292,929 research outputs found

    Multiple Retrieval Models and Regression Models for Prior Art Search

    Get PDF
    This paper presents the system called PATATRAS (PATent and Article Tracking, Retrieval and AnalysiS) realized for the IP track of CLEF 2009. Our approach presents three main characteristics: 1. The usage of multiple retrieval models (KL, Okapi) and term index definitions (lemma, phrase, concept) for the three languages considered in the present track (English, French, German) producing ten different sets of ranked results. 2. The merging of the different results based on multiple regression models using an additional validation set created from the patent collection. 3. The exploitation of patent metadata and of the citation structures for creating restricted initial working sets of patents and for producing a final re-ranking regression model. As we exploit specific metadata of the patent documents and the citation relations only at the creation of initial working sets and during the final post ranking step, our architecture remains generic and easy to extend

    A Theory of Formal Synthesis via Inductive Learning

    Full text link
    Formal synthesis is the process of generating a program satisfying a high-level formal specification. In recent times, effective formal synthesis methods have been proposed based on the use of inductive learning. We refer to this class of methods that learn programs from examples as formal inductive synthesis. In this paper, we present a theoretical framework for formal inductive synthesis. We discuss how formal inductive synthesis differs from traditional machine learning. We then describe oracle-guided inductive synthesis (OGIS), a framework that captures a family of synthesizers that operate by iteratively querying an oracle. An instance of OGIS that has had much practical impact is counterexample-guided inductive synthesis (CEGIS). We present a theoretical characterization of CEGIS for learning any program that computes a recursive language. In particular, we analyze the relative power of CEGIS variants where the types of counterexamples generated by the oracle varies. We also consider the impact of bounded versus unbounded memory available to the learning algorithm. In the special case where the universe of candidate programs is finite, we relate the speed of convergence to the notion of teaching dimension studied in machine learning theory. Altogether, the results of the paper take a first step towards a theoretical foundation for the emerging field of formal inductive synthesis

    PAC Learning, VC Dimension, and the Arithmetic Hierarchy

    Get PDF
    We compute that the index set of PAC-learnable concept classes is mm-complete Σ30\Sigma^0_3 within the set of indices for all concept classes of a reasonable form. All concept classes considered are computable enumerations of computable Π10\Pi^0_1 classes, in a sense made precise here. This family of concept classes is sufficient to cover all standard examples, and also has the property that PAC learnability is equivalent to finite VC dimension

    Critical packing in granular shear bands

    Full text link
    In a realistic three-dimensional setup, we simulate the slow deformation of idealized granular media composed of spheres undergoing an axisymmetric triaxial shear test. We follow the self-organization of the spontaneous strain localization process leading to a shear band and demonstrate the existence of a critical packing density inside this failure zone. The asymptotic criticality arising from the dynamic equilibrium of dilation and compaction is found to be restricted to the shear band, while the density outside of it keeps the memory of the initial packing. The critical density of the shear band depends on friction (and grain geometry) and in the limit of infinite friction it defines a specific packing state, namely the \emph{dynamic random loose packing}

    Improving and Assessing Information Literacy Skills through Faculty-Librarian Collaboration

    Full text link
    This article addresses ways to assess the effectiveness of integrating information literacy into college courses by taking a close look at a partnership developed between Dr. Amy Dailey and the reference librarians at Gettysburg College

    Instruction Set Architectures for Quantum Processing Units

    Full text link
    Progress in quantum computing hardware raises questions about how these devices can be controlled, programmed, and integrated with existing computational workflows. We briefly describe several prominent quantum computational models, their associated quantum processing units (QPUs), and the adoption of these devices as accelerators within high-performance computing systems. Emphasizing the interface to the QPU, we analyze instruction set architectures based on reduced and complex instruction sets, i.e., RISC and CISC architectures. We clarify the role of conventional constraints on memory addressing and instruction widths within the quantum computing context. Finally, we examine existing quantum computing platforms, including the D-Wave 2000Q and IBM Quantum Experience, within the context of future ISA development and HPC needs.Comment: To be published in the proceedings in the International Super Computing Conference 2017 publicatio
    • …
    corecore