to direct the measurement beam into the eye to 

facilitate ocular biometric measurement of a subject in a supine position. A similar 

adaptation could be utilised with the LenStar to compare anterior chamber depth of 

accommodating subjects in both the upright and supine positions to clarify whether 

backwards movement of the accommodated lens could influence MRI data analysis.  

 

The data acquisition phase for Chapter 7 suggested a qualitative link between axial length 

changes with accommodation as determined with the IOLMaster, and subject age. Amongst 

the relatively small cohort of 8 subjects (aged 19- 31 years), accommodative elongation 

appeared more pronounced in the younger participants. The study of a range of subjects, 

from youths to incipient presbyopes could provide information relevant to the understanding 

of presbyopia. Loss of choroidal compliance has been suggested as a key factor in 

presbyopia development (Bito and Miranda, 1989) and data relating to any change in 

accommodative axial elongation (hypothesised to result from the contracting ciliary muscle 

applying an inward pulling force to the neighbouring choroid and sclera) with age, would 

provide an insight into the validity of this theory. Furthermore, Mallen et al. (2006) suggested 

that investigation was required to determine the axial expandability of the eyes of children, 

which could be relevant to the development of myopia. There is clear scope, therefore, for 

further research into the change in accommodative ocular elongation with age. 
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8.3. Concluding statement 

The investigations detailed in the thesis have explored some of the aspects of human ocular 

accommodation which remain poorly understood, despite vast literary coverage of the 

subject. The findings provide further support for both the Helmholtzian mechanism of 

accommodation, and lensocentric models of presbyopia development. New information 

regarding the relationship between ciliary muscle morphology and refractive error could also 

be relevant to the understanding of myopigenesis. 

 

The MRI and AS-OCT based methodologies described represent non-invasive techniques 

which can be employed to examine the accommodative structures in vivo, removing issues 

such as post mortem tissue changes and disruption of the complete system, which are 

associated with ex vivo studies. High resolution 3-D MRI allows the crystalline lens to be 

modelled and provides important information on lenticular volume and diameter, whilst AS-

OCT is a commercially available and more accessible tool that can be applied for the 

investigation of ciliary muscle morphology. In addition to providing greater insight into 

several aspects of human accommodation which are not fully understood, the findings 

detailed form a platform for numerous future investigations in an exciting and expansive field 

of research, the ultimate goal of which is the restoration of accommodative ability to the 

presbyopic eye. 
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