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Abstract

By using some basic calculus of multiple integration, we provide an alternative
expression of the integral

∫

]a,b[n
f(x,minxi, maxxi) dx,

in which the minimum and the maximum are replaced with two single variables.
We demonstrate the usefulness of that expression in the computation of orness and
andness average values of certain aggregation functions. By generalizing our result to
Riemann-Stieltjes integrals, we also provide a method for the calculation of certain
expected values and distribution functions.
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1 Introduction

Let a, b ∈ R ∪ {−∞, +∞}, with a < b, and consider an integral over ]a, b[n

whose integrand displays an explicit dependence on the minimum and/or the
maximum of the variables, that is, an integral of the form

∫

]a,b[n
f(x, min xi, max xi) dx. (1)

In this note we provide an alternative expression of this integral, in which the
minimum and the maximum are replaced with two single variables. When the
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integral is tractable, that alternative expression generally makes the integral
much easier to evaluate. For instance, when the integrand depends only on the
minimum and the maximum of the variables, we obtain the following identity

∫

]a,b[n
f(min xi, max xi) dx = n(n− 1)

∫ b

a
dv

∫ v

a
f(u, v)(v − u)n−2 du, (2)

and hence, for certain functions f , the integral becomes very easy to evaluate.

The alternative expression we present for integral (1) is given in the next sec-
tion (see Theorem 3). The method we employ to obtain that expression merely
consists in dividing the domain ]a, b[n into n polyhedra chosen in such a way
that the minimum and maximum functions simply become single variables.

This method can be very efficient in the evaluation of many integrals that
would normally require difficult and tedious computations. As an example,
consider the variance of a sample x ∈ [a, b]n from a given population, namely

s2(x) =
1

n− 1

n∑

i=1

(
xi − 1

n

n∑

j=1

xj

)2

.

The average value over [a, b]n of the variance-to-range ratio function can be
easily calculated by using our method. We merely obtain

1

(b− a)n

∫

[a,b]n

s2(x)

max xi −min xi

dx =
n + 2

12n
(b− a). (3)

This note is set out as follows. In Section 2 we state and prove the main re-
sult. In Section 3 we provide an application of our result to internal functions,
also called Cauchy means, which can be classified according to their location
within the range of the variables. A similar application to conjunctive and
disjunctive functions is also investigated. In Section 4 we show how the di-
rect generalization of our result to Riemann-Stieltjes integrals enables us to
consider the evaluation of certain expected values from various distributions.

We will use the following notation throughout. For any n-tuple x, we denote
by (x | xj = u) the n-tuple whose ith coordinate is u if i = j, and xi otherwise.
Also, for any integer n > 1, we set [n] := {1, . . . , n}.

2 Main result

In this section we present our main result which consists of an alternative
expression of integral (1). We start with a preliminary lemma, which concerns
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the particular cases of functions involving either the minimum or the maximum
of the variables.

Lemma 1 Let f : ]a, b[n+1 → R be an integrable function. Then we have

∫

]a,b[n
f(x, min xi) dx=

n∑

j=1

∫ b

a
du

∫

]u,b[n−1
f(x, u | xj = u)

∏

i∈[n]\{j}
dxi,

∫

]a,b[n
f(x, max xi) dx=

n∑

j=1

∫ b

a
dv

∫

]a,v[n−1
f(x, v | xj = v)

∏

i∈[n]\{j}
dxi.

Proof. Consider the following n-dimensional open polyhedra

Pj := {x ∈ ]a, b[n : xi > xj ∀i 6= j} (j ∈ [n]).

They are pairwise disjoint. Indeed, if x ∈ Pj∩Pk, with j 6= k, then xk > xj and
xj > xk, which is a contradiction. Moreover, the union of their set closures
covers ]a, b[n. Indeed, for any x ∈ ]a, b[n there is always j ∈ [n] such that
xi > xj for all i 6= j.

Therefore, for any integrable function f : ]a, b[n+1 → R, we have

∫

]a,b[n
f(x, min xi) dx=

n∑

j=1

∫

Pj

f(x, min xi) dx

=
n∑

j=1

∫ b

a
dxj

∫

]xj ,b[n−1
f(x, xj)

∏

i∈[n]\{j}
dxi,

which proves the first formula. The second formula can be established similarly
by considering the polyhedra

Qj := {x ∈ ]a, b[n : xi < xj ∀i 6= j} (j ∈ [n]). 2

Lemma 1 is interesting in its own right since it provides special cases of the
main result. For instance, by applying the first formula, we immediately obtain
the following identity, which will be used in the next section (see Example 8).
For any S ⊆ [n], we have

∫

]a,b[n
f

(
min
i∈S

xi

)
dx = (b− a)n−|S| |S|

∫ b

a
f(u)(b− u)|S|−1 du. (4)

Remark 2 We note that, for bounded and continuous functions f , Lemma 1
can also be derived from the classical Crofton formula, well known in integral
geometry (see for instance [8]). In the appendix we present an alternative proof
of Lemma 1 constructed from Crofton formula.
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Let us now state our main result, which follows immediately from two appli-
cations of Lemma 1.

Theorem 3 Let n > 2 and let f : ]a, b[n+2 → R be an integrable function.
Then we have

∫

]a,b[n
f(x, min xi, max xi) dx

=
n∑

j,k=1
j 6=k

∫ b

a
dv

∫ v

a
du

∫

]u,v[n−2
f(x, u, v | xj = u, xk = v)

∏

i∈[n]\{j,k}
dxi.

A direct use of this result leads to formula (3). Indeed, as the integrand is
symmetric in its variables, we simply need to consider

f(x, u, v | xj = u, xk = v) =
1

v − u
s2(x1, . . . , xn−2, u, v),

where, for any fixed a < u < v < b, the right-hand side is a quadratic polyno-
mial in x1, . . . , xn−2.

3 Application to aggregation function theory

We now apply our main result to the computation of orness and andness
average values of internal functions and to the computation of idempotency
average values of conjunctive and disjunctive functions.

3.1 Internal functions

We recall the concept of internal functions, which was introduced in the theory
of means and aggregation functions.

Definition 4 A function F : ]a, b[n → R is said to be internal if

min xi 6 F (x) 6 max xi (x ∈ ]a, b[n).

Internality is a property introduced by Cauchy [4] who considered in 1821 the
mean of n independent variables x1, . . . , xn as a function F (x1, . . . , xn) which
should be internal to the set of xi values. Internal functions, also called Cauchy
means, are very often encountered in the literature on aggregation functions.
Most of the classical means, such as the arithmetic mean, the geometric mean,
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and their weighted versions, are Cauchy means. For overviews on means and
aggregation functions, see the monograph [2] and the edited book [3].

It is straightforward to see that a function F : ]a, b[n → R is internal if and
only if there is a function f from ]a, b[n \ diag(]a, b[n) to [0, 1] such that

F (x) = min xi + f(x) (max xi −min xi),

where diag(]a, b[n) := {(x, . . . , x) ∈ ]a, b[n : x ∈ ]a, b[}.

Starting from this observation, Dujmović [5] (see also [7]) introduced the fol-
lowing concepts of local orness and andness functions, rediscovered indepen-
dently by Fernández Salido and Murakami [9] as orness and andness distribu-
tion functions.

Definition 5 The orness distribution function (resp. andness distribution
function) associated with an internal function F : ]a, b[n → R is a function
odfF (resp. adfF ), from ]a, b[n \ diag(]a, b[n) to [0, 1], defined as

odfF (x) =
F (x)−min xi

max xi −min xi

(resp. adfF (x) =
max xi − F (x)

max xi −min xi

).

Thus defined, the orness distribution function (resp. andness distribution func-
tion) associated with an internal function F : ]a, b[n → R measures, at each
x ∈ ]a, b[n, the extent to which F (x) is close to max xi (resp. min xi), that is,
the extent to which F (x) has a disjunctive (resp. conjunctive) or orlike (resp.
andlike) behavior.

To measure the average orness or andness quality of an internal function over
its domain, Dujmović [5] also introduced the concepts of mean local orness and
andness, later called orness and andness average values by Fernández Salido
and Murakami [9].

Definition 6 The orness average value (resp. andness average value) of an
internal and integrable function F : ]a, b[n → R is defined as

odfF =
1

(b− a)n

∫

]a,b[n
odfF (x) dx (resp. adfF =

1

(b− a)n

∫

]a,b[n
adfF (x) dx).

As an immediate property, we note that

odfF (x) + adfF (x) = 1,

which entails odfF + adfF = 1. Thus, as expected, both odfF and adfF render
the same information and hence we can restrict ourselves to the computation
of odfF .
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Even though the computation of odfF remains very difficult in most of the
cases, Theorem 3 enables us to rewrite this integral in a more practical form,
namely

odfF =
1

(b− a)n

n∑

j,k=1
j 6=k

∫ b

a
dv

∫ v

a
du

∫

]u,v[n−2

F (x | xj = u, xk = v)− u

v − u

∏

i∈[n]\{j,k}
dxi.

The following two examples demonstrate the power of this formula:

Example 7 Let us calculate the orness average value over [0, 1]n of the geo-
metric mean

G(n)(x) =
n∏

i=1

x
1/n
i .

The case n = 2 is straightforward. Using (2) with f(u, v) =
√

uv−u
v−u

, we obtain

odfG(2) = ln 4− 1.

Assume now that n > 3. As the integrand is a symmetric function, we can
simply consider

G(n)(x | xj = u, xk = v) = G(n)(x1, . . . , xn−2, u, v)

and hence, we have

∫

]u,v[n−2
G(n)(x | xj = u, xk = v)

∏

i∈[n]\{j,k}
dxi

=
(

n

n + 1

)n−2 (
v1+1/n − u1+1/n

)n−2
u1/nv1/n.

Then, using the binomial theorem and observing that 1
v−u

= 1
v

∑∞
i=0(

u
v
)i, we

obtain

∫ 1

0
dv

∫ v

0

(
v1+1/n − u1+1/n

)n−2
u1/nv1/n

v − u
du

=
∞∑

i=0

n−2∑

k=0

(
n− 2

k

)
(−1)k

ni + (k + 1)(n + 1)

=
∞∑

i=0

n−2∑

k=0

(
n− 2

k

)
(−1)k

∫ 1

0
xni+kn+k+n dx

=
∫ 1

0

xn(1− xn+1)n−2

1− xn
dx.
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Finally,

odfG(n) = n(n− 1)
(

n

n + 1

)n−2 ∫ 1

0

xn(1− xn+1)n−2

1− xn
dx− 1

n− 2
.

The values of odfG(n) for n = 2, 3, 4, 5 are ln 4 − 1,
√

3π
2
− 47

20
, 96 ln 2

25
− 8837

3850
,

25π
27

√
5
2
(25− 11

√
5)− 2454487

960336
, respectively.

Example 8 Let us calculate the orness average value over [0, 1]n of a function
of the form

C(n)
a (x) =

∑

S⊆[n]

a(S) min
i∈S

xi,

where the set function a : 2[n] → R fulfills

a(∅) = 0 and
∑

S⊆[n]

a(S) = 1

and is chosen so that the function C(n)
a is nondecreasing in each variable. Such

a function is known in aggregation function theory as a Lovász extension or
a discrete Choquet integral (see for instance [10,12]). As particular cases, we
can consider any weighted mean

∑
i wixi and any convex combination

∑
i wix(i)

of order statistics.

The case n = 2 is easy. We simply obtain odf
C

(2)
a

= 1
2

(
a({1}) + a({2})

)
.

Assume now that n > 3. For any 0 6 u < v 6 1 and any x ∈ [u, v]n−2, we
have

C(n)
a (x | xj = u, xk = v) =

∑

S3j

a(S)u +
∑

S 63j
S3k

a(S) min
i∈S\{k}

xi +
∑

S 63j
S 63k

a(S) min
i∈S

xi.

Setting s := |S|, from (4) it follows that

∫

]u,v[n−2
C(n)

a (x | xj = u, xk = v)
∏

i∈[n]\{j,k}
dxi

= (v − u)n−2

( ∑

S3j

a(S)u +
∑

S 63j
S3k

a(S)
u(s− 1) + v

s
+

∑

S 63j
S 63k

a(S)
us + v

s + 1

)
.

Then, we obtain
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∫ 1

0
dv

∫ v

0

du

v − u

∫

]u,v[n−2
C(n)

a (x | xj = u, xk = v)
∏

i∈[n]\{j,k}
dxi

=
1

n(n− 1)(n− 2)

( ∑

S3j

a(S) +
∑

S 63j
S3k

a(S)
n + s− 2

s
+

∑

S 63j
S 63k

a(S)
n + s− 1

s + 1

)
.

Summing over j, k = 1 . . . , n, with j 6= k, and then rearranging the terms we
finally obtain

odf
C

(n)
a

=

( ∑

S⊆[n]

a(S)
n(n− 1) + s− 1

(n− 1)(n− 2)(s + 1)

)
− 1

n− 2

=
∑

S⊆[n]

a(S)

(
n(n− 1) + s− 1

(n− 1)(n− 2)(s + 1)
− 1

n− 2

)

=
1

n− 1

∑

S⊆[n]

a(S)
n− s

s + 1
,

which includes the case n = 2.

To overcome the difficulty of calculating intractable orness average values, Du-
jmović [6] introduced the next concept of global orness and andness measures
(see also [7,9]). Denote by F the average value of any internal and integrable
function F : ]a, b[n → R over its domain, that is,

F :=
1

(b− a)n

∫

]a,b[n
F (x) dx.

Definition 9 The global orness value (resp. global andness value) of an in-
ternal and integrable function F : ]a, b[n → R is defined as

ornessF =
F −Min

Max−Min
(resp. andnessF =

Max− F

Max−Min
),

where Min and Max are, respectively, the minimum and maximum functions
defined in ]a, b[n.

For example, considering the geometric mean G(n)(x) =
∏n

i=1 x
1/n
i in [0, 1]n,

we simply obtain

ornessG(n) = − 1

n− 1
+

n + 1

n− 1
G(n) = − 1

n− 1
+

n + 1

n− 1

(
n

n + 1

)n

.

Considering the discrete Choquet integral C(n)
a in [0, 1]n, as defined in Exam-

ple 8, we get
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orness
C

(n)
a

=− 1

n− 1
+

n + 1

n− 1
C

(n)
a = − 1

n− 1
+

n + 1

n− 1

∑

S⊆[n]

a(S)
1

|S|+ 1

=
1

n− 1

∑

S⊆[n]

a(S)
(

n + 1

|S|+ 1
− 1

)

=
1

n− 1

∑

S⊆[n]

a(S)
n− |S|
|S|+ 1

.

Surprisingly enough, in [0, 1]n we have

orness
C

(n)
a

= odf
C

(n)
a

,

that is, for any discrete Choquet integral, the global orness value identifies
with the orness average value, a result already reached by Fernández Salido
and Murakami [9] for the special case of symmetric Choquet integrals, that is,
convex combinations of order statistics.

The interesting question of determining those internal functions F : ]a, b[n →
R fulfilling the equation ornessF = odfF remains open.

3.2 Conjunctive and disjunctive functions

Let us now consider conjunctive and disjunctive functions.

Definition 10 A function F : ]a, b[n → R is said to be conjunctive (resp.
disjunctive) if

a 6 F (x) 6 min xi

(
resp. max xi 6 F (x) 6 b

)
.

Prominent examples of conjunctive (resp. disjunctive) functions in the liter-
ature are t-norms (resp. t-conorms), which are symmetric, associative, and
nondecreasing functions, from [0, 1]2 to [0, 1], with 0 (resp. 1) as the neutral
element. For an account on t-norms and t-conorms, see for instance the book
by Alsina et al. [1].

Clearly, a function F : ]a, b[n → R is conjunctive (resp. disjunctive) if and
only if there is a function f : ]a, b[n → [0, 1] such that

F (x) = a + f(x)(min xi − a)
(
resp. F (x) = b− f(x)(b−max xi)

)
.

Just as for the orness and andness distribution functions, we can naturally
define the concept of idempotency distribution function associated with a
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conjunctive (resp. disjunctive) function F : ]a, b[n → R as a measure, at each
x ∈ ]a, b[n, of the extent to which F is idempotent (i.e., such that F (x, . . . , x) =
x), that is, the extent to which F is close to min xi (resp. max xi).

Definition 11 The idempotency distribution function associated with a con-
junctive (resp. disjunctive) function F : ]a, b[n → R is a function idfF :
]a, b[n → [0, 1], defined as

idfF (x) =
F (x)− a

min xi − a
(resp. idfF (x) =

b− F (x)

b−max xi

).

We can now introduce the concept of idempotency average value as follows.

Definition 12 The idempotency average value of a conjunctive or disjunctive
function F : ]a, b[n → R is defined as

idfF =
1

(b− a)n

∫

]a,b[n
idfF (x) dx.

According to Lemma 1, for any conjunctive function F : ]a, b[n → R for
instance, we can write

idfF =
1

(b− a)n

n∑

j=1

∫ b

a
du

∫

]u,b[n−1

F (x | xj = u)− a

u− a

∏

i∈[n]\{j}
dxi.

The following concept of global idempotency value was introduced by Kolesárová
[11] for t-norms as an idempotency measure:

Definition 13 The global idempotency value of a conjunctive (resp. disjunc-
tive) function F : ]a, b[n → R is defined by

idempF =
F − a

Min− a
(resp. idempF =

b− F

b−Max
).

Example 14 Let us calculate the idempotency average value and the global
idempotency value over [0, 1]n of the product

P (n)(x) =
n∏

i=1

xi,

which is a conjunctive function.

We immediately obtain
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idfP (n) = n
∫ 1

0
du

∫

[u,1]n−1

( n−1∏

i=1

xi

)
dx1 · · · dxn−1

=
n

2n−1

∫ 1

0
(1− u2)n−1 du.

Setting u = v1/2 and then using the classical beta function

B(a, b) =
∫ 1

0
ta−1(1− t)b−1 dt,

we obtain

idfP (n) =
n

2n

∫ 1

0
v−1/2(1− v)n−1 dv

=
n

2n
B(1/2, n) =

n

2n

Γ(1/2)Γ(n)

Γ(n + 1/2)

=
2n−1

(
2n−1

n

) .

On the other hand, we have

idempP (n) = (n + 1)
∫

[0,1]n

n∏

i=1

xi dx =
n + 1

2n
.

4 Application to probability theory

Since the idea behind our results merely consists in breaking the integration
domain into smaller regions, Lemma 1 and Theorem 3 can be straightforwardly
extended to Riemann-Stieltjes integrals, thus making it possible to consider
average values from various probability distributions.

Consider a measurable function g : Rn+2 → R and n independent random
variables X1, . . . , Xn, Xi (i ∈ [n]) having distribution function Fi(x). Define
the random variable Yg as

Yg := g(X, min Xi, max Xi),

where X denotes the vector (X1, . . . , Xn).

The direct generalization of Theorem 3 to Riemann-Stieltjes integrals can be
used to evaluate the expected value of Yg, namely

E[Yg] =
∫

Rn
g(x, min xi, max xi) dF1(x1) · · · dFn(xn).
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It can also be used in the evaluation of the distribution function of Yg, which
is defined as

Fg(z) =E[H(z − Yg)]

=
∫

Rn
H

(
z − g(x, min xi, max xi)

)
dF1(x1) · · · dFn(xn),

where H : R → {0, 1} is the Heaviside step function, defined by H(x) = 1
if x > 0, and 0 otherwise. Note that the case where Yg is a lattice polyno-
mial (max-min combination) of the variables X1, . . . , Xn has been thoroughly
investigated by the author in [13,14].

To keep our exposition simple, let us examine the special case where Yg de-
pends only on min Xi and max Xi, that is,

Yg := g(min Xi, max Xi),

where g : R2 → R is a measurable function. In this case, our method immedi-
ately leads to

E[Yg] =
n∑

j,k=1
j 6=k

∫ ∞

−∞
dFk(v)

∫ v

−∞
g(u, v) dFj(u)

∫

]u,v[n−2

∏

i∈[n]\{j,k}
dFi(xi)

=
n∑

j,k=1
j 6=k

∫ ∞

−∞
dFk(v)

∫ v

−∞
g(u, v)

∏

i∈[n]\{j,k}

(
Fi(v)− Fi(u)

)
dFj(u).

In the particular case where the random variables X1, . . . , Xn are independent
and identically distributed, each with distribution function F (x), the expected
value clearly reduces to

E[Yg] = n(n− 1)
∫ ∞

−∞
dF (v)

∫ v

−∞
g(u, v)

(
F (v)− F (u)

)n−2
dF (u), (5)

which generalizes formula (2).

Example 15 For exponential variables X1, . . . , Xn, each with distribution func-
tion F (x) = 1− e−λx (x > 0), we simply have

E[Yg] = n(n− 1)
∫ ∞

0
λ e−λv dv

∫ v

0
g(u, v)

(
e−λu − e−λv

)n−2
λ e−λu du.

Using the change of variables x = e−λu and y = e−λu − e−λv, this integral can
be easily rewritten as

E[Yg] = n(n− 1)
∫ 1

0
dx

∫ x

0
yn−2 g

(
− 1

λ
ln(x),−1

λ
ln(x− y)

)
dy.
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Example 16 Let us calculate the distribution function and the raw moments
of the random variable

Y =
max Xi −min Xi

max Xi

from the uniform distribution over ]0, 1]n.

The raw moments can be calculated very easily from (5). For any integer r > 0,
we have

E[Y r] = n(n− 1)
∫ 1

0
dv

∫ v

0

(
v − u

v

)r

(v − u)n−2 du =
n− 1

n + r − 1
.

On the other hand, the distribution of Y is simply given by

F (z) = n(n− 1)
∫ 1

0
dv

∫ v

0
H

(
z − v − u

v

)
(v − u)n−2 du,

that is,

F (z) =





0, if z 6 0,

n(n− 1)
∫ 1

0
dv

∫ v

v(1−z)
(v − u)n−2 du = zn−1, if 0 6 z 6 1,

n(n− 1)
∫ 1

0
dv

∫ v

0
(v − u)n−2 du = 1, if 1 6 z.

Appendix: The use of Crofton formula

We provide a proof of Lemma 1 as a direct consequence of Crofton formula.
See [8] for a very good expository note on Crofton formula.

For 0 < v < v+h < V , let D(v) be a domain of area or volume v. By a domain
we mean a closed bounded convex set in Rk for some k. Assume that for v1 < v2

we have D(v1) ⊂ D(v2). Let X1, . . . , Xn be n independent points randomly
selected with uniform distribution in D(v + h) and let Y = f(X1, . . . , Xn),
where f is a bounded function. Let A(v) be the event that all the points are in
D(v) and let Bj(v, h) be the event that Xj ∈ D(v + h)−D(v) and Xi ∈ D(v)
for all i 6= j. Let µ(v) = E[Y |A(v)] and let µ∗j(v, h) = E[Y |Bj(v, h)].

In its nonsymmetric version, Crofton formula states that, if limh→0 µ∗j(v, h) =
µj(v) exists and is continuous for all j, then for V > 0,

E[Y ] = µ(V ) =
1

V n

n∑

j=1

∫ V

0
vn−1µj(v) dv.

Choosing V = b − a and D(v) = [a, a + v] (which implies D(V ) = [a, b]), we
simply obtain

13



µ(V ) =
1

(b− a)n

∫

[a,b]n
f(x) dx,

µ∗j(v, h) =
1

vn−1h

∫ a+v

a
dx1 · · ·

∫ a+v+h

a+v
dxj · · ·

∫ a+v

a
f(x) dxn,

µj(v) =
1

vn−1

∫

[a,a+v]n−1
f(x | xj = a + v)

∏

i∈[n]\{j}
dxi.

If f is continuous in each argument then limh→0 µ∗j(v, h) = µj(v) exists and is
continuous. According to Crofton formula, we obtain

µ(V ) =
1

V n

n∑

j=1

∫ V

0
dv

∫

[a,a+v]n−1
f(x | xj = a + v)

∏

i∈[n]\{j}
dxi,

which proves the second formula of Lemma 1. The first one can be established
similarly by considering D(v) = [b− v, b]. 2
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and D. Radojević, editors, Proc. Eurofuse 2005, pages 81–92, Institute
“MihajloPupin”, Belgrade, 2005. ISBN 86-7172-022-5.

[8] B. Eisenberg and R. Sullivan. Crofton’s differential equation. Am. Math. Mon.,
107(2):129–139, 2000.

14



[9] J. M. Fernández Salido and S. Murakami. Extending Yager’s orness concept for
the OWA aggregators to other mean operators. Fuzzy Sets Syst., 139(3):515–
542, 2003.

[10] M. Grabisch, J.-L. Marichal, and M. Roubens. Equivalent representations of
set functions. Math. Oper. Res., 25(2):157–178, 2000.
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