On (4,2)-digraphs Containing a Cycle of Length 2

¹HAZRUL ISWADI AND ²EDY TRI BASKORO

¹Department of Mathematics and Sciences, University of Surabaya, Jalan Raya Kali Rungkut, Surabaya 60292, Indonesia ²Department of Mathematics, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, Indonesia ¹e-mail : us6179@ubaya.ac.id

²e-mail: itbma01@bdg.centrin.net.id

Abstract A diregular digraph is a digraph with the in-degree and out-degree of all vertices is constant. The Moore bound for a diregular digraph of degree d and diameter k is $M_{d,k} = 1 + d + d^2 + \dots + d^k$. It is well known that diregular digraphs of order $M_{d,k}$, degree d > 1 and diameter k > 1 do not exist. A (d,k)-digraph is a diregular digraph of degree d > 1, diameter k > 1, and number of vertices one less than the Moore bound. For degrees d = 2 and 3, it has been shown that for diameter $k \ge 3$ there are no such (d, k)-digraphs. However for diameter 2, it is known that (d,2)-digraphs do exist for any degree d. The line digraph of K_{d+1} is one example of such (d,2)-digraphs. Furthermore, the recent study showed that there are three non-isomorphic (2,2)-digraphs. We show that if (4,2)-digraph G contains a cycle of length 2 then G must be the line digraph of a complete digraph K_5 .

1. Introduction

A digraph G is a system consisting of a finite nonempty set V(G) of objects called vertices and a set E(G) of ordered pairs of distinct vertices called arcs. The order of G is the cardinality of V(G). A subdigraph H of G is a digraph having all vertices and arcs in G. If (u,v) is an arc in a digraph G, then u is said to be adjacent to v and v is said to be adjacent from u. An in-neighbor of a vertex v in a digraph G is a vertex u such that $(u,v) \in G$. An out-neighbor of a vertex v in a digraph G is a vertex w such that $(v,w) \in G$. The set of all out-neighbors of a vertex v is denoted by $N^+(v)$ and its cardinality is called the out-degree of v, $d^+(v) = |N^+(v)|$. Similarly, the set of all in-neighbors of a vertex v is denoted by N (v) and its cardinality is called the *out-degree* of v, $d^+(v) = |N^+(v)|$. Similarly, the set of all in-neighbors of a vertex v is denoted by N (v) and its cardinality is called the *out-degree* of v, $d^+(v) = |N^+(v)|$. Similarly, the set of all $v_{i} = |N^-(v)| = |N^-(v)|$. A digraph G is diregular of degree d if for any vertex v in G, $d^+(v) = d^-(v) = d$.

A walk of length h from a vertex u to vertex v in G is a sequence of vertices $(u = u_0, u_1, \dots, u_h = v)$ such that $(u_{i-1}, u_i) \in G$ for each i. A vertex u forms the trivial

walk of length 0. A closed walk has $u_0 = u_h$. A path is a walk in which all points are distinct. A cycle C_h of length h > 0 is a closed walk with h distinct vertices (except u_0 and u_h). If there is a path from u to v in G then we say that v is reachable from u.

The distance from vertex u to vertex v in a digraph G, denoted by $\delta(u, v)$, is defined as the length of a shortest path from u to v. In general, $\delta(u, v)$ is not necessarily equal to $\delta(v, u)$. The diameter k of a digraph G is the maximum distance between any two vertices in G.

Let G be a diregular digraph of degree d and diameter k with n vertices. Let one vertex be distinguished in G. Let $n_i, \forall i = 0, 1, \dots, k$, be the number of vertices at distance i from the distinguished vertex. Then,

$$n_i \le d^i, \text{ for } i = 1, \cdots, k.$$

$$\tag{1}$$

Hence,

$$n = \sum_{i=0}^{k} n_i \le 1 + d + d^2 + \dots + d^k.$$
 (2)

The number of $1+d+d^2+\dots+d^k$ is the upper bound for the number of vertices in digraph G. This upper bound is called *Moore bound* and denoted by $M_{d,k}$. If the equality sign in (2) holds then the digraph G is called *Moore digraph*.

It has been known that the Moore digraphs do not exist for d > 1 and k > 1, except for trivial cases (for d = 1 or k = 1), [10] and [5]. The trivial cases are fulfilled by the cycle digraph C_{k+1} for d = 1, and the complete digraph K_{d+1} for k = 1. This motivates the study of the existence problem of diregular digraphs of degree d, diameter k with order $M_{d,k} - 1$. Such digraphs are called *Almost Moore digraphs* and denoted by (d,k)-digraphs.

Several results have been obtained on the existence of (d,k)-digraphs. For instance, in [6] it is shown that the (d,2)-digraphs do exist for any degree. The digraph constructed is the line digraph of K_{d+1} , LK_{d+1} . Concerning the enumeration of (d,2)-digraphs, it is known from [9] that there are exactly three non-isomorphic (2,2)-digraphs (see Figure 1).

Figure 1. The three non-isomorphic (2, 2)-digraphs

In [2], it is shown that there is exactly one (3,2)-digraph, i.e., LK_4 . Fixing the degree instead of the diameter Miller and Fris [8] proved that (2,k)-digraphs do not exist for any values of $k \ge 3$. However, the existence problem of (d,k)-digraphs with $d \ge 3$ and $k \ge 3$ is still open.

Every (d,k)-digraph G has the characteristic property that for every vertex $x \in G$ there exists exactly one vertex y so that there are two walks of lengths $\leq k$ from x to y (one of them must be of length k). We called the vertex y is the repeat of x and denoted by r(x). If r(x) = y then $r^{-1}(y) = x$. Thus the map $r: V(G) \to V(G)$ is a permutation on V(G). If r(x) = x then x is called selfrepeat (in this case, the two walks have lengths 0 and k). It means that x is contained in a C_k . If $r(x) \neq x$ then x is called non-selfrepeat. It is easy to show that no vertex of a (d,k)-digraphs is contained in two C_k 's.

In this paper, we study the enumeration of (4,2)-digraphs. Particularly, we study (4,2)-digraphs containing a cycle of length 2.

The following theorem and lemma shown in [4] and [3] will be used in this paper repeatedly. Let G be a (d,k)-digraph and $S \subseteq V$. Let $r(S) = \{r(x) \mid x \in S\}$.

Theorem 1. For every vertex v of a (d,k)-digraph, we have:

(a)
$$N^+(r(v)) = r(N^+(v))$$

(b)
$$N^{-}(r(v)) = r(N^{-}(v))$$

In the other words, theorem 1 shows that $(a,b) \in G$ if and only if $(r(a), r(b)) \in G$.

Lemma 1. The permutation r has the same cycle structure on $N^+(v)$ for every selfrepeat v of (d,k)-digraphs G.

2. Results

The aim of this paper is to show that if a (4,2)-digraph contains a selfrepeat then *all* vertices in such a digraph must be selfrepeats.

Let G is a (4,2)-digraph that contains a selfrepeat vertex. We shall label the vertices of G by $0, 1, 2, \dots, 19$. Without loss of generality, from now on we assume the following:

- 1. 0 is a selfrepeat vertex;
- 2. $N^+(0) = \{1, 2, 3, 4\}$ and $(0, 4) \in C_2$ (thus 4 is also a selfrepeat);
- 3. $N^+(1) = \{5,6,7,8\}, N^+(2) = \{9,10,11,12\}, N^+(3) = \{13,14,15,16\}, \text{ and } N^+(4) = \{17,18,19,0\}, \text{ (see figure 2)}.$

We shall define $L_1 = \{1, 2, 3, 4\}, L_1 = N^+(1) \cup N^+(2) \cup N^+(3) \cup N^+(4)$, and for each $i \in V(G)$, define $\Delta_i = \{i\} \cup N^+(i)$.

Figure 2. The (4,2)-digraphs with containing a cycle of length 2

Since 0 is a selfrepeat then for each $a \in L_1$, by Theorem 1, we have $r(a) \in L_1$. Furthermore, Theorem 1 implies that for each $b \in L_2$, we have $r(b) \in L_2$. Then we have following lemma.

Lemma 2. For each j = 1, 2, we have that if $a L_j$, then $r(a) \in L_j$.

Lemma 3. If x is a non-selfrepeat vertex in a (d,k)-digraph G and $r(x) \in N^+(x)$ then $N^+(x)$ does not contain any selfrepeat vertices.

Proof. Consider any $y \in N^+(x)$. If y = r(x) then y is a non-selfrepeat. Now, let $y \neq r(x)$. For a contradiction assumes that y is a selfrepeat. Since $(x, y) \in E(G)$, by Theorem 1 we have $(r(x), r(y) = y) \in E(G)$. Thus there are two walks of lengths ≤ 2 from x to y in G, namely (x, y) and (x, r(x), y). Thus r(x) = y which is not possible. Therefore, each vertex of $N^+(x)$ is a non-selfrepeat.

Lemma 4. If x is a non-selfrepeat vertex in a (d,k)-digraph G and $r(x) \in N^+(x)$ then $N^+(x)$ does not contain any vertex and its repeat together.

Proof. Suppose that vertex t and r(f) are in $N^+(x)$. Since $(x,t) \in G$, due to Theorem 1, then we have $(r(x), r(t)) \in E(G)$. Thus there are two walks of lengths ≤ 2 from x to r(t), namely (x, r(t)) and (x, r(x), r(t)). Thus r(x) = r(t). Hence x = t, a contradiction with t in $N^+(x)$.

To show that each vertex in G is a selfrepeat. We consider the out-neighbors of 0. Since 0 and 4 are selfrepeats, then by Theorem 1 we essentially have three cases:

Case 1 Vertices 1, 2, and 3 are non-selfrepeat vertices.

Case 2 Two of $\{1, 2, 3\}$ are non-selfrepeat vertices.

Case 3 Vertices 1, 2, and 3 are selfrepeat vertices.

Let s be a selfrepeat in (4,2)-digraph G. Let t is a non-selfrepeat in $N^+(s)$. Then each vertex u in $N^+(t)$ must be a non-selfrepeat, since otherwise by Theorem 1 there are two walks from s to u which implies that r(s) = u, a contradiction with s being a selfrepeat. Let u be in $N^+(t)$. The following lemma considers the properties of out-neighbors of u.

Lemma 5. Let s be a selfrepeat vertex in (4,2)-digraph G. Let $t \in N^+(s)$ be a nonselfrepeat vertex. Let $u \in N^+(t)$ be a non-selfrepeat vertex such that $(u, v) \in G$, for some $v \in N^+(s)$ and v is a non-selfrepeat vertex. Let r(t) = v. Then for each $y \in N^+(s)$, there is at most one non-selfrepeat w, where $w = N^+(u) \cap \Delta_y$.

Proof. Suppose that there are two non-selfrepeat vertices of $N^+(u)$, which are in Δ_y , for some $y \in N^+(s)$. Since r(t) = v and $(t, u) \in E(G)$, due to Theorem 1, then $(r(t) = v, r(u)) \in E(G)$. Hence r(u) in $N^+(v)$. Suppose $N^+(u) = \{v, y_1, y_2, y_3\}$ and both y_1 and y_2 are in Δ_y . If one of them, say y_1 , is equal to y, then there exist two walks of lengths ≤ 2 from u to y_2 . This means that $r(u) = y_2$. Since r(u) in $N^+(v)$, we should have an arc from v to y_2 in G. Thus; altogether there are three walks of lengths ≤ 2 from u to y_2 , a contradiction. Thus, $y_1 \neq y$. Similarly, we can show that $y_2 \neq y$. Let us denote the three remaining vertices of Δ_y by y, x_1 , and x_2 such that $N^+(y) = \{y_1, y_2, x_1, x_2\}$ (see Figure 4).

Figure 4

Of course $y \neq v$. Since otherwise, there are two repeats of u, namely $r(u) = y_1$ and $r(u) = y_2$. To reach y in 2 steps from u we cannot do via v, since there will be two walks of lengths ≤ 2 from s to y, namely (s, y) and (s, v, y). Thus r(s) = y, a contradiction with s being selfrepeat. We cannot do it via y_1 or y_2 , since there will be a C_2 containing y_1 or y_2 , a contradiction with y_1 or y_2 being a non-selfrepeat. Hence, to reach y from u we must do it through y_3 . Thus we have $(y_3, y) \in E(G)$.

To reach x_1 in 2 steps from u we cannot do it via v, because if we have $(v, x_1) \in G$ then there are two walks of lengths ≤ 2 from s to x_1 . Thus $r(s) = x_1$, a contradiction. We cannot do it through either y_1 or y_2 , because if we have (y_1, x_1) or $(y_2, x_1) \in G$, then there are two walks of lengths ≤ 2 from y to x_1 . Thus $r(y) = x_1$. Since s is a selfrepeat and $(s, y) \in G$, by Theorem 1, we have $(s, r(y) = x_1) \in G$. Thus there are also two walks of lengths ≤ 2 from s to x_1 in G, namely (s, y, x_1) and (s, x_1) . Hence $r(s) = x_1$, a contradiction. Therefore, we have $(y_3, x_1) \in E(G)$ to be able to reach x_1 from u. Similarly, we can show to reach x_2 from u in 2 steps we should have $(y_3, x_2) \in E(G)$. Thus altogether implies $r(y_3) = x_1$ and x_2 , a contradiction with the uniqueness of repeat. Therefore there are at most one out-neighbor of u which is in Δy .

In the following sections, we shall show that Cases 1 and 2 can not hold.

2.1. Case 1

Consider a (4,2)-digraph G containing a subdigraph of Figure 2 and having properties of Case 1. In this case, 1, 2, and 3 are non-selfrepeat vertices. Without loss of generality, we can assume that

$$r(1) = 2, r(2) = 3 \text{ and } r(3) = 1$$
 (3)

Then, we have the following three properties (due to Theorem 1):

- 1. if $a \in N^+(1)$ then $r(a) \in N^+(2)$,
- 2. if $a \in N^+(2)$ then $r(a) \in N^+(3)$,
- 3. If $a \in N^+(3)$ then $r(a) \in N^+(1)$.

Thus each vertex in $N^+(1) \cup N^+(2) \cup N^+(3)$ is a non-selfrepeat. Since $4 \in N^+(0)$ is a selfrepeat, then the permutation r on $N^+(4)$ has the same cycle structure with that on $N^+(0)$. In this case, $N^+(0)$ consists of three non-selfrepeat and one selfrepeat. Since $0 \in N^+(4)$ is selfrepeat, then $N^+(4) \setminus \{0\}$ consists of non-selfrepeat vertices.

Since G has diameter 2, hence to reach 1 from 3 there must exist a vertex $x_0 \in N^+(3)$ such that $(x_0, 1) \in G$. From now on, let us denote by x, y, and z the remaining three out-neighbors of x_0 in G. Of course, none of them can be 0 since otherwise $r(x_0) = 1$, a contradiction with $r(x_0)$ in $N^+(1)$. None of them can be in Δ_3 . Since otherwise, then r(3) in $N^+(3)$, a contradiction with assumption that r(3) = 1.

Lemma 6. There is at most one of $\{x, y, z\}$ can be in either $N^+(1)$ or Δ_2 , or $\Delta_4 \setminus \{0\}$.

Proof. Suppose that two of $\{x, y, x\}$ be in $N^+(1)$, say x and y. Then $r(x_0) = x$ and y, a contradiction with the uniqueness of repeat. Hence at most one of $\{x, y, x\}$ be in $N^+(1)$. Suppose that two of $\{x, y, x\}$ be in Δ_2 , say x and y. Since all of vertices in Δ_2 is non-selfrepeat, by Lemma 5 then at most one of x and y can be in Δ_2 . Hence at most one of $\{x, y, x\}$ in Δ_2 . Suppose that two of $\{x, y, x\}$ be in $\Delta_4 \setminus \{0\}$, say x and y. If one of them, say x, is equal to 4, then there exist two walks of lengths ≤ 2 from x_0 to y. Thus $r(x_0) = y \in N^+(4)$, a contradiction with $r(x_0) \in N^+(1)$. Thus $x \neq 4$. Similarly, we can show that $y \neq 4$. Hence both x and y be in $N^+(4) \setminus \{0\}$. Since all of vertices in $N^+(4) \setminus \{0\}$. Hence at most one of $\{x, y, x\}$ in $\Delta_4 \setminus \{0\}$.

One of $\{x, y, x\}$ must be in $N^+(1)$. Since otherwise, then there are two of $\{x, y, x\}$ be in Δ_2 or $\Delta_4 \setminus \{0\}$, a contradiction with Lemma 6. Let x be in $N^+(1)$. Hence $r(x_0) = x \in N^+(x_0)$. Then y or z cannot be equal to 4. Since otherwise, then $N^+(x_0)$ contains a selfrepeat vertex, a contradiction with Lemma 3. Hence none of $\{y, z\}$ can

H. Iswadi and E.T. Baskoro

be 4. If one of $\{y, z\}$ is equal to 2, then $N^+(x_0)$ contains 1 and r(1) = 2, a contradiction with Lemma 4.

The following theorem will complete the impossibility of case 1.

Theorem 2. There is no (4,2)-digraph containing a subdigraph of Figure 2 and having properties of Case 1.

Proof. Suppose that G is a (4,2)-digraph containing a subdigraph of Figure 2 and having properties of Case 1. By Lemma 6, we have that out-neighbors x, y, z of x_0 other than 1 must be equally distributed, namely $x \in N^+(1)$, $y \in N^+(2)$, and $z \in N^+(4) \setminus \{0\}$. Then $r(x_0) = x$. Since $r(x_0) = x$, r(1) = 2, and $(x_0, 1) \in G$, by using Theorem 1, then $(r(x_0), r(1)) = (x, 2) \in G$.

We will show that $(x, 3) \in G$. To reach 3 from x_0 in 2 steps, we cannot do this via 1, because $3 \neq N^+(1)$. If we do that via z, then there are two walks (4, 0, 3) and (4, z, 3) in G. Hence r(4) = 3 which is a contradiction with 4 being a selfrepeat. Suppose that $(y, 3) \in G$. Next, we must reach 0 from x_0 in 2 steps. We cannot do it via 1, because $0 \neq N^+(1)$. If we do that via x, then there are two walks from x to 2 or r(x) = 2, a contradiction with $r(x) \in N^+(2)$. If we do it via y, then r(y) = 3, a contradiction with $r(y) \in N^+(3)$. If we do that via z, then r(4) = 0, a contradiction with 4 is a selfrepeat. So, $(y, 3) \notin G$. This implies that $(x, 3) \in G$.

To reach 0 from x_0 in 2 steps, we cannot do this via 1, because $0 \neq N^+(1)$. If we do that via x, then there are two walks from x to 2. This means that r(x) = 2, a contradiction with $r(x) \in N^+(2)$. If we do that via z, then r(4) = 0, a contradiction with 4 is a selfrepeat. Hence (y, 0) is in G. Similarly, to reach 4 from x_0 in 2 steps, we can show that it is done through x. Hence we have $(x, 4) \in G$.

Let t be the fourth vertex in $N^+(x)$. Now we consider vertex x and the others at distance 1 and 2 from x. At distance 1 from x, there are 2, 3, 4, and t. At distance 2 from x, $N^+(t)$ contain 1 and the remaining vertices in $N^+(1) \setminus \{x\}$ (since $N^+(2) = \{9, 10, 11, 12\}, N^+(3) = \{13, 14, 15, 16\}, N^+(4) = \{17, 18, 19, 0\}$). Then t has multiple repeats, a contradiction with the uniqueness repeat.

2.2. Case 2

Consider a (4,2)-digraph G containing a subdigraph of Figure 2 and having properties of case 2. In this case, there are two out-neighbors of 0 as non-selfrepeat vertices. Without loss of generality, we can assume that those non-selfrepeat vertices are 1, and 2, such that

$$r(1) = 2, r(2) = 1, \text{ and } r(3) = 3$$
 (3)

86

Then, by Theorem 1 we have two following properties:

- 1. if $a \in N^+(1)$ then $r(a) \in N^+(2)$,
- 2. if $a \in N^+(2)$ then $r(a) \in N^+(1)$.

This implies that all vertices in $N^+(1) \cup N^+(2)$ are non-selfrepeat vertices. Since 3 and 4 are selfrepeats, then by Lemma 5, vertices 3 and 4 have the same cycle structure with 0. In this case, two of vertices in $N^+(0)$ are selfrepeat and the others are nonselfrepeat. Then $N^+(3)$ and $N^+(4)$ consist of two selfrepeat vertices and non-selfrepeat We assume that 15 and 16 are selfrepeat vertices in $N^+(3)$. each. Let $H_1 = \{15, 16\}$. It is clear 0 is a selfrepeat vertex in $N^+(4)$. Let another selfrepeat in $N^+(4)$ be 19. Let $H_2 = \{0, 19\}$. Since 3 is a selfrepeat then 3 contain in a C_2 which contain another selfrepeat vertex, say s. Then s only can be 15 or 16. Let s = 16. Hence 3 and 16 contain in a C_2 . For 15 and 19, they must be containing in C_2 . Since otherwise then there will be one of {0, 3, 4, 16} contain in two cycle of length 2, a contradiction. Furthermore, since 15, 16, and 19 are selfrepeat vertices, then by Lemma 5, each of $N^{+}(15), N^{+}(16),$ and $N^+(19)$ consist of two selfrepeat vertices and two nonselfrepeat.

Since G has diameter 2, hence to reach 1 from 2 there must exist a vertex $x_0 \in N^+(2)$ such that $(x_0, 1) \in G$. From now on, let us denote by x, y, and z the remaining three out-neighbors of x_0 in G. Of course, none of them can be 0 since otherwise $r(x_0) = 1$, a contradiction with $r(x_0)$ in $N^+(1)$. None of them can be in Δ_2 . Since otherwise, then r(2) in $N^+(2)$, a contradiction with assumption that r(2) = 1. If there are more than one of $\{x, y, z\}$ can be in Δ_3 , then none of $\{x, y, z\}$ can be 3. Since otherwise, then there are two walks of lengths ≤ 2 from x_0 to a vertex in $N^+(3)$. Then $r(x_0) \in N^+(3)$, a contradiction with $r(x_0) \in N^+(1)$. Similarly, if there are more than one of $\{x, y, z\}$ can be in $\Delta_4 \setminus \{0\}$, then none of $\{x, y, z\}$ can be 4.

Proposition 1. $N^+(16) = N^+(0)$.

Proof. It is clear $3 \in N^+(16)$. Let $\in N^+(16)$ be $\{3, x_1, x_2, x_3\}$. Let x_1 be another selfrepeat vertex in $N^+(16)$. If $x_1 = 0$ then there are two walks of lengths ≤ 2 from 16 to 3, namely (16, 0, 3) and (16, 3). Thus r(16) = 3, a contradiction 16 being selfrepeat. Hence $x_1 \neq 0$. If $x_1 = 19$ then there are two walks of lengths ≤ 2 from 3 to 19, namely (3, 15, 19) and (3, 16, 19). Thus r(3) = 19, a contradiction with 3 being selfrepeat. Hence $x_1 \neq 19$. If $x_1 = 15$ then there are two walks of lengths ≤ 2 from 3 to 15, namely (3, 15, 19).

(3, 16, 15) and (3, 15). Thus r(3) = 15, a contradiction with 3 being selfrepeat. Hence $x_1 \neq 15$. Hence $x_1 = 4$.

Vertex x_2 cannot contain in $N^+(3)\setminus\{16\}$ or $N^+(4)$, because if it can then $r(16) = x_2 \in N^+(3)\setminus\{16\}$ or $r(16) = x^2 \in N^+(0)$, a contradiction with 16 being selfrepeat vertex. Similarly, x_3 cannot be in $N^+(3)\setminus\{16\}$ or $N^+(4)$. Thus x_2 and x_3 must contain in Δ_1 and Δ_2 .

Suppose that $x_2 \in N^+(1)$. Then, we consider vertex 16 and the others at distance 1 and 2 from 16. At distance 1 from 16, there are 3, 4, x_2 , and x_3 . At distance 2 from 16, vertices of $N^+(x_2)$ cannot be 1 (since if they are, then there will be a C_2 contain 1) and vertices of $N^+(x_2)$ cannot be in $N^+(1) \setminus \{x_2\}$ (since if they are, then $r(1) \in N^+(1)$). Hence $N^+(x_2)$ will contain vertices in $\{2\} \cup N^+(2)$ (since $N^+(3) = \{13, 14, 15, 16\}$ $N^+(4) = \{0, 17, 18, 19\}$). Then x_3 be containing in must and $\{1,2\} \cup \{N^+(1)\setminus\{x_2\}\} \cup N^+(2)$. If $x_3 = 1$, then there are two walks of lengths ≤ 2 from 16 to x_2 , namely $\{16, x_2\}$ and $\{16, 1, x_2\}$. Then $r(16) = x_2$, a contradiction with If $x_3 = 2$, then at distance 2 from 16 there are 16 being selfrepeat. $N^+(2), N^+(3), N^+(4), \text{ and } N^+(x_2).$ Thus $N^+(x_2)$ consists of $\{1\} \cup \{N^+(1) \setminus \{x_2\}\}$. Thus x_2 has multiple repeats, a contradiction with the uniqueness of repeat. If $x_3 \in \{N^+(1) \setminus \{x_2\}\}$, then I cannot be in $N^+(x_2)$ and $N^+(x_3)$. Thus 16 cannot reach 1 in a path of lengths ≤ 2 , a contradiction. Hence $x_3 \notin \{N^+(1) \setminus \{x_2\}\}$. If $x_3 \in N^+(2)$, then $N^+(x_3)$ cannot contain 2 (if it can then there is a cycle contain 2, a contradiction). It means that 2 must be in $N^+(x_2)$. Then $N^+(x_2)$ consists of 2 and $\{N^+(2)\setminus\{x_3\}\}$. Thus x_2 has multiple repeat, a contradiction with the uniqueness of repeat. Then x_3 cannot be containing in $\{l, 2\} \cup \{N^+(l) \setminus \{x_2\}\} \cup N^+(2)$, a contradiction. Hence x_2 cannot be in $N^+(1)$. Similarly x_2 cannot be in $N^+(2)$. Hence x_2 must be 1 or 2. Let $x_2 = 2$. Since 16 is a selfrepeat and $(16, 2) \in E(G)$, by using Theorem 1, then (r(16) = 16, r(2) = 1) E(G). Hence x_3 must be 1. Hence $N^+(16) = \{1, 2, 3, 4\}$ $= N^{+}(0).$

All of $\{x, y, z\}$ cannot be in Δ_3 . Since otherwise, x_0 cannot reach the fourth vertex in Δ_3 , say t (because we cannot do it via 1 and if we do it via one of $\{x, y, z\}$, say x, then there will be two walks of lengths ≤ 2 from 3 to x, a contradiction). As we know before that none of $\{x, y, z\}$ which are in Δ_3 can be 3. Hence there are at most two of $\{x, y, z\}$ can be in $N^+(3)$. Similarly, there are at most two of $\{x, y, z\}$ can be in $N^+(0) \setminus \{0\}$.

Lemma 7. There is at most one of $\{x, y, z\}$ can be in either $N^+(1)$ or $N^+(3)$ or $N^+(4)\setminus \{0\}$.

Proof. Suppose that two of $\{x, y, z\}$ can be in $N^+(1)$, say x and y. Then $r(x_0) = x$ and y, a contradiction with the uniqueness of repeat. Hence there is at most one of $\{x, y, z\}$ can be in $N^+(1)$. Suppose that two of $\{x, y, z\}$ can be in $N^+(3)$, say x and y. Both x and y cannot be non-selfrepeat vertices. Since if they are then it will be a contradiction with Lemma 5. Hence both of $\{x, y\}$ is selfrepeat or $\{x, y\}$ consist of one selfrepeat and one non-selfrepeat. One of $\{x, y\}$ cannot be 16. Since otherwise, then there are two walks of lengths ≤ 2 from x_0 to 1 (because $N^+(16) = \{1, 2, 3, 4\}$). Then $r(x_0) = 1$, a contradiction with $r(x_0)$ in $N^+(1)$. Hence one of $\{x, y\}$ is equal to 15 and another is 13 and 14.

For x = 13 and y = 15. If z = 19, then there are two walks of lengths ≤ 2 from x_0 . to 19, namely $(x_0, 19)$ and $(x_0, 15, 19)$ (because $19 \in N^+(15)$). Then $r(x_0) = 19$, a contradiction with $r(x_0)$ in $N^+(1)$. Hence $z \neq 19$. If z = 4, then there are two walks of lengths ≤ 2 from x_0 to 19, namely $(x_0, 15, 19)$ and $(x_0, 4, 19)$ (because $19 \in N^+(15)$ and $19 \in N^+(4)$). Then $r(x_0) = 19$, a contradiction. Suppose that z = 18. Then we consider x_0 and the others at distance 1 and 2 from x_0 . At distance 1, we have 1, 13, 15, and 18. At distance 2, we have $N^+(1) = \{5, 6, 7, 8\}$, $N^+(13)$, $N^+(15)$, and $N^+(18)$. Now we consider where we can put 3. $N^+(13)$ cannot contain 3. Since otherwise, there will be a cycle of length 2 contain 13, a contradiction with 13 being a $N^+(15)$ cannot contain 3. Since otherwise, then 3 in two C_2 's, a non-selfrepeat. contradiction. Hence $3 \in N^+(18)$. Now, we consider where we can put 16. $N^+(13)$ cannot contain 16. Since otherwise, then r(3) = 16, a contradiction with 3 being a Similarly, $N^+(15)$ cannot contain 16. If $N^+(18)$ contain 16, then selfrepeat. r(18) = 16, a contradiction with 16 being a selfrepeat. Thus we cannot reach 16 from x_0 in 1 and 2 steps, a contradiction. Similarly, if z = 17, we cannot reach 16 from x_0 in 1 and 2 steps. Thus z must be in $N^+(3)$. Hence all of $\{x, y, z\}$ must be in Δ_3 , a contradiction. Similarly, for y = 14 and z = 15, then all of $\{x, y, z\}$ must be in Δ_3 , a contradiction. Hence two of $\{x, y, z\}$ cannot be in $N^+(3)$. Similar reason we use to find a contradiction if two of $\{x, y, z\}$ can be in $N^+(4)\setminus\{0\}$. Thus two of $\{x, y, z\}$ cannot be in $N^+(4)\setminus\{0\}$. Hence there is at most one of $\{x,y,z\}$ can be in either $N^+(1)$ or $N^+(3)$ or $N^+(4) \setminus \{0\}$.

One of $\{x, y, z\}$ must be in $N^+(1)$. Since otherwise, then there are two of $\{x, y, z\}$ be in $N^+(3)$ or $N^+(4)\setminus\{0\}$, a contradiction with Lemma 7. Let x be in $N^+(1)$. Hence $r(x_0) = x \in N^+(x_0)$. Then y or z cannot contain in union of $\{4, 3\} \cup H_1 \cup H_2$. Since otherwise, then $N^+(x_0)$ contains a selfrepeat vertex, a contradiction with Lemma 3. Hence none of $\{y,z\}$ can contain in union of $\{4, 3\} \cup H_1 \cup H_2$.

Theorem 3. There is no (4,2)-digraph containing a subdigraph of Figure 2 and having properties of Case 2.

Proof. Suppose that G is a (4,2)-digraph containing a subdigraph of Figure 2 and having properties of Case 2. Due to Lemma 7, we have that the three out-neighbors x, y and z of x_0 other than 1 must be equally distributed, namely $x \in N^+(1)$, $y \in N^+(3) \setminus H_1$, and $z \in N^+(4) \setminus H_2$. Since $r(x_0) = x$, r(1) = 2, and $(x_0, 1) \in G$, by using Theorem 1, then $(r(x_0), r(1)) = (x, 2) \in G$. To reach 0 from x_0 , we must do it from y, because if we do so via x or z then r(x) = 2 or r(4) = 0, a contradiction. Hence $(y, 0) \in G$. To reach 3 from x_0 , we must do it through x, because if we do via y or z then 3 in two C_2 's or r(y) = 4, respectively, a contradiction. Similarly, if we show that 4 is reachable from x_0 through x. Hence (x, 3) and (x, 4) are in G.

Let t be the remaining vertex in $N^+(x)$. Similarly with the proof of Theorem 2, we have multiple repeats for t, a contradiction with the uniqueness of repeat.

2.3. Case 3

Consider a (4,2)-digraph containing a subdigraph of Figure 2 and having properties of Case 3. In this case, we have that all out-neighbors of 0 are selfrepeats. We will complete our proof by showing that (4,2)-digraph is exactly LK_5 .

Theorem 4. There is exactly one (4,2)-digraph, which contains a selfrepeat, namely the line digraph LK₅ of complete digraph on 5 vertices.

Proof. Since all out-neighbors of 0 are selfrepeats then by using Lemma 1 implies that all vertices in the digraph must be selfrepeats. Next, due to Theorem 3 in [4], we conclude that only such (4,2)-digraph is LK_5 .

Acknowledgement. This research was partially supported by TWAS Research Grant No. 98-286 RG/MATH/AS.

References

- 1. E.T. Baskoro, M. Miller, J. Plesnik, and S. Znam, Digraphs of degree 3 and order close to the Moore bound, J. Graph Theory 20 (1995), 339-349.
- 2. E.T. Baskoro, M. Miller, J. Plesnik, and S. Znam, Regular digraphs of diameter 2 and maximum order, the Australian Journal of Combinatorics 9 (1994), 291-306. Errata 13 (1995).
- 3. E.T. Baskoro, M. Miller, J. Siran, and M. Sutton, Complete characterization of almost Moore digraphs of degree three, to appear in *J. Graph Theory*.
- 4. E.T. Baskoro, M. Miller, and J. Plesnik, Further results on almost Moore digraphs, Ars Combinatoria 56 (2000), 43-63.
- 5. W.G. Bidges and S. Toueg, On the impossibility of directed Moore graphs, J. Combinatorial Theory Series B29 (1980), 339-341.
- 6. M.A. Fiol, I. Alegre and J.L.A. Yebra, Line digraph iteration and the (d,k) problem for directed graphs, *Proc.* 10th Symp. Comp. Architecture, Stockholm (1983), 174-177.
- 7. A.J. Hoffman and R.R. Singleton, On Moore graphs with diameter 2 and 3, *IBM J. Res. Develop* 4 (1960), 497-504.
- 8. M. Miller and I. Fris, Maximum order digraphs for diameter 2 or degree 3, Pullman volume of Graphs and Matrices, *lecture Notes in Pure and Applied Mathematics* **139** (1992) 269-278.
- M. Miller and I. Fris, Minimum diameter of diregular digraphs of degree 2, Computer Journal 31 (1988), 71-75.
- 10. J. Plesnik and S. Znam, Strongly geodetic directed graphs, Acta F.R.N. Univ. Comen.-Mathematica XXIX (1974), 29-34.