234 research outputs found

    Building Oblivious Transfer on Channel Delays

    Get PDF
    In the information-theoretic setting, where adversaries have unlimited computational power, the fundamental cryptographic primitive Oblivious Transfer (OT) cannot be securely achieved if the parties are communicating over a clear channel. To preserve secrecy and security, the players have to rely on noise in the communication. Noisy channels are therefore a useful tool to model noise behavior and build protocols implementing OT. This paper explores a source of errors that is inherently present in practically any transmission medium, but has been scarcely studied in this context: delays in the communication. In order to have a model for the delays that is both general and comparable to the channels usually used for OT – such as the Binary Symmetric Channel (BSC) – we introduce a new noisy channel, the Binary Discrete-time Delaying Channel (BDDC). We show that such a channel realistically reproduces real-life communication scenarios where delays are hard to predict and we propose a protocol for achieving oblivious transfer over the BDDC. We analyze the security of our construction in the semi-honest setting, showing that our realization of OT substantially decreases the protocol sensitivity to the user’s knowledge of the channel compared to solutions relying on other channel properties, and is very efficient for wide ranges of delay probabilities. The flexibility and generality of the model opens the way for future implementation in media where delays are a fundamental characteristic

    On Achieving Unconditionally Secure Communications Via the Physical Layer Approaches

    Get PDF
    Due to the broadcast nature, wireless links are open to malicious intrusions from outsiders, which makes the security issues a critical concern in the wireless communicationsover them. Physical-layer security techniques, which are based on the Shannon’s unconditional secrecy model, are effective in addressing the security issue while meeting the required performance level. According to the Wyner’s wiretap channel model, to achieve unconditionally security communication, the first step is to build up a wiretap channel with better channel quality between the legitimate communication peers than that of the eavesdropper; and the second step is to employ a robust security code to ensure that the legitimate users experience negligible errors while the eavesdropper is subject to 0.5 error probability. Motivated by this idea, in this thesis, we build wiretap channels for the single antenna systems without resorting to the spatial degree in commonly observed the multiple-input multiple-output (MIMO) systems. Firstly, to build effective wiretap channels, we design a novel scheme, called multi-round two-way communications (MRTWC). By taking feedback mechanisms into the design of Low Density Parity Check (LDPC) codes, our scheme adds randomness to the feedback signals from the destination to keep the eavesdropper ignorant while adding redundancy with the LDPC codes so that the legitimate receiver can correctly receive and decode the signals. Then, the channel BERs are specifically quantified according to the crossover probability in the case of Binary Symmetric Channel (BSC), or the Signal to Noise Ratio (SNR) in the case of AWGN and Rayleigh channels. Thus, the novel scheme can be utilized to address the security and reliability. Meanwhile, we develop a cross-layer approach to building the wiretap channel, which is suitable for high dynamic scenarios. By taking advantage of multiple parameters freedom in the discrete fractional Fourier transform (DFRFT) for single antenna systems, the proposed scheme introduces a distortion parameter instead of a general signal parameter for wireless networks based on DFRFT. The transmitter randomly flip-flops the uses of the distortion parameter and the general signal parameter to confuse the eavesdropper. An upper-layer cipher sequence will be employed to control the flip-flops. This cryptographic sequence in the higher layer is combined with the physical layer security scheme with random parameter fipping in DFRFT to guarantee security advantages over the main communication channel. As the efforts on the second step, this thesis introduces a novel approach to generate security codes, which can be used for encoding with low complexity by taking advantage of a matrix general inverse algorithm. The novel constructions of the security codes are based on binary and non-binary resilient functions. With the proposed security codes, we prove that our novel security codes can ensure 0.5 error probability seen by the wiretapper while close to zero by the intended receiver if the error probability of the wiretapper’s channel is over a derived threshold. Therefore, the unconditionally secure communication of legitimate partners can be guaranteed. It has been proved mathematically that the non-binary security codes could achieve closer to the security capacity bound than any other reported short-length security codes under BSC. Finally, we develop the framework of associating the wiretap channel building approach with the security codes. The advantages between legitimate partners are extended via developing the security codes on top of our cross-layer DFRFT and feedback MRTWC security communication model. In this way, the proposed system could ensure almost zero information obtained by the eavesdroppers while still keeping rather lower error transmissions for legitimate users. Extensive experiments are carried out to verify the proposed security schemes and demonstrate the feasibility and implement ability. An USRP testbed is also constructed, under which the physical layer security mechanisms are implemented and tested. Our study shows that our proposed security schemes can be implemented in practical communications settings

    Soft Processing Techniques for Quantum Key Distribution Applications

    Get PDF
    This thesis deals with soft-information based information reconciliation and data sifting for Quantum Key Distribution (QKD). A novel composite channel model for QKD is identified, which includes both a hard output quantum channel and a soft output classic channel. The Log-Likelihood Ratios, - also called soft-metrics - derived from the two channels are jointly processed at the receiver, exploiting capacity achieving soft-metric based iteratively decoded block codes. The performance of the proposed mixed-soft-metric algorithms are studied via simulations as a function of the system parameters. The core ideas of the thesis are employing Forward Error Correction (FEC) coding as opposed to two-way communication for information reconciliation in QKD schemes, exploiting all the available information for data processing at the receiver including information available from the quantum channel, since optimized use of this information can lead to significant performance improvement, and providing a security versus secret-key rate trade-off to the end-user within the context of QKD system

    Information-theoretic Physical Layer Security for Satellite Channels

    Full text link
    Shannon introduced the classic model of a cryptosystem in 1949, where Eve has access to an identical copy of the cyphertext that Alice sends to Bob. Shannon defined perfect secrecy to be the case when the mutual information between the plaintext and the cyphertext is zero. Perfect secrecy is motivated by error-free transmission and requires that Bob and Alice share a secret key. Wyner in 1975 and later I.~Csisz\'ar and J.~K\"orner in 1978 modified the Shannon model assuming that the channels are noisy and proved that secrecy can be achieved without sharing a secret key. This model is called wiretap channel model and secrecy capacity is known when Eve's channel is noisier than Bob's channel. In this paper we review the concept of wiretap coding from the satellite channel viewpoint. We also review subsequently introduced stronger secrecy levels which can be numerically quantified and are keyless unconditionally secure under certain assumptions. We introduce the general construction of wiretap coding and analyse its applicability for a typical satellite channel. From our analysis we discuss the potential of keyless information theoretic physical layer security for satellite channels based on wiretap coding. We also identify system design implications for enabling simultaneous operation with additional information theoretic security protocols

    Secure Two-Party Computation over a Z-Channel

    Get PDF
    In secure two-party computation, two mutually distrusting parties are interested in jointly computing a function, while preserving the privacy of their respective inputs. However, when communicating over a clear channel, security against computationally unbounded adversaries is impossible. Thus is the importance of noisy channels, over which we can build Oblivious Transfer (OT), a fundamental primitive in cryptography and the basic building block for any secure multi-party computation. The noisy channels commonly used in current constructions are mostly derived from the Binary Symmetric Channel (BSC), which is modified to extend the capabilities of an attacker. Still, these constructions are based on very strong assumptions, in particular on the error probability, which makes them hard to implement. In this paper, we provide a protocol achieving oblivious transfer over a Z-channel, a natural channel model in various contexts, ranging from optical to covert communication. The protocol proves to be particularly efficient for a large range of error probabilities p (e.g., for 0.17 ≤ p ≤ 0.29 when a security parameter ε = 10− 9 is chosen), where it requires a limited amount of data to be sent through the channel. Our construction also proves to offer security against unfair adversaries, who are able to select the channel probability within a fixed range. We provide coding schemes that can further increase the efficiency of the protocol for probabilities distant from the range mentioned above, and also allow the use of a Z-channel with an error probability greater than 0.5. The flexibility and the efficiency of the construction make an actual implementation of oblivious transfer a more realistic prospect

    Soft Processing Techniques for Quantum Key Distribution Applications

    Get PDF
    This thesis deals with soft-information based information reconciliation and data sifting for Quantum Key Distribution (QKD). A novel composite channel model for QKD is identified, which includes both a hard output quantum channel and a soft output classic channel. The Log-Likelihood Ratios, - also called soft-metrics - derived from the two channels are jointly processed at the receiver, exploiting capacity achieving soft-metric based iteratively decoded block codes. The performance of the proposed mixed-soft-metric algorithms are studied via simulations as a function of the system parameters. The core ideas of the thesis are employing Forward Error Correction (FEC) coding as opposed to two-way communication for information reconciliation in QKD schemes, exploiting all the available information for data processing at the receiver including information available from the quantum channel, since optimized use of this information can lead to significant performance improvement, and providing a security versus secret-key rate trade-off to the end-user within the context of QKD systems

    Information Extraction Under Privacy Constraints

    Full text link
    A privacy-constrained information extraction problem is considered where for a pair of correlated discrete random variables (X,Y)(X,Y) governed by a given joint distribution, an agent observes YY and wants to convey to a potentially public user as much information about YY as possible without compromising the amount of information revealed about XX. To this end, the so-called {\em rate-privacy function} is introduced to quantify the maximal amount of information (measured in terms of mutual information) that can be extracted from YY under a privacy constraint between XX and the extracted information, where privacy is measured using either mutual information or maximal correlation. Properties of the rate-privacy function are analyzed and information-theoretic and estimation-theoretic interpretations of it are presented for both the mutual information and maximal correlation privacy measures. It is also shown that the rate-privacy function admits a closed-form expression for a large family of joint distributions of (X,Y)(X,Y). Finally, the rate-privacy function under the mutual information privacy measure is considered for the case where (X,Y)(X,Y) has a joint probability density function by studying the problem where the extracted information is a uniform quantization of YY corrupted by additive Gaussian noise. The asymptotic behavior of the rate-privacy function is studied as the quantization resolution grows without bound and it is observed that not all of the properties of the rate-privacy function carry over from the discrete to the continuous case.Comment: 55 pages, 6 figures. Improved the organization and added detailed literature revie
    • …
    corecore