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Summary

This thesis deals with soft-information based information reconciliation and data sifting for
Quantum Key Distribution (QKD). A novel composite channel model for QKD is identified, which
includes both a hard output quantum channel and a soft output classic channel. The Log-Likelihood
Ratios, - also called soft-metrics - derived from the two channels are jointly processed at the receiver,
exploiting capacity achieving soft-metric based iteratively decoded block codes. The performance
of the proposed mixed-soft-metric algorithms are studied via simulations as a function of the system
parameters.

The core ideas of the thesis are employing Forward Error Correction (FEC) coding as opposed to
two-way communication for information reconciliation in QKD schemes, exploiting all the available
information for data processing at the receiver including information available from the quantum
channel, since optimized use of this information can lead to significant performance improvement,
and providing a security versus secret-key rate trade-off to the end-user within the context of QKD
systems.
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tesi, per la grande disponibilità e cortesia dimostratemi durante i tre anni di dot-
torato, e per avermi trasmesso parte della sua passione per la ricerca e l’insegnamento.
Ringrazio anche suo marito Fred Daneshgaran, sempre disponibile a chiarire ogni
dubbio.

Desidero inoltre ringraziare il prof. Marco Genovese per tutte le discusioni
sostenute durante il mio percorso di Dottorato. Della stessa maniera un ringrazia-
mento speciale va a Stefano Olivares per la sua disponibilità e le sue idee che hanno
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Chapter 1

Introduction

When Julius Caesar sent messages to his generals, he didn’t trust his messengers.
So he replaced every A in his messages with a D, every B with an E, and so on
through the alphabet. Only someone who knew the shift by 3 rule could decipher his
messages.

1.1 Motivation

Cryptography is the science of using mathematics to encrypt and decrypt data.
Cryptography offers among other things confidentiality of data transmissions across
insecure networks (like the Internet) and enables the storage of sensitive information
so that it cannot be read by anyone except the intended recipient.

Data that can be read and understood without any special measures is called
plaintext or cleartext. The method of disguising plaintext in such a way as to
hide its substance is called encryption. Encrypting plaintext results in unreadable
gibberish called ciphertext. Encryption is used to ensure that information is hidden
from anyone for whom it is not intended, even those who can see the encrypted data.
The process of reverting ciphertext to its original plaintext is called decryption.

Before being transmitted, data is encrypted using an encryption algorithm (or
process) and a secret key. After transmission, data is decrypted by reversing the
encryption algorithm using the same secret key. The security of this scheme is based
on the premise that the key is distributed only to the legitimate parties, implying
that the key transmission is the central problem.

Today, the ability to ensure the secrecy of military or diplomatic communications
is as vital as ever, but cryptography is also becoming more and more important in
everyday life. With the growth of computer networks for business transactions and
communication of confidential information there is an ever increasing need for en-
cryption to ensure that the information exchanged is secure and cannot be acquired
by third parties.
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1 – Introduction

Conventional cryptographic techniques rely on mathematical approaches to se-
cure key transmission. However the security they offer is based on unproven as-
sumptions and depends on the technology available to an eavesdropper.

Quantum Key Distribution is a technology that allows to distribute sequence
of random bit whose randomness and secrecy are guaranteed by the laws of quan-
tum physics. These sequences can then be used as secret keys with conventional
cryptography techniques to guarantee the confidentiality of data transmissions.

Contrary to what one could expect, the basic principle of quantum key distribu-
tion is quite straightforward. It exploits the fact, that according to quantum physics,
the mere fact of observing a quantum object perturbs it in an irreparable way. In
practice, QKD is combined with conventional key distribution techniques (dual key
agreement) to produce a key that is as secure as the strongest of the two original
keys. With this approach, one can be sure to get the best of the classical and quan-
tum world. In summary, QKD provides long-term data transmission secrecy, which
is not vulnerable to technological progress. On the contrary, classical cryptography
provides secrecy only for a limited period of time.

An appropriate question to ask at this point is whether it is possible to actually
implement the above quantum key distribution system. The answer is a qualified yes.
Up to now, there has been a great interest in experimental QKD, with the current
world record distance of 150 km of Telecom fibers[1] and a transmission distance
of the quantum bits of 144 km in atmosphere [2], [3]. Although the security of
different schemes of quantum key distribution have been studied, modified, improved
upon, and even discredit, there is still a tremendous amount of work that needs
to be accomplished to create a truly secure and reliable system. Improvements
can be made at nearly every level from the actual hardware implementation and
software protocols to the actual photon sources and sensitivity of detectors. With
the introduction and sale of actual commercial quantum key distribution systems
and hardware to be used for secure data transmissions, it is increasingly important
that the specifics of quantum key distribution systems are explored and completely
characterized.

One such component of a QKD system that requires more scrutiny is the in-
formation reconciliation stage. Since the quantum channel of a key distribution
system travels along a fairly lossy fiber optic cable or the even more lossy free space
medium of the atmosphere, error correction and detection protocols are critical to
the proper operation of quantum key distribution. Further, error detection is critical
in determining if an eavesdropper is present in the system.

In general, the protocols used for information reconciliation in QKD systems
perform error-correction by repeatedly communicating on the public channel and
require intense interaction between the parties involved. The same is true for the
privacy amplification protocols which are currently considered in the literature [4]
and the applications.

2



1.2 – Purpose

1.2 Purpose

The focus of this thesis is on pragmatic information reconciliation and pre-privacy
amplification algorithms using novel soft information processing techniques. The
proposed techniques can be applied to QKD schemes based both on Single Photon
or Weak Laser Pulse (WLP) sources, with or without decoy states[5]. Furthermore,
the information reconciliation and pre-privacy amplification algorithms proposed
here will mainly use feed-forward techniques, requiring minimal interaction between
transmitter and receiver.

More specifically, capacity achieving soft-metric based iteratively decoded block
codes will be proposed in order to improve the performance of QKD systems.
The availability of soft metric and information bits reliability will be employed to
efficiently perform channel probing and pre-privacy amplification.

Soft-information techniques for information reconciliation will be explore in a
simulation environment to better ascertain the boundaries of its usefulness, in the
detection and correction of errors, during the reconciliation phase of public channel
quantum key distribution.

1.3 Outline

This thesis is organized as follows. The first chapter provides a brief background
on the concepts necessaries to understand Quantum Key Distribution systems. The
basis of classical cryptography are shortly reviewed, followed by a short introduction
to quantum mechanics and some ideas from quantum information science useful for
QKD systems.

On the second chapter the structure and functioning of a generic QKD protocol
is discussed, using as a model one of the most famous protocol invented until now,
the BB84 Protocol. In this Chapter particular attention is paid to the Information
Reconciliation stage, highlighting the weakness of performing such an important
task interactively between sender and receiver.

Third chapter introduces Low Density Parity Check (LDPC) codes, its structure
and the advantages of working with capacity achieving codes in the context of practi-
cally any communication system, presenting a condensed overview of the belief prop-
agation algorithm used by the LDPC decoders, which is the core of soft-information
processing techniques.

In the fourth Chapter, a composite channel model for quantum key distribu-
tion is identified, formed by the parallel of the private (quantum) channel and a
classic channel. A novel technique for forward error correction based information
reconciliation is proposed, exploiting capacity achieving soft-metric based iteratively
decoded block codes. The core ideas of this chapter are: a) employing FEC coding
as opposed to two-way communication for information reconciliation, minimizing

3



1 – Introduction

the interactions between transmitter and receiver; b) exploiting all the available in-
formation for data processing at the receiver including information available from
the quantum channel; c) using convergence properties of the code to estimate QBER

and presence of an eavesdropper.
Chapter 5 presents the potential improvements in key transmission rate in a

Quantum Key Distribution (QKD) scheme whereby photon-counting detectors are
used at the receiver. The classical capacity of such system is derived, showing
the potential gains that photon counting detectors can provide in the context of a
realistic cost-effective scheme from an implementation point of view.

Finally, in the last chapter the simulation results are presented. The performance
of the proposed mixed-softmetric algorithms are studied via simulations as a func-
tion of the system parameters, in particular the achievable Bit Error Rates(BER)
are presented and confronted for different models of the quantum channel. Last a
short section will draw the conclusions and the possible further developments of the
proposed framework.
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Chapter 2

Background

The subject of quantum communications brings together ideas from classical
information theory, computer science, and quantum physics. Classical information
theory and quantum mechanics fit together very well. In order to explain their
relationship, an introduction to classical information theory is given, along with the
principles of quantum mechanics. In the next sections a brief overview of classical
cryptography and quantum information science is presented, focusing on one of its
most important subfields: quantum cryptography.

2.1 Classical Cryptography

Human desire to communicate secretly is at least as old as writing itself and goes
back to the beginnings of our civilization. Methods of secret communication were
developed by many ancient societies, including those of Mesopotamia, Egypt, India,
and China, but details regarding the origins of cryptology1 remain unknown.

Today, the ability to ensure the secrecy of military or diplomatic communications
is as vital as ever, but cryptography is also becoming more and more important in
everyday life. With the growth of computer networks for business transactions and
communication of confidential information there is an ever increasing need for en-
cryption to ensure that the information exchanged is secure and cannot be acquired
by third parties.

Cryptography is the practice and study of encoding and decoding secret mes-
sages to ensure secure communications. The main goal is to allow two participants
-a sender and an intended recipient- who share no information initially to be able
to communicate in a form that is unintelligible to third parties. It is also important
to authenticate the messages exchanged to prove that they were not altered during
the communication. Both of these goals can be accomplished with provable security
if the sender and the recipient are in possession of a shared, secret “key”. A key is a

1The science of secure communication is called cryptology from Greek kryptos hidden and logos word. Cryptology
embodies cryptography, the art of code-making, and cryptanalysis,the art of code-breaking
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2 – Background

piece of information that controls the operation of a cryptographic algorithm. In en-
cryption, a key specifies the particular transformation of plaintext into ciphertext, or
vice versa during decryption. Keys are also used in other cryptographic algorithms,
such as digital signature schemes and message authentication codes. Key material,
which is a truly random number sequence, is a very valuable commodity even though
it conveys no useful information itself. This leads to one of the principal problems
of cryptography: the so-called “key distribution problem”.

The sender and intended recipient should be able to come into possession of secret
key material that third parties “eavesdroppers”) cannot acquire, not even partially.
It is provably impossible to establish a secret key with conventional communications,
so key distribution has relied on the conditional security of “difficult” mathematical
problems in public key cryptography.

The search for unbreakable codes is one of the oldest themes of cryptographic
research, but until the last century all proposed systems have ultimately been broken.

In 1917, Gilbert S. Vernam proposed an unbreakable cryptosystem, hence called
the Vernam cipher or One-time Pad [6]. The One-time Pad is a special case of the
substitution cipher2, where each letter is advanced by a random number of positions
in the alphabet. These random numbers then form the cryptographic key that must
be shared between the sender and the recipient. Even though the Vernam cipher
offers unconditional security against adversaries possessing unlimited computational
power and technological abilities, it faces the problem of how to securely distribute
the key. In 1949, Shannon proved that the onetime pad is information-theoretically
secure, no matter how much computing power is available to the eavesdropper [7].
That is, if the key is truly random, never reused and kept secret, the one-time pad
provides perfect secrecy. Note that the one-time pad is the only cryptosystem with
perfect secrecy.

Despite Shannon’s proof of its security, the one-time pad has serious drawbacks
in practice:

• it requires a perfectly random key

• secure generation and exchange of the key must be at least as long as the
message.

One time pads require extremely long keys and are therefore prohibitively expensive
in most applications. These implementation difficulties have led to one-time pad
systems being unpractical and are so serious that they have prevented the one-time
pad from being adopted as a widespread tool in information security.

There are two main branches of cryptography: secret (symmetric) key cryptog-
raphy and public (asymmetric) key cryptography.

2The substitution cipher is a well-known classical cipher in which every plaintext character in all its occurrences
in a message is replaced by a unique ciphertext character
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2.1.1 Public-Key Cryptography

A new surge of interest in cryptography was triggered by the upswing in electronic
communications in the late 70s of the 20th century. It was essential to enable
secure communication between users who have never met before and share no secret
cryptographic key. But the question was how to distribute the key in a secure way.
The solution was found by Whitfield Diffie and Martin E. Hellman, who invented
public-key cryptography in 1976 [8]. The ease of use of public-key cryptography, in
turn, stimulated the boom of electronic commerce during the 1990s.

Public-key cryptography requires two keys: the public key and the private key,
which form a key pair. The recipient of a message generates two keys, reveals the
public key through a Trusted Authority and keeps his private key in a secret place to
ensure its private possession. The algorithm is designed in such a way that anyone
can encrypt a message using the public key, however, only the legitimate recipient
can decrypt the message using his/her private key.

The security of public-key cryptography rests on various computational problems,
which are believed to be intractable. The encryption and decryption algorithms uti-
lize the so-called one-way functions. One-way functions are mathematical functions
that are easy to compute in one direction, but their inversion is very difficult. It
is, e.g., very easy to multiply two prime numbers, but to factor the product of two
large primes is already a difficult task. Other public-key cryptosystems are based,
e.g., on the difficulty of the discrete logarithm problem in Abelian groups on elliptic
curves or other finite groups. However, it is important to point out that no one-way
function has been proved to be one-way; they are merely believed to be. Public-key
cryptography cannot provide unconditional security.

Today the most widely used public-key system is the RSA cryptosystem. RSA
was invented in 1977 by Ronald Rivest, Adi Shamir and Leonard Adleman [9], whose
names form the acronym. RSA exploits the difficulty of factoring large numbers,
it uses a public key N which is the product of two large prime numbers (called
“modulus”). Using this key, anyone can encrypt a message. However, in order to
invert the algorithm it is necessary to know the prime factors of the modulus.

The possible construction of a quantum computer represents a menace to the se-
curity of public-key cryptography. The decryption using a quantum computer would
take about the same time as the encryption, thereby making public-key cryptogra-
phy worthless. Algorithms capable of doing so have already been developed [10] and
first experiments with small-scale quantum computers successfully pave the way to
more sophisticated devices [11]. For example, one way to crack RSA encryption is
by factoring N, but with classical algorithms, factoring becomes increasingly time
consuming as N grows large; more specifically, there is not any known classical al-
gorithm that can factor N with a complexity O((logN)k) for any k. By contrast,
Shor’s algorithm can crack RSA in polynomial time.
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2.1.2 Secret-Key Cryptography

Secret-key cryptography can provide its users with unconditional security on con-
dition that the users share a sufficiently long secret key beforehand. The common key
is then used for both encryption and decryption. Secure key distribution is the main
drawback of secret-key cryptosystems. The security of communications is reduced
to the security of secret-key distribution. In order to avoid the necessity of personal
meetings or courier services to exchange the secret key, some users use public-key
cryptography to distribute the key, which is then used in a secret-key cryptosystem.
The unconditional security of the system is thus degraded to computational secu-
rity. These so-called hybrid systems have gained a widespread use, because they
combine the speed of secret-key systems with the efficiency of key management of
public-key systems. They have been used for electronic purchases, financial trans-
actions, ATM transactions and PIN encryptions, identification and authentication
of cellular phone conversations, electronic signatures, and many other applications,
whose number is swelling.

2.2 Introduction to Quantum Mechanics

Physicists at the end of the nineteenth century believed that most of the funda-
mental physical laws had been worked out. They expected only minor refinements
to get “an extra decimal place” of accuracy. As it turns out, the field of physics
was transformed profoundly in the early twentieth century by Einstein’s discovery
of relativity and by the development of quantum mechanics.

The principles of classical mechanics do not provide the correct description of
physical processes if very small length or energy scales are involved. Classical or
newtonian mechanics allows a continuous spectrum of energies and allows continuous
spatial distribution of matter. In contrast, quantum mechanical distributions are not
continuous but discrete with respect to energy, angular momentum, and position.
Quantum-mechanics does not contradict newtonian mechanics. As will be seen,
quantum mechanics merges with classical mechanics as the energies involved in a
physical process increase. In the classical limit, the results obtained with quantum
mechanics are identical to the results obtained with classical mechanics. This fact
is known as the correspondence principle.

Quantum mechanics (QM), also known as quantum theory, can be formulated
according to a few postulates (i.e., theoretical principles based on experimental
observations).

2.2.1 Quantum Mechanics Postulates

1. The state of a quantum mechanical system is completely specified by a function
Ψ(r,t) that depends on the coordinates of the particle(s) (r = (x,y,z)) and
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on time. This function, called the wave function or state function, has the
important property that Ψ ∗(r,t)Ψ(r,t)dτ is the probability that the particle lies
in the volume element dτ located at r at time t The wavefunction must satisfy
certain mathematical conditions because of this probabilistic interpretation.
For the case of a single particle, the probability of finding it somewhere is 1, so
that we have the normalization condition∫ ∞

−∞
Ψ ∗(r,t)Ψ(r,t)dτ = 1

The wavefunction must also be single-valued, continuous, and finite.

2. To every physical observable in classical mechanics there corresponds a linear,
Hermitian operator 3 in quantummechanics. The average value of an observable
A represented by an operator Â for a quantum molecular state ψ(r) is given
by the “expectation value” formula

< A >=

∫
ψ∗(r)Âψ(r)dr

3. In any measurement of the observable associated with operator Â, the only val-
ues that will ever be observed are the eigenvalues a, which satisfy the eigenvalue
equation

ÂΨ = aΨ

This postulate captures the central point of quantum mechanics–the values of
dynamical variables can be quantized (although it is still possible to have a
continuum of eigenvalues in the case of unbound states). If the system is in

an eigenstate of Â with eigenvalue a, then any measurement of the quantity
A will yield a. Although measurements must always yield an eigenvalue, the
state does not have to be an eigenstate of Â initially. An arbitrary state can
be expanded in the complete set of eigenvectors of Â ( ÂΨi = aiΨi) as

Ψ =
n∑
i

ciΨi

where n may go to infinity. In this case we only know that the measurement
of A will yield one of the values ai, but we don’t know which one. However,
we do know the probability that eigenvalue ai will occur–it is the absolute
value squared of the coefficient, |ci|2, leading to the fourth postulate below. An
important second half of the third postulate is that, after measurement of Ψ
yields some eigenvalue ai, the wavefunction immediately “collapses” into the

3See Appendix A
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corresponding eigenstate Ψi (in the case that ai is degenerate, then Ψ becomes
the projection of Ψ onto the degenerate subspace). Thus, measurement affects
the state of the system. This fact is used in many elaborate experimental tests
of quantum mechanics.

4. If a system is in a state described by a normalized wave function Ψ , then the
average value of the observable corresponding to Â is given by

< A >=

∫ ∞

−∞
Ψ ∗ÂΨdτ

5. The wavefunction or state function of a system evolves in time according to the
time-dependent Schrödinger equation

ĤΨ(r,t) = i~
∂Ψ

∂t

2.2.2 Bra-Ket Notation

In quantum mechanics, since wavefunctions can be added in linear combinations
just like vectors,

Ψ =
∑
n

cnϕn

Paul Dirac [12] created a powerful and concise formalism for quantum mechanics,
which is now referred to as Dirac notation, or Bra-Ket notation ⟨bra|c|ket⟩ notation.

Dirac introduced a notation to:

1. Extend the idea of multiple spatial basis sets (such as above) to incorporate the
state of the system into the a basis set. Momentum components, energy levels,
quantum numbers, spins, can be thought of as basis vectors for a wavefunction
in the Hilbert space (in this instance a simple, real-valued Euclidean vector
space is insufficient). Hence the basis vectors indicate the state of the system,
and the state of a physical system is identified with a ray in a complex separable
Hilbert space, H, or, equivalently, by a point in the projective Hilbert space of
the system. Each vector in the ray a ket written as |ψ⟩.

2. Use any useful set of basis vectors to construct the overall quantum state:
the wavefunction as a vector in the vector space, rather than a mathematical
function. Since any basis can be used, the wavefunction is basis-independent.

A quantum state is then represented by the ket |ψ⟩. The Hermitian conjugate is
the bra ⟨ψ|, and the inner product is

⟨ψ|ϕ⟩ = c(a number)

If c = ⟨ψ|ϕ⟩ then the complex conjugate is c∗ = ⟨ψ|ϕ⟩∗ = ⟨ϕ|ψ⟩. For more
information on the Dirac notation please refer to the appendix A.
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2.3 Quantum Information Science

Quantum information science (QIS) is a new field of science and technology,
that combines several disciplines such as physical science, mathematics, computer
science, and engineering. Its aim is to understand how certain fundamental laws of
physics discovered earlier in this century can be harnessed to dramatically improve
the acquisition, transmission, and processing of information.

The field of QIS had an explosive growth in the early to mid 1990s as a conse-
quence of several simultaneous stimuli: Peter Shor demonstrated that a quantum
computer could factor very large numbers super-efficiently [10] and the semicon-
ductor industry realized that the improvement of computers according to Moore’s
law would all too soon reach the quantum limit[13], requiring radical changes in
technology. Developments in the physical sciences produced advances that made it
possible to contemplate the construction of workable quantum logic devices. Fur-
thermore, the need for secure communications drove the investigations of quantum
communication schemes that would be tamper proof.
In the past decades the miniaturization of electronic circuitry on silicon chips has
shown steady advances, allowing performance to double roughly every 18 months
(“Moore’s law”). At this rate, in less than 20 years, this shrinkage will reach atomic
dimensions. It is known that atoms and other tiny particles obey laws of quantum
physics that in many respects defy common sense. For example, observing an atom
disturbs its motion, while not observing it causes it to spread out and behave as if
it were in several different places at the same time. Until recently such quantum
effects have mostly been seen as a nuisance, causing small devices to be less reliable
and more error-prone than their larger cousins.

In classical information theory, the basic unit of information is the bit or bi-
nary digit, that can only assume one of two possible distinct states.In quantum
computing, the unit of quantum information is known as a qubit or a quantum bit.

Consider the binary strings,

{000}{001}{010}{011}{100}{101}{110}{111}

The first one can represent, for example, the number 0 (in binary), the second one
the number 1, the third one the number 2 and so on. In general three physical bits
can be represented in 23 = 8 different configurations, that correspond to the integers
from 0 to 7. However, a register composed of three classical bits can store only one
number at a given moment of time.

11
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2.3.1 The qubit

A qubit is a quantum system in which the Boolean states 0 and 1 are represented
by a prescribed pair of normalized and mutually orthogonal quantum states labeled
as {|0⟩,|1⟩} 4.

The two states form a ‘computational basis’ and any other (pure) state of the
qubit can be written as a superposition α|0⟩ + β|1⟩ where α and β are probability
amplitudes and can in general both be complex numbers, such that α2 + β2 = 1.

The probability that the qubit will be measured in the state |0⟩ is |α|2 and
the probability that it will be measured in the state |1⟩ is |β|2. Hence the total
probability of the system being observed in either state |0⟩ or |1⟩ is “1”, this situation
been significantly different from the state of a classical bit, which can only take the
value 0 or 1.
Thus, the main difference between a bit and a qubit is that whereas a bit must
be either 0 or 1, a qubit can be 0, 1, or a superposition of both. A qubit can be
described by a quantum state in a two-state quantum-mechanical system, which is
formally equivalent to a two-dimensional vector space over the complex numbers;
is typically a microscopic system, such as an atom, a nuclear spin, or a polarized
photon.

2.3.2 Bloch Sphere

In quantum mechanics, the Bloch sphere (also known as the Poincar sphere in
optics) is a geometrical representation of the pure state space of a 2-level quantum
system. Alternatively, it is the pure state space of a 1 qubit quantum register. The
Bloch sphere is actually geometrically a sphere and the correspondence between
elements of the Bloch sphere and pure states can be explicitly given.

To show this correspondence, consider the qubit description of the Bloch sphere;
any pure state Ψ can be written as a complex superposition of the ket vectors |0⟩
and |1⟩; moreover since global phase factors do not affect physical state, we can take
the representation so that the coefficient of |0⟩ is real and non-negative. Thus Ψ has
a representation:

|ψ⟩ = cos θ |0⟩+ eiφ sin θ |1⟩

with

−π
2
≤ θ <

π

2
, 0 ≤ φ < 2π.

The representation is unique except in the case Ψ is one of the ket vectors |0⟩ or
|1⟩ The parameters ϕ and θ uniquely specify a point on the unit sphere of euclidean

4The term was coined by B. Schumacher. See, Phys. Rev. A 51 2738 (1995)
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space R3, namely the point whose coordinates (x,y,z) are

x = sin 2θ × cosφ
y = sin 2θ × sinφ
z = cos 2θ

In this representation |0⟩ is mapped into (0,0,1) and |1⟩ is mapped into (0,0,−1).

Figure 2.1: Bloch Sphere

The interior of the Bloch sphere, the open Bloch ball, represents the mixed states
of a single qubit. The r⃗ = (x,y,z) co-ordinates of a state represent the expectation
values of the σ(x,y,z) operators respectively. This is conveniently expressed by,

ρ =
1

2
(I+ r⃗ · σ⃗)

where I is the 2x2 identity matrix, and r⃗.σ⃗ =
∑

j=x,y,z

rjσj.

A convex combination of pure states {ˆ⃗rj} with weights pj gives a mixed state

with Bloch vector r⃗ =
∑

j pj
ˆ⃗rj.

2.3.3 Pure and mixed states

A pure quantum state is a state which can be described by a single ket vector,
or as a sum of basis states. A mixed quantum state is a statistical distribution of
pure states.

13
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The expectation value ⟨a⟩ of a measurement A on a pure quantum state is given
by

⟨a⟩ = ⟨ψ|Â|ψ⟩ =
∑
i

ai⟨ψ|αi⟩⟨αi|ψ⟩ =
∑
i

ai|⟨αi|ψ⟩|2 =
∑
i

aiP (αi)

where |αi⟩ are basis kets for the operator Â, and p(αi) is the probability of |ψ⟩
being measured in state |αi⟩.

In order to describe a statistical distribution of pure states, or mixed state, the
density operator (or density matrix), ρ, is used. This extends quantum mechanics
to quantum statistical mechanics. The density operator is defined as

ρ =
∑
s

ps|ψs⟩⟨ψs|

where ps is the fraction of each ensemble in pure state |ψs⟩. The ensemble average
of a measurement A on a mixed state is given by

⟨A⟩ =
∑
s

ps⟨ψs|A|ψs⟩ =
∑
s

∑
i

psai|⟨αi|ψs⟩|2 = tr(ρA)

where it is important to note that two types of averaging are occurring, one
being a quantum average over the basis kets of the pure states, and the other being
a statistical average over the ensemble of pure states.

Operations on pure qubit states

There are various kinds of physical operations that can be performed on pure
qubit states.

1. Quantum logic gates, that can operate on a qubit: mathematically speaking, the
qubit undergoes a unitary transformation. Unitary transformations correspond
to rotations of the Bloch sphere.

2. Standard basis measurement which is an operation where information is gained
about the state of the qubit. The result of the measurement will be either
|0⟩, with probability α2, or |1⟩, with probability β2. Measurement of the state
of the qubit alters the values of α and β. For instance, if the result of the
measurement is |0⟩, α is changed to 1 (up to phase) and β is changed to 0.

Ensemble

An ensemble of quantum states is a set of quantum states with corresponding
probabilities. An ensemble E is written

E = {(pi,ρi)},

where pi is the probability for the state pi.
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To each ensemble there is a corresponding average state

ρ̄ =
∑
i

piρi,

but any mixed state can be realized by many different ensembles, even if the states
in the ensemble are restricted to pure states.

Usage

1. For sending classical information over quantum channels, one has to choose
an ensemble of states to encode the information. The maximum information
which is possible to transmit with a given ensemble is called the accessible
information.

2. A (non-destructive) measurement on a quantum state will define an ensemble of
post-measurement states. If the measurement outcome is discarded, the state
will be in the average state.

3. Different ensembles of pure states is used to define the entanglement of forma-
tion.

2.3.4 Quantum Mechanics Interpretation

In the previous section a brief introduction to the postulates of quantum me-
chanics has been given. It has been said that these postulates cannot be proven
or deduced. They are hypotheses, and, if no violation with nature (experiments) is
found, they are called axioms, i. e. non-provable, true statements. The five pos-
tulates are a concise summary of the principles or quantum mechanics. They have
severe implications on the interpretation of microscopic physical processes, while on
a macroscopic scale, quantum-mechanics smoothly merges into newtonian mechan-
ics for any physical process. Next, some considerations are presented, aiming to
illustrate the implications of the QM postulates:

• A measurement cannot be perform without perturbing the system. Furthermore,
there is no avoiding the rather dramatic effect that the measurement has on
the system the reduction of the wave function to one of the eigenfunctions of
the measurement operator.

• The values of two quantities cannot be simultaneously known with certainty if
the corresponding operators do not commute. Assume that the state of the sys-
tem is described by an eigenfunction uk(x) of the measurement operator Â, at
the time of the measurement. In this case, we can predict with certainty that
the outcome of the measurements will be the corresponding eigenvalue, ak. In
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order to simultaneously know the value of another observable quantity repre-
sented by B̂, with certainty, also has to be an eigenfunction of uk(x). However,
we have found before that two hermitian operators can share a complete set of
eigenfunctions if and only if they commute, i.e. if . [Â,B̂] = 0 5

• The creation of identical copies of an arbitrary unknown quantum state is for-
bidden. This is due to the fact that all quantum operations must be unitary
linear transformation on the state.6

All of these principles have found profound implications in quantum informa-
tion science and many of it subfields, with many applications in the modern world.
Among the subfields of QIS, one of the most important is quantum cryptography
(QC) [16], QC has emerged as one of the most relevant practical applications of
quantum theory. While the security of the traditional cryptographic techniques is
based on algorithmic complexity of solving certain mathematical problems (e.g.,
one-way functions), the security of quantum cryptography is founded on quantum
physical principles. As a consequence, quantum mechanics is able to generate per-
fectly secure random keys that can then be used in standard secret-key protocols.
This will discussed further in detail in Chapter 3.

5This is also known as the Heisenberger’s Uncertainty Principle[14]
6No-cloning theorem[15]
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Chapter 3

Quantum Cryptography

3.1 Motivation

It has been said that the security of conventional cryptographical techniques re-
lies on the assumption of limited advancement of mathematical algorithms and com-
putational power in the foreseeable future, and also on limited financial resources
available to a potential adversary. Computationally secure cryptosystems, no matter
whether public- or secret-key, will always be threatened by breakthroughs, which are
difficult to predict, and even steady progress of code-breaking allows the adversary
to reach back in time and break older, earlier captured, communications encrypted
with weaker keys. As a consequence, the necessity to periodically re-encrypt or
re-sign certain documents is necessary, along with the requirement to carefully sort
information according to the used cryptosystem. Besides this, another common
problem of conventional cryptographic methods is the so-called side-channel crypt-
analysis. Side channels are undesirable ways through which information related to
the activity of the cryptographic device can leak out. The attacks based on side-
channel information do not assault the mathematical structure of cryptosystems,
but their particular implementations. It is possible to gain information by mea-
suring the amount of time needed to perform some operation, by measuring power
consumption, heat radiation or electromagnetic emanation.

Quantum mechanics offers a solution for the secure key distribution in cryptosys-
tems. While the security of classical cryptographic methods can be undermined by
advances in technology and mathematical algorithms, the quantum approach can
provide unconditional security. In quantum mechanics the security is guaranteed
by the Heisenberg uncertainty principle, which does not allow us to discriminate
nonorthogonal states with certainty. Within the framework of classical physics, it is
impossible to reveal possible eavesdropping, because information encoded into any
property of a classical object can be obtained without affecting the object itself. All
classical signals can be monitored passively. In classical communications, one bit of
information is encoded in billions of photons, electrons, atoms or other carriers. It is
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always possible to passively listen in, by splitting part of the signal and performing a
measurement on it. Quantum cryptosystems eliminate this side channel by encoding
each bit of information into an individual quantum object, such as a single photon.
Single photons cannot be split, copied or amplified without introducing detectable
disturbances.

It is important to notice that quantum mechanics does not prevent from eaves-
dropping; it only allows to detect the presence of a possible eavesdropper. Since
only the cryptographic key is transmitted, no information leak can take place when
someone attempts to listen in. When discrepancies are found, the key is simply
discarded and the users may repeat the procedure to generate a new key.

3.2 Quantum Key Distribution

In the early 1980s, Bennett and Brassard proposed a solution to the key distribu-
tion problem based on quantum physics [17], they presented a protocol that allows
users to establish an identical and purely random sequence of bits at two different
locations, while allowing to reveal any eavesdropping with a very high probability.
This idea, independently rediscovered by Ekert a few years later [18], was the be-
ginning of quantum key distribution, which was to become the most promising task
of quantum cryptography1.

Quantum Key Distribution (QKD)is a technology to distribute, or rather gener-
ate, secure random keys between two communicating parties using optical fiber or
free-space as a communication channel. It has been said that QKD has emerged in
the last decades as one of the most important applications of quantum mechanics.
Hence, in this section the basic configuration and elements of such an important
application will be introduced. Alternative introductions to this subject are avail-
able in many sources, ranging from books [19],[20],[21],[22] to other review articles
[16],[23],[24].

3.2.1 Generalities

The general settings of QKD are shown in 3.1. The two authorized partners, are
traditionally called Alice and Bob. Alice, the sender, is the one who starts a key
transmission, while Bob, the receiver, is the one who receives the quantum states
and extracts the key sent by Alice. This is just a convention used in the field, but
not a strict definition. The third important character is the eavesdropper, Eve, who
is trying to intrude into the QKD and gain information about the key generated
between Alice and Bob. Alice and Bob share a quantum secure channel, on which

1For some authors, quantum cryptography and quantum key distribution are synonymous. For others, however,
quantum cryptography also includes other applications of quantum mechanics related to cryptography, such as
quantum secret sharing or every other possible tasks related to secrecy that are implemented with the help of
quantum physics
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they send the quantum signals; and a classical public channel, on which they can
send classical messages forth and back. The classical channel needs to be authenti-
cated: this means that Alice and Bob identify themselves; a third party can listen
to the conversation but cannot participate in it. The quantum channel, however, is
open to any possible manipulation. The task of Alice and Bob is that of guaran-
teing security against a possible eavesdropper that taps into the quantum channel
and listen to the exchanges on the classical channel. In order to guarantee the se-
curity, either the authorized partners are able to create a secret key (a common list
of secret bits known only to themselves) or they shall abort the protocol. There-
fore, after the transmission of a sequence of symbols, Alice and Bob must estimate
how much information about their set of bits has leaked out to Eve. In classical
communications, such an estimate is obviously impossible, when Eve listens to the
exchanges on the classical channel the communication goes on unmodified. This is
where quantum physics comes into the game: in a quantum channel, the leak of
information is directly related to the degradation of the communication quality.

Figure 3.1: Quantum key distribution comprises a quantum channel and a public classical authen-
ticated channel. As a universal convention in quantum cryptography, Alice sends quantum states
to Bob through a quantum channel. Eve is suspected of eavesdropping on the line.

The choice of light

In general, quantum information processing can be implemented with ions, atoms,
light, spins, etc. Abstractly, this is the case also for QKD: one could imagine per-
forming a QKD experiment with electrons, ions, and molecules; however, light is the
only practical choice. Indeed, the task of key distribution makes sense only if Alice
and Bob are separated by a macroscopic distance: if they are in the same room, they
have much easier ways of generating a common secret key. Since, at a determinate
distance, light propagates faster and with smaller decoherence than matter, photons
are the information carriers by excellence. Various properties of photons can be em-
ployed to encode information for QKD, such as polarization, phase, quantum corre-
lations of Einstein-Podolsky-Rosen pairs, wavelength or quadrature components of
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squeezed states of light.
It is known that light does not interact easily with matter. The way losses affect

QKD varies with the type of protocol and its implementation. Losses impose bounds
on the secret key rate and on the achievable distance and may also leak information
to the eavesdropper, according to the nature of the quantum signal (for coherent
pulses this is certainly the case while for single photons it is not). Another difference
is determined by the detection scheme. Implementations that use photon counters
rely on post-selection: if a photon does not arrive, the detector does not click and
the event is simply discarded; on the contrary, implementations that use homodyne
detection always give a signal, therefore losses translate as additional noise. QKD
is always implemented with light and there is no reason to believe that things will
change in the future. As a consequence, the quantum channel is any medium that
propagates light with reasonable losses, typically either an optical fiber or just free
space, provided a line of sight path exists between Alice and Bob.

3.2.2 The BB84 Protocol

In order to understand all of the concepts presented before -and some others that
will be introduced later-, in this section the basic ideas of QKD will be described
using a very concrete example: the BB84 protocol. Suppose Alice holds a source of
single photons. The spectral properties of the photons are sharply defined, so that
the only degree of freedom left is the polarization2.

Alice and Bob align their polarizers3 and agree to use either the horizontal or
vertical (+) basis (rectilinear), or the complementary basis of linear polarizations,
i.e., +45/-45 (×) (diagonal). Specifically, the bits are encoded as follows:

|H⟩ −→ 0+ |+ 45⟩ −→ 0×
|V ⟩ −→ 1+ | − 45⟩ −→ 1×

where both bit values 0 and 1, are encoded in two possible ways in non-orthogonal
states, since | ± 45⟩ =

√
2/2(|H⟩ ± |V ⟩)

It is important to notice that these four states satisfy the following relations:

⟨H|V ⟩ = ⟨−45|+ 45⟩ = 0 (3.1)

⟨H|H⟩ = ⟨V |V ⟩ = ⟨+45|+ 45⟩ = ⟨−45| − 45⟩ = 1 (3.2)

|⟨H| ± 45⟩|2 = |⟨V | ± 45⟩|2 = 1/2 (3.3)

Interpretation:

• Measurements performed in the basis identical to the basis of preparation of
states will produce deterministic results (eq. 3.1 and 3.2)

2Usually the way to encode the information being sent over the quantum channel is through the transmission of
photons in some polarization states. The direction of the polarization encodes a classical bit.

3A polarizer is an optical filter that passes light of a specific polarization and blocks waves of other polarizations
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Figure 3.2: The four states of the BB84 Protocol

• Any measurements in the diagonal basis on photons prepared in the rectilinear
basis will yield random outcomes with equal probabilities and viceversa (eq.
3.3)

Figure 3.3: BB84 Protocol

Once Alice and Bob have agreed on the coding, the BB84 protocol can be
summarize in the following steps:

1. Key Transmission Alice, the sender, generates a sequence of N random bits
for transmission and chooses the encoding basis (rectilinear or diagonal) in a
random and independent way for each bit. Physically it means that she trans-
mits photons in the four polarization states |H⟩,|V ⟩,|+45⟩,|− 45⟩ with equally
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distributed frequencies. Bob, the receiver, randomly and independently of Al-
ice, chooses his measurement basis, either rectilinear or diagonal. Statistically,
their bases match in 50% of the cases. At the end of this stage Alice and Bob
will share what is called the raw key

2. Basis Announcement Alice and Bob communicate over the classical channel
and compare the basis used for each transmitted and detected photon. When-
ever their bases coincide, Alice and Bob keep the bit whereupon it becomes part
of the cryptographic key. The bit is discarded when they chose different basis,
when Bob’s detector failed to register a photon -due to the imperfect efficiency
of detectors-, or when the photon was lost somewhere on the way. Any poten-
tial eavesdropper, can only learn if Alice and Bob chose the same basis, but
cannot determine whether Alice originally sent a “0′′ or “1′′. This step is called
sifting . At the end, Alice and Bob have a string of bits of approximately N/2
bits, called the sifted key

3. Error Estimation Alice and Bob disclose part of their strings -a subset of
positions of size K - and estimate the error rate in the quantum channel.

As shown in Chapter 2, if Eve tries to eavesdrop on the quantum channel, she
cannot passively monitor the transmissions. Instead she can intercept the pho-
tons sent by Alice, perform measurements on them and resend them. However,
since Alice had chosen her encoding bases randomly Eve has to guess. Half
the times Eve will guess the basis right and resend correctly polarized photons,
while in the other 50% of the cases, she measures in the wrong basis, producing
errors.

When Alice and Bob reveal a random sample of the bits of their raw keys,
they discover these errors. Alice and Bob use a predetermined “failure” error
threshold (emax) to decide whether or not an eavesdropper is present. In the
literature, the most common failure error rate chosen is greater than or equal
to 0.15 [25]. At 0.15 error rate, an eavesdropper could have intercepted over
half of the bits transmitted.

Both players compute the observed error-rate e and accept the quantum trans-
mission if e 6 emax, set initially by Alice, in this case they remove the K bits
announced from the raw key. Otherwise if e > emax eve is suspected of tam-
pering with the channel, and the cryptographic key is thrown away. Thus,
no information leak occurs even in the case of eavesdropping. It should be
mentioned that no physical apparatus is perfect and noiseless. Alice and Bob
will always find discrepancies, even in the absence of Eve. As they cannot tell
errors stemming from eavesdropping from the noise of the apparatus, they con-
servatively attribute all the errors in transmissions to Eve. The actual error
rate stems from both noise in the channel and possibly, interference from an
eavesdropper.
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4. Reconciliation and Privacy Amplification If there are errors, however,
Alice and Bob have to correct them and have to eliminate the information that
could have been obtained by Eve4.

Information reconciliation is a form of error correction carried out between
Alice and Bob’s keys, in order to ensure both keys are identical. It is conducted
over the public channel and as such it is vital to minimize the information sent
about each key, as this can be listen by Eve. Alice and Bob perform the error
correction through an interactive reconciliation protocol called Cascade. This
is a simple protocol that leaks an amount of information close to the theoretical
bound of an almost ideal protocol5, when the error probability is below 15%.
Cascade was presented in [26] as an improvement of the procedure suggested
in [27].

Cascade operates in several rounds. During each round, Alice and Bob divide
their raw keys into blocks, and disclose the parity of each block and compare
them. If the parity bits do not match then a binary search is performed in
order to find and correct the error. After all blocks have been compared, Alice
and Bob both reorder their keys in the same random way, and a new round
begins. If an error is found in a block from a previous round that had correct
parity then another error must be contained in that block; this error is found
and corrected as before. This process is repeated recursively, which is the
source of the cascade name. At the end of multiple rounds Alice and Bob have
identical keys with high probability, however Eve has additional information
about the key from the parity information exchanged. Once the information
reconciliation has been performed, Alice and Bob share what is known as the
reconciled key .

Privacy amplification is a method for reducing (and effectively eliminating)
Eve’s partial information about Alice and Bob’s key. This partial information
could have been gained both by eavesdropping on the quantum channel during
key transmission (thus introducing detectable errors), and on the public channel
during information reconciliation (where it is assumed Eve gains all possible
parity information). Privacy amplification uses Alice and Bob’s key to produce
a new, condensed key, in such a way that Eve has only negligible information
about the new key. This can be done using universal hashing functions, chosen
randomly from a publicly known set. The size r of the secret key that Alice
and Bob can distill depends on the kind -as well as the amount- of information
available to Eve.

In figure 3.3 a very simplified scheme of the BB84 protocol is shown. At the first
stage, Alice chooses randomly the basis to encode the polarization of the photons

4Historical note: the procedure that erases the information obtained by the eavesdropper was not discussed by
Bennett and Brassard (1984) and first appeared a few years later (Bennett, Brassard, and Robert, 1988).

5Brassard and Salvail have formulated some definitions to characterize reconciliation protocols in [26]
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that she sends through the quantum channel. Bob, as well, chooses randomly the
basis to decode the photon’s polarization. Then they exchange some information on
the public channel and keep only the bits they have encoded/decoded with the same
basis and throw away the rest, generating what has been called the “sifted key”.

Figure 3.4: Distillation process and key length in BB84 Protocol

In a very general way, the steps of any QKD protocol can be resume as follows:

1. Key Exchange→ The qubits are exchanged between the two parties over the
quantum channel. It leads to the generation of the raw key.

2. Key Sifting→ The basis are announced. After the sifting step, both parties
share the sifted key.

3. Key Distillation→ After sifting, the emitter and the receiver jointly process the
sifted key to distill a secure sequence of bits called the secret key. The process
consists itself of three steps:

(a) Error correction

(b) Privacy amplification

(c) Authentication

In figure 3.4 the distillation process of the secret is presented. It is important to
notice that the final distilled key has a very short length when compared to the
initial key size.
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3.2.3 Information Reconciliation

In order to preserve the integrity and security of their keys, Alice and Bob uti-
lize an interactive reconciliation protocol called Cascade, which consists of two-way
interactions between Alice and Bob over a public classical channel for the detection
and correction of errors, where many messages are openly passed back and forth.
The Cascade error reconciliation protocol is actually a modification of an earlier
protocol BBBSS, proposed by Bennett et al. in 1991 [27]. BBBSS utilized an in-
teractive error detection and correction protocol that the authors called Binary.
BBBSS used a modified BB84 QKD protocol using a circular polarization basis
instead of the diagonal basis. Other than the basis substitution, BBBSS operated
as a BB84 implementation.

(a) Circular Basis (b) Basis used in BB84 and BBBSS protocols

Figure 3.5: Basis for QKD Protocols

The procedure described in [27] for Alice and Bob to reconcile their bits takes
place over a public channel. Since Eve presumably listens to all public transmissions,
Alice and Bob must reveal as little information as possible while still ensuring that
they end up with identical keys.

If the estimated error rate in the sifted key is acceptable, Alice and Bob begin
the first of a number of passes, and use a predetermined random permutation, that
is applied to the key bits. The purpose of the permutation is to attempt to spread
out the error bits randomly and separate consecutive errors from each other.

• Alice and Bob then divide all of the sifted key bits into blocks of N bits depen-
dent upon the estimated error rate with the goal of having one or fewer errors
remaining per block.

• Alice and Bob then use the classical channel to compare block parities. For
blocks where the parities disagree, there must be an odd number of errors since
an even number of errors would mask each other. The block is then divided in
half, into two smaller blocks of length, and another parity check is conducted
on the first sub-block. Since there is definitely at least one error in one of the
sub-blocks, the parity of one sub-block reveals where the error has occurred.
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The sub-block with the error is further sub-divided and parity checked until
the error bit is found. The error is then corrected.

• Since the exchange of parity bits occurs on the classical channel, over which Eve
can passively eavesdrop, it is assumed that the parity bits give Eve information
about the secret key. By discarding the last bit of each block and sub-block
involved in a parity check, the information that Eve gains about the key can
be reduced.

• Since a number of even errors cannot be detected, the key is then permuted
again and the Binary search check protocol is run again. In order to reduce the
amount of discarded bits wasted when a parity check passes, essentially a lost
potential key bit, the Binary protocol utilizes an additional process during later
passes that wastes fewer bits. The authors refer to the new mode as confirm
and bisect. In this stage, the parity of a random subset of the sifted key is
calculated and compared. Subsets that fail the parity check are subdivided
and checked using Binary.

Figure 3.6: Cascade Protocol. The colored numbers represent the error bits (red) and the masked
error bits (orange), while colored borders represent failed (red) or passed (green) parity checks

Brassard and Salvail created the Cascade reconciliation protocol as an improve-
ment to Binary in terms of bits leaked during the reconciliation stage [26]. By in-
creasing the processing steps of the protocol, the authors claimed to have improved
upon the information leakage problem and reduced bits leaked to the theoretical
minimum needed to perform reconciliation. The operation of Cascade is nearly
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identical to Binary except that the error bit locations and values are retained for
use in later passes, so the algorithm can correct all odd number errors and then
cascade back through the previous passes to find even errors that were previously
masked. A detailed description of the operation of Cascade is given below.

• Cascade protocol begins with an estimated error rate analysis of the sifted
keys. The analysis is conducted as in BBBSS, with a subset of the sifted key
compared across the classical channel between Alice and Bob.

• Alice and Bob divide their sifted keys into blocks with a size dependent upon
the error rate.

• The block parities are compared between Alice and Bob over the public channel,
and Binary is used to correct errors. The final bit of each block involved is not
discarded at this point. In addition, all of the information regarding error
location is stored.

• After a permutation of the sifted key, a new pass is started. However, unlike
in BBBSS, the block size is increased and another Binary search is conducted.
Any errors found in this pass could only have resulted from two or more even
number of errors that were masking each other in the previous pass. Using
the information on error location stored from the previous pass, the Cascade
algorithm returns to the shortest block that involved the initially corrected
error from pass 1 and bisect it to find the hidden error.

The protocol proceeds to operate in the same way with all discovered errors,
cascading through previous passes to find and correct masked bits. After a number
of passes, permutations, and cascades, the protocol finishes with low probability
that errors still remain.

3.2.4 The Problem

In practice, there are several problems with the protocols presented in the pre-
vious sections. The first one, is that real photon detectors always have some noise,
so even without eavesdropping, Alice and Bob’s bits will differ. Secondly, current
technology is not good enough to reliably generate single photons. Actual photon
emitters can generate pulses of light with a given average number, m, of photons per
pulse, but not necessarily exactly that number each time. Clearly, if m > 1, then
Eve will have a good chance of being able to split the pulses, observing one photon
while letting the remainder continue undisturbed to Bob. If m is significantly less
than 1, then the probability of an eavesdropper being able to split the pulse is ap-
proximately m2/2 [27]. Even in this case the eavesdropper will be able to learn a
constant fraction of the key bits without being detected.
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Up to now, an overview of one the most important protocols in QKD, the BB84,
has been given. Although the security of QKD relies on the laws of quantum me-
chanics, it can be seen how a considerable part of the protocol takes place using
exclusively the classical communication channel. Once the raw key has been trans-
mitted over the quantum channel, a secret key is distill using classic post-processing
techniques that require interaction, some information about the key is exchanged
via the public channel in order to correct the errors and eliminate the possible in-
formation that Eve may have derived. Information Reconciliation is a mechanism
that allows to eliminate the discrepancies between two correlated variables. It is an
essential component in every key agreement protocol where the key has to be trans-
mitted through a noisy channel. Hence, it is important to explore other classical
techniques in the context of QKD systems, to minimize the information exchanged
over the public channel so jeopardizing the provable security that quantum physics
guarantees can be avoided.
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Chapter 4

Low-Density Parity-Check codes

4.1 Noisy-channel Coding Theorem

In information theory, the noisy-channel coding theorem establishes that for any
given degree of noise in a communication channel, it is possible to communicate
discrete data (digital information) nearly error-free through the channel up to a
computable maximum rate. This result was presented by Claude Shannon in 1948
[28] and was based in part on earlier work and ideas of Harry Nyquist and Ralph
Hartley.

The Shannon limit or Shannon capacity of a communication channel is the the-
oretical maximum information transfer rate of the channel, for a particular noise
level.

4.1.1 Overview

The theorem describes the maximum possible efficiency of error-correcting methods
versus levels of noise, interference and data corruption. The notion of capacity is
defined purely in terms of information theory. As such it does not guarantee the
existence of transmission schemes that achieve the capacity.

The Shannon theorem states that given a noisy channel with channel capacity C
and information transmitted at a rate R, then if R < C there exist codes that allow
the probability of error at the receiver to be made arbitrarily small. This means
that, theoretically, it is possible to transmit information nearly without error at any
rate below a limiting rate, C.

The converse is also important. If R > C, an arbitrarily small probability of error
is not achievable. All codes will have a probability of error greater than a certain
positive minimal level, and this level increases as the rate increases. So, information
cannot be guaranteed to be transmitted reliably across a channel at rates beyond
the channel capacity. The theorem does not address the rare situation in which rate
and capacity are equal.
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In the same paper Shannon introduced the concept of codes as ensembles of
vectors that are to be transmitted. It is clear that if the channel is such that
even one input element can be received in at least two possible ways, then reliable
communication over that channel is not possible if only single elements are sent
over the channel. This is the case even if multiple elements are sent that are not
correlated.

To achieve reliable communication, it is thus imperative to send input elements
that are correlated. This leads to the concept of a code, defined as a (finite) set
of vectors over the input alphabet. We assume that all the vectors have the same
length, and we denote this length as the block length of the code. If the number of
vectors is K = 2k, then every vector can be described with k bits.

Suppose now that a codeword is sent, and a vector is received over the output
alphabet. If the channel allows for errors, then there is no general way of telling
which codeword was sent with absolute certainty. However, it is possible to find the
most likely codeword that was sent, in the sense that the probability that this code-
word was sent given the observed vector is maximized. To find such a codeword, it
is necessary to list all the K codewords, and calculate the conditional probability for
the individual codewords. Then find the vector or vectors that yield the maximum
probability and return one of them. This decoder is called the maximum likelihood
decoder. It is not perfect: it takes a lot of time (especially when the code is large)
and it may generate error, but it is the best that can be done.

Shannon proved the existence of codes of rates arbitrarily close to capacity for
which the probability of error of the maximum likelihood decoder goes to zero as
the block length of the code goes to infinity1.

Achieving capacity is only part of the story. If these codes are to be used for
communication, fast algorithms for encoding and decoding are needed. Note that
random codes of rate R are just 2R·n = 2(k/n)n random vectors of length n over
the input alphabet. Some description of these vectors is needed in order to embed
information into them, or it will be necessary to write all of them down into a
so-called codebook describing which sequence of R · n bits gets mapped into which
codeword. This will require a codebook of size 2R·n, which is too large for any
reasonably sized code2

If the input alphabet has the structure of a field (for example the binary alphabet
which yields the field F2), then the complexity of the algorithm, as far as encod-
ing goes, can be reduced. Golay [29] and Elias [30] independently introduced the
concept of linear codes of block length n and dimension k defined as subspaces of
the vector space F2

n. Such codes have rate k/n, and since they are linear, they can
be described in terms of a basis consisting of k vectors of length n. A codebook

1In fact, Shannon proved that the decoding error of the maximum likelihood decoder goes to zero exponentially
fast with the block length.

2For example consider a vector length of 1000 and code rate of 0.5, this yields 2500 vectors, a codebook too large
to handle).
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can now be implicitly described by mapping a bit vector (x1,x2,...,xk) to the vector
obtained by taking linear combinations of the basis vectors given by the coefficients
x1,x2,...,xk. The class of linear codes is very rich. Shannon’s arguments can be
used to show that there are sequences of linear codes with rates arbitrarily close
to capacity and for which the error probability of the maximum likelihood decoder
approaches zero(exponentially fast) as the block length goes to infinity. Moreover, it
can also be shown that random linear codes achieve capacity. Unlike their non-linear
brothers, linear codes can be encoded in polynomial time, rather than exponential
time. However, the decoding problem still remains. since the maximum likelihood
problem on the binary symmetric channel (BSC) has been shown to be NP-hard3, it
is unlikely to find polynomial time algorithms for maximum likelihood decoding of
general linear codes [31], for many classes of linear codes (e.g., general linear codes
over Fq for any q).

4.2 Channel Capacity Definition

Consider the following block diagram representing a communication system:

Figure 4.1: Simplified Block diagram: Transmission over a noisy channel

Let X represent the space of signals that can be transmitted, and Y the space of
signals received, during a block of time over the channel. Let pY |X(y|x) be the condi-
tional distribution function of Y given X. Treating the channel as a known statistic
system, pY |X(y|x) is an inherent fixed property of the communications channel (rep-
resenting the nature of the noise in it). Then the joint distribution pX,Y (x,y) of X
and Y is completely determined by the channel and by the choice of the marginal
distribution of signals chosen to be sent over the channel pX(x)

pX(x) =

∫
y

pX,Y (x,y)dy

The joint distribution can be recovered by using the identity:

pX,Y (x,y) = pY |X(y|x)pX(x)
3The class NP is defined to be the set of computational problems which can be solved by a backtrack-search

algorithm, where the depth of search is bounded by a polynomial in the length of the input. Alternately, NP is the set
of problems solvable by a nondeterministic algorithm whose running time is bounded by a polynomial in the length
of the input. A nondeterministic algorithm is one which, when confronted with a choice between two alternatives,
can create two copies of itself and simultaneously follow the consequences of both courses. This repeated splitting
may lead to an exponentially growing number of copies; the algorithm is said to solve the given problem if any one
of these copies produces the correct answer. This description explains the notation: NP corresponds to the class of
nondeterministic polynomial-time algorithms.

31



4 – Low-Density Parity-Check codes

Under these constraints, the mutual information is defined as follows:

I(X,Y ) =

∫
Y

∫
X

pX,Y (x,y)log

(
pX,Y (x,y)

pX(x)pY (y)

)
Finally, the information channel capacity is defined as the maximum mutual infor-
mation:

C = max
p(x)

I(X,Y ) (4.1)

where the maximum is taken over all possible input distributions p(x).

4.2.1 Binary Symmetric Channel

A binary symmetric channel BSCp is a kind of communication channel with
binary inputs and outputs respectively. A probability p is associated with BSCp

is called the cross-over probability. This means, with a probability P , a bit sent
through the BSCp is flipped. And conversely with a probability 1 − p a bit sent
through the BSCp passes unchanged. In the case of the BSCp, the capacity of the
channel can be calculated as follows. By definition, the classical capacity is the
maximum of the mutual information taken over all possible input distributions:

I(X,Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y )

Is known that the mutual information is defined as:

I(X,Y ) = H(Y )−H(Y |X) = H(X)−H(X|Y )

Where the conditional entropy can be calculated using the following expression:

H(X|Y ) = H(X|Y = 0)P (Y = 0) +H(X|Y = 1)P (Y = 1)

The conditional entropy per bit can be defined as:

Hb(p) = H(X|Y = 0) = H(X|Y = 1) = p log

(
1

p

)
+ (1− p) log

(
1

1− p

)
So the mutual information can be rewritten as follows:

H(X|Y ) = Hb(p) → I(X,Y ) = H(X)−Hb(p)

Since H(X) is known

H(X) = P0 log

(
1

P0

)
+ (1− P0) log

(
1

1− P0

)
= Hb(p0)

Finally, the expression for the mutual information of the BSCp is:

I(X,Y ) = Hb(P0)−Hb(Pe)
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Where Hb(P0) = P0log (1/P0) + (1− P0)log (1/1− P0) ≤ 1

Notice that, when the binary input symbols are equiprobable, i.e. P0 = P1 = 0.5,
Hb reaches its maximum value Hb = 1, maximizing the mutual information, so the
channel capacity is equal to C = 1 − Hb(p). In Figure 4.2, the capacity C of the
BSCp is shown, as a function of the cross-over probability, i.e. error probability, P .
It can be seen that C=0 when P=1/2 and C=1 when P=0 or P=1

Figure 4.2: Capacity of a BSC for a two equiprobable input symbols and a crossover probability P

4.3 Linear Block codes

It is assume that the output of an information source is a sequence of binary
digits “0” or “1”. In block coding, this binary information sequence is segmented
into message blocks of fixed length. Block codes refers to the large and important
family of error-correcting codes that encode data in blocks. Error correction is
obtained by adding redundant symbols to a codeword.

If k symbols are sent into the coder, n symbols are obtained as an output of it.
The rate of a code is:

R = k/n

It is always the case for error correction that R < 1.

A desirable property for a linear block code to possess is the systematic structure
of the codewords, where a codeword is divided into two parts, the message part and
the redundant checking part. The message part consists of k unaltered information
(or message) digits and the redundant checking part consists of n-k parity-check
digits, which are linear sums of the information digits. A linear block code with this
structure is referred to as a linear systematic block code.

Let the message m̄ = (m0,m1,...,mk−1) be an arbitrary k-tuple from GF(2). The lin-
ear (n, k) code overGF (2) is the set of 2k codeword of row-vector form c̄ = (c0,c1,...,ck−1)
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where c ∈ GF (2). By linear transformation:

c̄ = m̄ ·G =
k−1∑
i=0

m̄i · ḡi = m0g0 +m1g1 + ...+mk−1gk−1

Where G is a k × n matrix of rank k of elements from GF(2), ḡi is the i-th row
vector of G.
G is called the generator matrix of the code. The rows of G are linearly independent
since G is assumed to have rank k.

An (n,k) block code is said to be linear if the vector sum of two codewords is a
codeword.

For each linear code there is also a parity check matrix H with the following prop-
erty: An n-tuple c̄ is a codeword if and only if it is orthogonal to every row vector
of H:

c̄ ·HT = 0 ⇔ c̄ is a codeword.

And since the rows of G are possible codewords. then:

G ·HT = 0

For any given generator matrix G, many solution for H are possible.

4.4 LDPC codes

Low-density parity-check (LDPC) codes are a class of linear block LDPC codes.
The name comes from the characteristic of their parity-check matrix which contains
only a few 1’s in comparison to the amount of 0’s. Their main advantage is that
they provide a performance which is very close to the capacity for a lot of different
channels and linear time complex algorithms for decoding. Furthermore are they
suited for implementations that make heavy use of parallelism.

They were first introduced by Gallager in his Ph.D. thesis in 1960 [32]. But due
to the computational effort in implementing coder and encoder for such codes and
the introduction of Reed-Solomon codes [33], they were mostly ignored until about
ten years ago.

A family of LDPC codes is usually defined by two generating polynomials:

λ(x) =

dvmax∑
i=2

λix
i−1

ρ(x) =

dcmax∑
i=2

ρix
i−1
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The coefficients of these polynomials define the distribution of incident edges to
variable and check nodes respectively. Richardson et al. showed that the asymptotic
behavior of a family of codes defined by both polynomials can be analyzed by using
the density evolution algorithm [34]. Families of LDPC codes performing close to the
channel capacity can be then designed by optimizing both generating polynomials
[35],[36].

An LDPC code is a linear code identified by an sparse parity-check matrix or
its equivalent bipartite graph, also called Tanner graph. It is known that some it-
erative algorithms, such as belief propagation based algorithms, provide optimum
decoding over cycle-free Tanner graphs [37]. However, any finite-length graph has
necessarily cycles, and it has been shown that a large girth (length of the short-
est cycle) improves the performance of LDPC codes using iterative decoding as it
enforces a reasonable minimum distance[38]. Therefore, taking into account that a
finite-length graph has cycles, it is important to make its girth as large as possible.

4.4.1 Representations for LDPC codes

Basically there are two different possibilities to represent LDPC codes. Like all
linear block codes they can be described via matrices. The second possibility is a
graphical representation.

Figure 4.3: Tanner graph corresponding to the parity check matrix H . The marked path c2 →
f1 → c5 → f2 → c2 is an example for a short cycle. Those should usually be avoided since they
are bad for decoding performance.

Matrix Representation

Let H be a binary n×m-matrix, then the LDPC code defined by the matrix H
is the set of vectors c = (c1,c2,...,cm) such that H · cT = 0. The matrix H is called a
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parity check matrix for the code. The matrix shown in figure 4.3 is a parity check
matrix with dimension n × m for a (8,4) code. We can now define two numbers
describing these matrix. wr for the number of 1’s in each row and wc for the number
of 1’s in the columns. For a matrix to be called low-density the two conditions
wc ≪ n and wr ≪ m must be satisfied. In order to do this, the parity check matrix
should usually be very large, so the example matrix cant be really called low-density.

Graphical Representation

Tanner introduced an effective graphical representation for LDPC Tanner codes
[37]. Not only provide these graphs a complete representation of the graph, they
also help to describe the decoding algorithm. Tanner graphs are bipartite graphs.
The nodes of the graph are separated into two distinctive sets and edges are only
connecting nodes of two different types. The two types of nodes in a Tanner graph
are called variable nodes (v-nodes) and check nodes (c-nodes).

Figure 4.3 is an example for such a Tanner graph and represents the same code
as the matrix H. The creation of such a graph is rather straight forward. It consists
of m check nodes (the number of parity bits) and n variable nodes (the number of
bits in a codeword). Check node fi is connected to variable node cj if the element
hij of H is a 1.

4.4.2 Decoding Algorithms: Belief Propagation

A general class of decoding algorithms for LDPC codes is denoted as message
passing algorithms. These are iterative algorithms in which at each round messages
are passed from variable nodes to check nodes, and from check nodes back to variable
nodes. The messages from variable nodes to check nodes are computed based on
the observed value of the variable node and some of the messages passed from the
neighboring check nodes to that variable node. An important aspect is that the
message that is sent from a variable node v to a check node c must not take into
account the message sent in the previous round from c to v. The same is true for
messages passed from check nodes to message nodes.

One important subclass of message passing algorithms is the belief propagation
algorithm. This algorithm is present in Gallager’s work [32]. The messages passed
along the edges in this algorithm are probabilities, or beliefs. More precisely, the
message passed from a variable node v to a check node c is the probability that v
has a certain value given the observed value of that message node, and all the values
communicated to v in the prior round from check nodes incident to v other than c.
On the other hand, the message passed from c to v is the probability that v has a
certain value given all the messages passed to c in the previous round from message
nodes other than v.
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One very important aspect of belief propagation is its running time. Since the
algorithm traverses the edges in the graph, and the graph is sparse, the number of
edges traversed is small. Moreover, if the algorithm runs for a constant number of
times, then each edge is traversed a constant number of times, and the algorithm
uses a number of operations that is linear in the number of message nodes.

Another important note about belief propagation is that the algorithm itself is
entirely independent of the channel used, in spite of the fact that the messages
passed during the algorithm are completely dependent on the channel.

4.4.3 LDPC Convergence Analysis

A typical decoded bit error performance curve of an iteratively decoded capacity
achieving code transmitted over a binary symmetric channel (BSC), as a function
of the transition probability P of the BSC, is illustrated in 4.4

Figure 4.4: Typical decoded BER performance curve of an iteratively decoded capacity achieving
code

The performance of the code is divided into three regions: the low-performance
region, the waterfall region and the (optional) error floor region.

The low-performance region is the region where the transition probability P is
higher than the minimum value required for the iterative decoding to converge.
The value of the threshold transition probability P* depends on the length of the
considered code.

The performance region where a small decrease in the transition probability P
results in a considerable improvement in the error probability is called the waterfall
region or, sometimes, the turbo cliff region, when its slope is particularly steep.

37



4 – Low-Density Parity-Check codes

In the error floor region, when present, the performance does not improve sig-
nificantly as the transition probability P decreases further, or however it decreases
with a slope much smaller than in the waterfall region. We must note that the error
floor region typically does not show a horizontal floor, but a change in slope with
respect to the waterfall region.

Given these general characteristics of an LDPC code performance, and knowing
that a quantum channel has a typical quantum bit error rate (or quantum BER or
QBER) Q ≤ 0.11, and that the channel is not considered reliable because of eaves-
dropping if Q > Q∗ ≈ 0.154, the non-convergence could be detected by observing
the erratic behavior of the decoded sequence reliability, allowing the use of the de-
coded codeword reliability monitoring as a form of quantum channel probe. Hence,
we can devise a novel mechanism of detecting eavesdropping on the fly based on the
inherent characteristics of the codes employed for information reconciliation.

4.4.4 LDPC EXIT Charts

AnEXtrinsic Information Transfer chart, commonly called EXIT chart, is a tech-
nique to aid the construction of good iteratively-decoded error-correcting codes (in
particularLDPC and Turbo codes).
An EXIT chart includes the response of the elements of decoder. The response can
either be seen as extrinsic information or a representation of the messages inbelief
propagation.
The belief propagation decoding explained in the previous section can be summarize
as follows: Message Passing Algorithm (Belief Propagation)

1. Initialize variable nodes with observations from channel

2. Variable-node decoding: Take all incoming messages and compute messages to
check nodes

3. Check-node decoding: Take all incoming messages and compute messages to
variable nodes

4. Repeat 2 and 4 until a termination criterion is fulfilled

In Figure 4.5 a simplified block diagram of an LDPC iterative decoding is shown,
with the intention to illustrate the construction of LDPC EXIT charts. The following
hypotheses are taken into account:

4i.e., if the QBER is larger than a given threshold Q*, if an LDPC code is selected with threshold transition
probability P∗ ≈ Q∗, the decoding process will not converge if the quantum channel is unreliable
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4.4 – LDPC codes

Figure 4.5: Block Diagram for the construction of LDPC EXIT Charts

• Virtual channel X → W (chk) is modeled by an AWGN channel with mu-

tual information I
(chk)
ext . The simluation of the variable-node decoder gives the

variable-node EXIT function.

• Virtual channel X → W (var) is modeled by an AWGN channel with mutual

information I
(var)
ext . The simluation of the check-node decoder gives the check-

node EXIT function.

The EXIT Chart shows the information transfer for LDPC decoding and the
performance of LDPC decoding in the fall-off region. It plots the mutual information
of the variable nodes decoder one versus the mutual information of the check nodes
decoder which is modeled by the test (a priori) channel. In other words the output
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4 – Low-Density Parity-Check codes

of the left branch in Figure 7.9 determines the value of the horizontal axis of the
EXIT chart and the output of the right branch determines the value on the vertical
axis. Both range between 0 and 1. For the next (half) iteration both decoders are
swapped and interchange their roles: the output of decoder one becomes the a priori
input of decoder number two. Only the extrinsic values are used as output, meaning
that the a priori input value is subtracted from the full soft output. This avoids
propagation of already known information.

(a) EXIT Chart (b) Iterative Decoder

Figure 4.6: LDPC EXIT Chart
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Chapter 5

Soft-metric QKD Protocol

In chapter 3 an overview of current QKD systems (based on interactive error
correction and information reconciliation protocols) has been given. The fact that an
important part of the protocol takes place using exclusively classical communication
schemes has been remarked, specially because BB84-like schemes are based on a
highly interactive process that requires many communication rounds. BB84-like
protocols for error correction and information reconciliation in QKD systems are
not very efficient in terms of throughput (distilled key per second) since a lot of
information is discarded to ensure that the information Eve can possibly know is
canceled from the final secret key.

It is in this scenario that modern Forward Error Correction (FEC) schemes may
offer an interesting solution. The idea is to make use of FEC’s inherent advantage
of requiring a single channel use to reconcile the set of transmitted and received bits
(qubits in the case of QKD). In order to maximize the system performance, capacity
achieving codes are preferable, and LDPC codes constitute a possible interesting
option.

In this chapter, in particular, we have focused our attention on the use of LDPC
codes decoded with a message-passing decoding algorithm [39] for information rec-
onciliation in QKD applications. A “composite communication channel” composed
of the parallel of the quantum channel and the public channel of a QKD scheme is
considered. LDPC codes are suggested -in the context of QKD schemes- to perform
error reconciliation through feed-forward error correction, minimizing the interac-
tion between transmitter and receiver. A protocol focused on pragmatic information
reconciliation applied to QKD schemes using soft information processing techniques
is proposed.

5.1 Information Reconciliation

Let X and Y be two of correlated variables belonging to Alice and Bob, and
x and y their outcome strings, through information reconciliation it is possible to
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5 – Soft-metric QKD Protocol

eliminate the discrepancies between x and y and agree on a string S(x), with possibly
S(x) = x.

Figure 5.1: Source coding with side information

The problem of information reconciliation in QKD schemes can be seen as the
source coding problem with side information, as shown in Figure 5.1. Thus, as
shown by Slepian and Wolf [40], the minimum information I that Alice would have
to send to Bob in order to help him reconcile Y and X is Iopt = H(X|Y ). Taking
into account that real reconciliation will not be optimal, a parameter f > 1 is used
as a quality figure for the reconciliation efficiency:

Ireal = f ·H(X|Y ) > Iopt

5.2 QKD Protocol Generalities

For the generic model of any QKD scheme, Alice wants to transmit a plaintext
message secretly to the receiver Bob. The secret key is transmitted on a secure
(quantum) channel, which has typically high bit error rate, that will denoted as
QBER, so that a subsequent information reconciliation and privacy amplification
operations need to be performed on a public channel. Once the secret key is known
to Alice and to Bob (and only to them), Alice will encrypt the plaintext using the
secret key according to the encryption rule of the system, and send the cryptogram
to Bob, while Eve will not be able to recover the transmitted message.

The protocol proposed in this thesis, considers the problem of information recon-
ciliation as if it were the source coding problem with side information. It is focused
on effective forward error correction which exploits the “soft-information” available
at the exit of both the quantum and the public channel.

In figure 5.2 a very simplified scheme of a generic QKD platform is presented.
A composite channel can be identified, formed by the parallel of the quantum and
the public channels. The information and redundancy bits transmitted by these two
communication systems constitute the codewords of an equivalent systematic block
code. Alice divides the original information bit stream into blocks of finite length
nq which will be encoded in a redundant way into codewords of length n.

The information bits (nq bits per codeword) are transmitted over the quantum
private channel, while the redundancy bits (r = (n−nq) bits per codeword) are trans-
mitted over the classical public channel. The code rate (or information rate) is equal
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Figure 5.2: Equivalent systematic block-code in QKD system

to k/n which is the proportion of the data-stream that is useful (non-redundant)1.
The redundancy allows the receiver to detect and correct errors without retransmis-
sion, using Forward Error Correction techniques. In this context, iterative belief
propagation algorithms can be used to decode the codewords sent by Alice at the
receiving stage, with a maximum likelihood decoding rule.

As previously mentioned, LDPC codes with possibly long information blocks
have been selected to make the quantum channel more reliable. This choice is
motivated by the characteristics of LDPC codes of being asymptotically capacity
achieving and of being decodable in a time linearly proportional to their block
length (when iterative belief propagation techniques are used), so that acceptable
decoding complexities can be achieved also for large block lengths.

Figure 5.3: Composite Channel model, LDPC with code rate nq/(nq + r)

To minimize the quantity of information derived by Eve from the public channel
the code rate must be maximized. In figure 5.3 the rate code along with the number
of available information and redundancy bits are highlighted, for a code with a rate
equal to nq/(nq+r) = nq/n. It is important to notice that at the input of the LDPC
decoder, there will be n total available bits, i.e. n corresponding loglikelihood values.

1That is, if for every nq bits of useful information, the coder generates totally n bits of data, of which r are
redundant
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In a generic QKD system, such as the one shown in figure 5.4, many attacks
strategies could hypothetically be used by Eve. The eavesdropping on the secure
channel is shown as a dotted line, because - if the system is properly designed - the
presence of Eve can be detected, and the information leaked to Eve can be made
arbitrarily small, as if the eavesdropper did not exist. Given this hypothesis, the
next sections will focus on the overall channel model linking Alice to Bob, neglecting
for now the effect of Eve.

Figure 5.4: Quantum Key Distribution Protocol

The transmission rate on the QKD secret channel is generally very low since
the technology is very complex, while the actual data rate on the public channel
can be very high. It is therefore important to analyze the achievable overall QKD
system rate. Furthermore, in practical cases, the quantum bit error rate on the
secret channel is typically high when compared to the bit error rate of the public
channel.

5.2.1 FEC Coding Rate and its Impact on Security

The information transmitted on the classic public channel is completely visible
to the eavesdropper Eve. In the security analysis it must be assumed that Eve has
perfect knowledge of the code, and therefore of the r parity check equations used to
generate the r parity bits ((n-nq) redundancy bits), that are assume to be received
(eavesdropped) perfectly and without errors. The question then is how much infor-
mation can Eve obtain about the nq information/data bits from the knowledge of
the r parity bits.
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The r parity check equations represent a system of r linear equations in nq vari-
ables over GF(2). This system in the case of LDPC codes is indeed quite sparse
(i.e., few variables appear in each check equation). The space of solutions of such a
system of equations represents the set of possible data sequences that Eve has access
to. One of these solutions is in fact, the true data transmitted through the private
quantum channel. The larger the size of the space of possible sequences, the more
secure is the FEC code used against Eve. This assumes that Eve does not possess
any additional information that may reduce the space of possible sequences. For
instance, if the data transmitted by Alice is not independent identically distributed
(i.i.d.) (i.e. binary with equal probabilities), Eve can easily focus on the most
probable set of possible solutions of the linear equations. Note that the structural
properties of the particular LDPC code used, ultimately determines the extent of
the security of the system.

Let the data sequence transmitted over the private quantum channel be denoted
by the nq-component vector X⃗, and the parity checks transmitted over the classic

public channel by the r-component vector P⃗ .
The amount of information provided about X⃗ by P⃗ is the mutual information

I(X⃗,P⃗ ) = H(P⃗ ) − H(P⃗ |X⃗) = H(P ) ≤ r, since H(P⃗ |X⃗) = 0 (i.e., given X⃗, the

amount of uncertainty remaining about P⃗ is zero).
Remembering that the quantum channel operates in conjunction with a classic

public channel, together with the information bits the redundancy (parity check)
bits generate an equivalent block code with rate:

Rc =
nq

nq + r
(5.1)

So long as nq > 0, a secret key can be distilled for a fixed code rate by increasing
the block length. This puts a lower limit on the coding rate 1

1+r/nq
of 0.5, which

nonetheless is loose since the security of the scheme even at coding rate 0.5 or below
ultimately depends on the particular FEC code being used.

5.3 Classical Communication System

The public channel uses classic communication schemes, and possibly strong cod-
ing, so that the bit error rate of the classic channel is generally extremely low. Since
the use of an optical link implies the presence of line of sight (LOS) between trans-
mitter and receiver, fading can be excluded, and additive white Gaussian noise
(AWGN) is generally the predominant impairment. Thus, the equivalent channel
model shown in Figure 5.5 can be considered to represent a classic ”public” channel
in the QKD protocol being proposed.
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Figure 5.5: Classical Communication Channel

In this model, when a bipolar transmission scheme is used such as PAM, BPSK or
Gray coded QPSK, the k-th transmitted redundant bit is bk ∈ (0,1), the associated
k-th transmitted symbol is Xrk ∈ (−

√
Eb, +

√
Eb), i.e. Xrk =

√
Eb(2bk − 1), while

Nk ∈ N(0,σ2) is a Gaussian random variable with zero mean and variance equals
to σ2 = N0/2 = Eb/2ηS, where ηS = Eb/N0 is the wireless link signal-to-noise ratio,
and Yrk is the received sample obtained at the output of the public channel detector.

Figure 5.6: Representation of the classic “public” channel

Despite the fact that for simulations purposes a bipolar transmission scheme
(PAM or BPSK) has been considered, the extension for different modulation schemes
is straightforward.

On the public link, no information bits can be transmitted, so only the redundant
information of the considered feed-forward systematic block channel code with rate
R will be transmitted. The expression for the Log-Likelihood metrics at the output
of the classical channel is given by the following expression:

LLR(Yrk) = log

[
p(Xrk = +

√
Eb|Yrk)

p(Xrk = −
√
Eb|Yrk)

]
= log

[
p(Yrk |Xrk = +

√
Eb)

p(Yrk |Xrk = −
√
Eb)

]
= log

[
p(Yrk |bk = 1)

p(Yrk |bk = 0)

]
(5.2)

Equation 5.2 has been rewritten using Bayes’ Theorem2.

Given the previous hypotheses, the expressions for the k-th trasmitted and re-
ceived symbols respectively, can be written as:

Xrk =
√
Eb(2bk − 1) (5.3)

Yrk = Xrk +Nk =
√
Eb(2bk − 1) +Nk (5.4)

2Bayes’ Theorem: P (A|B) =
P (B|A)P (A)

P (B)
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Yrk are the real signal samples being received, whose conditional probability
density function is given by the Equation 5.5

fy(Yrk |bk) =
1

σ
√
2π
e−

−(Yrk
−
√

Eb(2bk−1))2

2σ2 (5.5)

Finally, replacing the expressions presented in Equations 5.3 into Equation 5.5
written above, the value of the LLR’s metrics for the symbols received from the
public channel can be expressed as:

LLR(Yrk) = log

[
p(Yrk |bk = 1)

p(Yrk |bk = 0)

]
=

2Yrk
√
Eb

σ2
(5.6)

This is the soft metric associated to the k-th redundant bit, associated to the
sample Yrk at the output of the classic channel.

5.4 Quantum Communication System

In this section, the problem of how to describe the quantum channel is considered
and discussed, with the aim to find an analog in the classical world and to determine
its capacity.

The usual starting point for information theory is to model the communication
channel stochastically. A channel is usually modeled as a noisy mapping of some
input assemble x to an output assemble y according to some transition probabilities,
p(y|x). Then, channel’s capacity can be found as a function of these parameters:
it is defined as the maximum mutual information that can be generated between
input and output given a single use of the channel3. Some assumptions about the
quantum channel are necessary to be able to model it using classical known schemes
(see Appendix D).

Many practical scenarios can be consider when modeling a quantum channel: the
transmitted qubit can be associated to a single photon or a multi-photon, and differ-
ent specific quantum states can be transmitted over the quantum channel (coherent
state, entangled state, squeezed state, etc).

In this thesis, both single photon and multi-photon transmission will be consid-
ered when characterizing the quantum communication system in the context of the
proposed QKD protocol. When referring to multi-photon transmission, coherent
states will be considered, generated using weak laser pulses (WLP) sources.

3Since there are several quantum mechanical effects that can affect the quantum transmission over the secure
channel, the estimation of the quantum bit error rate has been done both through empirical research, produced by
observations and experiments made at the INRiM (Istituto Nazionale di Ricerca Metrologica) by the research team
of Prof. Genovese, and through theoretical calculation as well.
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5.4.1 Single-Photon Quantum Channel

When a single-photon is transmitted, the quantum channel can be modeled as
a simple binary channel with error probability equal to the quantum bit error rate
(QBER) Q, as shown in Figure 5.7. This is a very general model that can be used,
for example, to model the quantum channel when polarization encoding is applied
to photons in protocols such as the BB84 or the B92 presented earlier in Chapter 3.

Figure 5.7: Quantum channel modeled as a Binary Symmetric Channel (BSC)

The expression for the Log-Likelihood metrics at the output of the quantum
channel represented by the model of Figure 5.7 used as input for the soft-metric
decoder, is given by:

LLR(Yqk) = log

[
p(Xqk = 1|Yqk)
p(Xqk = 0|Yqk)

]
= log

[
p(Yqk |Xqk = 1)

p(Yqk |Xqk = 0)

]
(5.7)

Denoting the k-th transmitted information bit as Xqk ∈ GF (2) = {0,1}, and the
received information bit as Yqk ∈ GF (2) = {0,1} Equation 5.7 can be rewritten as
follows:

LLR(Yqk) = log

[
p(Yqk = 1|Xqk)

p(Yqk = 0|Xqk)

]
=


log
(

1−Q
Q

)
if Yqk = 1

log
(

Q
1−Q

)
if Yqk = 0

(5.8)

Notice that if the QBER value Q is not perfectly known, it should be substituted
by its estimate Qest

4.
It is also important to notice that the log-likelihoods (metrics) LLR(Yqk) can only

assume two values, and will therefore be referred to as hard metrics or q-metrics,
while the metrics from the public channel LLR(Yrk) can assume any real value, and
are called soft metrics.

Since these metrics must be jointly used and compared in the LDPC decoder they
need to be compatible and comparable. Suppose that the equivalent BSC model

4We denote as Qest the estimated quantum channel bit error rate, which should ideally be equal to Q if the
channel is completely known, or if it behaves as expected.
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Figure 5.8: Available bits and metrics from the public and the quantum-BSC channels

used for the quantum channel is obtained using a 2PAM as modulation scheme with
transmitted levels

√
Epb(2Xqk − 1) where Xqk are the transmitted bits, Yqk are the

decided raw bits, Epb is the energy per bit and σ2
p is the noise variance per dimension.

Denoting the equivalent received sample as Ypk , we have Ypk =
√
Epb(2Xqk−1)+Npk ,

and the theoretical quantum error probability equals:

p(Xqk in error) =
1

2
erfc

√
Epb

2σ2
p

= Q (5.9)

where, the transmitted levels are ±
√
Epb and Npk ∈ N (0,σ2

p) as shown in Figure
5.9.

Figure 5.9: Equivalent model for the single-photon quantum channel when using an equivalent
2PAM modulation scheme.

Notice that we have as a consequence:

Epb

2σ2
p

= erfc−1(2Q)2 (5.10)

At this point assuming that the noise is negligible, (i.e., that Ypk
∼=
√
Epb(2Yqk −

1) ∼=
√
Epb(2Xqk − 1)) allows to approximate the soft metric derived from the
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quantum channel when using a 2PAM modulation as follows:

LLR(Ypk) =
4Ypk

√
Epb

2σ2
p

=
4Epb(2Yqk − 1)

2σ2
p

(5.11)

=4[erfc−1(2Q)]2(2Yqk − 1) =

{
+4[erfc−1(2Q)]2 if Yqk = 1
−4[erfc−1(2Q)]2 if Yqk = 0

(5.12)

Notice that the expression 5.11 constitutes an approximated metric for the equivalent
BSC quantum channel of Figure 5.7, and can be used as an alternative to the actual
metric shown in Equation 5.8, specially for analysis where the BSC quantum channel
has to be modeled as an equivalent AWGN channel [41].

Binary Erasure Quantum Channel

In a time slotted system, if also the lost photons are taken into account, a channel
model taking into account both errors and erasures can be considered. This model
is similar to the binary erasure channel (BEC)5, and it is shown in figure 5.10 for a
quantum error probability q and an erasure probability e.

Figure 5.10: Binary Erasure Quantum Channel model

5.4.2 Multi-Photon Quantum Channel

As opposed to hard decisions about whether a given received signal is a logic-0
or a logic-1, the use of a Photon Counting Detector (PCD) is suggested to generate
soft information at the output of the quantum channel. Consider the application of
soft coding to a specific scheme, i.e., the one shown in Figure 5.4.

In reference to the model depicted in Figure 5.4, when transmitting multi-photons
over the quantum channel, the practical implementations of QKD protocols rely on
solutions that are low cost, offer high levels of security, and can be rapidly deployed

5A binary erasure channel (or BEC) is a common communications channel model used in coding theory and
information theory, introduced by Peter Elias at MIT in 1954 as a toy example. In this model, the transmitter sends
a bit, and the receiver either receives the bit or it receives the message that the bit was not received (“erased”).
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requiring uncomplicated setups and conventional devices. In this regard, the use of
decoy states is currently the most promising technique.

Decoy states

Decoy state Quantum key distribution (DQKD) protocols have been proposed to
solve the multi-photon issue in QKD sources. In QKD protocols, such as BB84, a
single-photon source is assumed to be used by the sender, Alice. In reality, a perfect
single-photon source does not exist. Instead, practical sources, such as weak coherent
state laser sources, are widely used for QKD. The key problem with these practical
QKD sources is the multi-photon components within. A serious security loophole
exists when Alice uses multi-photon states as quantum information carriers6. In
order to minimize the effects of multi-photon states, Alice has to use an extremely
weak laser source, which results in a relatively low speed QKD. Decoy state QKD is
proposed to solve this multi-photon issue by using a few different photon intensities
instead of one. With decoy states, the practical sources, such as coherent-state
sources or heralded parametric down-conversion (PDC) sources, perform almost
as good as single-photon sources. Among the multitude of DQKD experimental
techniques proposed in the literature, the technique described in [5], allows one to
achieve the desired characteristics of DQKD, with a reduced cost and leading to a
robust system. This technique amounts to what communication Engineers would
refer to as Pulse Position Modulation (PPM), which allows the use of extremely
simple measurements (the time of arrival of a pulse).

Coherent States

In the protocol mentioned above, Alice transmits attenuated coherent states (i.e.,
modulated pulses of a CW7 laser) to Bob. Coherent states, representing electromag-
netic radiation produced by physical devices such as lasers, are an important class
of states for optical communications. It has been shown [43] that the coherent states
of a single mode of radiation |α⟩ can be expressed in the form of a superposition of
orthonormal eigenstates |n⟩, known as the number of eigenstates:

|α⟩ = e−
1
2
|α|2

∞∑
n=0

αn

√
n!
|n⟩ (5.13)

6If a pulse contains more than one photon, then Eve can split off the extra photons and transmit the remaining
single-photon to Bob. This is the basis of the photon number splitting attack [42], where Eve stores these extra
photons in a quantum memory until Bob detects the remaining single-photon and Alice reveals the encoding basis.
Eve can then measure her photons in the correct basis and obtain information on the key without introducing
detectable errors.

7Continuous wave
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Each number eigenstate |n⟩ contains n photons, and hence the probability of
obtaining exactly n photons as the outcome of an experiment can be computed as

p(n) = |⟨n|α⟩|2 = e−|α|2 |α|2n

n
(5.14)

The number of photons n is therefore Poisson distributed, with average number of
photons equal to E{{n}} = Nc = |α|2.

DQKD using PCD

Alice transmits coherent states to Bob that either she prepares with a mean
photon number Nc, or block with the transmission of vacuum pulses. The k-th
logical bit will be encoded in a two pulse temporal sequence as follows:

|0k⟩ =|
√
Nc⟩2k−1|0⟩2k (5.15)

|1k⟩ =|0⟩2k−1|
√
Nc⟩2k (5.16)

The time of arrival allows an unambiguous discrimination of the logical qubit. In
order to check the presence of an eventual eavesdropper Alice, with a small frequency
f , transmits a decoy state.

|dk⟩ = |
√
Nc⟩2k−1|

√
Nc⟩2k (5.17)

Due to the coherence of the laser, the two component of the decoy state have a
precise phase relation and thus they always exit a specific gate of an interferometer
at Bob’s side preceded by an unbalanced Beam Splitter (BS). Such correlation also
exists across the boundary between two alternating bits as well. After measurements,
Bob announces when the detector after interferometer clicked (set 1, bits for the
check) and when the detector at the other exit of BS clicked (set 2, bits to be used
for the key reconstruction). The effect of eavesdropping is a breaking of coherence
and can be estimated by the measurement of the set 1. After this test, Alice and
Bob run error correction and privacy amplification on set 2 thus obtaining the key.

Once the decoy states have been identified and erased from the useful transmitted
sequence, the equivalent channel model is simply that of a binary symmetric channel
with bit error probability equal to the quantum bit error rate Q, presented earlier
in Figure 5.7.

BIMO Quantum Channel

Let N be the theoretical number of photons transmitted for every information bit,
while Nmax corresponds to the maximum number of photons that can be detected in
one symbol interval with a positive sign associated to the transmission or reception
of a logic-0, and with a negative sign associated to the transmission or reception
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of a logic-1. The discrete quantum channel in a QKD system that uses weak laser
pulses can be modeled as shown in Figure 5.11 with an input random variable Xw

which at the generic k-th instant may assume the values Xwk
∈ (−N, + N) and

an output random variable Yw which at the generic k-th instant may assume the
values Ywk

∈ (−Nmax,...,−2,−1,0,1,2,...,Nmax), where Nmax ≥ N . The correspnding
channel model is denoted as Binary Input Multiple Output (BIMO).

Note that the model below is associated with transmission of one information bit
which corresponds to two time slots (hence, the positive-negative designation in the
probabilistic channel model), even though the number of photons detectable in a
given slot is obviously only a positive quantity.

Figure 5.11: Equivalent model for the multi-photon quantum channel when WLP are used

In the case of WLP transmission, soft information can be extracted, as previously
discussed. In this case, the soft likelihood metrics will depend on the optical setup
used, but in general they are given by the following expressions:

LLR(Ywk
) = log

[
p(Ywk

|Xwk
= 1)

p(Ywk
|Xwk

= 0)

]
(5.18)

that can be expressed as

LLR(Ywk
= Yw(j)) = log

[
p(Ywk

= Yw(j)|Xwk
= 1)

p(Ywk
= Yw(j)|Xwk

= 0)

]
(5.19)

where Xwk
are the transmitted bits.

5.5 Soft-Processing of Mixed Metrics

Soft metric processing will be used for error correction and privacy amplifica-
tion, exploiting all the information available from the detectors at the output of the

53



5 – Soft-metric QKD Protocol

Figure 5.12: Available bits and metrics from the public and the quantum-BIMO channels

public and the quantum channels. This corresponds to using in the post processing
algorithms not only the raw received information and redundancy bits, but all the
soft information extracted from the channels, i.e., the log-likelihood ratios or LLRs
derived from the Equation 5.2, also denoted soft metrics. It is important to re-
member that the available metrics are derived from two different channels, a “hard
output” one and a “soft output” one.

The suggested scheme allows for joint use within the same soft-decoding algorithm
of mixed metrics derived from two different equivalent channels. In particular, the
public channel offers signal levels typically very reliable, while the quantum channel
offers unreliable values. However, in spite of their typically low reliability, it is
important to consider them, since they are directly associated to the information
bits. In order to determine the perfect combination between soft and hard metrics,
a weighed soft metric αQLLR(Ypk) has been considered, with 0 ≤ αQ ≤ 2, and the
optimal weighing factor αQ has been determined via simulation, as it will be shown
shortly.

Once the appropriate soft (quantized on more than 1 bit) metrics have been
associated with the various (information and redundant) bits, the situation is as
depicted in Figure 5.13, and a soft metric based block decoder must be identified.
As previously discussed, Low Density Parity Check (LDPC) codes provide a viable
solution.

Considering one of the results of Shannon’s theorem in Forward Error Correction
(FEC) channel coding, which indicates that the longer the considered block length
the larger its minimum distance and/or the higher its rate, it is convenient to use
a very large block length nq + r , which can pose huge constraints on the decoding
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Figure 5.13: Available bits and metrics at transmitter (Alice) and receiver (Bob) for Information
Reconcicliation and Pre-Privacy Amplification

complexity. To overcome this, LDPC codes provide a viable solution. In contrast
to many classic codes, LDPC codes allow very fast iterative probabilistic decoding
algorithms in addition to being a class of linear capacity achieving codes. This makes
LDPC codes attractive from both a theoretical and a practical point of view. The
use of LDPC codes allows to perform feed-forward information reconciliation, where
the errors introduced by the quantum channel are corrected using the redundancy
derived from the public channel, without the need to receive further information
from the receiver.

Notice that the suggested belief propagation decoding algorithm for LDPC codes
offers a “soft” output, which contains not only an estimate of the transmitted bits,
but also their reliability, i.e. the amplitude of the output soft metric.
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5 – Soft-metric QKD Protocol

The availability of soft output information, where the decoded bits are paired with
the associated reliability, offers an instrument for performing efficient and selective
data-sifting and pre-privacy amplification, deleting from the decoded sequence (i.e.,
form the final distilled quantum key), the bits with low reliability, maintaining the
most trusted information, and eliminating residual errors.

As shown in Figure 5.13, the data-sifting and pre-privacy amplification can be
performed by comparing the amplitude of the soft metrics associated to the decode
bits, with a threshold, and distilling only the bits whose reliability values higher
than the threshold.

5.5.1 EXIT Charts for QKD

In Figure 5.14 the block diagram of the LDPC decoder that allows to obtain the
EXIT chart of it, is shown within the context of a QKD system. The information
transfer for LDPC decoding and the performance of LDPC decoding in the fall-off
region can be visualized by the EXIT Chart as said in Chapter 4. It plots the
mutual information of the variable nodes decoder versus the mutual information of
the check nodes decoder which is modeled by the test (a priori) channel: the output
of the yellow branch in Figure 5.14 determines the value of the horizontal axis of the
EXIT chart and the output of the blue branch determines the value on the vertical
axis.

Figure 5.14: EXIT Chart for the LDPC decoder in the context of a QKD system
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Chapter 6

Capacity of a Bayesian Quantum
Channel employing Photon
Counting Detectors

In Chapter 5 the potential improvements in key transmission rate in a Quantum
Key Distribution (QKD) scheme whereby photon-counting detectors (PCD) are used
at the receiver were discussed. To take full advantage of such detectors, soft infor-
mation is generated in the form of Log-Likelihood Ratios (LLR’s) using a Bayesian
estimator of phase of the signal pulse which is used to carry the information.

In this chapter, a feasible scheme suggested in [44] to obtain a soft output quan-
tum channel useful for soft-metric-based information reconciliation protocols for
quantum key distribution is studied.

The binary communication scheme proposed in [44] allows to encode the discrete
bit values xin = {0,1} into an optical polarization qubit, with the advantage that
at the detection stage, the output is a real number xout, which can be used for soft-
information data processing. In other words, it is possible to obtain a soft output
quantum channel to be used, e.g., for quantum key distribution applications such as
information reconciliation using FEC. The scheme in based on optical qubits encoded
into the polarization degree of freedom of coherent states and Bayesian estimation
in non-asymptotic regime at the detection stage, and it is a technique which can
operate also in the presence of non dissipative noise during the propagation.

In this chapter the limits of the achievable performance gains when using photon
counting detectors are explored and compared to the case when such detectors are
not available. To this end, the classical capacity of the Bayesian inference channel
is found, clearly showing the potential gains that photon counting detectors can
provide in the context of a realistic cost-effective scheme from an implementation
point of view. While there are binary communication schemes that can achieve
a higher capacity for a given mean photon count at the receiver compared to the
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6 – Capacity of a Bayesian Quantum Channel employing Photon Counting Detectors

scheme presented here (e.g., the Dolinar receiver), most such schemes are complex
and at times unrealistic from an implementation point of view.

6.1 Bayesian Quantum Channel

Figure 6.1 represents a sketch of the binary communication scheme based on the
polarization degree of freedom of a coherent state |αQ⟩ as a qubit and on Bayesian
analysis to retrieve the information at the detection stage.

The k-th information bit is encoded as xin = {0,1} by applying the unitary
transformation U(φin) to the polarization degree of freedom of a coherent state |αQ⟩,
which is assumed to be initially in the polarization state |+⟩ = |+ 45⟩ = 1√

2
(|H⟩+ |V ⟩).

Figure 6.1: A possible experimental setup to generate soft information in QKD applications.

This technique is based on the use of a Phase Beam Splitter (PBS) and two
photon counters. The scheme allows to map the discrete bit value xin to an optical
polarized qubit, but at the detection stage can produce a discrete set of real numbers,
either in the form of Log-Likelihood Ratios, or in the form of output phase values,
which can be used for soft information processing. The experimental setup is shown
in Figure 6.1, where the polarization degree of freedom of a coherent state φin is
associated to the information bit |αQ⟩ according to the following encoding rule:

Figure 6.2: Bayesian Quantum Channel: Encoding rule

where the bit xin = 1 has an associated phase shift of π/2 relative to the bit
xin = 0. At the detection stage a measurement of the phase shift of the qubit needs
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to be performed. This can be implemented as depicted in Figure 6.1 by using a
half-wave plate (HWP) placed in front of a polarizing beam splitter (PBS) with two
photon-counters providing the number of photons in the reflected and transmitted
beams denoted n0 and n1 respectively. Let Ntot = n0+n1 denote the total number of
detected photons. It will be assumed that this is also the total number of transmitted
photons (in the hypothesis that no photon is lost), which is a Poisson distributed
random variable with mean value1 Nc = |αQ|2.
From the knowledge of the photon counts n0+ n1, the actual value of the phase shift
can be obtained by using the Bayesian estimator described in [1,2]

φest =

∫ π

0

φpB(φ|n0,Ntot)dφ = E {φ|n0,Ntot} , (6.1)

where,

pB(φ|n0,Ntot) =
p(xin = 0|φ)n0p(xin = 1|φ)n1

N
=
p(0|φ)n0p(1|φ)Ntot−n0

N
(6.2)

is the probability density function of the received phase shift given the fact that Ntot

photons have been received and n0 photons have been counted at the “0” output of
the PBS, and N is a normalization factor such that∫ π

0

pB(φ|n0,Ntot)dφ = 1.

6.2 Evaluation of the Log-Likelihood Ratios

In soft-decoding algorithms, Log-Likelihood-Ratios are typically required, which
in this case can be defined as:

LLR (n0,n1) = log

[
p (1 | {n0,n1})
p (0 | {n0,n1})

]
(6.3)

where,
p (k | {n0,n1}) = p (φk | {n0,n1}) k = 0,1 (6.4)

is the probability that the transmitted bit was ′′k′′ given the measurement pair
{n0,n1}. Using Bayes’ Theorem, Equation 6.17 can be rewritten as:

LLR (n0,n1) = log

[
p ({n0,n1} | 1)
p ({n0,n1} | 0)

]
(6.5)

Since coherent states are being used, the number of photons measured at the two
detectors are uncorrelated and, in particular, are distributed according to a Poisson

1Mean value of a coherent state, see Chapter 5
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6 – Capacity of a Bayesian Quantum Channel employing Photon Counting Detectors

statistic. Given φk, the average number N
(h)
k of detected photons at the detector

′′h′′ is given by the expression:

N
(h)
k = Nc p (h | φk) h,k = 0,1

where Nc = |αQ|2 is the average number of photons of the input coherent state, and

p (0 | φk) =
1

2

(
1 + e−∆2

cos (φk)
)

(6.6)

p (1 | φk) =
1

2

(
1− e−∆2

cos (φk)
)

(6.7)

where, to make the analysis more general, it is assumed that during propagation,
the qubit undergoes a phase diffusion process whose amplitude is characterized by
the parameter ∆. The feasibility of this scheme and its experimental demonstration
have been thoroughly investigated in [45], including the effect of phase diffusion.
Therefore:

p ({n0,n1} | k) = P
(
n0,N

(0)
k

)
P
(
n1,N

(1)
k

)
(6.8)

where,

P (n ,N) =
e−NNn

n!
(6.9)

is the Poisson probability distribution. Then, the following expression for the LLR
can be easily obtained:

LLR(n0,n1) = log

{
p(0|φ1)

n0p(1|φ1)
n1

p(0|φ0)
n0p(1|φ0)

n1

}
(6.10)

LLR(n0,n1) = n0log

[
p (0|φ1)

p (0|φ0)

]
+n1log

[
p (1|φ1)

p (1|φ0)

]
(6.11)

Considering that φ0 =
π
4
and φ1 =

3π
4
, further simplifications can be made:

p (0|φ0) =
1

2

(
1 + e−∆2

cos (φ0)
)
=

1

2

(
1 + e−∆2

cos
(π
4

))
p (1|φ0) =

1

2

(
1− e−∆2

cos (φ0)
)
=

1

2

(
1− e−∆2

cos
(π
4

))
p (0|φ1) =

1

2

(
1 + e−∆2

cos (φ1)
)
=

1

2

(
1 + e−∆2

cos

(
3π

4

))
=

1

2

(
1− e−∆2

cos
(π
4

))
p (1|φ1) =

1

2

(
1− e−∆2

cos (φ1)
)
=

1

2

(
1− e−∆2

cos

(
3π

4

))
=

1

2

(
1 + e−∆2

cos
(π
4

))
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It can be seen that the first two and the last two equations are equivalent respec-
tively, therefore a transmission and a transition probability can be defined, given by
the following expressions:

pii = p (0|φ0) = p (1|φ1) (6.12)

pij = p (0|φ1) = p(1|φ0) (6.13)

where:
pii = 1− pij (6.14)

Replacing the expressions for pii and pij in Equation 6.9, the following expression
can be obtained:

LLR (n0,n1) = log

[
pn0
ij p

n1
ii

pn0
ii p

n1
ij

]
= log

[
pn0−n1
ij pn1−n0

ii

]
(6.15)

LLR (n0,n1) = −(n1 − n0)log(pij) + (n1 − n0)log(pii) (6.16)

Finally, the expression for the LLR’s given by Equation 6.9 can be written as:

LLR (n0,n1) = (n1 − n0)log

(
pii
pij

)
(6.17)

6.3 Evaluation of the soft output phase values

In some applications, a normalized soft output phase value may be required, that
will be denoted as xout ∈ [−1,+ 1]. This section is dedicated to derive such a value
from the considered Bayesian estimator. An example of the pB(φ|n0,Ntot) function
is shown in Figure 6.3, for Ntot=6 and n0=0,...,Ntot

2.It is possible to observe how the
mean value of the received phase shift probability density function moves towards 0
when the number of photons counted at the “0” output n0 increases, while the mean
value moves towards π/2 when the number of photons counted at the “1” output
n1=Ntot-n0 increases.

The Bayesian estimator φest generates as estimates, the Ntot+1 mean values of
the Ntot+1 distributions in Figure 6.3, depending on n0,. Notice that the estimator is
known to be asymptotically optimal, that is, it allows the phase estimation with the
minimum uncertainty admitted by quantum mechanical laws (the quantum Cramer-
Rao bound)[46] when the number of counted photons Ntot becomes very large. In
the current application, however, the interest is focused on a possibly “shot-by-shot”
observation, far from the asymptotic regime. To obtain a rough but reliable and
simpler estimation of the phase shift, the following estimator can be used:

2For a phase diffusion parameter ∆ = 0.1
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6 – Capacity of a Bayesian Quantum Channel employing Photon Counting Detectors

φout = {φM |pB(φM |n0,Ntot) ≥ pB(φ|n0,Ntot),∀φ ∈ [0,π]} (6.18)

whereby the detector output phase is the mode of the density function instead of its
mean value. Notice that φout always exists and it is unique. Of course, as the total
number of detected photons n0 + n1 increases, φout and φest come to coincide [47]
[45]. The Ntot+1 values of φout derived from Figure 6.3 are shown in Figure 6.4 as
a function of n0.

0 pi/4 pi/2 3pi/4 pi
0

0.5

1

1.5

phase

p B
=

p(
φ|

n 0,N
to

t)

 

 

n
0
=0

n
0
=1

n
0
=2

n
0
=3

n
0
=4

n
0
=5

n
0
=6

Figure 6.3: The normalized functions pB(φ|n0,Ntot) for Ntot=6
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Figure 6.4: The Ntot+1 values of φout obtained for Ntot = 6 as a function of n0=6

Once the value φout has been estimated, a real value for xout can be obtained via
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6.3 – Evaluation of the soft output phase values

the transformation:

xout =
2

π

(
φout −

π

2

)
(6.19)

Note that xout ∈ [−1,+ 1] is represented on Ntot+1 levels. The soft output levels
(not to be confused with LLR values) obtained for Ntot=6 are shown in Figure 6.5
as a function of n1-n0.
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Figure 6.5: Detector characteristics showing the normalized soft output levels obtained for Ntot=6
as a function of n1-n0
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6 – Capacity of a Bayesian Quantum Channel employing Photon Counting Detectors

The detector characteristics, offering the Ntot+1 values of xout for Ntot=2,. . . ,10
are shown in Figure 6.6.

Notice that, although the output range is constant, the achievable resolution
available in the representation of the normalized output xout increases with the
number of received photons.

6.4 Capacity Evaluation

The quantum channel in d-dimensions is often modeled as a completely posi-
tive trace preserving map Ψ . The most common channel model is the depolarizing
channel which depends on one parameter λ mapping a mixed state in Cd into:

ρ → λρ+
1− λ

d
I

Where, I is the d × d identity matrix. For a general quantum channel, let ε
denote the ensemble of input states, and M the measurement or a Positive Operator
Valued Measure (POVM)3 {Ej} at the channel output. The input state ensemble,
channel and measurement together define a classical noisy channel with probability
transitions:

pnm = Tr[Ψ (ρn) Em]

Defining the probabilities over the input state, which we will denote as X, a
natural definition of classical capacity of the quantum channel would be:

Cshan (Ψ)= sup
ε,M

I(X,Y)

where I(X,Y) is the Shannon mutual information. The complication in defining
capacity of the quantum channel in contrasts with the classical channel really arises
in connection with purely quantum mechanical effects which have no analogue in
the classical domain, i.e., entanglement4. In particular, in general it is reasonable
to assume (which is in fact shown to be true) that the capacity of parallel copies
of a quantum channel with entangled inputs may be larger than the sum capacity
of each channel treated separately. It turns out that for the most common channel
model, namely the depolarizing channel, entanglement buys nothing.

The closest analogue of the binary communication scheme proposed in this chap-
ter is Binary Phase Shift Keying (BPSK) using coherent states. It is well known

3POVM (Positive Operator Valued Measure) is a measure whose values are non-negative self-adjoint operators
on a Hilbert space. It is the most general formulation of a measurement in the theory of quantum physics.

4Quantum entanglement occurs when particles such as photons, electrons, and some other particular molecules
interact physically and then become separated; the type of interaction is such that each resulting member of a pair
is properly described by the same quantum mechanical description (state), which is indefinite in terms of important
factors such as position, momentum, spin, polarization, etc.

64



6.4 – Capacity Evaluation

that for such a scheme the Dolinar receiver achieves nearly optimal results with
capacity:

CBPSK−Dolinar = 1−H2

(
0.5(1−

√
1− e−4NC )

)
where, H2(.) is the binary Entropy function. This capacity is close to the ultimate
capacity obtained using an as yet unknown optimal receiver:

CBPSK−Ultimate = 1−H2

(
0.5(1 + e−2NC )

)
The Dolinar receiver requires a complicated feedback system for its implementation.
Hence, while its capacity for a given Nc is greater than what is reported here, there
is significant difference in the level of the complexity of the receiver.

Figure 6.7: BIMO DMC Quantum Channel

The discussion thus far has been general and focused on quantum channels as
trace-preserving maps. In this section, however, is focused on a more humble pur-
suit, which is that of modeling an experimental setup using realistic off-the-shelf
components and a particular method of communicating the quantum states, and
specifically calculating the traditional Shannon capacity of the link viewed as a
probabilistic transition mechanism that maps input bits into possibly multi-level
signals used for detection. In this sense, the quantum channel is modeled as a Bi-
nary Input Multilevel Output (BIMO) Discrete Memoryless Channel (DMC), and
the main goal of this section is to contrast the capacity of a system employing pho-
ton counting detectors to that of the equivalent Binary Symmetric Channel (BSC)
resulting from reducing the photon counts into presence or absence of signals (i.e.,
hard decoding).

As noted earlier, the sufficient statistic for detection with photon counting detec-
tors is the count difference of detector 1 and 0, i.e., (n1-n0). Since each variable is an
independent Poisson random variable, the difference (n1-n0) is Skellam distributed:

n1 ∼ Poisson, µ1 =N
(1)
k (6.20)

n0 ∼ Poisson, µ0 =N
(0)
k (6.21)
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6 – Capacity of a Bayesian Quantum Channel employing Photon Counting Detectors

P (n1-n0=m | φk) = e
−
(
N

(1)
k +N

(0)
k

)(
N

(1)
k

N
(0)
k

)
I|m|2

√(
N

(1)
k .N

(0)
k

)
(6.22)

where, k=0 or 1, and I|m|(.) is the modified Bessel function of the first kind and
order |m|.

Figure 6.8: Decoding stage: Skellam distribution (n1-n0)

Note that m itself is an integer that can be positive or negative. Plugging known
values of the parameters, the following expression can be obtained:

N
(0)
k +N

(1)
k =Nc (6.23)

N
(1)
k

N
(0)
k

=
p(1|φk)

p(0|φk)
(6.24)

N
(1)
k ·N (0)

k =Nc
2p(1|φk)p(0|φk) (6.25)

Specializing to the case “zero is transmitted and is mapped to φ0” it is possible
to derive the following expression:

P (n1-n0=m|φ0) = eNc

(√
2− e−∆2

√
2 + e−∆2

)
I|m|

√
Nc

√
1− e−2∆2

2

and similarly for the case “one is transmitted and is mapped to φ1” :

P (n1-n0=m|φ1) = eNc

(√
2 + e−∆2

√
2− e−∆2

)
I|m|

√
Nc

√
1− e−2∆2

2

Let X be the random variable associated with the transmitted phase and Y be the
channel output which is our sufficient statistic (n1-n0). Then, the formulas above
give the expression for the channel transition probabilities for the DMC. Using the
classic definition of mutual information:

I (X,Y ) = H (X)−H (X | Y ) (6.26)
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and noting that the input is binary with p(X=0)=p(φ0)=p, after some manipulation
we have:

p(X=0|Y=m) =
p

p (1− αQ
m
∆) + αQ

m
∆

(6.27)

p(X=1|Y=m) =
(1− p)αQ

m
∆

p (1− αQ
m
∆) + αQ

m
∆

(6.28)

where,

αQ∆ =

√
2 + e−∆2

√
2− e−∆2

(6.29)

Finally, the conditional entropy based on two parameters, p and ∆ can be written
as:

H(X|Y ) = −e−Nc
∑
m

p

(
1

αQ∆

)m
2

I|m|


√√√√
Nc

√
1− e−2∆2

2

 log(p(X=0|Y=m))

−e−Nc
∑
m

(1− p)
(
αQ∆

)m
2 I|m|


√√√√
Nc

√
1− e−2∆2

2

 log(p(X=1|Y=m))

(6.30)

While the BIMO DMC is neither symmetric nor weakly symmetric, it is not
difficult to show that the maximizing input probability distribution is uniform.
Hence, p=0.5 maximizes the mutual information leading to channel capacity. To
compare the capacity of the link employing photon counting detector to that of a
simple detector signaling the presence or absence of signal, we need to specify how
such a detector behaves. It is logical to assume that cross-over probability of the
BSC channel associated with such a receiver can be obtained via:

pBSC =
∞∑

m=1

P (n1-n0=m|φ0) +
1

2
P (n1-n0=0|φ0) (6.31)

Notice that when (n1-n0)=0 (which for low values of Nc happens often), the detector
chooses at random between k=0 and k=1.

Figure 6.9 depicts the capacity of the BIMO DMC and its comparison to the
equivalent Binary Symmetric Channel (BSC) channel in case of hard decision de-
coding as a function of the mean photon count in the case the phase diffusion
parameter is zero.

Figure 6.10 depicts the capacity of our BIMO DMC and its comparison to the
equivalent BSC in case of hard decision decoding as a function of the phase diffusion
parameter ∆ for three different values of the mean photon count.
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6 – Capacity of a Bayesian Quantum Channel employing Photon Counting Detectors

It can be observed that the considered BIMO DMC channel offers a capacity
improvement over the equivalent BSC. This improvement could lead to a BER im-
provement when comparing the two channels in presence of an error correction code.
This is investigated in the next section.
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Figure 6.9: Classical capacity of BIMO DMC (solid green curve) compared to the equivalent BSC
with transition probability pBSC , as a function of mean photon count Nc.
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Figure 6.10: Classical capacity of BIMO DMC and equivalent BSC with transition probability as
a function of phase diffusion parameter for three different values of Nc (solid line: Nc=9, dash-dot
line: Nc=6, dash line: Nc=3).
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Chapter 7

Soft-QKD Protocol Performance

In this chapter, the novel protocol for error correction and information reconcil-
iation are validated by means of intensive software simulations under well defined
scenarios, and a short description of the software for the simulation of the soft-QKD
Protocol proposed in the previous chapters is presented. The soft-QKD simulator
is a tool to simulate and analyze the performance of the proposed protocol us-
ing different schemes for Quantum Key Distribution. Thus, allows to compare the
performance of the proposed soft-metric protocol when applied to different QKD
scenarios.

7.1 Simulations Set-up

The Soft-QKD Protocol simulator takes into account the characteristics of the
following sub-blocks:

• Quantum communication system: the quantum channel is represented accord-
ing to one of the models suggested in chapter 5, depending on the correspond-
ing scheme used for quantum transmission and detection. The value of the
estimated quantum bit error rate (QBER) can be selected by the user.

• Public communication system: the public channel is modeled as an AWGN
channel, with an elevated signal-to-noise ratio (Eb/N0), since deep coding is
allowed on the public link errors can be neglected. The digital modulation
scheme can also be selected by the user.

• LDPC decoder: uses belief propagation techniques, the values of the soft-
metrics (LLR’s) derived from the two sub-systems that form the composite
communication channel, are calculated according to the schemes selected to
model each one of them. The bit values and the LLR’s values after the quan-
tum and the classical transmission should be passed as an input to the decoder.
The number of iterations for decoding can be selected as well as the minimum
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number of errors the user intends to correct. The parity matrix of the LDPC
code used in the simulator is chosen from a set of suggested codes.

For the presentation of the simulation results, two figures will be used: the BER
or Bit Error Rate of the distilled key and the FER or Frame Error Rate of the
distilled key. A single frame is equivalent to a decoded code block.

7.2 LDPC Codes Performance

Simulations using LDPC codes with various rates (0.5, 0.61 and 0.75) and various
block lengths have been conducted. In Figure 7.1 a comparison between the BER
performance of three LDPC codes with rates Rc=0.5,0.617,0.75, decoded with 50
iterations as a function of the ratio (Eb/N0) on a classic AWGN channel are shown.
The codes with rate Rc=0.5 and 0.617 have been selected to conduct further simu-
lations for the soft-QKD protocol, since their performance is better than the code
with rate Rc=0.75, and the security of the communication is guaranteed for a rate
equal or higher than 0.5. In Figure 7.2, the BER values of a n=nq+r=408, r=252

Figure 7.1: Comparison between the BER performance of three LDPC codes with rates
Rc=0.5,0.617,0.75, decoded with 50 iterations as a function of (Eb/N0) on a classic AWGN channel

and Rc=0.5 code are compared with those of a n=nq+r=1000, r=500 and Rc = 0.5
code, one for Q in the range 0.12-0.5, showing that, as expected, longer code blocks
(and higher complexity) allow for better decoding performances.
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Weighed q-metric values αQLLR(Ypk) have been considered. The parameter αQ

has been inserted in order to optimize the contribution of the information derived
from the q-bits.

Figure 7.2: Comparison between the BER performance of two LDPC codes with Rc=0.5, one with
n=nq+r=408, r=252 and one with n=nq+r=1000, r=500 as a function of Q and α.

Now that has been demonstrated that longer code blocks allow for better per-
formance, due to limited computational power, for simulation purposes only LDPC
codes with limited lenght will be considered.

7.3 LDPC Codes for QKD

7.3.1 Binary Symmetric Quantum Channel

When the quantum channel is model as a BSC the results presented next have
been obtained via simulation. In Figure 7.3 the simulated Bit Error Rate (BER) is
reported for an LDPC code with n=nq+r=504, r=252 and rate Rc=0.5, decoded
with 100 iterations, for different values of the QBER parameter Q in the range 0.1
to 0.5, as a function of the weigh parameter αQ. It can be observed how an optimal
value of α in the order of 0.4 can be identified, which however depends on the QBER

parameter Q. Optimizing αQ allows for a strong performance improvement, lowering
the achievable error rates up to three orders of magnitude. It can also be observed
that the decoder performance converges to low BER values only if Q is smaller than
roughly 0.15, allowing for reliability control, as described in Chapter 4.
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Figure 7.3: BER performance of a LDPC code with n=nq+r=504, r=252 and Rc=0.5, decoded
with 100 iterations as a function of Q and αQ
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Figure 7.4: FER performance of a LDPC code with n=nq+r=504, r=252 and Rc=0.5, decoded
with 100 iterations as a function of Q and αQ
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In Figure 7.4 the simulated Frame Error Rate (FER) is reported for an LDPC
code with n=nq+r=504, r=252 and Rc=0.5 again, decoded with 100 iterations, for
different values of the QBER as a function of the weigh parameter αQ. It can be
observed how an optimal value of αQ in the order of 0.5-0.6 can be identified, which
however depends always on the QBER parameter.

Figures 7.5 and 7.6 instead, show the BER and the FER performance respectively,
of an LDPC code with n=nq+r=408, r=252 and Rc=0.61, decoded with 100 iter-
ations as a function of Q and αQ. The behavior is similar as in Figures 7.3 an 7.4,
and the optimal value for α is approximately 0.35 varying for each value of QBER.
The comparison between the BER and FER values for the two LDPC codes con-
sidered until now, with rates, Rc = 0.5 and Rc = 0.61 is shown in Figure 7.7, more
specifically, the comparison between the FER for the two selected LDPC codes as
a function of the parameters αQ and QBER can be seen in Figure 7.8. It can be
observed how the Rc=0.5 LDPC code guarantees better correcting capabilities than
the Rc = 0.61 LDPC code, however this would also diminished the security of the
protocol, due to the larger fraction of public bits that needs to be exchanged over
the public channel.
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Figure 7.5: BER performance of a LDPC code with n=nq+r=408, r=252 and Rc=0.61, decoded
with 100 iterations as a function of Q and αQ

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R = 0.617, (408,252)−LDPC, 50 iter, 50 error frames  1/prec = 256 (8 bits)

α
Q

F
E

R

 

 

Q = 0.015
Q = 0.02
Q = 0.025
Q = 0.03
Q = 0.04
Q = 0.05
Q = 0.08

Figure 7.6: FER performance of a LDPC code with n=nq+r=408, r=252 and Rc=0.61, decoded
with 100 iterations as a function of Q and αQ
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Figure 7.7: BER and FER performance of the LDPC decoders considered in Figures 7.3 and 7.5
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Figure 7.8: FER performance of the LDPC codes with rates Rc=0.5 and Rc=0.61, as a function
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EXIT Charts

In order to cross-check the presence of an optimal value for the weighting factor
α, the EXIT charts of the considered LDPC decoders for α=0.1,0.5,1.5 are shown in
Figure 7.9, proving that intermediate values of αQ (in this case, the value αQ=0.5)
offer open decoding channels, justifying the presence of an optimal value on αQ in
the previous figures. From the EXIT chart evaluated for the LDPC code with Rc =
0.61 depicted for Q = 0.08 and various values of αQ, it is straightforward to notice
that the maximum opening of the decoding tunnel between variable and check nodes
decoding curves is achieved for αQ = 1, in accordance with what observed in Figure
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7.6. When the value of αQ is too small -for instance 0.1- or too large -for instance
1.6- the variable nodes curve intersects the check nodes curve and, consequently, the
belief propagation decoder cannot converge to any codeword in the space of possible
solutions.
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Figure 7.9: EXIT chart of the LDPC decoder considered (lower curve) as a function of αQ and for
Q = 0.08

LDPC Decoder Convergence

Figure 7.10 depicts the number of iterations needed to achieve the FER values
of Figure 7.6, i.e. for an LDPC code with rate Rc=0.61, showing the strong corre-
lation between FER (and BER) of the decoded sequence and number of iterations.
Since the FER/BER of the decoded sequence is typically correlated to the channel
Q parameter, the behavior of Figure 7.10 suggests that the number of iterations
could be used as a valid indicator of the actual channel QBER. Being able to esti-
mate the parameter Q from the decoded bits may allow the detection of a possible
eavesdropper without wasting additional bits.

In the next page, Figure 7.11 shows the average number of iterations as a function
of the channel QBER parameter, when αQ=1 and Qest=0.05, and shows that when
the QBER value increases with respect to the expected value Qest, the decoder tends
to converge more slowly. Since the eavesdropping operation increases the QBER

value, detecting an increase in QBER is equivalent to detecting the presence of Eve.
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Figure 7.11 also shows the variance of the number of decoding operations, normalized
with respect to the square of its mean value. The fact that the normalized variance
decreases with Q shows that the average number of decoding iterations is indeed
a good estimator, whose accuracy increases with Q, i.e., when the eavesdropping
becomes more relevant.
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Figure 7.10: Average number of iterations for the LDPC code with Rc= 0.61 as a function of αQ
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Figure 7.11: Average number of decoding iterations and normalized variance of the number of
iterations for the code with Rc=0.61 as a function of Q for αQ = 1 and Qest = 0.05
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7.3.2 Binary Erasure Quantum Channel

When the lost photons are taken into account, it has been established that the
quantum channel can be model as a BEC (Binary Erasure Channel), considering
both errors and erasures. In Figure 7.12 the BER simulation results for LDPC codes
with rate Rc=0.5(nq= 504, r = 252) and Rc=0.617(nq= 408, r = 252) obtained with
a private quantum channel model with erasure are shown. BER simulation results
for LDPC codes with rate Rc=0.5(nq= 504, r = 252) and Rc=0.617(nq= 408, r
= 252) obtained with a private quantum channel with erasure are shown, when
the erasure channel model is used the corresponding metrics of the erasure bits are
considered null, therefore the overall BER worsen when using this model, as can bee
seen on Figure 7.12.
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Figure 7.12: BER simulation results for LDPC codes with rate Rc=0.5(nq= 504, r = 252) and
Rc=0.617(nq= 408, r = 252) obtained with a private quantum channel with erasure

7.3.3 Binary Input Multiple Output Quantum Channel

In this section the performance of a QKD system when employing a private
quantum channel modeled as in Figure 7.13 is presented.

In the figures below the most significant results are reported. Figure 7.14, depicts
three sets of simulation results. Each pair of curves is associated with a BER and
FER simulation results. The LDPC code used for information reconciliation is one
with n = 408, r= 252 and code rate Rc = 0.61.
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Figure 7.13: The composite channel (composed of the parallel secure and public channels) linking
transmitter and receiver in QKD applications

The black pair is for the reference system used for comparison whereby the quan-
tum channel is modeled as an equivalent BSC (i.e., inherently there is no soft metric
at the receiver and the only LLR available is from the knowledge of the QBER). The
blue pair represents an idealistic model whereby it has been assumed that the quan-
tum channel did not exist at all and the information transmitted over the quantum
channel was presumed to pass through a fictitious AWGN channel with an SNR
that would yield the observed QBER if BPSK was used for data transmission. The
red pair represents the core results of this thesis and is associated with the use of
soft metrics generated via photon counting as presented earlier in Chapter 5. As is
evident from the results there is significant reduction in BER and FER for QBER

values below 0.15 allowing significantly larger portion of the data to be kept during
further reconciliation, data sifting and privacy amplification phases of the protocol.
For instance at QBER=0.05, there is more than two orders of magnitude improve-
ment in BER and FER when comparing the proposed soft-metric processing versus
the reference protocol whereby the quantum channel is a BSC. To give an idea of
potential gains in rate consider that the FER at QBER=0.1 for the reference system
is 0.8, hence, 80% of the blocks have errors and need to be thrown away (a sim-
ple mechanism would be to use Cyclic redundancy check (CRC)1 on each frame to
detect the erroneous ones), whereas for the proposed system FER at QBER=0.1 is
0.07, hence only 7 out of 100 blocks have errors and need to be thrown away.

The estimated QBER when using the Bayesian estimator is calculated a posteri-
ori based on the number of photons counted at the detection stage which is itself
distributed according to the Poisson law:

QBER = E [qn] =
8∑

n=0

qnp (qn) (7.1)

1The cyclic redundancy check, or CRC, is a technique for detecting errors in digital data, but not for making
corrections when errors are detected. It is used primarily in data transmission. In the CRC method, a certain
number of check bits, often called a checksum, are appended to the message being transmitted. The receiver can
determine whether or not the check bits agree with the data, to ascertain with a certain degree of probability whether
or not an error occurred in transmission. If an error occurred, the receiver sends a negative acknowledgement (NAK)
back to the sender, requesting that the message be retransmitted.
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Figure 7.14: BER and FER simulation results for LDPC code with rate Rc=0.617 obtained with
the composite scheme of Figure 7.13 and different models for the private quantum channel: BSC
(blue curves), AWGN (black curves) and BIMO DMC with Bayesian estimation (orange curves)

where:

qn =



n∑
k=n+1

2

(
n
k

)
pijk(1− pij)

n−k n odd

n∑
k=n

2
+1

(
n
k

)
pijk(1− pij)

n−k +
1

2

(
n
n/2

)
pijn/2(1− pij)

n/2 n even

(7.2)

and p (qn) =
e−NcNn

c

n!
(Poisson Distribution).

Thus, the number of photons varies for each value of QBER reported in Figure
7.15 for the case of the BIMO channel with Bayesian estimator, while for the BSC
channel QBER is the transition probability . To highlight this, Figure 9 depicts the
mean estimated QBER as a function of the average number of photons detected per
pulse, Nc. Notice that the estimated number of photons Nc can only assume integer
values and cannot be too high because this fact would jeopardize the security of the
protocol. A smart choice of Nc would help improve the performance of the protocol
and would minimize the possible attacks coordinated by Eve.
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Figure 7.15: Number of estimated photons as a function of the quantum channel BER

Finally, Figure 7.16 depicts the average number of soft decoding iterations and the
variance of the number of decoding iterations performed for all three cases discussed
above as a function of QBER. This set of curves provide estimates of decoding
complexity and delay in the information reconciliation phase.
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Figure 7.16: Average number of decoding iterations and normalized variance of the number of
iterations for the LDPC code with ratesRc=0.617 as a function of Q for αQ optimum
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7.3.4 Pre-Privacy Amplification: Data Sifting

In Chapter 5 has been established that the availability of soft output information
where the decoded bits are paired with the associated reliability offers an instrument
for performing efficient and selective pre-data sifting, deleting from the decoded se-
quence, i.e. the quantum key generated by the FEC procedure, the bits with low
reliability, maintaining the most trusted information, and eliminating possible resid-
ual errors. Thus, data sifting is performed by comparing the amplitude of the soft
metrics associated with the decoded bits, with a threshold T , and sifting only the
bits whose reliability values are higher than T . This generates what is known as the
partially reconciled key that, while having extremely low number of errors, cannot
be guaranteed to be error free.

Figures 7.17 and 7.18 show the residual BER after data sifting as a function of
the considered sifting threshold for LDPC codes with Rc = 0.61 and Rc=0.5. Plots
of this type are intended to be used as design curves, which allow to select correctly
the data sifting threshold as a function of the QBER Q in order to obtain a target
residual BER in the partially reconciled key. It has to be noticed that higher values
of Q require a higher threshold and a higher number of discarded bits, resulting
in a shorter partially reconciled key. From Figures 7.17 and 7.18 it can be noticed
that the proposed data sifting technique, while having a negligible cost, can reduce
the residual BER by at least two orders of magnitude, largely reducing the num-
ber of operations required in the final two-way communication phase. It can also
be observed that the residual BER values flatten out for large values of the sifting
threshold, so that the incremental gain achievable using very large thresholds tends
to zero.
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Conclusions

In any Quantum Key Distribution system, Alice and Bob may use one of two
types of reconciliation, in order to preserve the integrity and security of their keys.
The first type is interactive reconciliation, which consists of two-way interaction
between Alice and Bob over a public classical channel for the detection and correction
of errors. The second type of interaction is one-way reconciliation in which a decision
is made beforehand regarding how errors are detected and corrected. Considering
the fact that, one-way protocols, by their nature, tend to reveal less information
over the public channel than interactive protocols where possibly many messages
are openly passed back and forth, in this work a novel information reconciliation
and data sifting protocol has been proposed, which uses Forward Error Correction
(FEC), minimizing the exchange of information related to the secret key that needs
to be sent back and forth using the public channel. This protocol, is based on soft
decoding of LDPC codes with mixed-metric inputs, where the information derived
from a private quantum channel and a classic public channel are jointly used for
decoding. The performance of the proposed methods has been studied by simulation,
and the effects of the various system parameters have been considered. Furthermore,
a feed-forward technique for the identification of a possible eavesdropper has been
proposed, based on the behavior (observation of the average number of decoding
iterations and its variance) of the LDPC decoder and on the the fact that according
to quantum physics, the mere fact of observing a quantum object perturbs it in
an irreparable way, so a possible eavesdropper will elevate the bit error rate of the
quantum transmission and this will be directly reflected on the performance of the
LDPC decoder.

The suggested algorithms can be applied to QKD schemes based both on Single
Photon or WLP sources, with or without decoy states. The difference among the
different schemes is the use of different channel metrics. However, independently
from the scheme used, the protocol allows both parties involved in a quantum key
distribution to identify a sifted secret key with minimum information exchange and
reduced computational costs.

Specifically, in this thesis, the gains that can be achieved in the secret key rates of
a QKD protocol from the use of more advanced receivers employing photon counting
detectors have been explored, motivated by the fact that the the presence of such
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7 – Soft-QKD Protocol Performance

detectors allows for the generation of soft-metrics at the receiver. Within the con-
text of this system, a multi-level quantum channel BIMO Quantum-DMC has been
identified and the evaluation of its theoretical capacity bound has been calculated.
The BIMO Quantum-DMC offered a capacity improvement over the equivalent BSC
quantum channel (leading to a BER improvement when comparing the two channel
in presence of an error correction code), translating in a significant reduction of the
values of the BER and FER for several QBER values; meaning that a significant
larger portion of the data after the stages of sifting and reconciliation may be kept

There has been much interest in quantum key distribution. Experimentally, quan-
tum key distribution over 150 km of commercial Telecom fibers and over 144 km
in atmosphere has been successfully performed. The crucial issues in quantum key
distribution are the security and the key rate. All recent experiments are, in prin-
ciple, insecure due to real-life imperfections. However with the use of methods like
decoy states, it is possible to make most of those experiments by using essentially
the same set-up. Since the security aspect seems to be improved by the use of such
methods, it is becoming more and more important to obtain elevated key rates from
QKD systems to keep up with the high rates of practically any telecommunication
system, this way secure data transmission may be guarantee by using one time pad
encryption algorithms.

In general, the availability of the soft-metric allows for the use of advanced it-
erative soft-decoding techniques during the information reconciliation phase, signif-
icantly reducing the residual bit and frame error rates with subsequent impact on
the achievable secret key rates which is, as said before, is one of the fundamental
performance guideline in QKD. The proposed protocol, while having a negligible
cost, can reduce the residual FER in QKD systems, largely reducing the interaction
required between the two parties involved, increasing the key rate and protecting
the secrecy of the information exchanged
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Appendix A

Bra Ket Notation

A.1 Vectors in Euclidean spaces

In physics, basis vectors allow any vector to be represented geometrically using
angles and lengths, in different directions, i.e. in terms of the spatial orientations. It
is simpler to see the notational equivalences between ordinary notation and bra-ket
notation, so for now; consider a vector A as an element of 3-d Euclidean space using
the field of real numbers, symbolically stated as A ∈ R3

The vector A can be written using any set of basis vectors and corresponding
coordinate system. Informally basis vectors are like building blocks of a vector, they
are added together to make a vector, and the coordinates are the number of basis
vectors in each direction. Two useful representations of a vector are simply a linear
combination of basis vectors, and column matrices. Using the familiar cartesian
basis, a vector A is written;

A = Axex + Ayey + Azez =

Ax

Ay

Az


respectively, where ex, ey, ez denotes the cartesian basis vectors (all are orthogonal

unit vectors) and Ax, Ay, Az are the corresponding coordinates, in the x, y, z
directions. Natural alternatives to Cartesian are spherical and cylindrical systems.
In general for any basis in 3d space we write;

A = A1e1 + A2e2 + A3e3 =

A1

A2

A3
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A – Bra Ket Notation

Figure A.1: Cartesian vectors, bases, coordinates and components

Generalizing further, consider a vector A in an N dimensional vector space over
the field of complex numbers C, symbolically stated as A ∈ CN . The vector A is
still conventionally represented by a linear combination of basis vectors or a column
matrix:

A =
N∑

n=1

Anen =


A1

A2
...
AN


though the coordinates and vectors are now all complex-valued.

A.2 Bras and kets in Hilbert spaces

Rather than boldtype, over/under-arrows, underscores etc conventionally used

elsewhere; A, A, A⃗, Dirac’s notation for a vector uses vertical bars and angular
brackets; |A⟩. This applies to all vectors, the resultant vector and the basis. The
previous vectors are now written

|A⟩ = Ax|ex⟩+ Ay|ey⟩+ Az|ez⟩ =

Ax

Ay

Az

 ,

|A⟩ = A1|e1⟩+ A2|e2⟩+ A3|e3⟩ =

A1

A2

A3

 ,
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A.2 – Bras and kets in Hilbert spaces

The last one may be written for short by

|A⟩ = A1|1⟩+ A2|2⟩+ A3|3⟩

More generally, a vector |A⟩ is an element of a Hilbert space H , meaning |A⟩ ∈ H
, and represented by:

|A⟩ =
N∑

n=1

An|en⟩ =


A1

A2
...
AN


These vectors are kets. For reasons of efficient manipulation, and particularly

due to Heisenberg’s matrix mechanics, the matrix representation remains. In prin-
ciple Dirac’s notation can be applied universally, though its strict application is
to abstract vector spaces - most frequently a projective Hilbert space, denoted H.
This space uses the field of complex numbers, again meaning the vector basis and
coordinates are complex-valued.

Figure A.2: Ket vectors, bases, coordinates and components

An extra feature not shown above is a dual ket, given by:

⟨A| =
N∑

n=1

A∗
n⟨en| =


A1

A2
...
AN


∗T

=
(
A∗

1 A∗
2 · · · A∗

N

)

These are bra vectors.
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A – Bra Ket Notation

The bra is simply the conjugate transpose and matrix transpose (taken together
the Hermitian conjugate) of the ket and vice versa. The above cases are finite-
dimensional Hilbert spaces, i.e. column/row vectors with a finite number of ele-
ments. In infinite-dimensional spaces there are infinitely many coordinates and the
ket may be written in complex function notation, by prepending it with a bra.

Technically; bras are continuous linear functionals from H to the complex num-
bers C, defined by:

⟨ψ| : H → C

in which the functional takes a ket, and returns a complex number;

⟨ψ| ( |ρ⟩ ) = IP (|ψ⟩ , |ρ⟩) ,

for all kets in the Hilbert space (symbolically ∀ |ρ⟩ ∈ H), where IP( , ) denotes the
inner product defined on the Hilbert space. Here the origin of the bra-ket notation
becomes clear: when we drop the parentheses (as is common with linear functionals)
and meld the bars together we get ⟨ψ|ρ⟩, which is common notation for an inner
product in a Hilbert space. This combination of a bra with a ket to form a complex
number is called a bra-ket or bracket.

The notation is justified by the Riesz representation theorem, which states that a
Hilbert space and its dual space are isometrically conjugate isomorphic. Thus, each
bra corresponds to exactly one ket, and vice versa. More precisely, if

J : H → H∗

is the Riesz isomorphism between H and its dual space, then

∀ϕ ∈ H : ⟨ϕ| = J(|ϕ⟩).

Note that this only applies to states that are actually vectors in the Hilbert
space. Non-normalizable states, such as those whose wavefunctions are Dirac delta
functions or infinite plane waves, do not technically belong to the Hilbert space.
So if such a state is written as a ket, it will not have a corresponding bra accord-
ing to the above definition. This problem can be dealt with in either of two ways.
First, since all physical quantum states are normalizable, one can carefully avoid
non-normalizable states. Alternatively, the underlying theory can be modified and
generalized to accommodate such states, as in the GelfandNaimarkSegal construc-
tion or rigged Hilbert spaces. In fact, physicists routinely use bra-ket notation for
non-normalizable states, taking the second approach either implicitly or explicitly.
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A.3 – Inner products

A.3 Inner products

In Euclidean space of any finite dimension, the dot product can be defined for
vectors using orthonormal bases:

a ·B =
N∑

n=1

AnBn

for the same vector, the dot product of a vector with itself is the square of its
norm (magnitude)

A ·A =
N∑

n=1

A2
n = ∥A∥2

Orthonormality means if two vectors are perpendicular, their dot product is zero,
for any two orthonormal basis vectors ei and ej this reads,

ei · ej = δij

where δij is the Kronecker delta.
This operation has the interpretation as a projection of one magnitude of a vector

onto the other. Using this fact, the coordinates with respect to the chosen basis are
projections of the vector itself to the basis vectors. For the cartesian coordinates
they are:

Ax = ex ·A Ay = ey ·A Az = ez ·A

For space of finite dimension N, the coordinates are:

An = en ·A

for n = 1,2,...N .
Dot products are special cases of the general inner product. In bra-ket notation

this is:

⟨A|B⟩ =

(
N∑

n=1

A∗
n⟨en|

)(
N∑

n=1

Bn|en⟩

)
=
(
A∗

1 A∗
2 · · · A∗

N

)
B1

B2
...
BN


For the case of the same vector,

⟨A|A⟩ =

(
N∑

n=1

A∗
n⟨en|

)(
N∑

n=1

An|en⟩

)
=
(
A∗

1 A∗
2 · · · A∗

N

)
A1

A2
...
AN

 =
N∑

n=1

|An|2 = ∥A∥2
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A – Bra Ket Notation

so analogous to the dot product yielding the square of the magnitude of a vec-
tor, the inner product of a bra and ket is the square of the vector norm. Again,
orthonormality reads,

⟨ei|ej⟩ = δij

Using the inner product on the above euclidean vectors, written in bra-ket nota-
tion the cartesian coordinates are

Ax = ⟨ex|A⟩, Ay = ⟨ey|A⟩, Az = ⟨ez|A⟩
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Appendix B

Operators

B.1 Definitions

Definition 1: An operator Ô is a mathematical entity that transforms a function
f(x) into another function g(x) as follows:

Ôf (x ) = g(x ),

where f and g are functions of x.

Definition 2: An operator Ô that represents an observable O is obtained by
first writing the classical expression of such observable in Cartesian coordinates
(e.g., O = O(x,p)) and then substituting the coordinate x in such expression by
the coordinate operator x̂ as well as the momentum p by the momentum operator
p̂ = −i~∂/∂x.

Definition 3: An operator Ô is linear if and only if (iff),

Ô(af(x) + bg(x)) = aÔf(x) + bÔg(x),

where a and b are constants.

Definition 4: An operator Ô is hermitian iff,∫
ϕ∗
n(x)Ôψm(x)dx =

[∫
ψ∗
m(x)Ôϕn(x)dx

]∗
,

where the asterisk represents the complex conjugate of the expression embraced by
brackets.

Definition 5: A function ϕn(x) is an eigenfunction of Ô iff,

Ôϕn(x) = Onϕn(x),
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B – Operators

where On is a number called eigenvalue.

B.2 Eigenfunctions and Eigenvalues

An eigenfunction of an operator Â is a function f such that the application of Â
on f gives f again, times a constant.

Âf = kf

where k is a constant called the eigenvalue. It is easy to show that if Â is a linear
operator with an eigenfunction g, then any multiple of g is also an eigenfunction of
Â.

When a system is in an eigenstate of observable A (i.e., when the wavefunction is

an eigenfunction of the operator Â) then the expectation value of A is the eigenvalue
of the wavefunction. Thus if

Âψ(r) = aψ(r)

then < A > =

∫
ψ∗(r)Âψ(r)dr (51) =

∫
ψ∗(r)aψ(r)dr = a

∫
ψ∗(r)ψ(r)dr = a

assuming that the wavefunction is normalized to 1, as is generally the case. In
the event that ψ(r) is not or cannot be normalized (free particle, etc.) then we may
use the formula

< A >=

∫
ψ∗(r)Âψ(r)

d
r

∫
ψ∗(r)ψ(r)dr

What if the wavefunction is a combination of eigenstates? Let us assume that
we have a wavefunction which is a linear combination of two eigenstates of Â with
eigenvalues a and b.

ψ = caψa + cbψb

where Âψa = aψa and Âψb = bψb. Then the expectation value of A is

< A > =

∫
ψ∗Âψ

=

∫
[caψa + cbψb]

∗ Â [caψa + cbψb]

=

∫
[caψa + cbψb]

∗ [acaψa + bcbψb]

= a|ca|2
∫
ψ∗
aψa + bc∗acb

∫
ψ∗
aψb + ac∗bca

∫
ψ∗
bψa + b|cb|2

∫
ψ∗
bψb

= a|ca|2 + b|cb|2
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B.3 – Hermitian Operator

assuming that ψa and ψb are orthonormal. Thus the average value of A is a
weighted average of eigenvalues, with the weights being the squares of the coefficients
of the eigenvectors in the overall wavefunction.

B.3 Hermitian Operator

The expectation value of an operator Â is given by

< A >=

∫
ψ∗(r)Âψ(r)dr

All physical observables are represented by such expectation values. Obviously,
the value of a physical observable such as energy or density must be real, so we
require < A > to be real. This means that we must have < A >=< A >∗, or∫

ψ∗(r)Âψ(r)dr =

∫
(Âψ(r))∗ψ(r)dr

Operators Â which satisfy this condition are called Hermitian. One can also
show that for a Hermitian operator,∫

ψ∗
1(r)Âψ2(r)dr =

∫
(Âψ1(r))

∗ψ2(r)dr

for any two states ψ1 and ψ2.
An important property of Hermitian operators is that their eigenvalues are real.

We can see this as follows: if we have an eigenfunction of Â with eigenvalue a, i.e.
Âψa = aψa, then for a Hermitian operator Â∫

ψ∗
aÂψa =

∫
ψa(Âψa)

∗

a

∫
ψ∗
aψa = a∗

∫
ψaψ

∗
a

(a− a∗)

∫
|ψa|2 = 0

Since |ψa|2 is never negative, we must have either a = a∗ or ψa = 0. Since ψa = 0
is not an acceptable wavefunction, a = a∗, so a is real.

Another important property of Hermitian operators is that their eigenvectors are
orthogonal (or can be chosen to be so). Suppose that ψa and ψb are eigenfunctions

of Â with eigenvalues a and b, with a ̸= b. If Â is Hermitian then∫
ψ∗
aÂψb =

∫
ψb(Âψa)

∗
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B – Operators

b

∫
ψ∗
aψb = a∗

∫
ψbψ

∗
a

(b− a)

∫
ψ∗
aψb = 0

since a = a∗ as shown above. Because we assumed b ̸= a, we must have∫
ψ∗
aψb = 0, i.e. ψa and ψb are orthogonal. Thus we have shown that eigenfunctions

of a Hermitian operator with different eigenvalues are orthogonal.
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Appendix C

Block codes

Consider a finite set of symbols Fq, called alphabet, with q elements. The in-
formation to be processed and the codewords will be expressed with symbols from
this alphabet. Fq has the structure of a (finite) field (in particular the size of the
alphabet q is the power of a prime).

Definition 1.1. A linear block code of length n and dimension k is a k-dimensional
subspace C of Fq

n The length of the code fixes the length of the data streams sent
through the channel, and the dimension measures the amount of information,
without redundancy, that each of these streams has. Encoding is described by
means of an encoding map, an injective linear map

g : Fq
k → Fq

n

Definition 1.2. A generator matrix of the code is a matrix representation of the
encoding map.

Definition 1.3. Let x,y ∈ Fn. The Hamming weight of x is the number of nonzero
components of x,w(x) = ♯{i|xi ̸= 0}. The Hamming distance between x and
y is the number of components in which x and y differ, d(x,y) = ♯{i|xi ̸= yi}.
The minimum distance of a code C is the minimum Hamming distance between
any two different codewords, d(C) = minx,y∈C{d(x,y)}

Because of linearity d(x,y) = w(x − y) and thus d(C) = minx,y∈C{w(x − y)} =
minc∈C{w(c)} Endowed with the Hamming distance, Fn is a metric space. A block
code over Fq with length n, dimension k and minimum distance d is often referred to
as a [n,k,d]q-code. The minimum distance quantifies the number of errors that the
code can detect or correct. It is well-known that a code with minimum distance d
can detect all errors of weight at most d− 1 and correct all errors of weight at most
d−1
2
. Therefore the minimum distance of a code characterizes its error correcting

capacity.
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Appendix D

Quantum Channel Model

In a broad sense, in quantum information theory, a quantum channel is a com-
munication channel which can transmit quantum information, as well as classical
information. An example of quantum information is the state of a quantum bit
whereas the meaning of classical information is clear.
More formally, since in quantum mechanics observables are associated with Her-
mitian operators, quantum channels may be viewed as completely positive, trace
preserving maps between spaces of operators. In other words, a quantum channel is
just a quantum operation viewed not merely as the reduced dynamics of a system
but as a pipeline intended to carry quantum information.
Quantum channel is memoryless if the induced mapping at a given time is indepen-
dent of the past mappings. Quantum channels transmitting quantum information
can be viewed as performing a quantum operation mapping two finite dimensional
Hilbert spaces.
From the Schrödinger viewpoint, let HA and HB be the Hilbert state spaces (finite-
dimensional) at the transmit and receiving ends, respectively, of a channel. Let
L(HA) denote the family of operators on HA. In the Schrödinger picture, a purely
quantum channel is a map Φ between density matrices acting on HA and HB with
the following properties:

1. Since all quantum mechanical operators of interest are linear, Φ needs to be
linear.

2. Since density matrices are positive, Φ must preserve the cone of positive ele-
ments. In other words, Φ is a positive map.

3. If we couple an ancilla of arbitrary finite dimension n to the system, the induced
map on the tensor product In

⊗
Φ, o where In is the identity map on the ancilla,

must also be positive. Therefore it is required that In
⊗

Φ is positive for all
n. Such maps are called completely positive.

4. Density matrices are specified to have trace 1, so Φ has to preserve the trace.
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The adjectives completely positive and trace preserving used to described a
map are sometimes abbreviated CPTP. In the literature, sometimes the fourth
property is weakened so that Φ is only required to be non trace-increasing. Here,
the assumption is that that all channels are CPTP.
From the Heisenberg viewpoint, density matrices acting on HA only constitute a
proper subset of the operators on HA and same can be said for system B. However,
once a linear map Φ between the density matrices is specified, a standard linearity
argument, together with the finite dimensional assumption, allow one to extend Φ
uniquely to the full space of operators. This leads to the adjoint map Φ∗, which
describes the action of Φ in the Heisenberg picture.
Viewing Φ : L (HA) → L(HB) as a map between Hilbert spaces, we obtain its adjoint
Φ∗ as:

⟨A,Φ(ρ)⟩ = ⟨Φ∗ (A) ,ρ⟩
While Φmaps states on A to those on B, Φ∗ maps observables on system B to observ-
ables on system A. This relationship is same as that between the Schrödinger and
Heisenberg descriptions of dynamics. The measurement statistics remain unchanged
whether the observables are considered fixed while the states undergo operation or
vice versa.
It can be directly checked that if Φ is assumed to be trace preserving, Φ∗ is unitary,
that is Φ∗ (I) = I. Physically speaking, this means that, in the Heisenberg picture,
the trivial observable remains trivial after applying the channel.
In the context of transmitting quantum bits through either a fiber optics channel or
free space, the above broad generalizations and definitions of the quantum channel
are of little use. In practical applications to QKD, it is of importance to understand
what happens to the q-bit as it traverses the channel. Since the q-bit is often asso-
ciated with transmission of photons, it is important to characterize what happens
to photons as they traverse the channel.
The most used quantum channel is called depolarizing channel and it is described
by the unitary transformation:

ε (ρ) = (1− p) ρ+
p

3
(XρX + Y ρY + ZρZ)

whereby X, Z, and Y are ordinary Pauli matrices describing, respectively, a bit flip,
a phase flip, and a combination of bit and phase flips. The depolarizing channel
transmits independently each quantum bit described by the density operator ρ,
identifying a mixed-state quantum bit. The quantum bit is transmitted correctly
with probability (1− p), while it is bit flipped, phase flipped or both independently
with probability p

3
. Such a channel can be simulated by using a 4-ary channel with

probabilities (with A=1):

pX =
p

A+ 2

pY =
p

A+ 2
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D – Quantum Channel Model

pZ =
pA

A+ 2

or a cascade of two dependent classical Binary Symmetric Channels (BSC) with
probabilities of errors, respectively, pX and pZ . The first BSC models a bit flip with
probability pX , while the second BSC a phase flip with probability pZ . However, a
reasonable approximation is to consider statistical independence among the cascaded
BSCs so that the cascade is equivalent to a unique BSC with cross-over probability
Q that can be related to pX and pZ as follows:

Figure D.1: Quantum channel model as the cascade of two BSC

Given that:
pX = pY = pZ = p/3

We have:

Q =
3pX
2

=
3pZ
2

The latter follows from the conditions which make both models equivalent to each
other:

1−Q = (1− pX)(1− pZ)

Q/3 = pX (1− pZ) = pZ (1− pX) = pXpZ

These equations signify the fact that a bit or phase flip occur with probability 2Q/3,
where Q is the chosen quantum cross-over probability of the quantum BSC channel.
The classic public channel uses classic communication schemes, and possibly very
strong coding for data protection, so that the bit error rate of the classic channel
is generally extremely low. Additive White Gaussian Noise (AWGN) is generally
the predominant impairment on the classic channel, so that the equivalent channel
model is as shown below:
In this model, Xrk is the k-th transmitted symbol, Nk ∼ N(0, σ2) is a Gaussian
random variable with zero mean and variance σ2 = N0/2 = Eb/(2ηs), where
ηs = Eb/N0 is the wireless link signal-to-noise ratio, and Y rk is the real sample
obtained at the output of the public channel detector.
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