
Building Oblivious Transfer on Channel Delays

Paolo Palmieri and Olivier Pereira

Université catholique de Louvain
UCL Crypto Group

Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium
{paolo.palmieri,olivier.pereira}@uclouvain.be

Abstract. In the information-theoretic setting, where adversaries have
unlimited computational power, the fundamental cryptographic primi-
tive Oblivious Transfer (OT) cannot be securely achieved if the parties
are communicating over a clear channel. To preserve secrecy and se-
curity, the players have to rely on noise in the communication. Noisy
channels are therefore a useful tool to model noise behavior and build
protocols implementing OT. This paper explores a source of errors that
is inherently present in practically any transmission medium, but has
been scarcely studied in this context: delays in the communication.
In order to have a model for the delays that is both general and com-
parable to the channels usually used for OT – such as the Binary Sym-
metric Channel (BSC) – we introduce a new noisy channel, the Binary
Discrete-time Delaying Channel (BDDC). We show that such a channel
realistically reproduces real-life communication scenarios where delays
are hard to predict and we propose a protocol for achieving oblivious
transfer over the BDDC. We analyze the security of our construction in
the semi-honest setting, showing that our realization of OT substantially
decreases the protocol sensitivity to the user’s knowledge of the channel
compared to solutions relying on other channel properties, and is very
efficient for wide ranges of delay probabilities. The flexibility and gen-
erality of the model opens the way for future implementation in media
where delays are a fundamental characteristic.

Keywords: Oblivious transfer, secure multi-party computation, infor-
mation theoretic security, cryptography on noisy channels.

1 Introduction

The first uses of cryptography arose from the necessity of sending a secret mes-
sage to some trusted correspondent in a way that only the intended receiver could
learn the information. However, we may sometime be interested in communicat-
ing with someone we do not trust. Secure multi-party computation allows several
parties to perform a shared computation while preserving the secrecy of their
respective inputs and the correctness of the results [2].

In the case of two-party computation, where only two players are involved in
the communication, a primitive of central importance is Oblivious Transfer (OT).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bournemouth University Research Online

https://core.ac.uk/display/42142225?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In a protocol that realizes OT, a sender sends some information to a receiver,
which is however able to learn only part of it, while the sender remains oblivious
as to what is received. The relevance of OT is due to its universality: any other
two-party computation can be achieved on top of it [10]. However, if we make
no computational assumption, that is, if we assume adversaries have unlimited
computational capabilities, such a fundamental primitive cannot be implemented
with unconditional security over a standard, error-free communication medium.
Thus is the importance of using noisy channels, where we can exploit errors in
the communication to our advantage in order to implement oblivious transfer in
an unconditionally secure fashion. In general, any non-trivial noisy channel can
be used for this purpose [6, 11].

The first protocol for OT was built on the Binary Symmetric Channel (BSC)
[5, 4], a noisy channel where bits have some fixed probability of being flipped
during the transmission. Other models of communication channels have since
been designed and studied, in respect of their property of being a good medium
over which to build OT. Of the fair number of noisy channels proposed over
the years, most are derived from the BSC itself. The Unfair Noisy Channel
(UNC), a weaker and therefore less assuming noisy channel, was introduced
by Damg̊ard, Kilian and Salvail [8]. Instead of a fixed error probability, as in
the case of a regular BSC, this channel allows for a known range of possible
noise levels, and, to add more generality, it also let the potential attacker to
be given the advantage of knowing exactly what the actual noise level is (from
which the name “unfair” is derived). In [17], Wullschleger proposes a new set of
noisy channels, called Weak Noisy Channels (WNC). In particular, he revised
two common primitives redesigning them into a new fashion: the Weak Erasure
Channel (WEC) and the Weak Binary Symmetric Channel (WBSC). The aim
of this work is to define the channels not with a predefined set of functionalities,
but only by a set of conditions that the channels must satisfy. In this way, the
primitives allow the attacker some more freedom. For instance, it is taken into
account the possibility for a malicious player to know, with a certain probability,
if the bit received through the channel was in fact correct or not.

Despite the differences in the channels, the respective protocols designed to
build OT usually follow the same scheme: the channel is used repeatedly by the
parties, to benefit from privacy amplification, and error correcting codes (ECC)
are used to ensure the correctness of the communication. Unfortunately, the use
of ECC’s also limits the flexibility of the construction by reducing the ranges of
acceptable error probabilities, while applying privacy amplification techniques
implies that a considerable amount of data needs to be transmitted through
the channel for each single bit of private information we want to send. These
factors, along with the strong requirements still imposed by current noisy channel
models, prevent any real application of oblivious transfer protocols not based on
computational assumptions.

1.1 Contribution

In order to decrease the sensitivity of OT protocols to the precise knowledge of
channel characteristics and make actual implementation a more realistic prospect,
we propose a new noisy channel primitive, called Binary Discrete-time Delaying
Channel (BDDC). The BDDC preserves the basic characteristics of the BSC: it
is a binary, discrete and memoryless channel; but it is based on a common but
rarely used error source, the delays in communication. Delays happen in almost
any telecommunication medium, both wired and wireless, but, to the best of our
knowledge, have never been used in the design of oblivious transfer protocols in
the information theoretic setting before.

To show how the channel can be used to achieve any secure two-party compu-
tation, we propose a protocol that implements oblivious transfer over the BDDC,
and we provide a proof of the security of our realization in a scenario where play-
ers are honest-but-curious. The protocol design has two original features that
largely increase its flexibility and efficiency compared to current constructions.
First, the information sent by the sender through the channel is structured in a
specific way in order to exploit the peculiarities of the channel and reduce the
amount of communication required. Second, the protocol does not need error
correcting codes to preserve the correctness of the communication. This allows
for a much larger tolerance of variations in the error probability of the channel,
even during the protocol execution.

The flexibility and generality of the model opens the way for future imple-
mentation, especially in media where delays are a fundamental characteristic, as
in the case of wireless communication, or wired IP networks.

1.2 Outline of the Paper

In Section 2 we introduce a new noisy channel based on data transmission de-
lays, and we show how it actually models realistic communication scenarios. In
Section 3 we provide a security definition for oblivious transfer, as well as some
other useful definitions and preliminary notions which will be needed. We also
propose a protocol that implements oblivious transfer over the new channel.
In Section 4 we prove the security in the semi-honest model and we show the
efficiency of our construction.

2 Transmission Delays as a Source of Noise

Digital communications are almost always affected by delays in data transmis-
sion, a fundamental characteristic of wireless communication, but also a common
problem in wired IP networks [14]. Reducing or limiting delays has always been
one of the main challenges in the communication field. Delays are quite often
difficult to predict and almost impossible to eliminate. Moreover, in real and
non-isolated systems, they usually depend on external, uncontrollable factors.
But what can be a daunting property in the field of communication, can turn

out to be extremely useful in cryptography, where noisy channels have long been
studied in order to achieve secure computation.

However, despite having these appealing characteristics, delays have not been
systematically used as a source of noise in noise-demanding security applications.
In particular, specific studies in the field of secure two-party computation against
computationally unbounded adversaries are still missing. In this paper we ad-
dress this by proving that oblivious transfer can be achieved on a channel whose
only source of noise is transmission delays.

In order to obtain results as general and widely applicable as possible, we need
a channel model that makes no unnecessary assumptions on the delay. At the
same time, to be able to make meaningful comparisons, we want the channel to
maintain the common features of the other channels currently used for oblivious
transfer protocols in the information-theoretic setting – most notably the binary
symmetric channel and its modifications. In information theory literature, there
is an abundance of channel definitions that model most, if not all, forms of delay.
However, those channels are designed around specific communication scenarios
and for purposes different from those of cryptography. Therefore, we define a new
noisy channel that is based on a small set of assumptions and is simple enough
to allow for clear constructions and proofs, the Binary Discrete-time Delaying
Channel (BDDC). In section 2.2 we show how the BDDC succeeds in modeling
real-life communication scenarios.

2.1 Binary Discrete-time Delaying Channel (BDDC)

Our model of communication channel is a box accepting binary strings and
emitting each accepted string after a certain delay. The channel operates at
discrete times, which means that it is not continuously accepting inputs and
emitting outputs, but these actions can only occur at specific instants in time.
For simplicity, we assume that the action of accepting or emitting a string is
instantaneous, that is, it takes no time to be accomplished.

Definition 1. A Binary Discrete-time Delaying Channel with delaying proba-
bility p consists of

– an input alphabet {0, 1}n,
– an output alphabet {0, 1}n,
– a set of consecutive input times T = {t0, t1, . . .} ⊆ N,
– a set of consecutive output times U = {u0, u1, . . .} ⊆ N where ∀ui ∈ U, ti ∈
T, ui ≥ ti .

Each input admitted into the channel at input time ti ∈ T is output once by the
channel, with probability of being output at time uj ∈ U

Pr [uj] = p(j−i) − p(j−i+1) . (1)

Example 1. The probability of a string x, admitted into the channel at t0, to be
emitted without delay at u0 is

Pr [u0] = 1− p .

The channel is memoryless. A string of symbols is delayed with probability
p independent of the history of strings, symbols or delays. For instance, the
probability for two strings sent at the same input time ti of being both delayed
while transmitted is p2. Neither the sender nor the receiver gets any feedback
about the transmission, i.e. they do not learn any information about whether or
not a string sent or received was actually delayed.

Informally put, the channel models a non-instantaneous communication be-
tween two parties, where the transmission takes a standard time (ti − ui). Some
of the content transmitted suffers unpredictable delays, which are usually short,
but can sometimes take much longer.

Remark 1. It should be noted that there is no strict requirement regarding the
discrete output times in relation to the input ones. For example, while logically
ui cannot precede ti on the time-line, it is perfectly acceptable for the purpose of
the channel both having ui and ti happen simultaneously, or having ui happening
later, even after any number of tj with j > i. The channel also makes no claim
whether or not the distance between each input (or output) time has to be fixed,
but for clarity’s sake we assume that to be the case.

Channel

t0

t1

u0

u1

Pr (p)

c1, c2

c3, c4

c2

c1, c3, c4

t u

Fig. 1. A schematization representing a Binary Discrete-time Delaying Channel ac-
cepting two strings at time t0, one of which gets delayed once, and two at time t1, none
of which gets delayed. This results in the channel emitting one string at time u0 and
three at u1.

2.2 Real-World Communication Scenarios

While delays generally occur in most forms of telecommunication, a digital net-
working communication method that is particularly sensitive to them is packet
switching. Packets moving through a shared network are usually delivered to
destination passing by a variable number of nodes, routers and switches. At
each hop a packet may be buffered and queued, building up a variable delay

depending on the traffic load of the network. For a deliberate design choice, the
Internet Protocol (IP) does not guarantee that packets are delivered in the same
order in which they were originally sent. The behavior of a network resulting in
out-of-order delivery of packets is known as packet reordering. A 2004 study by
Zhou and Van Mieghem found that, tracing sets composed of 50 100-byte UDP
packets between 12 Internet test boxes, around 56% of the streams were subject
to packet reordering [18], while Bellardo and Savage found in [1] that minium-
sized TCP packets are reordered more than 10 percent of the time. Mesurements
techniques are available to assess the impact of this phenomenon [1], and the
analysis of the reordering caused by multipath forwarding (the choice of differ-
ent routes for packets in the same stream) indicates that the current trend of
increase in parallelism necessary to handle high speed links is also increasing the
occurrence of packet reordering [12].

The binary discrete-time delaying channel is well suited to simulate the be-
havior of an IP network affected by packet reordering. The model approximates
reality by introducing the requirement of discrete times for inputs and outputs,
which allows for a remarkably more flexible and easier to study noisy channel.
Generally, any packet switching network where a packet has some probability of
being delayed during the transmissions can be modeled using a BDDC.

3 Building Oblivious Transfer over a BDDC

In the original concept of oblivious transfer, as presented by Rabin [15], the
sender, Sam, sends his secret bit b to the receiver, Rachel. Rachel receives the
bit with probability 1

2 and, whether or not she receives it, she will not tell Sam.
A variant of the primitive, named chosen one-out-of-two oblivious transfer, or
simply 1-2 oblivious transfer, was later presented by Even, Goldreich and Lempel
[9]. In this case Sam has two secrets bits, b0 and b1, and wants to communicate
one of them to Rachel, without at the same time revealing the other. Rachel
wants to choose which one to receive without letting Sam know her selection s,
but should not be able to learn any information other than the secret bit bs she
has selected. The two versions of the primitive were shown to be equivalent by
Crépeau [3]. We choose to focus on 1-2 oblivious transfer, and in the following,
for simplicity, we refer to it simply as oblivious transfer.

3.1 A Security Definition for Oblivious Transfer

A protocol implements OT in a secure manner if three conditions are satisfied
after a successful execution: Rachel learns the value of bs (correctness); Rachel
gains no further information about the value of b1−s (security for Sam); Sam
learns nothing about the value of s (security for Rachel) [5]. We give a formal
definition of these security conditions by using the concept of prediction advan-
tage. The prediction advantage is a measure of the advantage an adversary has
in guessing a secret bit when using all the information available to her. We use
the notation found in [16].

Definition 2. ([16]) Let PXY be a distribution over {0, 1} × Y. The maximal
bit prediction advantage of X from Y for a function f is

PredAdv (X | Y) = 2 ·max
f

Pr [f (Y) = X]− 1 . (2)

We call view of a player all the information that the player obtains during an
execution of the protocol. For each execution there are both a receiver’s view and
a sender’s view. In the semi-honest model, the adversary is passive: she follows
the protocol, but outputs her entire view [16].

When proving the security of our construction, we use the following definition
of oblivious transfer.

Definition 3. A protocol Π between a sender and a receiver, where the sender
inputs (b0, b1) ∈ {0, 1} and outputs nothing, and the receiver inputs s ∈ {0, 1}
and outputs S, securely computes 1-2 oblivious transfer with an error of at most
ε, assuming that U and V represent the sender and receiver views respectively,
if the following conditions are satisfied:

– (Correctness) If both players are honest, we have

Pr [S = bs] ≥ 1− ε . (3)

– (Security for Sam) For an honest sender and an honest (but curious) receiver
we have

PredAdv (b1−s | V, s) ≤ ε . (4)

– (Security for Rachel) For an honest receiver and an honest (but curious)
sender we have

PredAdv (s | U, b0, b1) ≤ ε . (5)

3.2 A Protocol for Oblivious Transfer over a BDDC

The protocol we introduce allows the construction of oblivious transfer over a
BDDC. The protocol is composed of a first phase, during which the sender Sam
transmits through the channel multiple times and the receiver Rachel listen, and
a second phase, where communication happens on a clear channel and the parties
exploit the noise introduced by the channel to achieve their goals of secrecy
and security. Before any communication can actually begin, some introductory
computation by the sending party is needed, in order to craft the strings that
will be sent later on to the receiver through the channel.

This construction follows the basic concepts introduced by Crépeau and Kil-
ian while describing for the first time how to build OT over the BSC [5].

Protocol 1. Before starting any communication, some preparatory computa-
tion needs to be completed. Sam selects two disjoints sets E and E′ of n distinct
binary strings of length l: e1, . . . , en and e′1, . . . , e

′
n.

Then, Sam builds the following sets:

– C, that contains the strings c1, . . . , cn defined as the concatenation ci := ei‖i;
– C ′, that contains the strings c′1, . . . , c

′
n defined as c′i := e′i‖i.

We call the i’s sequence numbers, while the strings in E ∪ E′ are used as
string identifiers. The values n and l are shared between the parties. The play-
ers can communicate either using a binary discrete-time delaying channel with
probability p, called p-BDDC, or a clear channel.

Completed these preliminary steps, the parties are ready to proceed with the
protocol as follows:

1. Sam sends C to Rachel using the p-BDDC at instant t0.
2. Sam sends the set C ′ to Rachel using the p-BDDC at instant t1.
3. At instant u0 Rachel receives over the p-BDDC all the strings in C that have

not been delayed by the channel. If less than n
2 strings are received Rachel

instructs Sam to abort the communication.
4. At instant u1 Rachel receives over the p−BDDC the strings from C delayed

once, plus the strings of set C ′ that have not been delayed. She keeps listening
on the channel at instants u2, u3, . . . until all the delayed strings have been
received.

5. Rachel selects a set of string identifiers Is, where s ∈ {0, 1} is her selection
bit, such that |Is| = n

2 and so that every string c ∈ C with i ∈ Is has been
received for the first time at u0. Then she puts the remaining i’s in I1−s and
sends I0 and I1 to Sam over a clear channel.1

6. Sam receives I0 and I1, and chooses two universal hash functions f and f ′,
whose output is 1-bit long for any input. Let Ej ⊂ E be the set containing
every ei ∈ E corresponding to an i ∈ Ij , such that

ei ∈ Ej ⇔ i ∈ Ij . (6)

For each set Ij , Sam computes the string gj by concatenating each ejk ∈ Ej ,
ordering them for increasing binary value, so that

gj =
(
ej1 ‖ . . . ‖ e

j
n
2

)
with ej1, . . . , e

j
n
2
∈ Ej . (7)

The two strings g0, g1 are given in input to the hash functions f , f ′ to obtain
the two values

h0 = f (g0) , h1 = f ′ (g1) . (8)

When the computation is complete, Sam sends to Rachel the functions f , f ′

and the two values

i0 = (h0 ⊕ b0) , i1 = (h1 ⊕ b1) . (9)

7. Rachel computes her guess for bs, according to the formula

bs = fs (gs)⊕ is . (10)

1 Or Rachel can just send one of these two sets in order to save bandwidth as Sam
can easily reconstruct the other.

Remark 2. It should be noted that the steps 2 and 3 of the protocol could also
happen in the inverse order, or simultaneously. This is due to the fact that there
is no explicit constraint regarding the chronological order of t1 and u0.

Remark 3. Since the elements in E ∪ E′ have to be distinct, we gather that

2l ≥ |E ∪ E′| = 2n . (11)

Remark 4. While in our constructions we use the sequence numbers i’s, it should
be noted that any set D of n distinct binary strings d1, . . . , dn might be used in
their place in a setting where using unordered strings may be preferred.

4 Security in the Semi-honest Scenario

In the semi-honest setting, both parties are honest-but-curious, meaning that
they follow the protocol, but try afterward to learn extra knowledge from their
record of the conversation. In particular, Sam wants to guess which secret Rachel
selected, while Rachel’s aim is to get as much information as possible on the other
secret.

Theorem 1. The protocol described in Section 3.2, securely computes 1-2 obliv-
ious transfer with error probability ε when it is executed on a p-BDDC with
0 < p < 1

2 and

n > max

(
−2 log (ε)

(1− 2p)2
,

log
(
ε
2

)
log
(
1− p

2

)) . (12)

Proof. We prove the security of our construction by showing that each of the
three conditions of Definition 3 hold.

Correctness Rachel is able to compute the bit bs when she receives, at step 3 of
the protocol, a number of non-delayed strings that is greater than n

2 . If we use
X to denote the random variable counting this number, we see that Pr

[
X < n

2

]
,

that is, the probability that too many strings are delayed for the protocol to suc-
ceed, follows the cumulative distribution function of the binomial distribution.
Using Hoeffding’s inequality, we then observe that

Pr
[
X <

n

2

]
≤ exp

(
−2n

(
1

2
− p
)2
)

, (13)

which shows that the correctness condition is satisfied by our protocol with
overwhelming probability in n when p < 1

2 .2 By extracting n in this inequality,
we obtain the first argument of the maximum function in the theorem statement.

2 Note that, for channels where 1
2
≤ p < 1, the correctness condition on p can be

relaxed by requiring Rachel to build sets containing less than half of the strings,
which would allow the protocol to succeed even if more than half of the strings are
delayed.

Security for Sam We evaluate the probability that Rachel is able to compute
both bs and b1−s in a protocol session. In the semi-honest setting, which we
consider here, this probability is upper-bounded by the probability that Rachel
is able to compute b1−s. Let us call this event Success.

Rachel has two ways to compute b1−s: by evaluating the appropriate universal
hash function on the correct inputs, as Sam does in Step 6 of the protocol
(let us call GuessInputHash this event), or by not doing so. So, Pr[Success] =
Pr[Success ∧ GuessInputHash] + Pr[Success ∧ ¬GuessInputHash]. The probability
of the second alternative is upper-bounded by 1

2 , due to the properties of the
universal hash function. The probability of the first alternative is in turn upper-
bounded by Pr[GuessInputHash]. Let us now evaluate that probability.

For each pair of strings sharing the same sequence number i, four events can
happen:

1. The first string of the pair is not delayed, which happens with probability
1− p.

2. The first string of the pair is delayed, but the two strings still reach Rachel

in the same order they were sent. This happens with probability p2

1+p .
3. Those two strings are delivered to Rachel in reverse order, which also happens

with probability p2

1+p .
4. The two strings are delivered to Rachel at the same time, which happens

with probability p(1−p)
1+p .

When the first string is not delayed, Rachel can be sure of which was sent first.
When the first string is delayed, and the two strings are delivered at differ-
ent times, Rachel cannot guess with a probability better than 1

2 whether the
two strings are switched or delivered in the sending order: both events happen
with the same probability. This is obviously also true when the two strings are
delivered at the same time.

So, as soon as the first of the two strings is delayed, no strategy can pro-
vide a probability higher than 1

2 to guess which string was sent first, mean-
ing that Rachel is able to guess with probability 1 − p

2 which one among any
two strings with identical sequence number was sent first. Let us denote by
GuessCorrectOrder the number of such correct guesses among n pairs of strings.

We have that Pr[GuessInputHash] = Pr[GuessInputHash∧GuessCorrectOrder =
n] + Pr[GuessInputHash ∧ GuessCorrectOrder < n]. Let us now observe that the
first term of this sum is upper bounded by:

Pr [GuessCorrectOrder = n] =
(

1− p

2

)n
, (14)

which is negligible in n as soon as p > 0. Besides, since the input of the hash
function is not correctly guessed when GuessCorrectOrder < n, we have that the
second term of the sum is null. This shows that:

Pr [Success] ≤ 1

2
+
(

1− p

2

)n
. (15)

By using the definition of prediction advantage and extracting n in this inequal-
ity, we obtain the second argument of the maximum function in the theorem
statement.

Security for Rachel The only step in the protocol in which Rachel uses her
selection s to generate messages to Sam is number 5, when she sends back I0
and I1. During any other step Rachel is not sending any information at all to
Sam. A BDDC gives no feedback to the sender or the receiver about which strings
are delayed: each string c is delayed at least once with probability p independent
of c. Therefore, from Sam’s point of view, the distribution (I0, I1) is independent
of s, and Sam’s prediction advantage on s given his view and his input bits is
null. ut

Remark 5. We observe that the semi-honest assumption is only required for the
sender, but not for the receiver. When acting as a malicious receiver, Rachel can
either produce a malformed set I1−s (reducing the number of strings included,
or including non-delayed strings already present into Is) in order to put only
non-delayed strings into the set, or swap delayed strings with non-delayed ones
between the sets Is and I1−s. In the first case, a simple additional check on the
sender’s side of the protocol will prevent any response to a malformed I1−s. In
the second case Rachel, by moving delayed strings from I1−s to Is, increases
her probability to get the other bit b1−s at the cost of lowering her probability
to get the selected bit bs. In fact, the number of delayed strings, which is also
the total number of guesses needed by Rachel, remains the same. Therefore the
probability of decoding both bits is the same whether she acts honestly or in a
malicious way.

5 Conclusion

In this paper, we proposed using channel delays as a source of uncertainty to
realize oblivious transfer. To this purpose, we introduced a new channel, called
Binary Discrete-time Delaying Channel (BDDC), and propose an OT protocol
built on this channel.

We believe that building OT on communication delays provides important
benefits compared to the existing solutions. In particular, our protocol has a
remarkably low sensitivity to the precise knowledge of the channel parameters,
a factor that often constitutes one of the main inconveniences of cryptographic
protocols relying on communication channel properties.

Figure 2 illustrates this little sensitivity by plotting the two curves of which
the maximum is taken in the statement of Theorem 1, for a security parameter
ε = 10−9. The curve that grows when p tends to 0 shows that the number of
strings to be sent must increase when p is small in order to ensure that Rachel
is not able to decode both of the sender bits of the OT protocol. The curve that
grows with p shows that the number of strings to be sent must increase when p
tends to 1

2 in order to ensure that Rachel gets one of the two sender bits.

This graph shows that our protocol is able to tolerate a very wide range
of uncertainty on the channel parameters: the exchange of 1000 strings (that
is, approximately 42000 bits transferred on the BDDC channel and less than
12000 bits sent on the noiseless channel) guarantees oblivious transfer with error
ε = 10−9 for values of p ranging from 0.05 to 0.4 approximately. This practically
means that an active adversary able to set the probability to a desired level
within this range does not reduce the security of the construction. The idea of
letting the adversary choose the channel probability was first introduced with
the Unfair Noisy Channel (UNC) [8], a binary symmetric channel where the
error rate is only known to be in a certain interval [γ · · · δ]. This work shows
that OT cannot be achieved as soon as the difference δ − γ becomes too large,
namely, if δ ≥ 2γ(1−γ). This interval has a maximum width equal to 0.125 when
γ = 0.25 and δ = 0.375, even though no protocol is known that can tolerate such
a wide interval width on a UNC. Interval widths for which OT can be achieved
on UNCs have also been studied [7], showing experimentally that OT can be
built on a UNC for intervals of maximum width around 0.04.

We believe that these figures show a crucial benefit of exploiting delays on
channels: delays provide the uncertainty that is needed to build security, but
they also offer the possibility to be sure that some strings have been sent before
others (if they are received before other strings are sent, for instance). This is
not the case on other channels that have been considered until now, like the BSC
channel and its variants, where one can never be sure that a string is delivered
correctly, raising the need to precisely calibrate error correction mechanisms.

Our protocol also appears to be very efficient for important delay probability
ranges: we observe that sending 250 pairs of strings on the p-BDDC channel,
that is, around 8500 bits, is enough to realize OT for 0.17 ≤ p ≤ 0.29 and ε =
10−9. We eventually observe that, in many practical applications, the protocol
parameters might be adapted in order to influence the delaying probability if
needed. For instance, it appears that packet size has an important impact on
reordering occurrences in IP networks [1].

Acknowledgments

This research work was supported by the SCOOP Action de Recherche Con-
certées. Olivier Pereira is a Research Associate of the F.R.S.-FNRS. We also
want to thank Abdellatif Zaidi and Luc Vandendorpe for interesting discussions
on the subject.

References

1. Bellardo, J., Savage, S.: Measuring packet reordering. In: Internet Measurement
Workshop. pp. 97–105. ACM (2002)

2. Chaum, D., Damg̊ard, I., van de Graaf, J.: Multiparty computations ensuring pri-
vacy of each party’s input and correctness of the result. In: Pomerance [13], pp.
87–119

Fig. 2. n as a function of p for ε = 10−9.

3. Crépeau, C.: Equivalence between two flavours of oblivious transfers. In: Pomer-
ance [13], pp. 350–354

4. Crépeau, C.: Efficient cryptographic protocols based on noisy channels. In: EU-
ROCRYPT. pp. 306–317 (1997)

5. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened security as-
sumptions (extended abstract). In: FOCS. pp. 42–52. IEEE (1988)

6. Crépeau, C., Morozov, K., Wolf, S.: Efficient unconditional oblivious transfer from
almost any noisy channel. In: Blundo, C., Cimato, S. (eds.) SCN. Lecture Notes
in Computer Science, vol. 3352, pp. 47–59. Springer (2004)

7. Damg̊ard, I., Fehr, S., Morozov, K., Salvail, L.: Unfair noisy channels and oblivious
transfer. In: Naor, M. (ed.) TCC. Lecture Notes in Computer Science, vol. 2951,
pp. 355–373. Springer (2004)

8. Damg̊ard, I., Kilian, J., Salvail, L.: On the (im)possibility of basing oblivious trans-
fer and bit commitment on weakened security assumptions. In: EUROCRYPT. pp.
56–73 (1999)

9. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Commun. ACM 28(6), 637–647 (1985)

10. Kilian, J.: Founding cryptography on oblivious transfer. In: STOC. pp. 20–31.
ACM (1988)

11. Nascimento, A.C.A., Winter, A.: On the oblivious-transfer capacity of noisy re-
sources. IEEE Transactions on Information Theory 54(6), 2572–2581 (2008)

12. Piratla, N.M., Jayasumana, A.P.: Reordering of packets due to multipath forward-
ing - an analysis. In: Proc. IEEE Int. Conf. on Communications (ICC 2006). pp.
28–36 (2006)

13. Pomerance, C. (ed.): Advances in Cryptology - CRYPTO ’87, A Conference on the
Theory and Applications of Cryptographic Techniques, Santa Barbara, California,
USA, August 16-20, 1987, Proceedings, Lecture Notes in Computer Science, vol.
293. Springer (1988)

14. Proakis, J.G.: Digital Communications (4th edition). McGraw-Hill Science Engi-
neering (August 2000)

15. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report
TR-81, Aiken Computation Laboratory, Harvard University (1981), manuscript

16. Wullschleger, J.: Oblivious-transfer amplification. In: Naor, M. (ed.) EURO-
CRYPT. Lecture Notes in Computer Science, vol. 4515, pp. 555–572. Springer
(2007)

17. Wullschleger, J.: Oblivious transfer from weak noisy channels. In: Reingold, O.
(ed.) TCC. Lecture Notes in Computer Science, vol. 5444, pp. 332–349. Springer
(2009)

18. Zhou, X., Mieghem, P.V.: Reordering of ip packets in internet. In: Barakat, C.,
Pratt, I. (eds.) PAM. Lecture Notes in Computer Science, vol. 3015, pp. 237–246.
Springer (2004)

