878 research outputs found

    Optimal Channel Training in Uplink Network MIMO Systems

    Full text link
    We consider a multi-cell frequency-selective fading uplink channel (network MIMO) from K single-antenna user terminals (UTs) to B cooperative base stations (BSs) with M antennas each. The BSs, assumed to be oblivious of the applied codebooks, forward compressed versions of their observations to a central station (CS) via capacity limited backhaul links. The CS jointly decodes the messages from all UTs. Since the BSs and the CS are assumed to have no prior channel state information (CSI), the channel needs to be estimated during its coherence time. Based on a lower bound of the ergodic mutual information, we determine the optimal fraction of the coherence time used for channel training, taking different path losses between the UTs and the BSs into account. We then study how the optimal training length is impacted by the backhaul capacity. Although our analytical results are based on a large system limit, we show by simulations that they provide very accurate approximations for even small system dimensions.Comment: 15 pages, 7 figures. To appear in the IEEE Transactions on Signal Processin

    Uplink CoMP under a Constrained Backhaul and Imperfect Channel Knowledge

    Full text link
    Coordinated Multi-Point (CoMP) is known to be a key technology for next generation mobile communications systems, as it allows to overcome the burden of inter-cell interference. Especially in the uplink, it is likely that interference exploitation schemes will be used in the near future, as they can be used with legacy terminals and require no or little changes in standardization. Major drawbacks, however, are the extent of additional backhaul infrastructure needed, and the sensitivity to imperfect channel knowledge. This paper jointly addresses both issues in a new framework incorporating a multitude of proposed theoretical uplink CoMP concepts, which are then put into perspective with practical CoMP algorithms. This comprehensive analysis provides new insight into the potential usage of uplink CoMP in next generation wireless communications systems.Comment: Submitted to IEEE Transactions on Wireless Communications in February 201

    Cooperative Multi-Cell Networks: Impact of Limited-Capacity Backhaul and Inter-Users Links

    Full text link
    Cooperative technology is expected to have a great impact on the performance of cellular or, more generally, infrastructure networks. Both multicell processing (cooperation among base stations) and relaying (cooperation at the user level) are currently being investigated. In this presentation, recent results regarding the performance of multicell processing and user cooperation under the assumption of limited-capacity interbase station and inter-user links, respectively, are reviewed. The survey focuses on related results derived for non-fading uplink and downlink channels of simple cellular system models. The analytical treatment, facilitated by these simple setups, enhances the insight into the limitations imposed by limited-capacity constraints on the gains achievable by cooperative techniques

    On the Total Energy Efficiency of Cell-Free Massive MIMO

    Get PDF
    We consider the cell-free massive multiple-input multiple-output (MIMO) downlink, where a very large number of distributed multiple-antenna access points (APs) serve many single-antenna users in the same time-frequency resource. A simple (distributed) conjugate beamforming scheme is applied at each AP via the use of local channel state information (CSI). This CSI is acquired through time-division duplex operation and the reception of uplink training signals transmitted by the users. We derive a closed-form expression for the spectral efficiency taking into account the effects of channel estimation errors and power control. This closed-form result enables us to analyze the effects of backhaul power consumption, the number of APs, and the number of antennas per AP on the total energy efficiency, as well as, to design an optimal power allocation algorithm. The optimal power allocation algorithm aims at maximizing the total energy efficiency, subject to a per-user spectral efficiency constraint and a per-AP power constraint. Compared with the equal power control, our proposed power allocation scheme can double the total energy efficiency. Furthermore, we propose AP selections schemes, in which each user chooses a subset of APs, to reduce the power consumption caused by the backhaul links. With our proposed AP selection schemes, the total energy efficiency increases significantly, especially for large numbers of APs. Moreover, under a requirement of good quality-of-service for all users, cell-free massive MIMO outperforms the colocated counterpart in terms of energy efficiency

    Optimality Properties, Distributed Strategies, and Measurement-Based Evaluation of Coordinated Multicell OFDMA Transmission

    Full text link
    The throughput of multicell systems is inherently limited by interference and the available communication resources. Coordinated resource allocation is the key to efficient performance, but the demand on backhaul signaling and computational resources grows rapidly with number of cells, terminals, and subcarriers. To handle this, we propose a novel multicell framework with dynamic cooperation clusters where each terminal is jointly served by a small set of base stations. Each base station coordinates interference to neighboring terminals only, thus limiting backhaul signalling and making the framework scalable. This framework can describe anything from interference channels to ideal joint multicell transmission. The resource allocation (i.e., precoding and scheduling) is formulated as an optimization problem (P1) with performance described by arbitrary monotonic functions of the signal-to-interference-and-noise ratios (SINRs) and arbitrary linear power constraints. Although (P1) is non-convex and difficult to solve optimally, we are able to prove: 1) Optimality of single-stream beamforming; 2) Conditions for full power usage; and 3) A precoding parametrization based on a few parameters between zero and one. These optimality properties are used to propose low-complexity strategies: both a centralized scheme and a distributed version that only requires local channel knowledge and processing. We evaluate the performance on measured multicell channels and observe that the proposed strategies achieve close-to-optimal performance among centralized and distributed solutions, respectively. In addition, we show that multicell interference coordination can give substantial improvements in sum performance, but that joint transmission is very sensitive to synchronization errors and that some terminals can experience performance degradations.Comment: Published in IEEE Transactions on Signal Processing, 15 pages, 7 figures. This version corrects typos related to Eq. (4) and Eq. (28
    corecore