148,528 research outputs found

    Towards a Layered Architectural View for Security Analysis in SCADA Systems

    Full text link
    Supervisory Control and Data Acquisition (SCADA) systems support and control the operation of many critical infrastructures that our society depend on, such as power grids. Since SCADA systems become a target for cyber attacks and the potential impact of a successful attack could lead to disastrous consequences in the physical world, ensuring the security of these systems is of vital importance. A fundamental prerequisite to securing a SCADA system is a clear understanding and a consistent view of its architecture. However, because of the complexity and scale of SCADA systems, this is challenging to acquire. In this paper, we propose a layered architectural view for SCADA systems, which aims at building a common ground among stakeholders and supporting the implementation of security analysis. In order to manage the complexity and scale, we define four interrelated architectural layers, and uses the concept of viewpoints to focus on a subset of the system. We indicate the applicability of our approach in the context of SCADA system security analysis.Comment: 7 pages, 4 figure

    Conceptual Systems Security Analysis Aerial Refueling Case Study

    Get PDF
    In today’s highly interconnected and technology reliant environment, systems security is rapidly growing in importance to complex systems such as automobiles, airplanes, and defense-oriented weapon systems. While systems security analysis approaches are critical to improving the security of these advanced cyber-physical systems-of-systems, such approaches are often poorly understood and applied in ad hoc fashion. To address these gaps, first a study of key architectural analysis concepts and definitions is provided with an assessment of their applicability towards complex cyber-physical systems. From this initial work, a definition of cybersecurity architectural analysis for cyber-physical systems is proposed. Next, the System Theory Theoretic Process Analysis approach for Security (STPA Sec) is tailored and presented in three phases which support the development of conceptual-level security requirements, applicable design-level criteria, and architectural-level security specifications. This work uniquely presents a detailed case study of a conceptual-level systems security analysis of a notional aerial refueling system based on the tailored STPA-Sec approach. This work is critically important for advancing the science of systems security engineering by providing a standardized approach for understanding security, safety, and resiliency requirements in complex systems with traceability and testability

    Foundations for Designing Secure Architectures

    Get PDF
    AbstractDeveloping security-critical systems is difficult and there are many well-known examples of security weaknesses exploited in practice. In particular, so far little research has been performed on the soundly based design of secure architectures, which would be urgently needed to develop secure systems reliably and efficiently. In this abstract, we sketch some research on a sound methodology supporting secure architecture design. We give an overview over an extension of UML, called UMLsec, that allows expressing security-relevant information within the diagrams in an architectural design specification. We define foundations for secure architectural design patterns. We present tool-support which has been developed for the UMLsec secure architecture approach

    Towards a Framework for Managing Inconsistencies in Systems of Systems

    Get PDF
    The growth in the complexity of software systems has led to a proliferation of systems that have been created independently to provide specific functions, such as activity tracking, household energy management or personal nutrition assistance. The runtime composition of these individual systems into Systems of Systems (SoSs) enables support for more sophisticated functionality that cannot be provided by individual constituent systems on their own. However, in order to realize the benefits of these functionalities it is necessary to address a number of challenges associated with SoSs, including, but not limited to, operational and managerial independence, geographic distribution of participating systems, evolutionary development, and emergent conflicting behavior that can occur due interactions between the requirements of the participating systems. In this paper, we present a framework for conflict management in SoSs. The management of conflicting requirements involves four steps, namely (a) overlap detection, (b) conflict identification, (c) conflict diagnosis, and (d) conflict resolution based on the use of a utility function. The framework uses a Monitor-Analyze-Plan- Execute- Knowledge (MAPE-K) architectural pattern. In order to illustrate the work, we use an example SoS ecosystem designed to support food security at different levels of granularity

    DCDIDP: A distributed, collaborative, and data-driven intrusion detection and prevention framework for cloud computing environments

    Get PDF
    With the growing popularity of cloud computing, the exploitation of possible vulnerabilities grows at the same pace; the distributed nature of the cloud makes it an attractive target for potential intruders. Despite security issues delaying its adoption, cloud computing has already become an unstoppable force; thus, security mechanisms to ensure its secure adoption are an immediate need. Here, we focus on intrusion detection and prevention systems (IDPSs) to defend against the intruders. In this paper, we propose a Distributed, Collaborative, and Data-driven Intrusion Detection and Prevention system (DCDIDP). Its goal is to make use of the resources in the cloud and provide a holistic IDPS for all cloud service providers which collaborate with other peers in a distributed manner at different architectural levels to respond to attacks. We present the DCDIDP framework, whose infrastructure level is composed of three logical layers: network, host, and global as well as platform and software levels. Then, we review its components and discuss some existing approaches to be used for the modules in our proposed framework. Furthermore, we discuss developing a comprehensive trust management framework to support the establishment and evolution of trust among different cloud service providers. © 2011 ICST

    Towards Modelling and Analysing Non-Functional Properties of Systems of Systems

    Get PDF
    International audienceSystems of systems (SoS) are large-scale systems composed of complex systems with difficult to predict emergent properties. One of the most significant challenges in the engineering of such systems if how to predict their Non-Functional Properties (NFP) such as performance and security, and more specifically, how to model NFP when the overall system functionality is not available. In this paper, we identify, describe and analyse challenges to modelling and analysing the performance and security NFP of SoS. We define an architectural framework to SoS NFP prediction based on the modelling of system interactions and their impacts. We adopt an Event Driven Architecture to support this modelling, as it allows for more realistic and flexible NFP simulation, which enables more accurate NFP prediction. A framework integrating the analysis of several NFP allows for exploring the impacts of changes made to accommodate issues on one NFP on other NFPs

    Building an End-To-End Security Infrastructure for Web-Based Aerospace Components E-Trading

    Get PDF
    The research paper focuses on the development of a generic framework and architecture for building an integrated end-to-end security infrastructure and closedloop solution to secure e-commerce and m-commerce. As an integral component, an intelligent decision support mechanism is developed in helping systems designers and managers make architectural, design, implementation, and deployment decisions on employing particular security solutions to issues and requirements arising in various e-commerce and m-commerce scenarios. In addition, this research identifies the key features, options and benefits of several security technologies as well as provide guidelines in managing the costs and complexities involved in the deployment of those security solutions. As an important groundwork for building a prototype based on the proposed research work, a study has been conducted to investigate the current B2B ecommerce operations between Pratt & Whitney (P&W) [15] (a division of United Technologies Corporation (UTC) [17]) and its partnering e-business and supply chain players in the aviation industry
    corecore