
Foundations for

Designing Secure Architectures

Jan Jürjens1

Competence Center for IT Security
Software & Systems Engineering, TU München, Germany

Abstract

Developing security-critical systems is difficult and there are many well-known examples of security
weaknesses exploited in practice. In particular, so far little research has been performed on the
soundly based design of secure architectures, which would be urgently needed to develop secure
systems reliably and efficiently. In this abstract, we sketch some research on a sound methodol-
ogy supporting secure architecture design. We give an overview over an extension of UML, called
UMLsec, that allows expressing security-relevant information within the diagrams in an architec-
tural design specification. We define foundations for secure architectural design patterns. We
present tool-support which has been developed for the UMLsec secure architecture approach.

Keywords: Secure software engineering, secure architectures, security engineering, security
verification, formal methods in security, security evaluation, security models, cryptographic
protocols

1 Motivation

The high quality development of security-critical systems is difficult. Many
critical systems are developed, deployed, and used that do not satisfy their
security requirements, sometimes allowing spectacular attacks. In particular,
so far little research has been performed on the soundly based design of se-
cure architectures, which would be urgently needed to develop secure systems

1 http://www4.in.tum.de/∼juerjens . This work was partially funded by the German
Federal Ministry of Education, Science, Research and Technology (BMBF) in the framework
of the Verisoft project under grant 01 IS C38. The responsibility for this article lies with
the author(s).

Electronic Notes in Theoretical Computer Science 142 (2006) 31–46

1571-0661 © 2005 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.07.012
Open access under CC BY-NC-ND license.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82652596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www4.in.tum.de/~juerjens
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

reliably and efficiently. Part of the difficulty of secure systems development
is that correctness is often in conflict with cost. Where thorough methods of
system design pose high cost through personnel training and use, they are all
too often avoided.

Within the field of Software Architectures [2], the Unified Modeling Lan-
guage (UML) has been proposed to be used also as an Architecture Description
Language (ADL). In particular, UML offers an unprecedented opportunity for
high-quality secure systems development that is feasible in an industrial con-
text.

• As the de-facto standard in industrial modeling, a large number of develop-
ers is trained in UML.

• Compared to previous notations with a user community of comparable size,
UML is relatively precisely defined.

• A number of analysis, testing, simulation, transformation and other tools
are developed to assist the every-day work using UML.

This article, which is based on the tutorial [6] on the same topic, gives
a short introduction into using the formally based UML security extension
UMLsec to develop foundations for designing secure architectures. Firstly, we
recall the definition of a simplified fragment of UMLsec and its formal foun-
dation to be used in this paper. We sketch how one can use stereotypes, tags,
and constraints to encapsulate knowledge on secure architectures and thereby
make it available to developers which may not be specialized in secure sys-
tems. In particular, we explain how to use the formally based UMLsec to
provide foundations for secure architectural design patterns. We also demon-
strate how one can formally verify whether the constraints associated with
the stereotypes are fulfilled in a given secure architecture design using the
tool-support provided. This way one can find flaws present in the design be-
fore a system is deployed, or even implemented. Finally, we explain how to
provide foundations for designing secure systems based on the Java Security
Architecture.

2 Formal Basis for Secure Architecture Analysis

We shortly recall the formal basis of UMLsec from [5] which will be used for
secure architecture analysis in the later sections. More details can be found
in [5].

J. Jürjens / Electronic Notes in Theoretical Computer Science 142 (2006) 31–4632

Outline of Formal Semantics

For some of the constraints used to define the UMLsec extension we need to
refer to a precisely defined semantics of behavioral aspects. For security anal-
ysis, the security-relevant information from the security-oriented stereotypes
is then incorporated.

Our formal semantics of a simplified fragment of UML includes activity
diagrams, statecharts, sequence diagrams, static structure diagrams, deploy-
ment diagrams, and subsystems, simplified to keep a formal treatment that
is necessary for some of the more subtle security requirements feasible. The
subsystems integrate the information between the different kinds of diagrams
and between different parts of the system specification. We only outline the
basic concepts, a complete account is in [5], which also includes pointers to
earlier work on which this work is based.

In UML the objects or components communicate through messages re-
ceived in their input queues and released to their output queues. Thus for
each component C of a given system, our semantics defines a function �C�()
which

• takes a multi-set I of input messages and a component state S and

• outputs a set �C�(I, S) of pairs (O, T) where O is a multi-set of output
messages and T the new component state (it is a set of pairs because of the
non-determinism that may arise)

together with an initial state S0 of the component.

The behavioral semantics �D�() of a statechart diagram D models the run-
to-completion semantics of UML statecharts. As a special case, this gives us
the semantics for activity diagrams. Given a sequence diagram S, we define
the behavior �S.C�() of each contained component C.

Subsystems group together diagrams describing different parts of a system:
a system component C given by a subsystem S may contain subcomponents
C1, . . . ,
Cn. The behavioral interpretation �S�() of S is defined as follows:

(1) It takes a multi-set of input events.

(2) The events are distributed from the input multi-set and the link queues
connecting the subcomponents and given as arguments to the functions
defining the behavior of the intended recipients in S.

(3) The output messages from these functions are distributed to the link
queues of the links connecting the sender of a message to the receiver, or
given as the output from �S�() when the receiver is not part of S.

When performing security analysis, after the last step, the adversary model

J. Jürjens / Electronic Notes in Theoretical Computer Science 142 (2006) 31–46 33

may modify the contents of the link queues in a certain way explained below.

Security Analysis

For a security analysis of a given UMLsec subsystem specification S, we
need to model potential adversary behavior. We model specific types of ad-
versaries that can attack different parts of the system in a specified way. For
this we assume a function ThreatsA(s) which takes an adversary type A and a
stereotype s and returns a subset of {delete, read, insert}. Then we model the
actual behavior of an adversary of type A as a type A adversary function that
non-deterministically maps the contents of the link queues in S and a state S
to the new contents of the link queues in S and a new state T :

• the contents of links stereotyped s where delete ∈ ThreatsA(s) may be
mapped to ∅ and

• the contents of links stereotyped s where insert ∈ ThreatsA(s) may be en-
larged by elements from the contents of links stereotyped t where read ∈
ThreatsA(t).

The adversary types define which actions an adversary may apply to a com-
munication link with a given stereotype. delete means that the adversary may
delete the messages in the corresponding link queue, read allows him to read
the messages in the link queue, and insert allows him to insert messages in the
link queue.

To evaluate the security of the system with respect to the given type of
adversary, we define the execution of the subsystem S in presence of an ad-

versary of type A to be the function �S�A() defined from �S�() by applying
the adversary function to the link queues as a fourth step in the definition of
�S�() as follows:

(4) The type A adversary function is applied to the link queues as detailed
above.

The UMLsec profile makes use of a formalization of the security require-
ment secrecy following one of the standard approaches in formal methods: It
relies on the idea that a specification preserves the secrecy of some data d if
the system never sends out any information from which d could be derived,
even in interaction with an adversary (where the knowledge set collects the
information gained by an adversary).

We say that a subsystem S preserves the secrecy of an expression E from
adversaries of type A if E never appears in the knowledge set of A during
execution of �S�A().

J. Jürjens / Electronic Notes in Theoretical Computer Science 142 (2006) 31–4634

3 The UMLsec Extension: Architectural Stereotypes

We shortly recall a simplified fragment of the UMLsec profile that is relevant
to secure architectures. A complete account can be found in [5].

For adaption to a particular application domain UML provides three “light-
weight” extension mechanisms: Stereotypes give a specific meaning to the
model elements they are attached to and are represented by double angle
brackets. A tagged value is a name-value pair in curly brackets associating
data with elements in the model. Furthermore, constraints may be attached
that have to be satisfied by the diagram.

We explain some of the UMLsec stereotypes and tags and give examples.
The constraints are parameterized over the adversary type with respect to
which the security requirements should hold; we thus fix an adversary type
A to be used in the following. Some of the constraints refer to the formal
definitions in Sect. 2. They can be checked automatically using the tool-
support presented in [5].

Internet, encrypted, LAN

These stereotypes on links in deployment diagrams denote the respective
kinds of communication links. We require that each link carries at most one of
these stereotypes. For each adversary type A, we have a function ThreatsA(s)
from each stereotype s ∈ {〈〈 encrypted 〉〉, 〈〈 LAN 〉〉, 〈〈 Internet 〉〉} to a set of strings
ThreatsA(s) ⊆ {delete, read, insert}. This way we can evaluate UML specifi-
cations using the approach explained in Sect. 2. We make use of this for the
constraints of the remaining stereotypes of the profile.

As an example for a threat function, Fig. 1 gives the one for the default type
of attacker, which represents an outsider adversary with modest capability.

secure links

This stereotype, which may label subsystems, is used to ensure that se-
curity requirements on the communication are met by the physical layer.
More precisely, the constraint enforces that for each dependency d stereo-
typed 〈〈 secrecy 〉〉 between subsystems or objects on different nodes n, m, we
have a communication link l between n and m with stereotype s such that
read /∈ ThreatsA(s).

Example In Fig. 2, given the default adversary type, the constraint for the
stereotype 〈〈 secure links 〉〉 is violated: The model does not provide communica-
tion secrecy against the default adversary, because the Internet communication
link between web-server and client does not provide the needed security level
according to the Threatsdefault(Internet) scenario.

J. Jürjens / Electronic Notes in Theoretical Computer Science 142 (2006) 31–46 35

Stereotype Threatsdefault()

Internet {delete, read, insert}

encrypted {delete}

LAN ∅

wire ∅

smart card ∅

POS device ∅

issuer node ∅

Fig. 1. Threats from the default attacker

secrecy
〈〈 call 〉〉 or 〈〈 send 〉〉 dependencies in object or component diagrams stereo-

typed 〈〈 secrecy 〉〉 are supposed to provide secrecy for the data that is sent along
them as arguments or return values of operations or signals. This stereotype
is used in the constraint for the stereotype 〈〈 secure links 〉〉.

secure dependency

This stereotype, used to label subsystems containing object diagrams or
static structure diagrams, ensures that the 〈〈 call 〉〉 and 〈〈 send 〉〉 dependencies
between objects or subsystems respect the security requirements on the data
that may be communicated along them. More exactly, the constraint enforced
by this stereotype is that if there is a 〈〈 call 〉〉 or 〈〈 send 〉〉 dependency from an
object (or subsystem) C to an object (or subsystem) D then the following
conditions are fulfilled.

• For any message name n offered by D, n appears in the tag {secret} in C if

«Internet»

«secrecy» server machineclient machine
get_password

browser
client apps

access control
web server«call»

«secure links»remote access

Fig. 2. Example secure links usage

J. Jürjens / Electronic Notes in Theoretical Computer Science 142 (2006) 31–4636

Random generator

seed: Real

random(): Real

random(): Real

Random number
«interface»

Key generation
«secure dependency»

newkey(): Key

«call»

«critical»Key generator

newkey(): Key

{secret={newkey(),random()}}

Fig. 3. Key generation subsystem

and only if it does so in D.

• If a message name offered by D appears in the tag {secret} in C then the
dependency is stereotyped 〈〈 secrecy 〉〉.

Example Figure 3 shows a key generation subsystem stereotyped with the
requirement 〈〈 secure dependency 〉〉. The given specification violates the con-
straint for this stereotype, since Random generator and the 〈〈 call 〉〉 dependency
do not provide the security levels for random() required by Key generator.

critical

This stereotype labels objects whose instances are critical in some way, as
specified by the associated tag {secret}, the values of which are data values
or attributes of the current object the secrecy of which are supposed to be
protected. This protection is enforced by the constraints of the stereotypes
〈〈 data security 〉〉 and 〈〈 no down − flow 〉〉 (depending on the degree of secrecy
required) which label subsystems that contain 〈〈 critical 〉〉 objects.

data security

This stereotype labeling subsystems has the following constraint. The sub-
system behavior respects the data security requirements given by the stereo-
type 〈〈 critical 〉〉 and the associated tags, with respect to the threat scenario
arising from the deployment diagram. More precisely, the constraint is that
the stereotyped subsystem preserves the secrecy of the data designated by the
tag {secret} against adversaries of type A as defined in Sect. 2.

Example The example in Fig. 4 shows the specification of a simple secu-
rity protocol. The sender requests the public key K together with the certifi-
cate
SignKCA

(rcv :: K) certifying authenticity of the key from the receiver and
sends the data d back encrypted under K (here {M}K is the encryption of

J. Jürjens / Electronic Notes in Theoretical Computer Science 142 (2006) 31–46 37

rs

entry/i:=0 entry/j:=0

«send»

«call»

«call»

«send»

Receivercomp«Internet»

Sendernode Receivernode

receive():Data
transmit(e:Data)
request():Exp

send(d:Data)

WaitReq

send(d)

/request()

return(C)

receive() transmit(E)

SecureChannel

R:ReceiverS:Sender

Sendercomp

«LAN»

S:Sender R:Receiver

s:
r:

R:Receiver

sending

send(d:Data)

«Interface»
receiving

receive():Data

«Interface»

«LAN»

request()

Received

WaitTrmentry/j:=j+1

Send

Requestentry/i:=i+1
Wait

«data security»

«critical»
«critical»

{secrecy={d}}
S:Sender

{adversary=default}

send(d:Data)

receive():Data

/transmit({d :: i}k)

k ::=head(ExtKR
(DecK−1

S
(C)))

[k∈Keys∧

tail(ExtKR
(DecK

−1
S

(C)))= i]

/return({SignK
−1
R

(kj :: j)}KS
)

[tail(Deckj
(E))= j]

/return(head(Deckj
(E)))

i :N; K−1
S ,KR :Keys

j :N; k , K−1
R ,KS :Keys

{fresh={k }}

Fig. 4. Security protocol

the message M with the key K, DecK(C) is the decryption of the ciphertext C
using K, SignK(M) is the signature of the message M with K, and ExtK(S) is
the extraction of the data from the signature using K). Assuming the default

adversary type and by referring to the adversary model outlined in Sect. 2,
one can establish that the secrecy of d is preserved.

J. Jürjens / Electronic Notes in Theoretical Computer Science 142 (2006) 31–4638

4 Foundations for Secure Architectural Design Patterns

There are several conceptual aids for designing secure architectures using
UMLsec. For example, in [5], we explain how to use tool supported tech-
niques such as refinement and modularity. In this section, we shortly sketch
how one could use security patterns in the context of UMLsec.

Software Architecture Patterns [1] encapsulate the design knowledge of
software architects by presenting recurring design problems and standardized
solutions. One can use transformations of UMLsec models to introduce pat-
terns within the design process. A goal of this approach is to ensure that the
patterns are introduced in a way that has previously been shown to be useful
and correct. Also, having a sound way of introducing patterns using trans-
formations can ease security analysis, since the analysis can be performed on
the more abstract and simpler level, and one can derive security properties of
the more concrete level, provided that the transformation has been shown to
preserve the relevant security properties.

In our approach, the application of a pattern p corresponds to a function fp

which takes a UML specification S and returns a UML specification, namely
the one obtained when applying p to S. Technically, such a function can be
presented by defining how it should act on certain subsystem instances, and
by extending it to all possible UML specifications in a compositional way.
Suppose that we have a set S of subsystem instances such that none of the
subsystem instances in S is contained in any other subsystem instance in S.
Suppose that for every subsystem instance S ∈ S we are given a subsystem
instance fp(S). Then for any UML specification U , we can define fp(U) by
substituting each occurrence of a subsystem instance S ∈ S in U by fp(S).The
challenge then is to define such a function fp that is applicable as widely as
possible. How to do this on a technical level is beyond the scope of this first
introduction to UMLsec. Here we just demonstrate the idea by an example.

Consider the problem of communication over untrusted networks, as ex-
emplified in Fig. 5. A well-known solution to this problem is to encrypt the
traffic over the untrusted link using a key exchange protocol, as demonstrated
in Fig. 4. A detailed explanation of this pattern is given in [5]. The Secure
Channel Pattern could thus be formulated intuitively as follows: In a situa-
tion such as the one in Fig. 5, one can implement the secure channel needed
to enforce the security requirements using the system in Fig. 4.

To apply this pattern p in a formal way, we consider the set S of subsystems
derived from the subsystem in Fig. 5 by renaming: This means, we substitute
any message, data, state, subsystem instance, node, or component name n by
a name m at each occurrence, in a way such that name clashes are avoided.

J. Jürjens / Electronic Notes in Theoretical Computer Science 142 (2006) 31–46 39

«Interface»

send(d:Data)

Receivercomp

R:Receiver

Sendernode Receivernode

receive():Data

Channel

Sendercomp

send(d)

/transmit(d)

s:

receive()
/return(d’)

transmit(d’)r:

R:Receiver

send(d:Data)

«Interface»

«data security»

S:Sender

receiving

receive():Data

transmit(d’:Data)
receive():Data

«send»S:Sender

sending

send(d:Data)

{adversary=default}

Wait

Wait Send

Received

{secrecy={d}}
«critical»

s r

S:Sender R:Receiver

«LAN»«LAN»

«send»

«encrypted»

Fig. 5. Secure architecture pattern example: sender and receiver

Then fp maps any subsystem instance S ∈ S to the subsystem instance derived
from that given in Fig. 4 by the same renaming. This gives us a presentation of
fp from which the definition of fp on any UML specification can be derived as
indicated above. Since one can show that the subsystem in Fig. 4 is secure in
a precise sense, as explained in [5]. this gives one a convenient way of reusing
security engineering knowledge in a well-defined way within the development
context.

5 Secure Foundations for the Java Security Architec-

ture

In this section, we explain how to provide foundations for designing secure
systems based on the Java Security Architecture.

Dynamic access control mechanisms which are part of security architec-
tures such as the JDK 1.2 Security Architecture with its GuardedObjects can

J. Jürjens / Electronic Notes in Theoretical Computer Science 142 (2006) 31–4640

be difficult to administer since it is easy to forget an access check [3]. If the ap-
propriate access controls are not performed, the security of the entire system
may be compromised. Additionally, access control may be granted indirectly
and unintentionally by granting access to an object containing the signature
key that enables access to another object. We show how to use UMLsec in the
context of the Java Security Architecture to address these problems by provid-
ing means of reasoning about the correct deployment of security architectural
mechanisms such as guarded objects.

Authorization or access control is one of the cornerstones of computer
security. The objective is to determine whether the source of a request is
authorized to be granted the request. Distributed systems offer additional
challenges. The trusted computing bases (TCBs) may be in various locations
and under different controls. Communication is in the presence of possible
adversaries. Mobile code is employed that is possibly malicious. Further
complications arise from the need for delegation, meaning that entities may
act on behalf of other entities. Also, many security requirements are location-
dependent. For example, a user may have more rights at the office terminal
than when logging on from home.

In Java, this problem is addressed at the architectural level by providing
a Java Security Architecture. In particular, from JDK 1.2, a fine-grained
security architecture is employed which offers a user-definable access control,
and the sophisticated concept of guarded objects [3]. Permissions are granted
to protection domains. A protection domain [7] is a set of entities accessible
by a principal. In the JDK 1.2, protection domains consist of classes and
objects. They are specified depending on the origin of the code, as given by
a URL, and on the key with which the code may be signed. The system
security policy set by the user or a system administrator is represented by
a policy object instantiated from the class java.security.Policy. The security
policy maps protection domains to sets of access permissions given to the
code. There is a hierarchy of typed and parameterized access permissions,
of which the root class is java.security.Permission and other permissions are
subclassed either from the root class or one of its subclasses. Permissions
consist of a target and an action. For file access permissions in the class
FilePermission, the targets can be directories or files, and the actions include
read, write, execute, and delete. An access permission is granted if all callers
in the current thread history belong to domains that have been granted the
said permission. The history of a thread includes all classes on the current
stack and also transitively inherits all classes in its parent thread when the
current thread is created. If the supplier of a resource is not in the same
thread as the consumer, and the consumer thread cannot provide the access

J. Jürjens / Electronic Notes in Theoretical Computer Science 142 (2006) 31–46 41

control context information, one can use a GuardedObject to protect access to
the resource. The supplier of the resource creates an object representing the
resource and a GuardedObject containing the resource object, and then hands
the GuardedObject to the consumer. A specified Guard object incorporates
checks that need to be met so that the resource object can be obtained. For
this, the Guard interface contains the method checkGuard, taking an Object

argument and performing the checks. To grant access the Guard objects simply
returns, to deny access it throws a SecurityException. GuardedObjects are a
quite powerful access control mechanism. However, their use can be difficult
to administer. For example, guard objects may check the signature on a class
file. This way, access to an object may be granted indirectly, and possibly
unintentionally, by giving access to another object containing the signature
key for which the corresponding signature provides access to the first object.

Thus the sophisticated access control mechanisms of the JDK 1.2 Security
Architecture are not so easy to use. The granting of permissions depends on
the execution context. Sometimes, access control decisions rely on multiple
threads. A thread may involve several protection domains. It is not always
easy to see if a given class will be granted a certain permission. In the remain-
der of this section, we explain some UMLsec stereotypes that support secure
use of the Java Security Architecture mechanisms.

guarded access

This stereotype of subsystems is supposed to mean that each object in
the subsystem that is stereotyped 〈〈 guarded 〉〉 can only be accessed through
the objects specified by the tag {guard} attached to the 〈〈 guarded 〉〉 object.
Formally, we assume that we have name /∈ Kp

A for the adversary type A
under consideration and each name name of an instance of a 〈〈 guarded 〉〉 object,
meaning that a reference is not publicly available. Also, we assume that for
each 〈〈 guarded 〉〉 object there is a statechart specification of an object whose
name is given in the associated tag {guard}. This way, we model the passing
of references.

We illustrate this stereotype with the example of a web-based financial
application. Two institutions offer services over the Internet to local users:
an Internet bank, Bankeasy, and a financial advisor, Finance. To make use
of these services, a local client needs to grant the applets from the respective
sites certain privileges. Access to the local financial data is realized using
GuardedObjects. The specification of the local system part is given in Fig. 6.
It contains the simplified relevant part of the Java Security Architecture which
receives requests for object references and forwards them to the guard objects
of the three guarded objects. Since the 〈〈 guarded 〉〉 objects StoFi, FinEx, and

J. Jürjens / Electronic Notes in Theoretical Computer Science 142 (2006) 31–4642

MicSi can only be accessed through their associated guard, the subsystem
instance fulfills the condition associated with the stereotype 〈〈 guarded access 〉〉

with regard to default adversaries. The access controls are realized by the
Guard objects FinGd, ExpGd, and MicGd, whose behavior is specified. For
example, applets that are signed by the bank can read and write the financial
data stored in the local database, but only between 1 pm and 2 pm. This which
is enforced by the FinGd guard object, where we assume that the condition
slot is fulfilled if and only if the time is between 1 pm and 2 pm.

guarded

This stereotype labels objects in the scope of the stereotype 〈〈 guarded access 〉〉

above that are supposed to be guarded. It has a tagged value {guard} which
defines the name of the corresponding guard object. As an example, in Fig. 6,
the 〈〈 guarded 〉〉 objects StoFi, FinEx, and MicSi are protected by the {guard}
objects Guard objects FinGd, ExpGd, and MicGd, respectively.

6 Tool Support

To facilitate the application of our approach in industry, automated tools
for the analysis of UML models using the suggested semantics are required.
We describe a framework that incorporates several such verifiers currently
developed at the TU München. More information can be found in [5].

The Fig. 7 illustrates the architecture of the UML tool framework which
meets the listed requirements. We briefly describe its functionality. The devel-
oper creates a model and stores it in the UML 1.5 / XMI 1.2 file format. The
file is imported by the Java-based tool into the MDR repository which is part
of the Netbeans library. The tool accesses the model through the JMI inter-
faces generated by the MDR library. The checker parses the model and checks
the constraints associated with the stereotype, by calling sophisticated anal-
ysis engines such as the first-order logic automated theorem prover e-Setheo,
the model-checker Spin, and Prolog-based analysis routines. The results are
delivered as a text report for the developer describing found problems, and
a modified UML model, where the stereotypes whose constraints are violated
are highlighted.

7 Experience and Outlook

The method proposed here has been successfully applied in secure systems
projects, for example in an evaluation of the Common Electronic Purse Spec-
ifications under development by Visa International and others, in a project

J. Jürjens / Electronic Notes in Theoretical Computer Science 142 (2006) 31–46 43

/return[sig=bank slot=true]

[sig=cert] /return

/return[sig=finan limit=true]

StoFi «call»

JavaSecArch:

ExcGd:

MicGd:FinGd:

getObj(obj,sig)

chkGd(sig)

chkGd(sig)

MicGd

limit: Bool

JavaSecArch

«call» «call»

«call»

«call»

«call»

«call»

chkGd()

FinGd

slot: Bool

ExcGd

chkGd()

chkGd()chkGd()

MicroKey: Keys

Sign(req:Exp):ExpRead():Exp

ExcData: Exp

[obj=StoFi] /FinGd.chkGd(sig)

/return(FinEx)

FinEx MicSi

FinData: Exp

Read():Exp

Local
«guarded access»

StoFi.Read():Exp

StoFi.Write(arg:Exp)

FinEx.Read():Exp

MicSi.Sign(req:Exp):Exp

getObject(Exp,Exp):Exp

Write(arg:Exp)

CheckReq

WaitReq

WaitReq WaitReq

CheckReq

CheckReq

chkGd(sig)

{guard=ExcGd}
«guarded»

{guard=FinGd}
«guarded»

{guard=MicGd}
«guarded»

[obj=FinEx]
/ExcGd.chkGd(sig)

CheckReq

/MicGd.chkGd(sig)

[obj=MicSi]MGdReturn?

FGdReturn?

/return(MicSi)
return

WaitReq

return

Fig. 6. Financial application specification: Local system

with a large German bank analyzing a security-critical Internet bank archi-
tecture, and in projects analyzing a Biometric access control architecture of
a German telecom company and an automotive emergeny application of a
German car manufacturer within the Verisoft project funded by the German

J. Jürjens / Electronic Notes in Theoretical Computer Science 142 (2006) 31–4644

UML Editor
(UML 1.5 / XMI 1.2 - compliant)

e.g. Poseidon 1.6

UML Model
(UML 1.5 /
XMI 1.2)

Analysis engine
MDR

JMI

Model
and

Desired
properties

Result

Text Report

Static Checker

Dynamic Checker

Analysis Suite

Modified
UML
Model

Error Analyzer

“uses"

data flow

Fig. 7. UML tools suite

Ministry of Science and Technology. In particular, these experiences indicate
that the approach is adequate for use in practice.

Given the current state of security-critical systems in practice, with many
weaknesses reported continually, it seems to be a promising idea to apply
model-driven development to secure systems architecture design, since it en-
ables developers with little background in security to make use of security
engineering knowledge encapsulated in a widely used design notation. Since
there are many highly subtle security requirements which can hardly be ver-
ified with the “bare eye”, even critical systems experts may profit from this
approach.

For these ideas to be of benefit in practice, it is important to have intelligent
tool-support to assist in using them. As sketched above, tools exist that one
can use to check the constraints illustrated above mechanically, which supports
the approach by saving time and preventing errors when analyzing the model
for security design flaws.

More information can be found in the book [5] and articles including [4].

J. Jürjens / Electronic Notes in Theoretical Computer Science 142 (2006) 31–46 45

References

[1] Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented
Software Architecture – A System of Patterns. Wiley, 1996.

[2] Garlan, D., Software architecture: a roadmap. In 22nd International Conference on on
Software Engineering (ICSE 2000): Future of Software Engineering Track, pages 91–101.
ACM, 2000.

[3] Gong, L., Inside Java 2 Platform Security – Architecture, API Design, and
Implementation. Addison-Wesley, Reading, MA, 1999.

[4] Jürjens, J., UMLsec: Extending UML for secure systems development. In J.-M. Jézéquel,
H. Hußmann, and S. Cook, editors, UML 2002 – The Unified Modeling Language, volume
2460 of Lecture Notes in Computer Science, pages 412–425. Springer-Verlag, 2002.

[5] Jürjens, J., Secure Systems Development with UML. Springer-Verlag, 2004.

[6] Jürjens, J., Software Architectures for Safe and Secure Systems. In 5th IEEE/IFIP
Conference on Software Architecture (WICSA 2004). IEEE Computer Society, 2004. Half-
day tutorial.

[7] Saltzer, J., and M. Schroeder, The protection of information in computer systems.
Proceedings of the IEEE, 63(9):1278–1308, September 1975.

J. Jürjens / Electronic Notes in Theoretical Computer Science 142 (2006) 31–4646

	Motivation
	Formal Basis for Secure Architecture Analysis
	The UMLsec Extension: Architectural Stereotypes
	Foundations for Secure Architectural Design Patterns
	Secure Foundations for the Java Security Architecture
	Tool Support
	Experience and Outlook
	References

