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vertex ll to vertex v in G is a sequence of vertices
(u,-1,u,)e G for each i. A vertex u forms the trivial
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Abstmct A diregular digraph is a digraph with the in-degree and ouldegree of all venices is
conslant. The Moore botrnd for a diregular digraph of degree d and diameter * is

Ma,r=l+d+d2+..+ dk.  I t  is  wel l  known that  d i regular  d igraphs of  order M,/ . t ,  degree

d>l tnd dianeter  t> l  do not  exist .  A (d, l ) -d igraph is  a d i regular  d igraph of  degree d>1,

diameter t>1, and number of venices one less than the Moore bound. For degrees d=2 nd3,it

has been shown tha! for diameter t > 3 there arc no such (4 l)-digmphs. However for diameter 2,

it is known that (d,2)-digraphs do exist for an) degree d. The line digraph of (/+t is one example

of such (42)-digaphs. Furthermore, the recent study showed that there are three non,isomorphic
(2,2)-digraphs and exactly one non'isomorphic (3,2)-digraph. In this paper, we shall study
(4,2)-digraphs. We show that if(4,2)-digraph C contains a cycle oflength 2 then C; must be the line
digraph ofa complete digraph (i.

1. Introduction

A digraph G is a system consisting of a finite nonempty set y(G) of objects called
vertices and a set E(G) of ordered pairs of distinct vertices called arc.r. 'fhe order of G is
the cardinality of V(G). A subdigraph H of Gis a digraph having all vertices and arcs in
G. If (a,u) is an arc in a digraph G, tben r is said to be adjacent to y and y is said to be
adjacent from u. An in-neighbor of a vertex v in a digraph G is a ve ex lr such that
(u,v)e G. An out-neighbor of a vertex v in a digraph G is a vertex rr such that

(v,w)eG. The set of all out-neighbors of a vertex v is denoted by N*(v)and its

cardinality is called the out-deeree of v, d'(v) = | N- (v) | . Similarly, the set of all

in-neighbors of a vertex v is denoted by N (v) and its cardinality is called the ir-degree of

", 
d- (") = 

| N- (") 
l. 

A digraph

d * ( v ) = d  ( v ) = d .

A walk of length , ftom a
( u  = u o , u 1 , , . , , u h  =  v )  s u c h  t h a t

G is diregular of degree d if for any ve ex r in G,



Hence,
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walk of length 0. A closed walk has 116 = lo A path is a walk in which all points are

distinct. A cycle C, of length lt > 0 is a closed walk with i distinct vertices (except 40

and |lr, ). Ifthere is a path from & to v in 6 then we say thatv is teachable from u.

The distance from vertextl to vertex v in a digraph G, denoted by d(u,r''), is defined

as the length ofa shortest path from u to v In generd, 6(u,v) is not necessarily equal to

5(v,a). The diqmeter k of a digraph 6 is the maximum distance between any two

vertices in G.
Let G be a diregular digraph of degree d and diameter t with ll vertices. Let one

vertex be distinguished in G. Let n,,Vi=0,1," ,k, be the number of vertices at

distance i from the distinguished ve ex. Then,

.  < t t  f o r  i = l .  l

< l +  d  + , 1 2  + . . . +  d k

The number of l+d+d2 + "+.tt is the upper bound for the number of vertices in

digraph G. This upper bound is called Moore bound and denoted by Md.k. If the

equality sign in (2) holds then the digraph G is called Moore digraph.

It has been known that the Moore digrapbs do not exist for d > I and t > l, except

for tdvial cases (for d = 1or & = l), [10] and [5]. The trivial cases are fulfilled by the

cycle digraph Cs1 for d =l,and the complete digraph Kd+t for k=l This motivates

the study of the existence problem of diregular digraphs of degree d, diameter I with

order M0J,-1. Such digraphs are called Almost Moore digraphs and denoted by

(d,k)-digraphs .
Several results have been obtained on the existence of (d,t)-digraphs. For instance, in

[6] it is shown that the (d,2)-digraphs do exist for any degree The digraph constructed is

the line digraph of K,t+1 , LK d+t. Concerning the enumeration of (d,2)-digraphs' it is

known from [9] that there are exactly three non-isomorphic (2,2)-digraphs (see Figure I )

( l )

(2)

(1X2X3X4Xs)(6)
(a)

3o
(123)(4s6)

(b)

l. The thrce non-isomorphic

4

(r234)(s6)
(cl

(2, 2) dicraphsFigure
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On (4.2r drgraphs Conla'nrng a Cycle of l,englh

In [2], it is shown that there is exacdy one (3,2)-digraph, i.e., LKa. Fixing the

degree instead of the diameter Miller and Fris [8] proved that (2,k)-digraphs do not exist

for any values of /< ) 3. However, the existence problem of (d,/<)-digraphs with d > 3

a n d  t 2 3  i s s t i l l o p e n .
Every (r/,t)-digraph G has the characteristic property that for every vertex r€C

there exists exactly one vertex ) so that there are two walks of lengths < t from t to -v
(one of them must be of length /<). We called the vertex:v isthe repeat of x and denoted

by  { r ) .  I f  r (x )=y  then , - ' ( y )=r .  Thus  the  map r :V(G) - -+V(G)  i s  a  permuta t ion

on V(G). If r(x)=l then r is called selfrepeat (in this case, the two walks have

lengths 0 and &). It means that r is contained in a C1 . If r(t)+.t thenx is called

non-selfrepeat. It is easy to show that no vertex of a (d,/<)-digraphs is contained in two

In this paper, we study the enumeration of (4,2)-digraphs. Particularly, we study
(4,2)-digraphs containing a cycle of length 2.

The following theorem and lemma shown in [4] and [3] will be used in this paper

repeatedly. Let Gbe a (d,r()-digraph and SqV. Let r(S)={r(r)l reS}

Theorem l. For every vertex v of a (d,k)-digraph, we have:

(a) N- (r(v)) = r(N- (v))

(b) N- (r(v)) = r(1/ 1Y;1

ln the other words, theorem I shows that (a,b)e G ifand only if (r(a),r(b))e G.

Lemma 1. The permutatiott r has the same cycle structure on N*(v) for every

selfrepeat v of (d,k)-digraphs G.

2. Results

The aim of this paper is to show that if a (4,2)-digraph contains a selfrepeat then dll

vertices in such a digraph must be selfrepeats.
Let G is a (4,2)-digraph that contains a selfrepeat vertex We shall label the vertices

of Cby 0, 1,2,. .,19. Without loss of generality, from nowon weassumethe following:

l. 0 is a selftepeat vertex;

2. N+ (0) = {1, 2, 3,4} and (0,4) e C2 (thus 4 is also a selfrepeat),

3 .  N +  0 )  =  t s , 6 , ? , 8 ) ,  N . ( 2 ) = { 9 , 1 0 , 1 1 , 1 2 } ,  N + ( 3 ) = { 1 3 , 1 4 , 1 5 , 1 6 } , a n d

/f " (4) = { 17, 18, 19, 0 } , (see i igure 2).
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Lt = tr,2,3, 4 l, q = N- (l) u N* (2) tJN' (3) u N' (4), and for

A i  = { r }  u N + ( t ) .

I

Fieurc 2. The (4,2)-digraphs with containing a cycle of length 2

Since 0 is a selfr€peat then for each ae L1 , by Theorem 1, we have r(a)e 11 .

Furthermore, Theorem 1 imPlies that for each b e a2 , we have r(b) e L2 - Then we

have following lemma.

f,emrna 2. For each j=1,2, we have that if o Li, then r(a)eL,.

Lemma 3. If x is a non-selfrepeat vertex in a (d,k)-digraph G and r(x)e N* (x) then

N+ lx) does not contain any selfrePeal vertices.

Proof. Consider any ye N+(r)' If y = 11t; then ) is a non-selfrePeat Now' let

y + r(r). For a contradiction assumes that ) is a sel{iepeat. Since (r, y)e E(G)' by

Theorem 1we have (r(x),r(y)=))eE(G). Thus there are two walks of lengths (2

ftom x to ) in G, namely (';r, y) and (x,r(x),y). Thus r(r) = y which is not possible.

Ther€fore, each vertex of N*(.r) is a non-selfrepeat

Lernma 4. If x is a non-selfrepeat vertex in a (d,k)-digraph G and r(x)e N* (x:1 then

N+ (x) does not contain any verlex and its repeat together.
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Prool Suppose that vertex rand r(/) are in Nt(r). Since (x,t)eG, due to Theorem

l, then we have (r(x), r(t)) e E(G) . Thus there are two walks of lengths < 2 from .x to

r(t), namely (r, /(/)) and (x,r(x), r(t)). Thus r(r)=r(). Hence t = , , a contradiction

with r in N- (r).

To show that each vertex in G is a selfrepeat. We consider the out-neighbors of 0.

Since 0 and 4 are selfrepeats, then by Theorem 1 we essentially have three cases;

Cas€ 1 Vertices 1,2, and 3 are non-selfrepeat vertices.

Case 2 Two of {1,2,3}are non-selfrepeat vertices.

Case 3 Vertices l, 2, and 3 are selfrepeat vertices.

Letrbe a selfrepeat in (4,2)-digraph 6. Let t is a non-selfrepeat in ltr(s) Then each

vertex a in N* (t) must be a non-selfrepeat, since otherwise by Theorem I there are two

walks from s to & which implies that r(s)=tr, a contradiction with s being a selfrepeat.

Let a be in N * (t) . The following lemma considers the properties of out-neighbors of a.

Lemma 5. Let s be a sehepeqt vertex in (4,2)-digraph G. Let t e N* (s) be a non-

selfrepeat vertex. Let ue N'(t) be a non-selfrepeat eertex such that (u'v)e G, for

some ve N*(r) and v is a non-selfrepeat vertex. Let r(t)=v. Then for each

)€  N*  (s ) ,  there  is  a tmostone non-se fuepeqt  w,  where  w= N*(u)^Lr .

P/oof Suppose that there are two non-selfrepeat vertices of N+ (Il), which are in A/,

fo r  some yeN*(s ) .  S ince  r ( t )=v  and ( ,4 )eE(6) ,  due to  Theorem l ,  then

( r ( t )=v ,  71u11.81" , .  Hence r (a )  in  N* (v ) .  Suppose N*( l l )= [v 'v r ,v2 ,v3 land

both y1 and y, are in An. If one of them, say yr , is equal to 1, then there exist two

walks of lengths 32 fromrr to )2. This means that r(u)=yr' Since r(a) in

N*(v), we should have an arc from v to y2 in G. Thus; altogether there are three walks

of lengths 3 2 from rr to )2 , a contradiction. Thus, y1 * y. Similarly' we can show

that yz*J. Let us denote the three remaining vertices of A, byy, x1 ,and x2 such

that N* (y) = { Jt, !2, \, xz } (see Figure 4).



Figure 4

Of course y * r,. Since otherwise, there ar€ two repeats of r, namely r(a) = y, and
r(u)=12. To reach y in 2 steps from a we cannot do via v, since there wilr be two
walks of lengths 32 from r to ), namely (s,1) and (.r,r,y). .Ihus 

r(s)=y, a
contradiction with s being selfrepeat. We cannot do it via y, or y2, since there will be a
c, containing yt or y2, a contradiction withyl ory2 being a non_serrrepeat. H€nce, to
reach y fiom a we must do it through yr. Thus we have (yt,/)€E(c).

To reach _r, in 2 steps from a we cannot do it via v, because if we haye (v, ,r1 ) e G
then there are two walks of lengths i 2 from s to ry . Thus r(s) =,rr, a contradtction.
We cannot  do  i t  th rough e i ther  ) r  o r  )2 ,  because i fwe have ( ) r , r r )o r  (y2 ,x r )eG,
then there are two walks of lengths S 2 from.y to r, . Thus ,(f) = 

"r 
. Since r is a

selfrepeat and (s,y)e G, by Theorem l, we have (c,r(y)=1,;E G. Thus there are
also two walks of lengths < 2 ftom ., to .r, in 6, namely (s, y,.r1 ) and (s, _r, ). Hence
/(r) = rl , a contradiction. Therefore, we have ()3, xr ) e E(G) to be able to reach xl
from ri. Similarly, we can show to reach ,2 from z in 2 steps we should have
(yt,xz)e E(G). Thus altogether implies r(yr)=r, and x2, acontra<liction with the
uniqueness ofrepeat. Therefore there are at most one out_neighbor ofa which is in Ay.

In the following sections, we shall show that Cases I and 2 can not hold.

2.1. Case I

Consider a (4,2)-digraph G containing a sub_digraph of Figure 2 and havrng prope ies ofCase I . In this case, l, 2, and 3 are non_selfiipeat uertlc""r. Withouiloss of generality,we can assume that

H.lswad' and E T. Baskoro

r ( t )=2 ,  r (2 )=3  and r (3 )  =  I (3)
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Then, we have the following three properties (due to Theorem l):

f . i f a e N* (l) then r(a) e N' (2),

2 .  i f  ae  N*(2)  then r (a )e  N*  (3 ) ,

3 .  I f  ae  N*(3)  then r (a )e  N- ( l ) .

Thus  each ver tex  in  N+( l )uN*(2)uN*(3)  i s  a  non-se l f repeat .  s ince  4e  Nt (0 )  i sa

selfrepeat, then the permutation r on M(4) has the same cycle sructure with that on

N*(0). In this case, N*(0) consists of three non-selfrepeat and one selfrepeat Since

0€ N+(4) is selfiepeat, then N-(4)\{0} consists of non-selfrepeat vertices.

Since C has diameter 2, hence to reach I from 3 there must exist a vertex

.r0 e 1y'*(3) such that (x0,1) e G. From now on, let us denote by.r, ), and z the

remaining three out-neighbors of ,rs in G. Of course, none of them can be 0 since

otherwise r(xo)=1, a contradiction with r(x6) in N*(1). None of themcanbein A,'

Since otherwise, then r(3) in N+(3), a contradiction with assumption that r(3) = I

Lemma 6. There is al most one of lx,y,zl can be in either N*(l) or L2, or

A4 \  {0 } .

Proo l  Supposetha t twoof { r , ) , r }be in  N*( l ) ,  say . tandy .  Then r (xs )=x  andy '  a

contradiction with the uniqueness of repeat Hence at most one of {.:r, y, r } be in N * (l)'

Suppose that two of {-t, y,,r} be in A2 , say.x and }. Since all of vertices in A2 is non-

selfrepeat, by Lemma 5 then at most one ofr and y can be in A2 Hence at most one of

{ r ,y , ; r }  in  42 .  Suppose tha t  two o f  { - r ,y ,x }be in  Aa\ {0 } ,  say  x  and v .  I f  one  o f

them, say r, is equal to 4, then there exist two walks of lengths ( 2 from ts to ) Thus

r(xe)= ye N*(4), a contadiction with /(t0)€N*(l) Thus r+4. Similarly, we can

show that ], * 4. Hence both r and ) be in N* (4) \ {0}. Since all of vertices in

N.(4)\{0} is non-selfrepeat, by Lemma 5 then at most one of .r and y can be in

N-  (4 ) \ {0 } .  Hence a t  most  one o f  {x ,y , . t } in  Aa \ {0 } .

Oneof {-:r,y,r} mustbe in N*(1). Since otherwise, then there are two of {r,y, 'r}

be in A2 or Aa \{0}, a contradiction with Lemma 6 kt x be in M(1) Hence

r(r0)=re Nt(,ro). Then ) or z cannot be equal to 4. Since otherwise, then Nt{xs)

contains a selfrepeat vertex, a contradiction with Lemma 3. Hence none of {y, z} can



be 4. If one of {y,z} is equal to 2, then N+(x') contains I and r(1)=1,

a contradiction with Lemma 4.
The following theorem will complete the impossibil i ty ofcase l.

Theorem 2. There is no (4,2)-digraph containing a subd.igraph of Figure 2 and having
properties of Case l.

Prool Suppose that G is a (4,2)-digraph containing a subdigraph of Figure 2 and having
properties ofcase L By Lemma 6, we haye that out-neighbors .r, y, z of ro other than I

must be equaily distributed, namely .re 1r'*(l), ye N*(2), and ze N+(4)\{0}. Then

r ( r0 )= . r .  S ince  r (x6)=x ,  r (1 )=2 ,  and (xo , l )e  G,by  us ing  Theorem l ,  then

(r(rs), r(I)) = (x,2) e G.

Wewill show that (x,3)eG. To reach 3 from.16 in 2 steps, wecannotdo this via l,

because 3+N-(l). If we do that viaz, then there are two walks (4,0,3)and (4,2,3) in

G. Hence r(4) = 3 which is a contradiction with 4 being a selfrepeat. Suppose that
(y,3)e G. Next, we must reach 0 from -re in 2 steps. We cannot do it via l, because

0*N-(l). If we do that via r, then there are two walks from x to 2 or r(x'1=), a

contradiction with r(x)e N*(2). If we do it viay, then r(y)=1,2 contradiction with

r(f)eN*(3). If we do that via z, then r(4)=Q, a 
"onlru6iction 

with 4 is a seli iepeat.

So, (t,3) e c. This implies that (x,3)e G.

To reach 0 from re in 2 steps, we cannot do this via 1, because 0 * lr'+ (l). If we do

that via r, then there are two walks from r to 2. This means that r(x\=z, a

conffadiction with r(.r)e N-(2). If we do that via z, then ,"(4) = 0, a contradiction with

4 is a selfrepeat. Hence (y,0) is in G. Similarly, to reach 4 from x6 in 2 steps, we can

show that it is done through r. Hence we have (r, 4) e G.

Let t be the fourth vertex in N*(n). Now we consider yertex r and the others at

distance I and 2 from.r. At distance 1 from.r, there are 2, 3, 4, and t. Atdistance 2 from

x, N* (t) contain I and the remaining vertices in N+ (1)\{r} (sirce

N - ( 2 ) = [ 9 ,  1 0 , r 1 ,  1 2 ] r ,  N - ( 3 ) = { 1 3 , 1 4 , 1 5 , 1 6 } ,  i / + ( 4 ) = ( 1 7 , 1 8 , l e , 0 } ) .  T h e n  r  h a s

multiple repeats, a contadiction with the uniqueness repeat.

2.2. Case 2

Consider a (4,2)-digraph G containing a subdigraph of Figure 2 and having properties of
sase 2. In this case, there are two out-neighbors of 0 as non-selfrepeat vertices. Without
loss ofgenerality, we can assume that those non-selfrepeat vertices are 1, and 2, such that

r(r) = 2, r(2) = I, and r(3) = 3 (3)
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Then, by Theorem 1 we have two following properties:

if a e N* 0) then i '(a) € N+ (2) ,

if ae N* (2) then ,.(a) € N+ (1).

This implies that all vertices in N*(1) u N*(2) are non-selfrepeat vertices. Since 3

and 4 are selfiepeats, then by Lemma 5, vertices 3 and 4 have the same cycle structure

with 0. In this case, two of vertices in N*(0) are selfrepeat and the others are non-

selfrepeat. Then N* (3) and N+ (4) consist of two selfrepeat vertices and non-selfrepeat

each. We assume that 15 and 16 are selfrepeat vertices in y'y'+(3). Let

Hl ={15, 16}. It is clear 0 is a selfrepeat vertex in 1y'*(4). Let another selfrepeat in

N'(4) be 19. Let H2 ={0, 19}. Since 3 is a selfrepeat then 3 contain in a C2 which

contain another selfrepeat vertex, say s. Then s only can be 15 or 16. Let,r = 16. Hence
3 and l6 contain in a C2. For 15 and 19, they must be containing in Cr. Since otherwise
then there wil l be one of {0,3,4, 16}contain in two cycle of length 2, a contradiction.

Furthermore, since 15, 16, and 19 are selftepeat vertices, then by Lemma 5, each of

N-(15), N-06), and N-(19)consist of two selfrepeat vertices and two non-

selfrepeat.
Since G has diameter 2, hence to reach I from 2 there must exist a vertex

.r0eN-(2)such that (,r0,1) e C. From now on, let us denote by.r, ), and z the

remaining three out-neighbors of 16 in G. Of course, none of them can be 0 since

otherwise r(ro ) = I , a contradiction with r(ro ) in N' (1). None of them can be in

A2. Since otherwise, then r(2) in N'(2), a contradiction with assumption that

r (2 )=1.  I f  there  are  more  than one o f  { - r ,y ,z }canbe in  A . , thennoneof  { . r , y ,z }can
be 3. Since otherwise, then there are two walks of lengths ( 2 from xx to a vertex in

N-(3). Then r(-16)e N*(3), a contradiction with r(xe)e Nt(1). Similarly, if there

are  more  than one o f  {x , } ,2 }canbe in  Aa \ {0 } ,  thennoneof  { - r ,y ,z }canbe4.

Proposition 1. N- (16) = N- (0).

Proo f .  l t  i s  c lear  3e  N+(16) .  Le t  e  N* (16)  be  {3 ,  r , ,  x2 ,  r3 } .  Le tx l  be  another

selfrepeat vertex in M(16). If x1 = 0 then there are two walks of lengths < 2 from 16 to

3, namely (16,0,3) and (16,3). Thus r(16)=3, a contadiction 16 being selfrepeat.

Hence xl + 0. If xt = l9 then there are two walks of lengths < 2 from 3 to 19, namely

(3,15,19) and (3,16, 19). Thus r(3)=19,a contadiction with 3 being selfrepeat.

Hence ,rr + 19. If xr = l5 then there are two walks of lengths S 2 from 3 to 15, namely

l .

2.
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(3,16, 15) and (3, 15). Thus r(3)=15, a contradiction with 3 being selfrepeat Hence

r r  +15.  Hence x l  =4 .

Vertex .r2 cannot contain in N*(3)\{16} or N*(4), because if i t can then

r (16)=x2eNt (3) \ {16}  o r  r (16)=126t r '+ (0) ,  a  cont rad ic t ion  w i th  l6  be ing

selfrepeat vertex. Simitarly, ,r3 cannotbein N+(3)\{16} or N*(4). Thus 12 and

13 must contain in A1 and A2.

Suppose that x2 e N*0). Then' we consider vertex l6 and the others at distance I

and 2 from 16. At distance I from 16, there are 3, 4, -t2 ' and .r3. At distance 2 from 16'

vertices of N+ (1, ) cannot be I (since if they are, then there will be a C2 contain I ) and

ve ices  o f  N+( . r2 )  cannot  be  in  N* (1) \ { rz }  (s ince  i f  they  are ,  then r ( l )e  N- ( l ) )

Hence N*( . r2 )  w i l l  con ta in  ver t i ces  in  {2 }  u  N- (2)  (s ince  N" (3)={13 '14 '15 ,16}

and N- (4)  ={0,17,18,19}  ) . Then ri must be containing in

(1 ,2 i  (J {N+( l ) \ { r2 l l  JN*(2) .  I f  x r= l '  then  there  are  two wa lks  o f  leng ths  (  2

f rom 16 to  12 ,  namely  [6 ,12 ]and [16 , l , - t t ] .  Then r (16)=r t ,  a  conrad ic t ion  w i th

16 being selfrepeat. lf 4=2' then at distance 2 from 16 there are

N+(2) ,  N* (3) ,  N* (4) ,  and N*( r2 ) .  Thus  N+(x2)  cons is ts  o f  {1 }u IN+(1) \ { - t r }  }

Thus ,r2 has multiple repeats, a contradiction with the uniqueness of repeat

If .r j e {N+ (l)\{r2 } }, then I cannot be in N* (.r2) and N* (r3) Thus 16cannotreach

I  inapatho f  leng thss2,acont rad ic t ion .  Hence. r re  {N* ( l ) \ { . r : } .  I f  r ,  e  N ' (2 ) '

then N+(x3) cannot contain 2 (if itcan then there is a cycle contain 2, a contradiction).

I t  means tha t  2  must  be  in  1 r ' * ( ; r2 ) .  Then N*( . r2 )  cons is ts  o f  2and l / v * {1 ) \ l r r } ) '

Thus x2 has multiple repeat, a contradiction with the uniqueness of rePeat

Then rr cannot be containing in {t,2} u {ff.( l)\{tr}} u N+Q)' a sontradiction'

Hence .x2 cannot be in N+ 0). Similarly -t2 cannot be in N* (2). Hence 12 must

be 1 or 2. Let .rz = 2. Since 16 is a selfrepeat and (16,2) e E(G), by using Theorem I'

then  ( r (16)=16,  42)  = l )  E(G) .  Hence t3  must  be  l  Hence N*(16)={1 ,2 '3 '4 }

= N* (0).

Allof{x, l,z} cannotbein 43. Since otherwise, x0 cannot reach the fourth veltex

in A3, say t (because we cannot do it via I and if we do it via one of {'t, y, z} , say r'

then there will be two walks of lengths 5 2 ftom 3 to .r, a contradiction) As we know

before that none of {.r, y, z} which are in 43 can be 3 Hence there are at most two ot

{.r,},2}can be in N+(3). Similarly, there are at most two of {r,),.}can be in

N. (0) \  {o}.
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Lemma 7. There is at most one of {x,y,z} can be in either N ( I ) or t(3 ) or tf (i )V0l.

Proo, Suppose that two of {r,y,z)canbein N*(1), sayrandy. Then r(-16)=r and
y, a contradic(ion with the uniqueness of repeat. Hence there is at most one of {x,y,z} can
be in  N+( l ) .  Suppose tha t  two o f  { - r ,y ,z }  canbe in  N+(3) ,  sayxand) .  Both .x  and

) cannot be non-selfiepeat vertices. Since if they are then it will be a contradiction with
Lemma 5. Hence both of [r, y] is selfrepeat or (x, ]] consist of one selfrepeat and one

non-selfrepeat. One of {x, }} cannot be 16. Since otherwise, then there are two walks of

lengthsS2f rom. rs to  1 (because N+0O={1 ,2 ,3 ,4 ] , ) .  Then r (xo)=1,  a  conrad ic t ion

wi th  r ( r0 )  in  N* ( l ) .  Henceoneof  { . r , y } i sequa l to  15  and another  i s  13and 14 .

For.t=13 and )=15. If 7=19, then there are two walks of lengths S 2 from .tn

to  19 ,  namely  ( ,16 ,19)and ( . r0 ,15 ,  l9 ) (because 19€ N*05) ) .  Then r ( rn )= l ! ,6

contadiction with r(ro)in N*(1). Hence z*19. If z =4,then there are two walks of

lengths ( 2 from ro to 19, namely (-r0,15,19)and (r0,4, 19) (because 196 N*05)

and 19e N+(4) ). Then r(.x6) = 19, a contradiction. Suppose that z = 18. Then we

consider "{0 and the others at distance l and2from t6. At distance l, we have l, 13,

15 ,  and 18 .  A t  d is tance 2 ,  we have N"0)={5 ,6 ,7 ,8 } ,  N+(13) ,  N+(15) ,  and

,ry*(18). Now we consider where we can put 3. N*113; cannot contain 3. Since
otherwise, there will be a cycle of length 2 contain 13, a contradiction with 13 being a

non-selfrepeat. N+(15) cannot contain 3. Since otherwise, then 3 in two C?'s, a

contradiction. Hence 3e N+(18). Now, we consider where wecanput 16. lr '+(13)

cannot contain 16. Since otherwise, then r(3)=16, a contadiction with 3 being a

selftepeat. Similarly, N*(15) cannot contain 16. If N.08) contain 16, then

r(18) = 16, a contradiction with 16 being a selfrepeat. Thus we cannot reach 16 from ro

in I and 2 steps, a contradiction. Similarly, if z = 17, we cannot reach 16 from ro in 1

and 2 steps. Thus z must be in N'(3). Hence all of {x,),2}must be in A,, a

contmdiction. Similarly, for y=14 and z=15, then all of {"r, y, z} must be in A3, a

contadiction. Hencetwoof {r, }, z} cannot be in d+(3). Similar reason we use to find

a  cont rad ic t ion  i f  two o f  ( r ,y ,z |  canbe in  N*(4) \ {0 } .  Thus  two o f  { r , ) ,2 }sannor

be in N+(4)\{0}. Hence there is at most one of {r,y,z} ca be in either N+(1)or

N*(3)  o r  N+(4) \ {0 } .
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One of {.t,y,z}must be ln N*0) Since otherwise' then there are two of

{,r,1,2} be in N+(3) or N*(4)\{0}, a contradiction with l€mma T Let x be in

N.(l). Hence r(x6)=re N+(jr '). Then ) or z cannot contain in union of

14,31 e Hl ur 112. Since otherwise, then N+(to) contains a selfrepeat vertex' a

contradiction with Lemma 3 Hence none of {}'z} can contain in union of

l 4 , 3 l u H t w H 2 .

Theor€m 3. There is no (1,2)-digraph containing a subdigraph of Figure 2 and havtng

properties of Case 2.

Proof Suppose that G is a (4,2)-digraph containing a.subdigraph ofFigure 2 and having

pr"p'"ui* 6iC*" Z. Do" to L"m-i 7, we have thit the three out-neighbors 'r' ) and z of

. r ^ o t h e r t h a n l m u s t b e e q u a l l y d i s t r i b u t e d , n a m e l y . r e N * ( l ) , y e N * ( 3 ) \ H l , a n d

z e N+ (4)\ H2. Since r(16 ) = x, r(l) =2, and (-ro, 1) e G, by using Theorem l' then

(r(;ro ), r(1)) = (r, 2) e G. To reach 0 from t0, we must do it from y' because if we do

sovia-ror z then r(x)=2 or r(4)=0, a contradiction Hence (y'0)e G To reach 3

from ,16, we must do it through ;r, because if we do via y or z then 3 in two G's or

r(l) = 4, respectively, a confadiction similarly' if we show that 4 is reachable fiom

r0 through r. Hence (x,3) and (;r,4) areinG'

Let / be the remaining vertex in N* (r) Similarly with the proof of Theorem 2' we

have rnultiple repeats for t, a contradiction with the uniqueness ofrepeat'

2.3. Cas€ 3

Consider a 14.2t-digraph containing a subdigraph of -Figure 
2^ and having properties of

Cur" i. rn tni" 
"ur",-*" 

tuu" thot uli out-neig-hbors of0 are selfiepeats We will complete

our proofby showing that (4,2)-digraph is exactly lKs'

Theorem 4. There is exactly one (4,2)-digraph' which contains a sefuepeat' nameb' the

line digraph LK5 of complete digraph on 5 vertices'

Proof. Since all out-neighbors of 0 are selfrepeats then by using Lemma I implies that

all ve ices in the digraph must be selfrepe;ts Next' due to Theorem 3 in [4]' we

conclude that only such (4,2)-digraph is ZK5
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