20,904 research outputs found

    Multivariate integration of functions depending explicitly on the minimum and the maximum of the variables

    Get PDF
    By using some basic calculus of multiple integration, we provide an alternative expression of the integral ]a,b[nf(x,minxi,maxxi)dx, \int_{]a,b[^n} f(\mathbf{x},\min x_i,\max x_i) d\mathbf{x}, in which the minimum and the maximum are replaced with two single variables. We demonstrate the usefulness of that expression in the computation of orness and andness average values of certain aggregation functions. By generalizing our result to Riemann-Stieltjes integrals, we also provide a method for the calculation of certain expected values and distribution functions.Comment: 15 page

    Oblivious Bounds on the Probability of Boolean Functions

    Full text link
    This paper develops upper and lower bounds for the probability of Boolean functions by treating multiple occurrences of variables as independent and assigning them new individual probabilities. We call this approach dissociation and give an exact characterization of optimal oblivious bounds, i.e. when the new probabilities are chosen independent of the probabilities of all other variables. Our motivation comes from the weighted model counting problem (or, equivalently, the problem of computing the probability of a Boolean function), which is #P-hard in general. By performing several dissociations, one can transform a Boolean formula whose probability is difficult to compute, into one whose probability is easy to compute, and which is guaranteed to provide an upper or lower bound on the probability of the original formula by choosing appropriate probabilities for the dissociated variables. Our new bounds shed light on the connection between previous relaxation-based and model-based approximations and unify them as concrete choices in a larger design space. We also show how our theory allows a standard relational database management system (DBMS) to both upper and lower bound hard probabilistic queries in guaranteed polynomial time.Comment: 34 pages, 14 figures, supersedes: http://arxiv.org/abs/1105.281

    On the succinctness of query rewriting over shallow ontologies

    Get PDF
    We investigate the succinctness problem for conjunctive query rewritings over OWL2QL ontologies of depth 1 and 2 by means of hypergraph programs computing Boolean functions. Both positive and negative results are obtained. We show that, over ontologies of depth 1, conjunctive queries have polynomial-size nonrecursive datalog rewritings; tree-shaped queries have polynomial positive existential rewritings; however, in the worst case, positive existential rewritings can be superpolynomial. Over ontologies of depth 2, positive existential and nonrecursive datalog rewritings of conjunctive queries can suffer an exponential blowup, while first-order rewritings can be superpolynomial unless NP �is included in P/poly. We also analyse rewritings of tree-shaped queries over arbitrary ontologies and note that query entailment for such queries is fixed-parameter tractable

    Ranking Templates for Linear Loops

    Full text link
    We present a new method for the constraint-based synthesis of termination arguments for linear loop programs based on linear ranking templates. Linear ranking templates are parametrized, well-founded relations such that an assignment to the parameters gives rise to a ranking function. This approach generalizes existing methods and enables us to use templates for many different ranking functions with affine-linear components. We discuss templates for multiphase, piecewise, and lexicographic ranking functions. Because these ranking templates require both strict and non-strict inequalities, we use Motzkin's Transposition Theorem instead of Farkas Lemma to transform the generated \exists\forall-constraint into an \exists-constraint.Comment: TACAS 201

    Closed classes of functions, generalized constraints and clusters

    Get PDF
    Classes of functions of several variables on arbitrary non-empty domains that are closed under permutation of variables and addition of dummy variables are characterized in terms of generalized constraints, and hereby Hellerstein's Galois theory of functions and generalized constraints is extended to infinite domains. Furthermore, classes of operations on arbitrary non-empty domains that are closed under permutation of variables, addition of dummy variables and composition are characterized in terms of clusters, and a Galois connection is established between operations and clusters.Comment: 21 page

    The Dichotomy of Conjunctive Queries on Probabilistic Structures

    Full text link
    We show that for every conjunctive query, the complexity of evaluating it on a probabilistic database is either \PTIME or #\P-complete, and we give an algorithm for deciding whether a given conjunctive query is \PTIME or #\P-complete. The dichotomy property is a fundamental result on query evaluation on probabilistic databases and it gives a complete classification of the complexity of conjunctive queries
    corecore