
Open Research Online
The Open University’s repository of research publications
and other research outputs

Towards a Framework for Managing Inconsistencies in
Systems of Systems
Conference or Workshop Item
How to cite:

Viana, Thiago; Bandara, Arosha and Zisman, Andrea (2016). Towards a Framework for Managing Inconsistencies
in Systems of Systems. In: Colloquium on Software-intensive Systems-of-Systems at 10th European Conference on
Software Architecture, 29 Nov 2016, Copenhagen, ACM.

For guidance on citations see FAQs.

c© [not recorded]

Version: Accepted Manuscript

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.1145/3175731.3176177

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/help/helpfaq.html#Unrecorded_information_on_coversheet
http://dx.doi.org/doi:10.1145/3175731.3176177
http://oro.open.ac.uk/policies.html

Towards a Framework for Managing Inconsistencies in
Systems of Systems

Thiago Viana, Arosha K. Bandara, Andrea Zisman
School of Computing and Communications

The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
{firstname.lastname@open.ac.uk}

ABSTRACT
The growth in the complexity of software systems has led to a
proliferation of systems that have been created independently to
provide specific functions, such as activity tracking, household
energy management or personal nutrition assistance. The runtime
composition of these individual systems into Systems of Systems
(SoSs) enables support for more sophisticated functionality that
cannot be provided by individual constituent systems on their
own. However, in order to realize the benefits of these
functionalities it is necessary to address a number of challenges
associated with SoSs, including, but not limited to, operational
and managerial independence, geographic distribution of
participating systems, evolutionary development, and emergent
conflicting behavior that can occur due interactions between the
requirements of the participating systems. In this paper, we
present a framework for conflict management in SoSs. The
management of conflicting requirements involves four steps,
namely (a) overlap detection, (b) conflict identification, (c)
conflict diagnosis, and (d) conflict resolution based on the use of a
utility function. The framework uses a Monitor-Analyze-Plan-
Execute- Knowledge (MAPE-K) architectural pattern. In order to
illustrate the work, we use an example SoS ecosystem designed to
support food security at different levels of granularity.

CCS Concepts
• Software system structures➝Software architectures
• Software functional properties➝Correctness➝Consistency.

Keywords
Systems of systems; Inconsistency management; Adaptation

1. INTRODUCTION
Software systems have evolved from being stand-alone systems to
being composed into Systems of Systems. A System of Systems
(SoS) is defined as an arrangement of independently created,
discovered, and selected systems, which are integrated into a single
system in order to deliver unique capabilities [1]. In this context,
each participating system can operate and support different goals in
its own environment (viz. local goals), as well as support new
goals of the SoS as a whole (viz. global goals), that could not be
achieved separately by the participating systems. An SoS presents
many features including, but not limited to operational and
managerial independence, geographic distribution of participating
systems, and emergent behaviours [2].

In recent years, we have experienced the situation in which
individual systems are being composed into bigger systems as SoSs
that are capable of delivering unique functionality that spans more
complex operating environments. Examples of SoSs with such
capabilities are found in transport network systems, household
energy management systems, personal nutritional systems, smart

homes, smart cities, and intelligent healthcare systems. This
evolution of SoSs raises a number of software engineering
challenges regarding their specification, design, construction, and
operation. Among these challenges, one important challenge is
concerned with managing emerging conflicting behaviour
expressed as requirements. In an SoS, the various participating
systems are often from different domains; are developed by
different teams of people under different circumstances and time;
have distinct functionalities; and are used by different stakeholders.
All of the above factors contribute to the existence of conflicting
requirements.

In this paper we present a framework for Managing Conflicting
Requirements in Systems of Systems (MaCoRe_SoS). The
framework supports four steps for conflict management, namely (a)
overlap detection, (b) conflict identification, (c) conflict diagnosis,
and (d) conflict resolution. The conflict identification, diagnosis
and resolution steps are executed based on a Monitor-Analyze-
Plan-Execute- Knowledge (MAPE-K) architectural pattern [3].
The framework assumes requirements specified in an extension of
the RELAX language [4]. The overlap detection is executed based
on the use of ontologies and identifies requirements that share
common elements such as shared resources. The identification of
conflicts is assisted by an event monitor component that detects
violations of requirements. The diagnosis of the conflicts is
performed by an analyzer component using requirements
interaction features. The resolution of conflicts is based on the use
of a utility function and supports eight resolution methods, namely
relaxation, refinement, abandonment, compromise, restructuring,
reinforcement, re-planning, and postponement [5].

An example of a food security SoS called FeedMe FeedMe [6]
is used to illustrate the approach. More specifically, FeedMe
FeedMe consists of an exemplar of an IoT-based ecosystem
developed by some of the authors of this paper to support
challenges in food security at four levels of abstractions:
individuals, groups, cities, and nations.

The remainder of this paper is structured as follows. In Section
2 we describe FeedMe FeedMe SoS example. In Section 3 we
present the MaCoRe-SoS framework. In Section 4 we discuss
related work. Finally, in Section 5 we provide conclusions and
future work.

2. Motivating Example – Feed Me Feed Me
In order to illustrate the proposed framework, the approach uses
FeedMe FeedMe [6], an exemplar of an SoS scenario composed
of different computing systems to address food security problems
at different levels of granularity (individual, group, city and
nation). At the individual level, FeedMe FeedMe presents smart
devices to monitor, analyse, and provide suggestions about the
nutritional and health status of a person. At the group level,
FeedMe FeedMe uses smart home appliances that interoperate to
create a more precise family meal plan, based on the family
resources and budget. At the city level, local markets collect data

from multiples families to manage their stock and to reduce food
wastage. At the national level, food producers and manufacturers
collect data from different markets to forecast food needs and
provide alternatives in case of food crisis.

In order to support the granularity levels described above,
FeedMe FeedMe SoS is composed of four different participating
systems: AnalyseMe, HomeHub, SmartCity, and SmartNation.
Figure 1 shows an overview of the FeedMe FeedMe SoS with its
various participating systems and devices. We provide below a
brief description of the various participating systems.

• AnalyseMe. It is a system composed of wearable devices that
tracks the health information of a user (e.g., heart rate, blood
pressure, blood glucose, food intake, sleep and activity levels),
and proposes meal plans together with exercises.

• HomeHub. It is a smart system that communicates with the
smart appliances in a house aided by smart packaging applications
used by refrigerator and pantry devices. This system allows family
meals to be planned in advance and to send a list of ingredients to
supermarkets when they are required and missing from the house.
The HomeHub system acts as a mediator between different smart
devices in a house and local supermarkets.

• SmartCity. This system supports supermarkets to collect
information about communities’ grocery requirements and to
better manage stocks and inventory.
• SmartNation. This system aggregates requirements of
individuals, family households, supermarkets, producers,
manufacturers, and distributors in order to support management of
food production processes.

Conflicts in FeedMe FeedMe SoS exist when requirements of
the participating systems or requirements of the overall SoS cannot
be satisfied due to incorrect use of resources associated with these
requirements. For example, consider a requirement of AnalyseMe
system in which meal plans that satisfies nutritional needs of the
user should be created. Consider also the fact that healthy meals are
usually more expensive and consume more from home resources
such as food, budget, and electricity. Suppose another requirement
of HomeHub system in which home resources should be consumed
as little as possible. In this case, these two requirements may
conflict since they are making use of the same resource. Another
example is related to the fact that in order to create an accurate
family meal plan, the SoS needs to have updated information about
the home resources by requesting an hourly update about the
consumption of these resources from HomeHub. The hourly update
about resource consumption may use more electricity and,
therefore, it conflicts with the HomeHub requirement to use as little
electricity as possible.

3. The MaCoRe_SoS Framework
The main goal of the MaCoRe_SoS framework is to manage
conflicting requirements in SoSs. The framework supports
requirements conflict management based on four steps, as
described in the survey from Spanoudakis and Zisman [7] on
inconsistency management, namely (i) overlap detection, (ii)
conflict identification, (iii) conflict analysis, and (iv) conflict
resolution. In the framework, the requirements represent both
local goals of the participating components and global goals of the
SoS environment as a whole. We distinguish these as local and
global requirements.

Figure 2 shows an overview of the framework, illustrating that it
supports SoSs environments composed of other stand-alone
component systems (CSs), services, or even other systems of
systems (SoSs). For simplicity, we will refer to a participating
component system, service, or SoS, as an entity.

For each participant entity, the framework assumes the
existence of an ontology and of requirement specifications. The
ontology represents concepts of the domain associated with an
entity, while a requirements specification represents the
requirements of an entity. In the framework, the ontologies are
represented in OWL [8] and are used to assist with the
identification of elements that are shared by the various
participating entities during overlap detection, such as resources,
users, or functions.

Systems of systems operate in dynamic environments where
the satisfaction of requirements depends on runtime states that are
uncertain at design time. In order to accommodate this
uncertainty, the requirements in the MaCoRe_SoS framework are
specified using an extension of the RELAX language [4], which
has a specific support for uncertainty in systems environments.

The conflict identification, diagnosis, and resolution steps in
the framework are executed at runtime and based on the Monitor-
Analyze-Plan-Execute-Knowledge (MAPE-K) architectural
pattern [3]. The framework includes a database that stores
necessary knowledge used during conflict management. The
knowledge database contains information about the various
requirements, the assertions and events associated with the

Figure 1. Overview of the FeedMe FeedMe SoS

Figure 2. MaCoRe_SoS Framework Overview

requirements, historical data about resolution strategies used in
previous conflicts, and information about requirements violations.

3.1 Requirements representation
We suggest to use an extension of the RELAX language [4] to
represent the various requirements. RELAX has been proposed as
a requirements specification language to represent requirements of
self-adaptive systems. RELAX is based on the use of fuzzy logic
and is able to address the notion of uncertainty. Similarly,
uncertainty is also a characteristic of SoS given the emergent
behaviors present in these systems, and the fact that the various
entities composing an SoS are developed independently. Another
characteristic of RELAX is its flexibility to represent different
value ranges, which is necessary when dealing with SoSs with
various participating entities using resources in different ways.

The vocabulary used by RELAX is based on a set of modal
(e.g., SHALL, MAY … OR), temporal (e.g., EVENTUALLY,
UNTIL, AS CLOSE AS POSSIBLE TO), and ordinal (e.g., AS
MANY, FEW AS POSSIBLE) operators; as well as uncertainty
factors (e.g., ENV, MON, REL, DEP). A full explanation of
RELAX can be found in [4].

In order to illustrate our use of RELAX, consider below a
local requirement of the HomeHub system (HH_R1), and a global
requirement (FMFM_R1) of the FeedMe FeedMe SoS.

HH_R1 – HomeHub SHALL control the home electricity usage
to be AS CLOSE AS POSSIBLE to 100 KWh.
RESOURCE: ELECTRICITY–PROTECT

EVENT: HomeHub-SaveEnergy

FMFM_R1 – The SoS SHALL record data from each family AS
EARLY AS POSSIBLE AFTER the day begins and AS CLOSE
AS POSSIBLE TO one hour interval thereafter. EVENTUALLY,
the SoS SHALL have a synchronized information of all instances
of AnalyseMe and HomeHub.
RESOURCES: ELECTRICITY–CONSUME

EVENT: FMFM-RequestData

The clause AS CLOSE AS POSSIBLE in requirement HH_R1
allows flexible representation of the electricity usage since it can
be either above or below 100 KWh. Similarly, in the case of
requirement FMFM_R1, the clauses AS CLOSE AS POSSIBLE,
AS EARLY AS POSSIBLE AFTER, and EVENTUALLY also
support flexibility in the range of resource values. The clause AS
EARLY AS POSSIBLE AFTER assists with the situation in
which the associated resource is not available, and the system
needs to wait until the resource becomes available. The clause
EVENTUALLY assists with the situation of conflicts generated
by an entity that stops its activities to wait for some resource that
is not available at that moment.

In order to support the overlap detection and the conflict
identification steps, we have extended the RELAX language with
clauses to represent (a) shared elements (such as resources), and
(b) events, which are directly related to an action performed and
reported by an entity registered into the framework.

As shown in HH_R1 and FMFM_R1, the RELAX
specification has been extended with the RESOURCE and
EVENT clauses. The RESOURCE clause represents the type of
resource associated with the requirement, and how this resource
should be used. The different types of resources depend on the
domains of the participating systems and the SoS as a whole. For

instance, in the case of a smart home nutrition management SoS,
relevant resources would include the calorific content of meals or
the daily calories consumed by an individual; the quantity and cost
of ingredients in meals; energy consumption to prepare meals; and
individuals’ insulin, cholesterol or blood pressure levels.

A resource can be consumed or protected. In the case of being
consumed (CONSUME), the associated value of the resource is
decreased. In the case of being protected (PROTECT), the
consumption of the associated value of the resource should be
prevented. The RESOURCE clause can accommodate the
representation of more than one type of resource associated with
the requirement.

The EVENT clause represents the different types of events
that will trigger the associated requirement. It is possible to have
the same event associated with different requirements, and a
requirement triggered by different types of events. The event in
HH_R1 is concerned with the energy consumption of the various
appliances in the HomeHub system, while the event in FMFM_R1
is related to data requested by the SoS environment in order to be
able to prepare meals for the family. Examples of other types of
requirements represented in RELAX for FeedMe FeedMe SoS can
be found in (http://sead1.open.ac.uk/macore_sos/).

3.2 Overlap Detection / Conflict Identification
As described in [7], the detection of overlaps should be done
before indentifying conflicts in order to identify requirements that
share common aspects. This is an important activity during
conflict management since requirements without overlapping
elements cannot be considered as conflicting requirements [9].

In the framework, the overlap detection identifies
requirements that share the same elements, such as resources in an
SoS. For example, this can be done by using elements described in
the RESOURCE clauses of the requirements and the ontologies
associated with the various entities. The intersections between
requirements and resources of the various participating entities in
an SoS provide the possible sources of conflicting requirements,
which is stored in the knowledge database for future reference.
The same strategy can be used to others shared elements such as
users or functions. An example of overlapping requirements is
found in HH_R1 and FMFM_R1 presented above. In this case,
there is a potential for the requirements to be in conflict since both
requirements are concerned with resource “electricity”. The
MaCoRe_SoS framework executes the identification of conflicts
based on the use of assertions represented as fuzzy branching
temporal logic (FBTL) [10]. These assertions are generated from
the requirements described in the RELAX language which can be
mapped to FBTL [4]. As an example the assertion for
requirements HH_R1 is presented below.

RELAX Grammar Expression: SHALL (AS CLOSE AS
POSSIBLE TO 100 q);

Formal FBTL expression: AGF((Δ(q) – 100) ∈ S)

Definitions: q is “HomeHub control the home electricity usage”;
S is a fuzzy set whose membership function has value 1 at zero
(m(0) = 1) and it decreases continuously around zero; AGF are
FBTL quantifiers.

The identification of conflicts is executed by monitoring
assertions and detecting violation in the requirements. The
framework uses an event monitor component to monitor events
and detect requirements violations. When a requirement violation
is detected due to a specific event, the framework executes the
conflict diagnosis step.

In order to illustrate consider requirement HH_R1 with the
assertion presented above and requirement FMFM_R1. Suppose
events HomeHub-SaveEnergy and FMFM-RequestData events
received by the framework. Assume that FMFM-RequestData
requests data from AnalyseMe and HomeHub systems in the SoS
every hour (as per the requirement), causing a higher consumption
of electricity. Suppose that the event monitor component detects a
violation in the resource electricity of HH_R1 since the value of
the home electricity usage is above the expected value (> 100
KWh). In this case, a conflict in HH_R1 is identified, due to
resource violation caused by another requirement that uses the
same resource.

3.3 Conflict Diagnosis
The conflict diagnosis step analyses a detected violated
requirement to verify if a conflict has occurred and to identify the
cause of the conflict. As proposed by Robinson et al. [5], the
diagnosis is executed based on a set of requirements interaction
features, namely: Basis, Degree, Direction, and Likelihood.

The Basis feature is concerned with all the identified
conflicting requirements and its elements (for instance, the
involved resources); the Degree feature represents the
requirements satisfaction, in this case this element is represented
by the difference (percentage distance) between the actual and the
expected value for the specified requirements (for instance, the
expected and the actual value of a resource utilization); the
Direction feature is calculated based on the Degree feature and
can be positive or negative, depending on the satisfaction of the
requirement (for instance, if a resource is being over or under
used); the Likelihood feature, when available in the framework
knowledge database, is based on historical data of past conflict
resolution associated with a requirement and a specific resolution
strategy. For each requirement and each available resolution
method, the framework stores information about the likelihood of
solving a conflict using such method in the knowledge database.
The framework uses the analyzer component to calculate the
above requirements interaction features.

As an example, consider requirement HH_R1 with the actual
value for resource electricity as 120 KWh. In this case, the Basis
feature is the resource electricity. As the expected value to
electricity is 100KWh, the Degree feature is 20%; the Direction
feature is positive (the electricity usage is higher than the expected
value); and the Likelihood is calculated based on the historical
data from each resolution method available in the framework.

The framework supports eight different types of resolution
methods: Relaxation, Refinement, Abandonment, Compromise,
Postponement, Restructuring, Reenforcement and Replaning,
based in [5] and adapted to tackle the SoS context.

Table 1 presents a brief description of each one of the
resolution methods and an example of how the framework applies
these resolution methods when dealing with conflicts involving
shared resources.

3.4 Conflict Resolution
The conflict resolution is executed based on the requirements
interaction features identified in the diagnosis step. It uses planner
and executor components to support the resolution step. The
resolution is based on the use of a utility function that receives as
inputs the Basis, Degree, Direction, and Likelihood values. The
planner component verifies which resolution method associated
with the conflicting requirements should be selected. The executor
component carries out the selected resolution method identified by
the planner component.

Table 1. MaCoRe_SoS Resolution Methods [5]

Method Description

Relaxation

Conflicting requirements are relaxed to expand the
range of mutually satisfactory options. In the
framework the Relaxation resolution method expands
the value of a resource concerned with the conflict in
order to prevent another resource to run out of the
resource. For example, more consumption of calories
and more savings in food resources.

Refinement

Conflicting requirements are decomposed into
specialized requirements, some of which can be
satisfied. In the framework, this resolution method can
focus on part of the resources or parts of a
requirement, in a way that these parts will be satisfied.
For example, in the case of generate meal plans, the
method could preserve the resource insulin, but may
ignore the resource calories.

Abandonment
Conflicting requirements can be abandoned. In the
framework the Abandonment resolution method
discards requirements that try to protect a resource.

Compromise

 Given a conflict over a value within a domain of
values, compromise resolution method finds another
substitute value from that domain. In the framework
the Compromise resolution method is implemented by
searching for new values of resource utilization that
manage the actual conflict.

Postponement

Conflict resolution can be postponed. In complex
interactions, many conflicts and requirements are
interrelated. In the framework the postponement
resolution method is implemented by searching for
conflicts involving the same resource and by
postponing this conflict and resolving other conflicts.

Restructuring

Restructuring methods attempt to change the conflict
context; they alter assumptions and related
requirements in addition to the conflicting
requirements. In the framework the Restructuring
resolution method means changes in the structure of a
component, or a replacement of a component, in order
to manage a conflict.

Reenforcement

Reenforcement is a restructuring that ensures that a
precondition is satisfied. In the framework the
Reenforcement resolution method reinforces a
requirement that protects a resource in order to
improve its availability and tries to manage a conflict.

Replanning

Replanning is the selection of an alternative set of
requirements to achieve a subordinate requirement. In
the framework the Replanning resolution method
evaluates the available alternative plans to a specific
requirement, and tries to choose the one that is more
suitable to the actual resource utilization.

The use of utility functions have been advocated as a technique to
support the selection of the best option during decision-making
processes [11]. As outlined in [12], utility functions can be used to
support autonomic systems to optimize computational resource
usage, as it is the case in SoS. For instance, when dealing with
conflicting requirements involving shared resources, the main goal
of a utility function is to improve availability of resources.

To illustrate the framework we propose to use the utility
function given below, which is calculated for each available
resolution method (R(RM)) associated with a violated resource:

 UF(R(RM)) = C – P + D – L, where

C: is the number of requirements that consume resource R;
P: is the number of requirements that protect resource R;
D: is the calculated Degree of resource R using its Direction;
L: is the Likelihood value of resolving the conflict by method RM.

In order to illustrate, suppose a conflict involving
requirements HH_R1 and FMFM_R1. Assume resolution method
Abandonment associated with requirement HH_R1 and resolution
method Refinement associated with requirement FMFM_R1.
Consider the number of requirements that consume electricity
resource (C=26) and the number of requirements that protect
electricity resource (P=2). For requirement HH_R1, suppose that
the electricity utilization is 120KWh; the Degree value is 20%
since the expected value is 100KWh; the Direction is positive (the
electricity usage is higher than the expected value); and that based
on the framework’s historical database, the Likelihood of
resolving this type of conflict by using Abandonment on HH_R1
is 10%. In this case, the utility function for this method is given as
UF(HH_R1(Abandonment)) = 26-2+20-10 = 34.

For the case of resolution method Refinement, assume that
using this method will cause a decrease in electricity consumption
in the house to 97KWh. This is due to the fact that using
Refinement resolution method on FMFM_R1, the clause “AS
CLOSE AS POSSIBLE TO one hour interval thereafter” will be
ignored and, therefore, the request of data about a family will stop
(reducing the energy consumption). In this case, the Degree value
is calculated as 3%; as the expected value is 100KWh and the
actual value is 97KWh; and the Direction is negative (the
electricity usage is lower than the expected value). Suppose that,
based on the framework’s historical data, the Likelihood of
resolving conflicts involving the requirements HH_R1 and
FMFM_R1 by using Refinement is 20%. The utility function is
given by UF(FMFM_R1(Refinement)) = 26-2-3-20 = 1. Given the
lower value of the utility function for Refinement method, the
planner suggests this method of resolution.

Challenges. The use of a shared ontology is a limitation of the
framework. The framework assumes that each new entity that
registers itself in the framework provides ontology to be
integrated into the framework database. An additional challenge is
the lack of tools to monitor FBTL expressions; therefore as part of
our ongoing work we are developing those tools to be integrated
into the framework. Finally, the utility function needs to consider
more complex value distributions resource utilization values, as
we recognize that a normal distribution is too simplistic to model
resources in realistic SoS scenarios. Refinement of the utility
function design is another aspect of our ongoing work to develop
the MaCoRe_SoS framwork.

4. Related Work
Requirements inconsistency management in stand-alone software
systems has been extensively studied in the literature
[5][9][13][14][15]. Boehm and Hoh [14] explain the importance
to identify and handle conflicts among requirements and proposes
the need of a balanced satisfaction between them. Robinson and
Pawlowski [15] use a requirements dialog meta-model to present
some techniques to manage conflicts and inconsistencies in the
requirements documents. Zisman and Kozlenkov [13] use a UML
metamodel to propose a goal-based approach to manage conflicts
and inconsistencies on design specifications. Further, Nuseibeh et
al. [9] proposes a framework which is able to detect and diagnose
inconsistencies and manage them by solving inconsistencies
immediately, ignoring them, or tolerating them for a while.
However, all these approaches are executed during design-time
and for stand-alone software systems. When dealing with systems
of systems, it is necessary to support requirements conflict
management during runtime, and for systems that were not created
with the intention of being composed.

Some approaches have been proposed to support managing
conflicting requirements at runtime [16][17][18][19][20].
Bencomo et al. [16] proposes to use requirements reflexion, in
which it is possible to have requirements as runtime objects. Their
work shows that requirements reflexion is important to support the
adaptation process by allowing software systems to reason,
understand, explain and modify requirements at runtime. They
also describe some of the associated challenges and suggest the
use of autonomic computing to support these challenges.
Similarly, the MaCoRe_SoS framework uses MAPE-K to assist
with conflict management process.

Feather et al. [17] brings a goal-driven architecture and a
development process to monitor and to reconcile requirements at
runtime. Furthermore, Baresi et al. [18] presents FLAGS, a goal
model that generalizes KAOS model and brings the requirements
to runtime as live entities. Moreover, Kneer and Kamsties [19]
propose a metamodel which defines the additional requirements
artefacts to generate a runtime requirements monitor. However,
the above works were not developed to support SoS environments
and do not consider monitoring requirements under these
environments.

Silva et al. [21] presents an approach to deal with runtime
evolution of requirements in adaptive systems. Their approach
uses the concept of Awareness Requirements and Evolution
Requirements. The former indicates situations that require an
evolution in the requirements and the latter describes what to do in
these situations. However, those requirements needs to be elicited
before-hand, and even thought its is possible to specify those
requirements regarding individual goals of component systems,
their approach don’t tackle the problem of requirements that arises
as emergent behaviors from the composition of those systems into
an SoS. Another important difference from our approach is that
they are concerned with evolution in a broader sense, while our
approach tackles the problem of managing conflicting
requirements.

Vierhauser et al. [22] refers to the challenges of monitoring
requirements in SoS environments as: “monitoring at different
layers, different levels of granularity, across different systems,
different technologies, different speeds, with diversity of system
requirements, and the performance of the monitoring solution”.
They propose ReMinds: an adaptable framework to monitor
events at runtime in a SoS. The MaCoRE_SoS framework is more
complete and uses a MAPE-K architectural pattern to support not
only the identification and monitoring of conflicting requirements,
but also the diagnosis and resolution of these conflicts.

Pandey and Garlan [20] proposed a hybrid planning approach
to the MAPE-K architectural pattern. Their idea is to combine
more than one decision-making approach in order to deal with
conflicting requirements of planning quickly and finding an
optimal plan. Their work is concerned with these two conflicting
requirements, while our framework is concerned with conflicting
requirements in general and, more specifically, due to resource
utilization.

Robinson and Pawlowski [15] states that requirements that
deplete a shared resource are a type of conflicting requirement.
This specific type of conflict requirement is the main focus of the
MaCoRe_SoS at this moment. Lamsweerde et al. [23] address the
conflicting requirements problem and presents examples of
conflicting requirements in a resource management system.
Krauter et al. [24] presents a survey under the grid computing area
and states the importance of an efficient resource management to
new and emergent applications such as SoSs.

Malakuti [25] presents the use of formal modelling and
verification to detect unexpected and undesired emergent
behavior. The work is illustrated in an SoS for the green
computing domain and a conflict between performance and
energy consumption. His work shows the importance of the
resource utilization in an SoS and how it can bring problems.
However, his approach is limited to conflict detection, while the
MaCoRe_SoS framework supports diagnosis and resolution of
conflicts.

5. Conclusion and Future Work
The growth of software systems complexity has led to systems
that compose themselves into bigger systems to achieve more
sophisticated functionalities. These systems are often System of
Systems (SoS) where the management of emerging conflicting
behaviors, expressed as requirements is a challenge. As a new and
emergent application, an efficient resource management is an
important element inside the SoS environment. Therefore,
requirements that deplete a shared resource are a type of
conflicting requirement. To address this specific type of
conflicting requirement we presented the MaCoRe_SoS
framework, with four steps: (a) overlap detection, (b) conflict
identification, (c) conflict diagnosis, and (d) conflict resolution
based on the use of a utility function.

We presented the framework and illustrate it using FeedMe
FeedMe, an example SoS ecosystem designed to support food
security at different levels of granularity (individuals, families,
cities, and nations). The framework is able to identify conflicts
and after the identification of these conflicts, diagnose them based
on requirements interaction features, as proposed by [5]; and
choose and apply one of the eight available resolution methods [5]
based on a utility function. Currently, we are implementing and
evaluating the framework using the FeedMe FeedMe exemplar.
We plan to evaluate the work in other SoS domains such as
transport network or avionics. We are extending RELAX
language to support the representation of requirements associated
with other sources of possible conflicts like users and behaviour
functionalities...We are also developing new utility functions that
include requirements prioritization as input, and that allow the use
of different conflict resolution methods in parallel.

REFERENCES

[1] Office of the Deputy Under Secretary of Defense for

Acquisition and Technology, Systems and Software
Engineering, Systems Engineering Guide for Systems of
Systems, vol. 1. Washington, DC: ODUSD(A&T)SSE,
2008.

[2] M. W. Maier, ‘Architecting principles for systems-of-
systems’, in INCOSE International Symposium, 1996.

[3] J. O. Kephart and D. M. Chess, ‘The vision of autonomic
computing’, Computer, vol. 36, no. 1, pp. 41–50, 2003.

[4] J. Whittle, P. Sawyer, N. Bencomo, B. H. Cheng, and J.-M.
Bruel, ‘RELAX: a language to address uncertainty in self-
adaptive systems requirement’, Requir. Eng., 2010.

[5] W. N. Robinson, S. D. Pawlowski, and V. Volkov,
‘Requirements interaction management’, ACM Comput.
Surv. CSUR, vol. 35, no. 2, pp. 132–190, 2003.

[6] A. Bennaceur, C. Mccormick, J. Garc__a Gal_an, C. Perera,
A. Smith, et and al, ‘Feed me, Feed me: An Exemplar for
Engineering Adaptive Software’, presented at the 11th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, Austin, USA, 2016.

[7] G. Spanoudakis and A. Zisman, ‘Inconsistency management
in software engineering: Survey and open research issues’,
Handb. Softw. Eng. Knowl. Eng., vol. 1, pp. 329–380, 2001.

[8] S. Bechhofer, ‘OWL: Web ontology language’, in
Encyclopedia of Database Systems, Springer, 2009.

[9] B. Nuseibeh, S. Easterbrook, and A. Russo, ‘Leveraging
inconsistency in software development’, Computer, vol. 33,
no. 4, pp. 24–29, 2000.

[10] S. Moon, K. H. Lee, and D. Lee, ‘Fuzzy branching temporal
logic’, IEEE Trans. Syst. Man Cybern. Part B Cybern., vol.
34, no. 2, pp. 1045–1055, 2004.

[11] H. Raiffa, Decision Analysis: Introductory Lectures on
Choices Under Undertainty. Addison-Wesley, 1968.

[12] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das, ‘Utility
functions in autonomic systems’, in Autonomic Computing,
2004. Proceedings. International Conference on, 2004.

[13] A. Kozlenkov and A. Zisman, ‘Discovering, recording, and
handling inconsistencies in software specifications’, Int. J.
Comput. Inf. Sci., vol. 5, no. 2, pp. 89–108, 2004.

[14] B. Boehm and H. In, ‘Identifying quality-requirement
conflicts’, IEEE Softw., vol. 13, no. 2, p. 25, 1996.

[15] W. N. Robinson and S. D. Pawlowski, ‘Managing
requirements inconsistency with development goal
monitors’, Softw. Eng. IEEE Trans. On, vol. 25, 1999.

[16] N. Bencomo, J. Whittle, P. Sawyer, A. Finkelstein, and E.
Letier, ‘Requirements Reflection: Requirements As Runtime
Entities’, in Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume
2, New York, NY, USA, 2010, pp. 199–202.

[17] M. S. Feather, S. Fickas, A. Van Lamsweerde, and C.
Ponsard, ‘Reconciling System Requirements and Runtime
Behavior’, in Proceedings of the 9th International Workshop
on Software Specification and Design, Washington, DC,
USA, 1998, p. 50–.

[18] L. Baresi, L. Pasquale, and P. Spoletini, ‘Fuzzy Goals for
Requirements-Driven Adaptation’, in 2010 18th IEEE
International Requirements Engineering Conference, 2010.

[19] F. Kneer and E. Kamsties, ‘Model-based Generation of a
Requirements Monitor.’, in REFSQ Workshops, 2015.

[20] A. Pandey and D. Garlan, ‘Hybrid Planning For Self-
Adaptation’.

[21] V. E. S. Souza, A. Lapouchnian, and J. Mylopoulos,
‘(Requirement) evolution requirements for adaptive
systems’, in Proceedings of the 7th International Symposium
on Software Engineering for Adaptive and Self-Managing
Systems, 2012, pp. 155–164.

[22] M. Vierhauser, R. Rabiser, P. Grünbacher, K. Seyerlehner, S.
Wallner, and H. Zeisel, ‘ReMinds: A flexible runtime
monitoring framework for systems of systems’, J. Syst.
Softw., vol. 112, pp. 123–136, 2016.

[23] A. Van Lamsweerde, R. Darimont, and E. Letier, ‘Managing
conflicts in goal-driven requirements engineering’, IEEE
Trans. Softw. Eng., vol. 24, no. 11, pp. 908–926, 1998.

[24] K. Krauter, R. Buyya, and M. Maheswaran, ‘A taxonomy
and survey of grid resource management systems for
distributed computing’, Softw. Pract. Exp., vol. 32,, 2002.

[25] S. Malakuti, ‘Detecting emergent interference in integration
of multiple self-adaptive systems’, in Proceedings of the
2014 European Conference on Software Architecture
Workshops, 2014, p. 24.

