3,102 research outputs found

    Every countable model of set theory embeds into its own constructible universe

    Full text link
    The main theorem of this article is that every countable model of set theory M, including every well-founded model, is isomorphic to a submodel of its own constructible universe. In other words, there is an embedding j:M→LMj:M\to L^M that is elementary for quantifier-free assertions. The proof uses universal digraph combinatorics, including an acyclic version of the countable random digraph, which I call the countable random Q-graded digraph, and higher analogues arising as uncountable Fraisse limits, leading to the hypnagogic digraph, a set-homogeneous, class-universal, surreal-numbers-graded acyclic class digraph, closely connected with the surreal numbers. The proof shows that LML^M contains a submodel that is a universal acyclic digraph of rank OrdMOrd^M. The method of proof also establishes that the countable models of set theory are linearly pre-ordered by embeddability: for any two countable models of set theory, one of them is isomorphic to a submodel of the other. Indeed, they are pre-well-ordered by embedability in order-type exactly ω1+1\omega_1+1. Specifically, the countable well-founded models are ordered by embeddability in accordance with the heights of their ordinals; every shorter model embeds into every taller model; every model of set theory MM is universal for all countable well-founded binary relations of rank at most OrdMOrd^M; and every ill-founded model of set theory is universal for all countable acyclic binary relations. Finally, strengthening a classical theorem of Ressayre, the same proof method shows that if MM is any nonstandard model of PA, then every countable model of set theory---in particular, every model of ZFC---is isomorphic to a submodel of the hereditarily finite sets HFMHF^M of MM. Indeed, HFMHF^M is universal for all countable acyclic binary relations.Comment: 25 pages, 2 figures. Questions and commentary can be made at http://jdh.hamkins.org/every-model-embeds-into-own-constructible-universe. (v2 adds a reference and makes minor corrections) (v3 includes further changes, and removes the previous theorem 15, which was incorrect.

    On (4,2)-digraph Containing a Cycle of Length 2

    Get PDF
    A diregular digraph is a digraph with the in-degree and out-degree of all vertices is constant. The Moore bound for a diregular digraph of degree d and diameter k is M_{d,k}=l+d+d^2+...+d^k. It is well known that diregular digraphs of order M_{d,k}, degree d>l tnd diameter k>l do not exist . A (d,k) -digraph is a diregular digraph of degree d>1, diameter k>1, and number of vertices one less than the Moore bound. For degrees d=2 and 3,it has been shown that for diameter k >= 3 there are no such (d,k)-digraphs. However for diameter 2, it is known that (d,2)-digraphs do exist for any degree d. The line digraph of K_{d+1} is one example of such (42)-digraphs. Furthermore, the recent study showed that there are three non-isomorphic(2,2)-digraphs and exactly one non-isomorphic (3,2)-digraph. In this paper, we shall study (4,2)-digraphs. We show that if (4,2)-digraph G contains a cycle of length 2 then G must be the line digraph of a complete digraph K_5

    Domination Graphs Of Tournaments And Other Digraphs

    Get PDF

    Classical properties of algebras using a new graph association

    Get PDF
    We study the relation between algebraic structures and Graph Theory. We have defined five different weighted digraphs associated to a finite dimensional algebra over a field in order to tackle important properties of the associated algebras, mainly the nilpotency and solvability in the case of Leibniz algebras

    On the digraph of a unitary matrix

    Full text link
    Given a matrix M of size n, a digraph D on n vertices is said to be the digraph of M, when M_{ij} is different from 0 if and only if (v_{i},v_{j}) is an arc of D. We give a necessary condition, called strong quadrangularity, for a digraph to be the digraph of a unitary matrix. With the use of such a condition, we show that a line digraph, LD, is the digraph of a unitary matrix if and only if D is Eulerian. It follows that, if D is strongly connected and LD is the digraph of a unitary matrix then LD is Hamiltonian. We conclude with some elementary observations. Among the motivations of this paper are coined quantum random walks, and, more generally, discrete quantum evolution on digraphs.Comment: 6 page
    • …
    corecore