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CLOSED CLASSES OF FUNCTIONS, GENERALIZED

CONSTRAINTS AND CLUSTERS

ERKKO LEHTONEN

Abstract. Classes of functions of several variables on arbitrary nonempty do-

mains that are closed under permutation of variables and addition of dummy
variables are characterized by generalized constraints, and hereby Hellerstein’s

Galois theory of functions and generalized constraints is extended to infinite

domains. Furthermore, classes of operations on arbitrary nonempty domains
that are closed under permutation of variables, addition of dummy variables

and composition are characterized by clusters, and a Galois connection is es-

tablished between operations and clusters.

1. Introduction

Iterative algebras, as introduced by Mal’cev [8], are classes of operations on a
fixed base set A that are closed under permutation of variables, addition of dummy
variables, identification of variables, and composition. Clones are iterative algebras
that contain all projections. The “preservation” relation between operations and
relations onA induces a well-known Galois connection, known as the Pol–Inv theory,
whose closed subsets of operations are precisely the clones on A. This theory was
first established for finite domains by Geiger [4] and independently by Bodnarčuk,
Kalužnin, Kotov and Romov [1]. These authors also defined certain operations on
the set of all relations on A and showed that the Galois closed subsets of relations
are exactly the sets that are closed under these operations. These results were
extended to infinite domains by Szabó [12] and independently by Pöschel [10].
More generally, iterative algebras (with or without projections) were described by
Harnau [5] in terms of a “preservation” relation between operations and relation
pairs (R,R′) where R′ ⊆ R. For general background on function and relation
algebras, see the monographs by Pöschel and Kalužnin [11] and Lau [7]. For Galois
theories etc., see [3, 7, 11]; in particular, see the survey articles of Erné and Pöschel
in [3]. For further information on clones, see the monograph by Szendrei [13].

Classes of functions that are closed under only some of the iterative algebra
operations have been studied by several authors, and analogous Galois theories
have been developed for these variants to describe the closed classes in terms of a
“preservation” relation between functions and some dual objects. While the primal
objects are still functions, the dual objects are no longer relations but something
more general. We will present a brief survey on what has been done previously in
this line of research.
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Pippenger [9] showed that the classes of finite functions that are closed under
identification minors (permutation of variables, identification of variables, and ad-
dition of dummy variables) are precisely the closed classes of the Galois connection
induced by the “preservation” relation between functions and so-called constraints.
He also described the Galois closed classes of constraints as classes that are closed
under certain operations on the set of constraints. This Galois theory was extended
to functions and constraints on arbitrary, possibly infinite domains by Couceiro and
Foldes [2].

Hellerstein [6] showed that the classes of finite functions that are closed under
special minors (permutation of variables and addition of dummy variables) are
precisely the closed classes of the Galois connection induced by the “preservation”
relation between functions and so-called generalized constraints. She also described
the Galois closed classes of generalized constraints as classes that are closed under
certain operations on the set of generalized constraints. The first objective of the
current paper is to extend Hellerstein’s Galois theory of functions and generalized
constraints to arbitrary, possibly infinite domains.

The second objective of this paper is to describe the classes of operations on arbi-
trary nonempty sets A that are closed under the iterative algebra operations except
for identification of variables, i.e., permutation of variables, addition of dummy vari-
ables, and composition. We show that the classes of operations on A that contain
all projections and are closed under the operations in question are precisely the
closed classes of the Galois connection induced by the “preservation” relation be-
tween operations and so-called clusters, which we define as downward closed sets
of multisets of m-tuples on A. We also describe the Galois closed classes of clusters
as classes that are closed under certain operations on the set of clusters.

2. Preliminaries

2.1. General notation. We denote the set of natural numbers by ω := {0, 1, 2, . . . },
and we regard its elements as ordinals, i.e., n ∈ ω is the set of lesser ordinals
{0, 1, . . . , n−1}. Thus, an n-tuple a ∈ An is formally a map a : {0, 1, . . . , n−1} → A.
The notation (ai | i ∈ n) means the n-tuple mapping i to ai for each i ∈ n. The
notation (a1, . . . , an) means the n-tuple mapping i to ai+1 for each i ∈ n.

We view an m × n matrix M ∈ Am×n with entries in A as an n-tuple of m-
tuples M := (a1, . . . ,an). The m-tuples a1, . . . ,an are called the columns of M.
For i ∈ m, the n-tuple

(
a1(i), . . . ,an(i)

)
is called row i of M. If for 1 ≤ i ≤ p,

Mi := (ai1, . . . ,a
i
ni

) is an m × ni matrix, then we denote by [M1|M2| · · · |Mp] the

m ×
∑p
i=1 ni matrix (a11, . . . ,a

1
n1
,a21, . . . ,a

2
n2
, . . . ,ap1, . . . ,a

p
np

). An empty matrix

has no columns and is denoted by ().
For a function f : An → B and a matrix M := (a1, . . . ,an) ∈ Am×n, we denote

by fM the m-tuple
(
f(a1(i), . . . ,an(i))

∣∣ i ∈ m) in Bm, in other words, fM is the
m-tuple obtained by applying f to the rows of M.

2.2. Iterative algebras and a Galois connection between operations and
relations. Let A and B be arbitrary nonempty sets. A function of several variables
from A to B is a map f : An → B for some integer n ≥ 1, called the arity of f . For
n ≥ 1, we denote

F (n)
AB := BA

n

= {f | f : An → B} and FAB :=
⋃
n≥1

F (n)
AB .
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For a subset F ⊆ FAB , the n-ary part of F is F (n) := F ∩ F (n)
AB . In the case that

A = B, we call maps f : An → A operations on A. The set of all operations on A

is denoted by OA. Thus, OA = FAA and O(n)
A = F (n)

AA, for n ≥ 1.
Mal’cev [8] introduced the operations ζ, τ , ∆, ∇, ∗ on the set OA of all operations

on A, defined as follows for arbitrary f ∈ O(n)
A , g ∈ O(m)

A :

(ζf)(x1, x2, . . . , xn) := f(x2, x3, . . . , xn, x1),

(τf)(x1, x2, . . . , xn) := f(x2, x1, x3, . . . , xn),

(∆f)(x1, x2, . . . , xn−1) := f(x1, x1, x2, . . . , xn−1)

for n > 1, ζf = τf = ∆f := f for n = 1, and

(∇f)(x1, x2, . . . , xn+1) := f(x2, . . . , xn+1),

(f ∗ g)(x1, x2, . . . , xm+n−1) := f
(
g(x1, x2, . . . , xm), xm+1, . . . , xm+n−1

)
.

The operations ζ and τ are collectively referred to as permutation of variables,
∆ is called identification of variables (also known as diagonalization), ∇ is called
addition of a dummy variable (or cylindrification), and ∗ is called composition.
The algebra (OA; ζ, τ,∆,∇, ∗) of type (1, 1, 1, 1, 2) is called the full iterative algebra
on A, and its subalgebras are called iterative algebras on A. A subset F ⊆ OA is
called a clone on A, if it is the universe of an iterative algebra on A that contains all
projections (x1, . . . , xn) 7→ xi, 1 ≤ i ≤ n. Note that the operations ζ, τ , ∆ and ∇
can be defined in an analogous way on the set FAB of functions of several variables
from A to B, and we will call the algebra (FAB ; ζ, τ,∆,∇) of type (1, 1, 1, 1) a full
function algebra.

A Galois connection between setsA andB is a pair (σ, τ) of mappings σ : P(A)→
P(B) and τ : P(B)→ P(A) between the power sets P(A) and P(B) such that for
all X,X ′ ⊆ A and all Y, Y ′ ⊆ B the following conditions are satisfied:

X ⊆ X ′ =⇒ σ(X) ⊇ σ(X ′),
Y ⊆ Y ′ =⇒ τ(Y ) ⊇ τ(Y ′),

and
X ⊆ τ(σ(X)),
Y ⊆ σ(τ(Y )),

or, equivalently,

X ⊆ τ(Y )⇐⇒ σ(X) ⊇ Y.
The most popular Galois connections are derived from binary relations, as the

following well-known theorem shows (for a proof, see, e.g., [3, 7]):

Theorem 2.1. Let A and B be nonempty sets and let R ⊆ A × B. Define the
mappings σ : P(A)→ P(B), τ : P(B)→ P(A) by

σ(X) := {y ∈ B | ∀x ∈ X : (x, y) ∈ R},
τ(Y ) := {x ∈ A | ∀y ∈ Y : (x, y) ∈ R}.

Then the pair (σ, τ) is a Galois connection between A and B.

A prototypical example of a Galois connection is given by the Pol–Inv theory of
functions and relations. For m ≥ 1, we denote

R(m)
A := {R | R ⊆ Am} = P(Am) and RA :=

⋃
m≥1

R(m)
A .

Let R ∈ R(m)
A . For a matrix M ∈ Am×n, we write M ≺ R to mean that the

columns of M are m-tuples from the relation R. An operation f : An → A is said
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to preserve R (or f is a polymorphism of R, or R is an invariant of f), denoted
f B R, if for all m× n matrices M ∈ Am×n, M ≺ R implies fM ∈ R.

For a relation R ∈ RA, we denote by PolR the set of all operations f ∈ OA that
preserve the relation R. For a set Q ⊆ RA of relations, we let PolQ :=

⋂
R∈Q PolR.

The sets PolR and PolQ are called the sets of all polymorphisms of R and Q,
respectively. Similarly, for an operation f ∈ OA, we denote by Inv f the set of all
relations R ∈ RA that are preserved by f . For a set F ⊆ OA of functions, we let
InvF :=

⋂
f∈F Inv f . The sets Inv f and InvF are called the sets of all invariants

of f and F , respectively.
By Theorem 2.1, (Inv,Pol) is the Galois connection induced by the relation B

between the set OA of all operations on A and the set RA of all relations on A.
It was shown by Geiger [4] and independently by Bodnarčuk, Kalužnin, Kotov
and Romov [1] that for finite sets A, the closed subsets of OA under this Galois
connection are exactly the clones on A. These authors also described the closed
subsets of RA by defining an algebra on RA and showing that the closed sets of
relations are exactly the subuniverses of this algebra. This can be done as follows,
following Lau [7].

We define operations ζ, τ , pr , ∧, × on RA as follows. For R ∈ R(m)
A , R′ ∈ R(m′)

A ,

ζR := {(a2, a3, . . . , am, a1) | (a1, a2, . . . , am) ∈ R},
τR := {(a2, a1, a3, . . . , am) | (a1, a2, . . . , am) ∈ R},

prR := {(a2, . . . , am) | ∃a1 ∈ A : (a1, a2, . . . , am) ∈ R}

for m > 1 and ζR = τR = prR := R for m = 1, and

R ∧R′ := {(a1, . . . , am) | (a1, . . . , am) ∈ R ∩R′}

for m = m′ and R ∧R′ := R for m 6= m′, and

R×R′ := {(a1, . . . , am, b1, . . . , bm′) | (a1, . . . , am) ∈ R ∧ (b1, . . . , bm′) ∈ R′}.

The operations ζ and τ are collectively referred to as permutation of rows, pr
is called deletion of the first row, ∧ is called intersection of relations, and × is
called Cartesian product. Denote δ := {(x, x, y) ∈ A3 | x, y ∈ A}. The algebra
(RA; δ, ζ, τ, pr ,∧,×) of type (0, 1, 1, 1, 2, 2) is called the full relation algebra on A.
The subuniverses of (RA; δ, ζ, τ, pr ,∧,×) are called relational clones (or coclones)
on A.

Theorem 2.2 (Geiger [4]; Bodnarčuk, Kalužnin, Kotov and Romov [1]). Let A be
a finite nonempty set.

(i) A set F ⊆ OA of operations is the set of polymorphisms of some set Q ⊆ RA
of relations if and only if F is a clone on A.

(ii) A set Q ⊆ RA of relations is the set of invariants of some set F ⊆ OA of
operations if and only if Q is a relational clone on A.

On arbitrary, possibly infinite sets A, the Galois closed sets of operations are the
locally closed clones, as shown by Szabó [12] and independently by Pöschel [10]. A
set F ⊆ FAB of functions is said to be locally closed, if it holds that for all f ∈ FAB ,
say of arity n, f ∈ F whenever for all finite subsets F ⊆ An, there exists a function
g ∈ F (n) such that f |F = g|F . A more general closure condition was defined for
sets of relations as well.
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algebra dual objects reference
(OA; ζ, τ,∆,∇, ∗)
– with projections
(clones)

relations R Geiger [4]; Bodnarčuk, Kaluž-
nin, Kotov, Romov [1] (finite do-
mains),
Szabó [12]; Pöschel [10] (general)

– all iterative al-
gebras

relation pairs (R,R′)
with R′ ⊆ R

Harnau [5] (finite domains)

(FAB ; ζ, τ,∆,∇) constraints (R,S) Pippenger [9] (finite domains),
Couceiro, Foldes [2] (general)

(FAB ; ζ, τ,∇) generalized
constraints (φ, S)

Hellerstein [6] (finite domains),
Theorems 3.3, 4.6 (general)

(OA; ζ, τ,∇, ∗)
with projections

clusters Φ Theorems 5.11, 6.7 (general)

Table 1. Galois theories for function algebras.

These results were generalized to iterative algebras (with or without projections)
by Harnau [5] who defined a preservation relation between operations and relation

pairs. An m-ary relation pair on A is a pair (R,R′) where R,R′ ∈ R(m)
A for some

m ≥ 1 and R′ ⊆ R. For m ≥ 1, denote

H(m)
A := {(R,R′) | R′ ⊆ R ⊆ Am} and HA =

⋃
m≥1

H(m)
A .

An operation f ∈ OA is said to preserve a relation pair (R,R′) ∈ H(m)
A , denoted

f B (R,R′), if for all matrices M ∈ Am×n, M ≺ R implies fM ∈ R′. In light
of Theorem 2.1, the preservation relation B induces a Galois connection between
the sets OA and HA. Harnau showed that the closed sets of operations are exactly
the universes of iterative algebras. He defined certain operations on the set HA
of relation pairs and showed that the Galois closed subsets of relation pairs are
precisely the subsets that are closed under these operations.

2.3. Reducts of full iterative algebras and of full function algebras. Let
(A;F ) and (A;F ′) be algebras on the same universe A. (A;F ′) is called a reduct of
(A;F ) if F ′ ⊆ F , i.e., (A;F ′) is obtained by omitting some operations from (A;F ).

Reducts of full iterative algebras (OA; ζ, τ,∆,∇, ∗) or of full function algebras
(FAB ; ζ, τ,∆,∇) have been studied by various authors, and the subuniverses thereof
have been described in terms of Galois connections induced by “preservation” rela-
tions between functions and certain dual objects. In the remainder of this section,
we will present a brief survey of the work previously done in this line of research.
For easy reference, this overview is summarized in Table 1.

Pippenger [9] described subuniverses of (FAB ; ζ, τ,∆,∇) in terms of a preserva-
tion relation between functions and constraints. An m-ary constraint from A to B

is a pair (R,S), where R ∈ R(m)
A and S ∈ R(m)

B . For m ≥ 1, denote

C(m)
AB := {(R,S) | R ⊆ Am ∧ S ⊆ Bm} and CAB :=

⋃
m≥1

C(m)
AB .



6 ERKKO LEHTONEN

A function f ∈ F (n)
AB is said to preserve a constraint (R,S) ∈ C(m)

AB , denoted f B
(R,S), if for all matrices M ∈ Am×n, M ≺ R implies fM ∈ S. As in Theorem 2.1,
the relation B induces a Galois connection between the sets FAB and CAB . We say
that a set F ⊆ FAB of functions is characterized by a set C ⊆ CAB of constraints if
F = {f ∈ FAB | ∀(R,S) ∈ C : f B (R,S)}, i.e., F is precisely the set of functions
that preserve all constraints in C. Similarly, C is said to be characterized by F if
C = {(R,S) ∈ CAB | ∀f ∈ F : f B (R,S)}, i.e., C is precisely the set of constraints
that are preserved by all functions in F .

In order to describe the closed sets of constraints, we define a few operations on

CAB . A constraint (R,S) ∈ C(m)
AB is a simple minor of a constraint (R′, S′) ∈ C(n)AB if

there is a natural number p (0 ≤ p ≤ n) and a map h : {1, . . . , n} → {1, . . . ,m+ p}
such that

(x1, . . . , xm) ∈ R⇐⇒ ∃xm+1, . . . , xm+p : (xh(1), . . . , xh(n)) ∈ R′

and
(x1, . . . , xm) ∈ S ⇐⇒ ∃xm+1, . . . , xm+p : (xh(1), . . . , xh(n)) ∈ S′.

We say that a constraint (R,S) is obtained from (R′, S) by restricting the antecedent
if R ⊆ R′. We say that a constraint (R,S) is obtained from (R,S′) by extending
the consequent if S ⊇ S′. We say that the constraint (R,S ∩ S′) is obtained from
(R,S) and (R,S′) by intersecting consequents.

A constraint (R,S) ∈ C(m)
AB where R = {(a, . . . , a) ∈ Am | a ∈ A} and S =

{(b, . . . , b) ∈ Bm | b ∈ B} is called an equality constraint. The constraint (∅, ∅) is
called the empty constraint (of any arity).

A set C ⊆ CAB of constraints is minor-closed if it contains the binary equality
constraint and the unary empty constraint, and it is closed under taking simple mi-
nors, restricting antecedents, extending consequents and intersecting consequents.

Theorem 2.3 (Pippenger [9]). Let A and B be finite nonempty sets.

(i) A set F ⊆ FAB of functions is characterized by some set C ⊆ CAB of con-
straints if and only if F is a subuniverse of (FAB ; ζ, τ,∆,∇).

(ii) A set C ⊆ CAB of constraints is characterized by some set F ⊆ FAB of
functions if and only if C is minor-closed.

Couceiro and Foldes [2] extended Pippenger’s results to functions and constraints
on arbitrary, possibly infinite domains. In this case, one has to stipulate that the
closed sets of functions are locally closed. In order to describe the Galois closed
sets of constraints, Couceiro and Foldes defined conjunctive minors of constraints
and presented a more general closure condition in terms of conjunctive minors.

Subuniverses of (FAB ; ζ, τ,∇) were described by Hellerstein [6] in terms of gen-
eralized constraints. In the following Sections 3, 4, we will present Hellerstein’s
Galois theory of functions and generalized constraints for finite domains, and we
will extend it to arbitrary, possibly infinite domains.

Finally, in Sections 5, 6, we will describe the subuniverses of (OA; ζ, τ,∇, ∗) by
developing an analogous Galois theory for operations and clusters.

3. Classes of functions closed under permutation of variables and
addition of dummy variables

Hellerstein [6] showed that for finite domains A and B, the subuniverses of
(FAB ; ζ, τ,∇), i.e., the classes of functions that are closed under permutation of
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variables and addition of dummy variables, are characterized by generalized con-
straints. We extend Hellerstein’s Galois theory of functions and generalized con-
straints to arbitrary, possibly infinite domains. Our results and proofs closely follow
Hellerstein’s analogous statements for functions and generalized constraints on fi-
nite domains, which in turn are adaptations of those by Pippenger [9], Geiger [4]
and Bodnarčuk, Kalužnin, Kotov, Romov [1].

We will consider the set ω∪{ω} with the usual ordering of natural numbers and
a new largest element ω adjoined. For m ≥ 1, an m-ary repetition function on A
is a map φ : Am → ω ∪ {ω}. Hellerstein [6] defined an m-ary generalized constraint
from A to B to be a pair (φ, S) where φ is an m-ary repetition function on A called
the antecedent, and S ⊆ Bm is called the consequent. The number m is called the
arity of the generalized constraint. We denote

G(m)
AB := {(φ, S) | φ : Am → ω ∪ {ω}, S ⊆ Bm} and GAB :=

⋃
m≥1

G(m)
AB .

For a matrix M ∈ Am×n and a repetition function φ : Am → ω ∪ {ω}, we write
M ≺ φ to mean that each m-tuple a ∈ Am occurs as a column of M at most φ(a)

times. If f ∈ F (n)
AB and (φ, S) ∈ G(m)

AB , we say that f preserves (φ, S), denoted
f B (φ, S), if for every matrix M ∈ Am×n, M ≺ φ implies fM ∈ S.

It is clear from Theorem 2.1 that the relation B establishes a Galois connection
between the sets FAB and GAB . We say that a set F ⊆ FAB of functions is
characterized by a set G ⊆ GAB of generalized constraints if F = {f ∈ FAB |
∀(φ, S) ∈ G : f B (φ, S)}, i.e., F is precisely the set of functions that preserve
all generalized constraints in G. Similarly, G is said to be characterized by F if
G = {(φ, S) ∈ GAB | ∀f ∈ F : f B (φ, S)}, i.e., G is precisely the set of generalized
constraints preserved by all functions in F . Thus, the Galois closed sets of functions
(generalized constraints) are exactly those that are characterized by generalized
constraints (functions, respectively).

Theorem 3.1 (Hellerstein [6]). Let A and B be finite nonempty sets. For any set
F ⊆ FAB of functions, the following two conditions are equivalent:

(i) F is closed under permutation of variables and addition of dummy variables.
(ii) F is characterized by some set G ⊆ GAB of generalized constraints.

We will extend Theorem 3.1 to functions on arbitrary, possibly infinite domains.
For a matrix M ∈ Am×n, the characteristic function of M is defined as the

function χM : Am → ω given by the rule that for every a ∈ Am, χM(a) equals the
number of times the m-tuple a occurs as a column of M. For any F ⊆ FAB and
for a matrix M ∈ Am×n, we denote FM := {fM | f ∈ F (n)}.

Lemma 3.2. If F ⊆ FAB is closed under permutation of variables and addition
of dummy variables, then for every matrix M ∈ Am×n, the generalized constraint
(χM,FM) is preserved by all functions in F .

Proof. Let f ′ ∈ F be n′-ary, and let M′ be an m× n′ matrix such that M′ ≺ χM.
Then there exists an injection σ : {1, . . . , n′} → {1, . . . , n} such that for each i ∈
{1, . . . , n′}, column i of M′ equals column σ(i) of M. Let f be the n-ary function
defined by f(x1, . . . , xn) = f ′(xσ(1), . . . , xσ(n′)). We have that f ′M′ = fM. Since f
is obtained from f ′ by permutation of variables and addition of dummy variables,
it is a member of F , and hence fM ∈ FM. Thus f ′M′ ∈ FM and so f ′ B
(χM,FM). �
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We are now ready to describe the classes of functions that are characterized by
generalized constraints. Recall that a set F ⊆ FAB is locally closed if and only if
for all f ∈ FAB it holds that f ∈ F whenever for all finite subsets F ⊆ An (where
n is the arity of f) there is a g ∈ F (n) such that f |F = g|F .

Theorem 3.3. Let A and B be arbitrary, possibly infinite nonempty sets. For any
set F ⊆ FAB of functions, the following two conditions are equivalent:

(i) F is locally closed and it is closed under permutation of variables and addition
of dummy variables.

(ii) F is characterized by some set G ⊆ GAB of generalized constraints.

Proof. (ii) ⇒ (i): As observed in the case of finite domains by Hellerstein [6], it
is easy to see, also in general, that the set of functions preserving a generalized
constraint (φ, S) is closed under permutation of variables and addition of dummy
variables. Thus any class of functions characterized by a set G of generalized con-
straints is closed under the operations considered.

It remains to show that F is locally closed. It is clear that ∅ and FAB are locally
closed, so we may assume that ∅ 6= F 6= FAB . Suppose on the contrary that there
is a g ∈ FAB \ F , say of arity n, such that for every finite subset F ⊆ An, there
is an f ∈ F (n) for which g|F = f |F holds. Since F is characterized by G and
g /∈ F , there is a (φ, S) ∈ G, say m-ary, such that g 6B (φ, S), and hence for some
m × n matrix M, we have M ≺ φ but gM /∈ S. Let F be the finite set of rows
of M. By our assumption, there is an f ∈ F (n) such that g|F = f |F , and hence
fM = f |FM = g|FM = gM /∈ S, which contradicts the fact that f B (φ, S).

(i) ⇒ (ii): It is easy to verify that ∅ and FAB are characterized by GAB and ∅,
respectively, so we assume that ∅ 6= F 6= FAB . We need to show that for every
function g ∈ FAB \ F , there exists a generalized constraint that is preserved by
every function in F but not by g. The set of all such “separating” generalized
constraints, for each g ∈ FAB \ F , characterizes F .

Suppose that g ∈ FAB \ F is n-ary. Since F is locally closed, there is a finite
subset F ⊆ An such that g|F 6= f |F for every f ∈ F (n). Clearly F is nonempty. Let
M be a |F | × n matrix whose rows are the elements of F in some fixed order, and
consider the generalized constraint (χM,FM). By Lemma 3.2, every function in
F preserves (χM,FM). But gM = g|FM /∈ FM, and hence g 6B (χM,FM). �

4. Closure conditions for generalized constraints

In this section, we will describe the Galois closed sets of generalized constraints.
Hellerstein [6] introduced the following eight operations on GAB .

1. Let (φ, S), (φ′, S′) ∈ G(m)
AB , m ∈ ω \ {0}. Let π be a permutation of {1, . . . ,m}.

If

φ(a1, . . . , am) = φ′(aπ(1), . . . , aπ(m))

for all (a1, . . . , am) ∈ Am and

(b1, . . . , bm) ∈ S ⇐⇒ (bπ(1), . . . , bπ(m)) ∈ S′

for all (b1, . . . , bm) ∈ Am, then we say that (φ′, S′) is obtained from (φ, S) by
permutation of arguments.
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2. Let (φ, S) ∈ G(m)
AB and (φ′, S′) ∈ G(m−1)AB , m ≥ 2. If

φ′(a1, . . . , am−1) =
∑
d∈A

φ(a1, . . . , am−1, d)

for all (a1, . . . , am−1) ∈ Am−1 and

S′ = {(b1, . . . , bm−1) ∈ Bm−1 | ∃bm ∈ B : (b1, . . . , bm) ∈ S},
then we say that (φ′, S′) is obtained from (φ, S) by projection.

3. Let (φ, S) ∈ G(m)
AB and (φ′, S′) ∈ G(m−1)AB , m ≥ 2. If

φ′(a1, . . . , am−1) = φ(a1, . . . , am−2, am−1, am−1)

for all (a1, . . . , am−1) ∈ Am−1 and

S′ = {(b1, . . . , bm−1) ∈ Bm−1 | (b1, . . . , bm−2, bm−1, bm−1) ∈ S},
then we say that (φ′, S′) is obtained from (φ, S) by identification of arguments
(or diagonalization).

4. Let (φ, S) ∈ G(m−1)AB and (φ′, S′) ∈ G(m)
AB , m ≥ 2. If

φ(a1, . . . , am−1) =
∑
d∈A

φ′(a1, . . . , am−1, d)

for all (a1, . . . , am−1) ∈ Am−1 and

S′ = {(b1, . . . , bm) ∈ Bm−1 | ∃bm ∈ B : (b1, . . . , bm−1) ∈ S},
then we say that (φ′, S′) is obtained from (φ, S) by addition of a dummy argu-
ment.

5. Let a0, a1, a2, . . . be a sequence of natural numbers such that ai ≤ ai+1 for all
i ∈ ω. If the sequence contains a maximum element, we define the limit of the
sequence to be the value of that element. Otherwise we define the limit of the
sequence to be ω. This limit is denoted by limi→∞ ai.

For any fixed domain S, we define a partial order ≤ on the set of all functions
φ : S → ω ∪ {ω} as follows: φ ≤ φ′ if and only if for all x ∈ S, φ(x) ≤ φ′(x). Let
φ0, φ1, φ2, . . . be a sequence of functions S → ω ∪ {ω} such that φi ≤ φi+1 for
all i ∈ ω. The limit of the sequence is defined to be the function φ : S → ω∪{ω}
such that for all x ∈ S, φ(x) = limi→∞ φi(x).

If (φi, S)i∈ω is a family of members of G(m)
AB such that φi ≤ φi+1 for all

i ∈ ω, then we say that the generalized constraint (limi→∞ φi, S) is obtained
from (φi, S)i∈ω by taking the limit of antecedents.

6. If (φ, S), (φ′, S) ∈ G(m)
AB are such that φ′ ≤ φ, then we say that (φ′, S) is obtained

from (φ, S) by restricting the antecedent.

7. If (φ, S), (φ, S′) ∈ G(m)
AB are such that S′ ⊇ S, then we say that (φ, S′) is obtained

from (φ, S) by extending the consequent.

8. If (φ, S), (φ, S′) ∈ G(m)
AB , then we say that (φ, S ∩S′) is obtained from (φ, S) and

(φ, S′) by intersecting the consequents.

If (φ′, S′) is obtained from (φ, S) by restricting the antecedent or by extending
the consequent or by a combination of the two, i.e., φ′ ≤ φ and S′ ⊇ S, then we
say that (φ′, S′) is a relaxation of (φ, S).

The m-ary generalized equality constraint is defined to be the generalized con-

straint (φ, S) ∈ G(m)
AB such that φ(a) = ω if all components of a ∈ Am are equal and

φ(a) = 0 otherwise, and such that the elements of S are exactly those m-tuples
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b ∈ Bm in which all components are equal. The m-ary generalized empty con-

straint is defined to be the generalized constraint (φ, S) ∈ G(m)
AB where φ(a) = 0 for

all a ∈ Am and S = ∅. The m-ary generalized trivial constraint is defined to be the

generalized constraint (φ, S) ∈ G(m)
AB where φ(a) = ω for all a ∈ Am and S = Bm.

A set G ⊆ GAB of generalized constraints is minor-closed if it is closed under
the eight operations defined above and it contains the unary generalized empty
constraint and the binary generalized equality constraint.

Theorem 4.1 (Hellerstein [6]). Let A and B be finite nonempty sets. A set G ⊆
GAB of generalized constraints is characterized by some set F ⊆ FAB of functions
if and only if it is minor-closed.

In order to extend Theorem 4.1 to arbitrary, possibly infinite domains, we need
a more general closure condition. We will follow Couceiro and Foldes’s [2] proof
techniques and adapt their notion of conjunctive minor to generalized constraints.
We first introduce several technical notions and definitions that will be needed in
the statement of the extension of Theorem 4.1 and in its proof.

For maps f : A → B and g : C → D, the composition g ◦ f is defined only if
B = C. Removing this restriction, the concatenation of f and g is defined to
be the map gf : f−1[B ∩ C] → D given by the rule (gf)(a) = g

(
f(a)

)
for all

a ∈ f−1[B ∩ C]. Clearly, if B = C, then gf = g ◦ f ; thus functional composition
is subsumed and extended by concatenation. Concatenation is associative, i.e., for
any maps f , g, h, we have h(gf) = (hg)f .

For a family (gi)i∈I of maps gi : Ai → Bi such that Ai∩Aj = ∅ whenever i 6= j, we
define the (piecewise) sum of the family (gi)i∈I to be the map

∑
i∈I gi :

⋃
i∈I Ai →⋃

i∈I Bi whose restriction to each Ai coincides with gi. If I is a two-element set,
say I = {1, 2}, then we write g1 + g2. Clearly, this operation is associative and
commutative.

Concatenation is distributive over summation, i.e., for any family (gi)i∈I of maps
on disjoint domains and any map f ,(∑

i∈I
gi
)
f =

∑
i∈I

(gif) and f
(∑
i∈I

gi
)

=
∑
i∈I

(fgi).

In particular, if g1 and g2 are maps with disjoint domains, then

(g1 + g2)f = (g1f) + (g2f) and f(g1 + g2) = (fg1) + (fg2).

Let g1, . . . , gn be maps from A to B. The n-tuple (g1, . . . , gn) determines a
vector-valued map g : A → Bn, given by g(a) :=

(
g1(a), . . . , gn(a)

)
for every a ∈

A. For f : Bn → C, the composition f ◦ g is a map from A to C, denoted by
f(g1, . . . , gn), and called the composition of f with g1, . . . , gn. Suppose that A∩A′ =
∅ and g′1, . . . , g

′
n are maps from A′ to B. Let g and g′ be the vector-valued maps

determined by (g1, . . . , gn) and (g′1, . . . , g
′
n), respectively. We have that f(g+ g′) =

(fg) + (fg′), i.e.,

f
(
(g1 + g′1), . . . , (gn + g′n)

)
= f(g1, . . . , gn) + f(g′1, . . . , g

′
n).

For B ⊆ A, ιAB denotes the canonical injection (inclusion map) from B to
A. Thus the restriction f |B of any map f : A → C to the subset B is given by
f |B = fιAB .

Remark 4.2. Observe that the notation fM introduced in Section 2 is in ac-
cordance with the notation for concatenation of mappings. Since a matrix M :=
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(a1, . . . ,an) is an n-tuple of m-tuples ai : m → A, 1 ≤ i ≤ n, the composition of
the vector-valued map (a1, . . . ,an) : m → An with f : An → B gives rise to the
m-tuple f(a1, . . . ,an) : m→ B.

Let m and n be positive integers (viewed as ordinals, i.e., m = {0, . . . ,m− 1}).
Let h : n→ m∪V where V is an arbitrary set of symbols disjoint from the ordinals,
called existentially quantified indeterminate indices, or simply indeterminates, and
let σ : V → A be any map, called a Skolem map. Then each m-tuple a ∈ Am, being
a map a : m→ A, gives rise to an n-tuple (a + σ)h =: (b0, . . . , bn−1) ∈ An, where

bi :=

{
ah(i), if h(i) ∈ {0, 1, . . . ,m− 1},
σ(h(i)), if h(i) ∈ V .

Let H := (hj)j∈J be a nonempty family of maps hj : nj → m ∪ V , where each
nj is a positive integer. Then H is called a minor formation scheme with target
m, indeterminate set V , and source family (nj)j∈J . Let (Rj)j∈J be a family of
relations (of various arities) on the same set A, each Rj of arity nj , and let R be
an m-ary relation on A. We say that R is a restrictive conjunctive minor of the
family (Rj)j∈J via H, if for every m-tuple a ∈ Am,

a ∈ R =⇒ [∃σ ∈ AV ∀j ∈ J : (a + σ)hj ∈ Rj ].

On the other hand, if for every a ∈ Am,

[∃σ ∈ AV ∀j ∈ J : (a + σ)hj ∈ Rj ] =⇒ a ∈ R,

then we say that R is an extensive conjunctive minor of the family (Rj)j∈J via H.
If R is both a restrictive conjunctive minor and an extensive conjunctive minor of
the family (Rj)j∈J via H, i.e., for every a ∈ Am,

a ∈ R⇐⇒ [∃σ ∈ AV ∀j ∈ J : (a + σ)hj ∈ Rj ],

then R is said to be a tight conjunctive minor of the family (Rj)j∈J via H. For
a scheme H and a family (Rj)j∈J of relations, there is a unique tight conjunctive
minor of the family (Rj)j∈J via H.

We adapt these notions to repetition functions. Let (φj)j∈J be a family of
repetition functions (of various arities) on A, each φj of arity nj , and let φ be an
m-ary repetition function on A. We say that φ is a restrictive conjunctive minor
of the family (φj)j∈J via H, if, for every m×n matrix M := (a1, . . . ,an) ∈ Am×n,

M ≺ φ =⇒
[
∃σ1, . . . , σn ∈ AV ∀j ∈ J :

(
(a1 + σ1)hj , . . . , (a

n + σn)hj
)
≺ φj

]
.

On the other hand, if, for every m× n matrix M := (a1, . . . ,an) ∈ Am×n,[
∃σ1, . . . , σn ∈ AV ∀j ∈ J :

(
(a1 + σ1)hj , . . . , (a

n + σn)hj
)
≺ φj

]
=⇒M ≺ φ,

then we say that φ is an extensive conjunctive minor of the family (φj)j∈J via H.
If φ is both a restrictive conjunctive minor and an extensive conjunctive minor of
the family (φj)j∈J via H, i.e., for every m× n matrix M := (a1, . . . ,an) ∈ Am×n,

M ≺ φ⇐⇒
[
∃σ1, . . . , σn ∈ AV ∀j ∈ J :

(
(a1 + σ1)hj , . . . , (a

n + σn)hj
)
≺ φj

]
,

then φ is said to be a tight conjunctive minor of the family (φj)j∈J via H.
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Remark 4.3. If φ is a restrictive conjunctive minor of the family (φj)j∈J of rep-
etition functions via the scheme (hj)j∈J , then it holds for every a ∈ Am that, for
all j ∈ J , ∑

b∈〈a〉

φ(b) ≤
∑
c∈Sa

j

φj(c),

where 〈a〉 := {b ∈ Am | (b + σ)hj = (a + σ)hj} for some Skolem map σ : V → A,
and Sa

j := {(a + σ)hj ∈ Anj | σ ∈ AV }. Note that the definition of 〈a〉 does not

depend on the choice of σ. Also, Sa
j = Sb

j for every b ∈ 〈a〉.
Similarly, if φ is an extensive conjunctive minor of (φj)j∈J via (hj)j∈J , then it

holds for every a ∈ Am that, for all j ∈ J ,∑
b∈〈a〉

φ(b) ≥
∑
c∈Sa

j

φj(c).

Consequently, for a tight conjunctive minor φ of (φj)j∈J via (hj)j∈J , we have the
equality ∑

b∈〈a〉

φ(b) =
∑
c∈Sa

j

φj(c),

but tight conjunctive minors of families of repetition functions are not unique.

If (φj , Sj)j∈J is a family of members of GAB (of various arities) and φ is a
restrictive conjunctive minor of (φj)j∈J via a scheme H and S is an extensive
conjunctive minor of (Sj)j∈J via the same schemeH, then the generalized constraint
(φ, S) ∈ GAB is said to be a conjunctive minor of the family (φj , Sj)j∈J via H. If
both φ and S are tight conjunctive minors of the respective families via H, then
(φ, S) is said to be a tight conjunctive minor of the family (φj , Sj)j∈J via H. Tight
conjunctive minors of families of generalized constraints are not unique, but if both
(φ, S) and (φ′, S′) are tight conjunctive minors of the same family of generalized
constraints via the same scheme, then S = S′. If the minor formation scheme
H := (hj)j∈J and the family (φj , Sj)j∈J are indexed by a singleton J := {0},
then a tight conjunctive minor (φ, S) of a family consisting of a single generalized
constraint (φ0, S0) is called a simple minor of (φ0, S0).

Lemma 4.4. Assume that (φ, S) is a conjunctive minor of a nonempty family
(φj , Sj)j∈J of members of GAB, and let f ∈ FAB. If f B (φj , Sj) for all j ∈ J ,
then f B (φ, S).

Proof. Let (φ, S) be an m-ary conjunctive minor of the family (φj , Sj)j∈J via the
scheme H := (hj)j∈J , hj : nj → m∪V . Let M := (a1, . . . ,an) be an arbitrary m×n
matrix such that M ≺ φ. We need to prove that fM ∈ S. Since φ is a restrictive
conjunctive minor of (φj)j∈J via H = (hj)j∈J , there are Skolem maps σi : V → A,
1 ≤ i ≤ n, such that for every j ∈ J , Mj :=

(
(a1 + σ1)hj , . . . , (a

n + σn)hj
)
≺ φj .

Since S is an extensive conjunctive minor of (Sj)j∈J via the same scheme H =
(hj)j∈J , to prove that fM ∈ S, it suffices to give a Skolem map σ : V → B such
that, for all j ∈ J , (fM + σ)hj ∈ Sj . Let σ := f(σ1, . . . , σn). We have that, for
each j ∈ J ,

(fM + σ)hj =
(
f(a1, . . . ,an) + f(σ1, . . . , σn)

)
hj

=
(
f(a1 + σ1, . . . ,a

n + σn)
)
hj

= f
(
(a1 + σ1)hj , . . . , (a

n + σn)hj
)

= fMj .
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By our assumption f B (φj , Sj), so we have fMj ∈ Sj . �

We say that a set G ⊆ GAB of generalized constraints is closed under formation
of conjunctive minors if whenever (φj , Sj)j∈J is a nonempty family of members of
G, all conjunctive minors of the family (φj , Sj)j∈J are also in G.

The formation of conjunctive minors subsumes the formation of simple minors
as well as the operations of restricting the antecedent, extending the consequent,
and intersecting the consequents. Simple minors in turn subsume permutation
of arguments, projection, identification of arguments, and addition of a dummy
argument.

Lemma 4.5. Let G ⊆ GAB be a set of generalized constraints that contains the
binary generalized equality constraint and the unary generalized empty constraint.
If G is closed under formation of conjunctive minors, then it contains all generalized
trivial constraints, all generalized equality constraints, and all generalized empty
constraints.

Proof. The unary generalized trivial constraint is a simple minor of the binary
generalized equality constraint via the scheme H := {h}, where h : 2 → 1 is given
by h(0) = h(1) = 0 (by identification of arguments). The m-ary generalized trivial
constraint is a simple minor of the unary generalized trivial constraint via the
scheme H := {h}, where h : 1 → m is given by h(0) = 0 (by addition of m − 1
dummy arguments).

For m ≥ 2, the m-ary generalized equality constraint is a conjunctive minor of
the binary generalized equality constraint via the scheme H := (hi)i∈m−1, where
hi : 2 → m is given by hi(0) = i, hi(1) = i + 1 (by addition of n − 2 dummy
arguments, restricting the antecedents and intersecting the consequents).

The m-ary generalized empty constraint is a simple minor of the unary gener-
alized empty constraint via the scheme H := {h}, where h : 1 → m is given by
h(0) = 0 (by addition of m− 1 dummy arguments). �

Let (φ, S) ∈ G(m)
AB and φ′ : Am → ω ∪ {ω}. If φ′ ≤ φ and the set {a ∈ Am |

φ′(a) 6= 0} is finite, then we say that the generalized constraint (φ′, S) is obtained
from (φ, S) by a finite restriction of the antecedent. We say that a set G ⊆ GAB
is locally closed if for every (φ, S) ∈ GAB , it holds that (φ, S) ∈ G whenever every
generalized constraint obtained from (φ, S) by a finite restriction of the antecedent
belongs to G.

Theorem 4.6. Let A and B be arbitrary, possibly infinite nonempty sets. For any
set G ⊆ GAB of generalized constraints, the following two conditions are equivalent:

(i) G is locally closed and contains the binary generalized equality constraint and
the unary generalized empty constraint, and it is closed under formation of
conjunctive minors and taking the limit of antecedents.

(ii) G is characterized by some set F ⊆ FAB of functions.

In order to prove Theorem 4.6, we need to extend the notions of relation and
generalized constraint and allow them to have infinite arities, as will be explained
below. Functions remain finitary. These extended definitions have no bearing on
Theorem 4.6 itself; they are only needed as a tool in its proof.

For any nonzero, possibly infinite ordinal m (an ordinal m is the set of lesser
ordinals), an m-tuple a ∈ Am is formally a map a : m→ A. The arities of relations
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and generalized constraints are thus allowed to be arbitrary nonzero, possibly infi-
nite ordinals. In minor formation schemes, the target m and the members nj of the
source family are also allowed to be arbitrary nonzero, possibly infinite ordinals. For
relations and repetition functions, we shall use the terms restrictive conjunctive ∞-
minor and extensive conjunctive ∞-minor to indicate a restrictive or an extensive
conjunctive minor via a scheme whose target and source ordinals may be infinite
or finite. Similarly, for generalized constraints, we will use the terms conjunctive
∞-minor and simple ∞-minor to indicate conjunctive minors and simple minors
via a scheme whose target and source ordinals may be infinite or finite. Thus in
the sequel the use of the term “minor” without the prefix “∞” continues to mean
the respective minor via a scheme whose target and source ordinals are all finite.
Matrices can also have infinitely many rows but only a finite number of columns;
an m × n matrix M ∈ Am×n, where n is finite but m may be finite or infinite, is
an n-tuple of m-tuples M := (a1, . . . ,an) where ai : m→ A for 1 ≤ i ≤ n.

In order to discuss the formation of repeated ∞-minors, we need the following
definition. Let H := (hj)j∈J be a minor formation scheme with target m, indeter-
minate set V and source family (nj)j∈J , and, for each j ∈ J , let Hj := (hij)i∈Ij be

a scheme with target nj , indeterminate set Vj and source family (nij)i∈Ij . Assume
that V is disjoint from the Vj ’s, and for distinct j’s the Vj ’s are also pairwise dis-
joint. Then the composite scheme H(Hj | j ∈ J) is the scheme K := (kij)j∈J, i∈Ij
defined as follows:

(i) the target of K is the target m of H,
(ii) the source family of K is (nij)j∈J, i∈Ij ,

(iii) the indeterminate set of K is U := V ∪ (
⋃
j∈J Vj),

(iv) kij : nij → m∪U is defined by kij := (hj + ιUVj )hij , where ιUVj is the canonical
injection (inclusion map) from Vj to U .

Lemma 4.7. If (φ, S) is a conjunctive ∞-minor of a nonempty family
(φj , Sj)j∈J of generalized constraints from A to B via the scheme H, and, for
each j ∈ J , (φj , Sj) is a conjunctive ∞-minor of a nonempty family (φij , S

i
j)i∈Ij

via the scheme Hj, then (φ, S) is a conjunctive ∞-minor of the nonempty family
(φij , S

i
j)j∈J, i∈Ij via the composite scheme K := H(Hj | j ∈ J).

Proof. First, we need to see that φ is a restrictive conjunctive∞-minor of the family
(φij)j∈J,i∈Ij via K. Let M := (a1, . . . ,an) be an m × n matrix such that M ≺ φ.
This implies that there are Skolem maps σi : V → A, 1 ≤ i ≤ n, such that for all
j ∈ J we have

(
(a1 + σ1)hj , . . . , (a

n + σn)hj)
)
≺ φj . This in turn implies that for

all j ∈ J there exist Skolem maps σpj : Vj → A, 1 ≤ p ≤ n, such that for all i ∈ Ij
we have ((

(a1 + σ1)hj + σ1
j

)
hij , . . . ,

(
(an + σn)hj + σnj

)
hij
)
≺ φij .

Define the Skolem maps τp : U → A, 1 ≤ p ≤ n, by τp := σp +
∑
q∈J σ

p
q . Then for

every j ∈ J and i ∈ Ij , we have for 1 ≤ p ≤ n,

(ap + τp)k
i
j = (ap + σp +

∑
q∈J

σpq )(hj + ιUVj )hij

=
(

(ap + σp)hj +
(∑
q∈J

σpq
)
hj + (ap + σp)ιUVj +

(∑
q∈J

σpq
)
ιUVj

)
hij

=
(
(ap + σp)hj + σpj

)
hij ,

(4.1)
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and hence (
(a1 + τ1)kij , . . . , (a

n + τn)kij
)
≺ φij .

Second, we need to show that S is an extensive conjunctive ∞-minor of the
family (Sij)j∈J, i∈Ij via K. Let b ∈ Bm and assume that there is a Skolem map

τ : U → B such that for every j ∈ J and i ∈ Ij , the nij-tuple (b+σ)kij is in Sij . We
need to show that b ∈ S. Define the Skolem maps σ : V → B and σj : Vj → B for
every j ∈ J such that each of these functions coincides with the restriction of τ to
the respective domain, i.e., τ = σ +

∑
j∈J σj . As in (4.1), we can derive

(b + τ)kij =
(
(b + σ)hj + σj

)
hij .

Since Sj is an extensive conjunctive ∞-minor of the family (Sij)j∈J,i∈Ij via the
scheme Hj , we have (b + σ)hj ∈ Sj . Since the condition (b + σ)hj ∈ Sj holds for
all j ∈ J and S is an extensive conjunctive ∞-minor of the family (Sj)j∈J via H,
we have that b ∈ S. �

For a set G of generalized constraints from A to B of arbitrary, possibly infinite
arities, we denote by G∞ the set of those generalized constraints which are con-
junctive ∞-minors of families of members of G. This set G∞ is the smallest set of
generalized constraints containing G which is closed under formation of conjunctive
∞-minors, and it is called the conjunctive ∞-minor closure of G. In the sequel, we
will make use of the following corollary of Lemma 4.7:

Corollary 4.8. Let G ⊆ GAB be a set of finitary generalized constraints, and let G∞
be its conjunctive ∞-minor closure. If G is closed under formation of conjunctive
minors, then G is the set of all finitary generalized constraints belonging to G∞.

Lemma 4.9 (Hellerstein [6]). Let S be a finite set. Let Q be a set of functions
φ : S → ω ∪ {ω}. Then the number of maximal elements of Q is finite.

Lemma 4.10 (Hellerstein [6]). Let S be a finite set. Let Q be a set of functions
φ : S → ω ∪ {ω} such that Q contains the limits of all sequences of functions in Q.
Then for each element φ ∈ Q, there exists a maximal element φ′ of Q such that
φ ≤ φ′.

Lemma 4.11. Let G ⊆ GAB be a locally closed set of finitary generalized constraints
which contains the binary generalized equality constraint and the unary generalized
empty constraint and is closed under formation of conjunctive minors and taking
the limit of antecedents. Let G∞ be the conjunctive ∞-minor closure of G. Let
(φ, S) ∈ GAB \ G be finitary. Then there exists a function in FAB which preserves
every generalized constraint in G∞ but does not preserve (φ, S).

Proof. We shall construct a function g which preserves all generalized constraints
in G∞ but does not preserve (φ, S).

Note that, by Corollary 4.8, (φ, S) cannot be in G∞. Let m be the arity of
(φ, S). Since G is locally closed and (φ, S) /∈ G, there exists a repetition function
φ1 : Am → ω ∪ {ω} such that φ1 ≤ φ, the set F := {a ∈ Am | φ1(a) 6= 0} is
finite and (φ1, S) /∈ G. Observe that S 6= Bm, because otherwise (φ, S) would be
a conjunctive minor of the m-ary generalized trivial constraint (by restricting the
antecedent), which is in G by Lemma 4.5. Also, φ1 is not identically 0, because
otherwise (φ1, S) would be a conjunctive minor of the m-ary generalized empty
constraint (by extending the consequent), which is in G by Lemma 4.5. The set G
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cannot contain (φ1, B
m \ {s}) for every s ∈ Bm \ S, because if it did, then (φ1, S)

would be a conjunctive minor of the family (φ1, B
m \ {s})s∈Bm\S (by intersecting

consequents). Choose some s ∈ Bm \ S such that (φ1, B
m \ {s}) /∈ G.

Consider the set Q consisting of all repetition functions φ′ : Am → ω ∪ {ω} such
that the restriction of φ′ to Am \ F is identically 0 and (φ′, Bm \ {s}) ∈ G. By the
assumption that G is closed under taking the limit of antecedents, Q contains the
limits of all sequences of functions in Q. Since the functions in Q are completely
determined by their restrictions to the finite set F (they are all identically 0 outside
of F ), we can apply Lemmas 4.9 and 4.10 to conclude that the set Qmax of maximal
elements in Q is finite, and for all φ′ ∈ Q, there exists a φ′′ ∈ Qmax such that
φ′ ≤ φ′′.

Note that (φ1, B
m \ {s}) /∈ G, and for all φ′′ ∈ Qmax, (φ′′, Bm \ {s}) ∈ G.

Therefore, for all φ′′ ∈ Qmax, φ′′ 6≥ φ1.
The set Q (and hence the set Qmax) is not empty, because G contains (φ′, Bm \

{s}) where φ′ is identically 0, which is a conjunctive minor of the m-ary generalized
empty constraint (by extending the consequent), which is in G by Lemma 4.5.

Let X := {a ∈ Am | φ1(a) 6= ω}. Define β : Am → ω ∪ {ω} by the rule: for all
a ∈ Am,

• β(a) = φ1(a), if a ∈ X,
• β(a) = 0, if a /∈ X and φ′′(a) = ω for all φ′′ ∈ Qmax,
• β(a) = max{φ′′(a) + 1 | φ′′ ∈ Qmax such that φ′′(a) 6= ω}, otherwise.

In the third case, the value of β is finite because Qmax is a finite set.
We claim that (β,Bm \ {s}) /∈ G. To prove the claim, consider any φ′′ ∈ Qmax.

Since φ′′ 6≥ φ1, there exists an a ∈ Am such that φ′′(a) < φ1(a), and hence
φ′′(a) < β(a). Thus, there is no φ′′ ∈ Qmax such that β ≤ φ′′, implying that β /∈ Q.
Therefore, (β,Bm \ {s}) /∈ G.

Let n :=
∑

a∈Am β(a). Consider any φ′′ ∈ Qmax. Because φ′′ 6≥ φ1, there exists
an a ∈ Am such that φ′′(a) < φ1(a) and hence β(a) > 0. Therefore n > 0.

Let D := (d1, . . . ,dn) be an m× n matrix whose columns consist of β(a) copies
of a for each a ∈ Am. Let M := (m1, . . . ,mn) be a µ×n matrix whose first m rows
are the rows of D (i.e.,

(
m1(i), . . . ,mn(i)

)
=
(
d1(i), . . . ,dn(i)

)
for every i ∈ m)

and whose other rows are the remaining distinct n-tuples in An; every n-tuple in
An is a row of M, and any repetition of rows can only occur in the first m rows
of M. Note that m ≤ µ and that µ is infinite if and only if A is infinite. Let χM

be the characteristic function of M, and let SM be the µ-ary relation consisting of
those µ-tuples b := (bt | t ∈ µ) in Bµ such that (bt | t ∈ m) belongs to Bm \ {s}.

Observe that (χM, SM) /∈ G∞, because (β,Bm \ {s}) is a simple ∞-minor of
(χM, SM), and if (χM, SM) ∈ G∞, we would conclude, from Corollary 4.8, that
(β,Bm \ {s}) ∈ G. Furthermore, there must exist a µ-tuple u := (ut | t ∈ µ) in
Bµ such that (ut | t ∈ m) = s and (χM, B

µ \ {u}) /∈ G∞; otherwise by arbitrary
intersections of consequents we would conclude that (χM, SM) ∈ G∞.

We can define a function g : An → B by the condition gM = u. This definition
is valid, because the set of rows of M is the set of all n-tuples in An, and if two rows
of M coincide, then the corresponding components of u also coincide. For, suppose,
on the contrary, that

(
m1(i), . . . ,mn(i)

)
=
(
m1(j), . . . ,mn(j)

)
but u(i) 6= u(j).
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Consider the µ-ary generalized constraint (φ=, S=) from A to B defined by

φ=(a) =

{
ω, if ai = aj ,

0, otherwise,
and S= = {(bt | t ∈ µ) ∈ Bµ | bi = bj}.

The generalized constraint (φ=, S=) is a simple ∞-minor of the binary generalized
equality constraint and therefore belongs to G∞. On the other hand, (χM, B

µ\{u})
is a relaxation of (φ=, S=) and should also belong to G∞, yielding the intended
contradiction.

By the definition of u, g 6B (χM, SM), and it is easily seen that g 6B (β,Bm\{s}).
Since N ≺ φ, we also have that g 6B (φ, S).

We then show that g preserves every generalized constraint in G∞. Suppose,
on the contrary, that there is a ρ-ary generalized constraint (φ0, S0) ∈ G∞, possi-
bly infinitary, which is not preserved by g. Thus, for some ρ × n matrix M0 :=
(c1, . . . , cn) ≺ φ0 we have gM0 /∈ S0. Define h : ρ→ µ to be any map such that(

c1(i), . . . , cn(i)
)

=
(
(m1h)(i), . . . , (mnh)(i)

)
for every i ∈ ρ, i.e., row i of M0 is the same as row h(i) of M, for each i ∈ ρ.
Let (φh, Sh) be a µ-ary simple ∞-minor of (φ0, S0) via H := {h}. Note that
(φh, Sh) ∈ G∞.

We claim that χM ≤ φh. This will follow if we show that M ≺ φh. By the
definition of simple ∞-minor, it is enough to show that (m1h, . . . ,mnh) ≺ φ0. In
fact, we have, for 1 ≤ j ≤ n,

mjh = (mjh(i) | i ∈ ρ) = (cj(i) | i ∈ ρ) = cj ,

and (c1, . . . , cn) ≺ φ0.
Next we claim that Bµ \ {u} ⊇ Sh, i.e., u /∈ Sh. By the definition of simple

∞-minor, it is enough to show that uh /∈ S0. For every i ∈ ρ we have

(uh)(i) =
(
g(m1, . . . ,mn)h

)
(i)

= g
(
(m1h)(i), . . . , (mnh)(i)

)
= g
(
c1(i), . . . , cn(i)

)
.

Thus uh = gM0. Since gM0 /∈ S0, we conclude that u /∈ Sh.
So (χM , B

µ \ {u}) is a relaxation of (φh, Sh), and we conclude that (χM , B
µ \

{u}) ∈ G∞. By the definition of u, this is impossible, and we have reached a
contradiction. �

Proof of Theorem 4.6. (ii)⇒ (i): It is obvious that every function in FAB preserves
the generalized equality and empty constraints. It follows from Lemma 4.4 that if
a function preserves every member of a nonempty family (φj , Sj)j∈J of generalized
constraints, then it preserves every conjunctive minor of the family. It is also clear
that if a function preserves every member of a family (φi, S)i∈ω of generalized
constraints such that φi ≤ φi+1 for all i ∈ ω, then it also preserves (limi→∞ φi, S).

It remains to show that G is locally closed. It is clear that GAB is locally closed,
so we can assume that G 6= GAB . Suppose on the contrary that there is a generalized
constraint (φ, S) ∈ GAB \ G, say of arity m, such that every generalized constraint
obtained from (φ, S) by a finite restriction of the antedecent is in G. By (ii), there

is a function f ∈ F (n)
AB that preserves every generalized constraint in G but does not

preserve (φ, S). Thus, there is an m × n matrix M ≺ φ such that fM /∈ S. The
generalized constraint (χM, S) is obtained from (φ, S) by a finite restriction of the
antecedent, and hence (χM, S) ∈ G by our assumption. We have that M ≺ χM but
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fM /∈ S, which is a contradiction to the fact that f B (χM, S). This completes the
proof of the implication (ii)⇒ (i).

(i) ⇒ (ii): By Lemma 4.11, for every generalized constraint (φ, S) ∈ GAB \ G,
there is a function which preserves every generalized constraint in G but does not
preserve (φ, S). The set of all such “separating” functions, for each (φ, S) ∈ GAB\G,
characterizes G. �

5. Sets of operations closed under permutation of variables,
addition of dummy variables, and composition

We now consider the problem of characterizing the sets of operations on an
arbitrary nonempty set A that are closed under permutation of variables, addi-
tion of dummy variables, and composition (but not necessarily under identifica-
tion of variables). In other words, we are going to characterize the subalgebras
of (OA; ζ, τ,∇, ∗). We confine ourselves to dealing only with sets that contain all
projections. Of course, every clone on A is such a closed set. Examples of sets that
are closed under the operations considered but not under identification of variables
are given below.

Example 5.1. Let C be a clone on A, and letm ≥ 2 be an integer. The set C(≥m) :=⋃
n≥m C(n) is clearly closed under permutation of variables, addition of dummy

variables and composition, but it is not closed under identification of variables.
Note, however, that C(≥m) does not contain all projections – the unary projections
are missing.

Example 5.2. The set of surjective operations on A is closed under permutation of
variables, addition of dummy variables and composition, but it is not closed under
identification of variables (unless |A| = 1). Consider, for example, the operation
f : A2 → A defined by

f(x, y) =

{
x, if x 6= y,

a, if x = y,

where a ∈ A is a fixed element. Clearly f is surjective, but ∆f is a constant map
and hence not surjective (unless |A| = 1).

Example 5.3. Let (A;≤) be a partially ordered set. We say that an operation

f ∈ O(n)
A is order-preserving (with respect to the partial order ≤) in the i-th variable

(1 ≤ i ≤ n), if for all a1, . . . , an, b ∈ A, we have that ai ≤ b implies

f(a1, . . . , ai−1, ai, ai+1, . . . , an) ≤ f(a1, . . . , ai−1, b, ai+1, . . . , an).

We say that f is order-reversing in the i-th variable (1 ≤ i ≤ n), if for all
a1, . . . , an, b ∈ A, we have that ai ≤ b implies

f(a1, . . . , ai−1, ai, ai+1, . . . , an) ≥ f(a1, . . . , ai−1, b, ai+1, . . . , an).

The set M≤ of all operations on A that are order-preserving or order-reversing
with respect to ≤ in each variable is clearly closed under permutation of variables,
addition of dummy variables (every function is both order-preserving and order-
reversing in a dummy variable) and composition. If the poset (A;≤) contains a
three-element chain a < b < c, then the classM≤ is not closed under identification
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of variables. Consider, for example, the operation f : A2 → A defined as follows:
let ≤∗ be a linear extension of ≤, and let

f(x, y) =

{
b, if b ≤∗ x and y ≤∗ b,
a, otherwise.

It is easy to verify that f is order-preserving in the first variable and order-reversing
in the second variable. However, the operation ∆f , given by

(∆f)(x) =

{
b, if x = b,

a, otherwise,

is neither order-preserving nor order-reversing in its only variable.

Example 5.4. Let (A; +, ·) be a field, and for a fixed integer p ≥ 2, let Lp be
the class of all linear functions f(x1, . . . , xn) =

∑n
i=1 cixi, where ci ∈ A for 1 ≤

i ≤ n, such that |{i | ci 6= 0}| ≡ 1 (mod p). Lp is closed under permutation of
variables, addition of dummy variables and composition, but it is not closed under
identification of variables (unless p = 2 and A is a two-element field).

Example 5.5. Let A := (A;F ) be an algebra, and let T lin
A be the the set of term

functions of A induced by linear terms, i.e., terms with no repeated variables; such
operations are sometimes called read-once functions of the algebra A. It is clear
that T lin

A is closed under permutation of variables, addition of dummy variables and
composition, but it is not in general closed under identification of variables.

A finite multiset S on a set A is a map νS : A→ ω, called a multiplicity function,
such that the set {x ∈ A | νS(x) 6= 0} is finite. Then the sum

∑
x∈A νS(x) is a well-

defined natural number, and it is called the cardinality of S and denoted by |S|. The
number νS(x) is called the multiplicity of x in S. We may represent a finite multiset
S by giving a list enclosed in set brackets, i.e., {a1, . . . , an}, where each element x ∈
A occurs νS(x) times. If S′ is another multiset on A corresponding to νS′ : A→ ω,
then we say that S′ is a submultiset of S, denoted S′ ⊆ S, if νS′(x) ≤ νS(x) for all
x ∈ A. We denote the set of all finite multisets on A by M(A). The set M(A) is
partially ordered by the multiset inclusion relation “⊆”. The join S ] S′ and the
difference S \S′ of multisets S and S′ are determined by the multiplicity functions
νS]S′(x) := νS(x) + νS′(x) and νS\S′(x) := max{νS(x) − νS′(x), 0}, respectively.
The empty multiset on A is the zero function, and it is denoted by ε. A partition of
a finite multiset S on A is a multiset {S1, . . . , Sn} (on the set of all finite multisets
on A) of nonempty finite multisets on A such that S = S1 ] · · · ] Sn.

For an m×n matrix M ∈ Am×n, the multiset of columns of M is the multiset M∗

on Am defined by the characteristic function χM of M, which maps each m-tuple
a ∈ Am to the number of times a occurs as a column of M. A matrix N ∈ Am×n′

is a submatrix of M ∈ Am×n if N∗ ⊆M∗, i.e., χN(a) ≤ χM(a) for all a ∈ Am.
For an integer m ≥ 1, an m-ary cluster on A is an initial segment Φ of the set

M(Am) of all finite multisets on Am, partially ordered by multiset inclusion “⊆”,
i.e., a subset Φ of M(Am) such that, for all S, T ∈ M(Am), if S ∈ Φ and T ⊆ S,
then also T ∈ Φ. The number max{|S| | S ∈ Φ}, if it exists, is called the breadth
of Φ; if the maximum does not exist, then Φ is said to have infinite breadth. For
m ≥ 1, we denote

K(m)
A := {Φ ∈ P(M(Am)) | Φ is an initial segment of M(Am)}
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and
KA :=

⋃
m≥1

K(m)
A .

If M ∈ Am×n and Φ ∈ K(m)
A , we write M ≺ Φ to mean that the multiset M∗ of

columns of M is an element of Φ. If f ∈ OnA and Φ ∈ K(m)
A , we say that f preserves

Φ, denoted f B Φ, if for every matrix M ∈ Am×p for some p ≥ 0, it holds that
whenever M ≺ Φ and M = [M1|M2] where M1 has n columns and M2 may be
empty, we have that [fM1|M2] ≺ Φ.

In light of Theorem 2.1, the relation B establishes a Galois connection between
the sets OA and KA. We say that a set F ⊆ OA of operations on A is characterized
by a set K ⊆ KA of clusters, if F = {f ∈ OA | ∀Φ ∈ K : f B Φ}, i.e., F is precisely
the set of operations on A that preserve every cluster in K. Similarly, we say that
K is characterized by F , if K = {Φ ∈ KA | ∀f ∈ F : f B Φ}, i.e., K is precisely the
set of clusters that are preserved by every operation in F . Thus, the Galois closed
sets of operations (clusters) are exactly those that are characterized by clusters
(operations, respectively).

Remark 5.6. Recall that a finite multiset S on Am is a map νS : Am → ω; hence
it is in fact an m-ary repetition function on A. Thus, adopting the notation for
matrices and repetition functions introduced in Section 3, for a matrix M ∈ Am×n,
we write M ≺ S to mean that each m-tuple a ∈ Am occurs as a column of M at
most νS(a) times, i.e., χM(a) ≤ νS(a) for all a ∈ Am, i.e., M∗ ⊆ S.

Remark 5.7. Alternatively, we can define an m-ary cluster Φ on A to be a set of
m-ary repetition functions on A. Then M ≺ Φ means that M ≺ φ for some φ ∈ Φ
(see Section 3). To see that these definitions are equivalent, observe first that every
set of finite multisets is in fact itself a set of repetition functions (cf. Remark 5.6).
On the other hand, a set ΦR of repetition functions corresponds to the downward
closed set ΦF of finite multisets S satisfying νS(a) ≤ φ(a) for all a ∈ Am, for some
φ ∈ ΦR. It can be easily shown that if ΦF is a downward closed set of multisets
and ΦR is a set of repetition functions such that ΦF and ΦR correspond to each
other under the two alternative definitions of cluster, then M ≺ ΦF if and only if
M ≺ ΦR.

While we keep to the original definition of cluster when we prove our theorems, we
may sometimes find it simpler to represent clusters in terms of repetition functions
in the subsequent examples.

Example 5.8. An m-ary relation R on A is equivalent to the m-ary cluster

ΦR := {S ∈M(Am) | ∀a ∈ Am : [νS(a) > 0⇒ a ∈ R]}.
Thus every locally closed clone can be characterized by a set of clusters of this kind.

Using the alternative definition of cluster, ΦR is equivalent to the cluster {φR},
where the repetition function φR is defined by the rule φR(a) = ω if a ∈ R and
φR(a) = 0 otherwise.

Example 5.9. Let ≤ be a partial order on A. A function f : An → A is not order-
preserving nor order-reversing in its i-th variable if and only if there exist elements
a1, . . . , an, a

′
i, b1, . . . , bn, b

′
i ∈ A such that ai < a′i, bi < b′i and

f(a1, . . . , ai−1, ai, ai+1, . . . , an) � f(a1, . . . , ai−1, a
′
i, ai+1, . . . , an),

f(b1, . . . , bi−1, bi, bi+1, . . . , bn) � f(b1, . . . , bi−1, b
′
i, bi+1, . . . , bn).
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Thus, it is easy to see that the class of operations on A that are order-preserving or
order-reversing in each variable with respect to ≤ is characterized by the quaternary
cluster Φ≤ consisting precisely of those finite multisets S on A4 that satisfy the
conditions

• νS(a, b, c, d) = 0 whenever a < b and c > d, or a > b and c < d, or a and b
are incomparable, or c and d are incomparable; and
•
∑

a∈X νS(a) ≤ 1, where

X := {(a, b, c, d) ∈ A4 |
((a ≤ b) ∧ (c ≤ d)) ∨ ((a ≥ b) ∧ (c ≥ d)) ∧ ((a 6= b) ∨ (c 6= d))}.

Lemma 5.10. Let F ⊆ OA be a locally closed set of operations that contains
all projections and is closed under permutation of variables, addition of dummy
variables, and composition. Then for every g ∈ OA \ F , there exists a cluster
Φ ∈ KA that is preserved by every operation in F but not by g.

Proof. Since F contains all projections, F 6= ∅. Suppose that g ∈ OA \ F is n-ary.
Since F is locally closed, there is a finite subset F ⊆ An such that g|F 6= f |F for
every f ∈ F (n). Clearly F is nonempty. Let M be a |F | ×n matrix whose rows are
the elements of F in some fixed order.

Let X be any submultiset of M∗. (Recall that M∗ denotes the multiset of
columns of M.) Let Π := (M1, . . . ,Mq) be a sequence of submatrices of M such
that {M∗1, . . . ,M∗q} is a partition of M∗ \ X. For 1 ≤ i ≤ q, let di ∈ FMi, and

let D := (d1, . . . ,dq). (Note that each FMi is nonempty, because F contains all
projections. Observe also that each FMi is a subset of FM, because F is closed
under addition of dummy variables.) Denote 〈X,Π,D〉 := X ]D∗.

We define Φ to be the set of all submultisets of the multisets 〈X,Π,D〉 for all
possible choices of X, Π, and D. Observe first that g 6B Φ. For, it holds that
M ≺ Φ, because M∗ = 〈M∗, (), ()〉 ∈ Φ. On the other hand, since gM /∈ FM, we
have that gM /∈ 〈X,Π,D〉 for all X, Π, D, and hence gM ⊀ Φ.

It remains to show that f B Φ for all f ∈ F . Assume that f is n-ary. If
N := [N1|N2] ≺ Φ, where N1 has n columns, then N ≺ 〈X,Π,D〉 for some
X, Π := (M1, . . . ,Mq), D := (d1, . . . ,dq), where {M∗1, . . . ,M∗q} is a partition of

M∗ \X and for 1 ≤ i ≤ q, di ∈ FMi. We will show by induction on q that there
exist X ′, Π′, D′ such that [fN1|N2] ≺ 〈X ′,Π′,D′〉 and hence [fN1|N2] ≺ Φ.

If q = 0, then X = M∗, Π = (), D = (), and 〈X,Π,D〉 = M∗, and the condition
N = [N1|N2] ≺ 〈M∗, (), ()〉 means that N is a submatrix of M. Then fN1 ∈ FN1

and [fN1|N2] ≺ 〈M∗ \N∗1, (N1), (fN1)〉.
Assume that the claim holds for q = k ≥ 0, and consider the case that q = k+ 1.

Let N = [N1|N2] ≺ 〈X,Π,D〉. If N1 ≺ X, then fN1 ∈ FN1 and

[fN1|N2] ≺ 〈X \N∗1, (M1, . . . ,Mk+1,N1), (d1, . . . ,dk+1, fN1)〉.

Otherwise, for some i ∈ {1, . . . , k + 1}, di is a column of N1. Denote by N′1 the
matrix obtained from N1 by deleting the column di. Since F is closed under per-
mutation of variables, there is an operation f ′ ∈ F (n) such that fN1 = f ′[di|N′1].
By the definition of di, there is an operation h ∈ F such that hMi = di, and we
have that

f ′[di|N′1] = f ′[hMi|N′1] = (f ′ ∗ h)[Mi|N′1].
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Since F is closed under composition, f ′ ∗ h ∈ F . Furthermore,

[Mi|N′1|N2] ≺ 〈X ]M∗i , (M1, . . . ,Mi−1,Mi+1, . . . ,Mk+1),

(d1, . . . ,di−1,di+1, . . . ,dk+1)〉.

By the induction hypothesis, there exist X ′, Π′, D′ such that[
(f ′ ∗ h)[Mi|N′1]

∣∣N2

]
≺ 〈X ′,Π′,D′〉,

and hence [fN1|N2] ≺ 〈X ′,Π′,D′〉. �

Theorem 5.11. Let A be an arbitrary, possibly infinite nonempty set. For any set
F ⊆ OA of operations, the following two conditions are equivalent:

(i) F is locally closed, contains all projections, and is closed under permutation
of variables, addition of dummy variables, and composition.

(ii) F is characterized by a set K ⊆ KA of clusters.

Proof. (ii)⇒ (i): It is straightforward to verify that the set of operations preserving
a set of clusters is closed under permutation of variables and addition of dummy
variables, and it contains all projections. To see that it is closed under composition,
let f ∈ F (n) and g ∈ F (p), and consider f ∗ g : An+p−1 → A. Let Φ ∈ K, and let
M := [M1|M2|M3] ≺ Φ, where M1 has p columns and M2 has n−1 columns. Since
g B Φ, we have that [gM1|M2|M3] ≺ Φ. Then [gM1|M2] has n columns, and since
f B Φ, we have that

[
f [gM1|M2]

∣∣M3

]
≺ Φ. But f [gM1|M2] = (f ∗ g)[M1|M2], so[

(f ∗ g)[M1|M2]
∣∣M3

]
≺ Φ, and we conclude that f ∗ g B Φ.

It remains to show that F is locally closed. It is clear that OA is locally closed, so
we may assume that F 6= OA. Suppose on the contrary that there is a g ∈ OA \F ,
say of arity n, such that for every finite subset F ⊆ An, there is an f ∈ F (n)

such that g|F = f |F . Since F is characterized by K and g /∈ F , there is a cluster
Φ ∈ K such that g 6B Φ, and hence for some matrix M := [M1|M2] ≺ Φ where
M1 has n columns, we have that [gM1|M2] ⊀ Φ. Let F be the finite set of rows
of M1. By our assumption, there is an f ∈ F (n) such that g|F = f |F , and hence
fM1 = f |FM1 = g|FM1 = gM1, and so [fM1|M2] ⊀ Φ, which contradicts the
fact that f B Φ.

(i) ⇒ (ii): It follows from Lemma 5.10 that for every operation g ∈ OA \ F ,
there exists a cluster Φ ∈ KA that is preserved by every operation in F but not
by g. The set of all such “separating” clusters, for each g ∈ OA \ F , characterizes
F . �

6. Closure conditions for clusters

In order to describe the sets of clusters that are characterized by sets of opera-
tions, we need to introduce a number of operations on clusters. First, we will adapt
Couceiro and Foldes’s [2] notion of conjunctive minor to clusters.

Let H := (hj)j∈J be a minor formation scheme with target m, indeterminate
set V , and source family (nj)j∈J (see the definition in Section 4). Let (Φj)j∈J be
a family of clusters on A, each Φj of arity nj , and let Φ be an m-ary cluster on
A. We say that Φ is a conjunctive minor of the family (Φj)j∈J via H, if, for every
m× n matrix M := (a1, . . . ,an) ∈ Am×n,

M ≺ Φ⇐⇒
[
∃σ1, . . . , σn ∈ AV ∀j ∈ J :

(
(a1 + σ1)hj , . . . , (a

n + σn)hj
)
≺ Φj

]
.
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If the minor formation scheme H := (hj)j∈J and the family (Φj)j∈J are indexed by
a singleton J := {0}, then a conjunctive minor Φ of a family consisting of a single
cluster Φ0 is called a simple minor of Φ0.

The formation of conjunctive minors subsumes the formation of simple minors
and the intersection of clusters. Simple minors in turn subsume permutation of
arguments, projection, identification of arguments, and addition of a dummy ar-
gument, operations which can be defined for clusters in an analogous way as for
generalized constraints (see Section 4).

Lemma 6.1. Let Φ be a conjunctive minor of a nonempty family (Φj)j∈J of clusters
on A. If f : An → A preserves Φj for all j ∈ J , then f preserves Φ.

Proof. Let Φ be an m-ary conjunctive minor of the family (Φj)j∈J via the scheme

H := (hj)j∈J , hj : nj → m ∪ V . Let M := (a1, . . . ,an
′
) be an m × n′ matrix

(n′ ≥ n) such that M ≺ Φ, and denote M1 := (a1, . . . ,an), M2 := (an+1, . . . ,an
′
),

so M = [M1|M2]. We need to prove that [fM1|M2] ≺ Φ.
Since Φ is a conjunctive minor of (Φj)j∈J via H := (hj)j∈J , there are Skolem

maps σi : V → A, 1 ≤ i ≤ n′, such that for every j ∈ J , we have(
(a1 + σ1)hj , . . . , (a

n′
+ σn′)hj

)
≺ Φj .

Denote

Mj
1 :=

(
(a1 + σ1)hj , . . . , (a

n + σn)hj
)
,

Mj
2 :=

(
(an+1 + σn+1)hj , . . . , (a

n′
+ σn′)hj

)
.

By the assumption that f B Φj , we have [fMj
1|M

j
2] ≺ Φj for each j ∈ J .

Let σ := f(σ1, . . . , σn). We have that, for each j ∈ J ,

(fM1 + σ)hj =
(
f(a1, . . . ,an) + f(σ1, . . . , σn)

)
hj

=
(
f(a1 + σ1, . . . ,a

n + σn)
)
hj

= f
(
(a1 + σ1)hj , . . . , (a

n + σn)hj
)

= fMj
1.

Since Φ is a conjunctive minor of (Φj)j∈J via H = (hj)j∈J and(
(fM1 + σ)hj , (a

n+1 + σn+1)hj , . . . , (a
n′

+ σn′)hj
)

= [fMj
1|M

j
2] ≺ Φj

for each j ∈ J , we have that [fM1|M2] ≺ Φ. Thus f B Φ. �

Lemma 6.2. Let (Φj)j∈J be a nonempty family of m-ary clusters on A. If f : An →
A preserves Φj for all j ∈ J , then f preserves

⋃
j∈J Φj.

Proof. Let M := [M1|M2] ≺
⋃
j∈J Φj . Then M ≺ Φj for some j ∈ J . By

the assumption that f B Φj , we have [fM1|M2] ≺ Φj , and hence [fM1|M2] ≺⋃
j∈J Φj . �

The quotient of an m-ary cluster Φ on A with a multiset S ∈M(Am) is defined
as

Φ/S := {S′ ∈M(Am) | S ] S′ ∈ Φ}.
It is easy to see that Φ/S is a cluster and Φ/S ⊆ Φ for any S.

Lemma 6.3. Let Φ,Φ′ ∈ K(m)
A and S ∈M(Am). Then

(i) X ∈ Φ/S if and only if X ] S ∈ Φ;
(ii) (Φ ∪ Φ′)/S = (Φ/S) ∪ (Φ′/S).
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Proof. (i) Immediate from the definition.
(ii) By part (i) and the definition of union, we have

X ∈ (Φ ∪ Φ′)/S ⇐⇒ X ] S ∈ Φ ∪ Φ′ ⇐⇒ X ] S ∈ Φ ∨X ] S ∈ Φ′

⇐⇒ X ∈ Φ/S ∨X ∈ Φ′/S ⇐⇒ X ∈ (Φ/S) ∪ (Φ′/S).

The claimed equality thus follows. �

Lemma 6.4. Let Φ be an m-ary cluster on A. If f : An → A preserves Φ, then f
preserves Φ/S for every multiset S ∈M(Am).

Proof. Let [M1|M2] ≺ Φ/S. Let N be a matrix such that N∗ = S. Then
[M1|M2|N] ≺ Φ. By our assumption that f B Φ, we have [fM1|M2|N] ≺ Φ.
Thus, [fM1|M2] ≺ Φ/S, and we conclude that f B Φ/S. �

Lemma 6.5. Assume that Φ is an m-ary cluster on A that contains all multisets
on Am of cardinality at most p. If f : An → A preserves all quotients Φ/S where
|S| ≥ p, then f preserves Φ.

Proof. Let [M1|M2] ≺ Φ, where M1 has n columns and M2 has n′ columns. If n′ <
p, then the number of columns of [fM1|M2] is n′+1 ≤ p, and hence [fM1|M2] ≺ Φ.
Otherwise n′ ≥ p and, by our assumption, f B Φ/M∗2. Thus, since M1 ≺ Φ/M∗2,
we have that fM1 ≺ Φ/M∗2. Therefore [fM1|M2] ≺ Φ, and we conclude that
f B Φ. �

For p ≥ 0, the m-ary trivial cluster of breadth p, denoted Ω
(p)
m , is the set of all

finite multisets on Am of cardinality at most p. The m-ary empty cluster on A is

the empty set ∅. Note that Ω
(0)
m 6= ∅, because the empty multiset ε on Am is the

unique member of Ω
(0)
m . The binary equality cluster on A, denoted E2, is the set of

all finite multisets S on A2 for which it holds that νS(a) = 0 whenever a = (a, b)
with a 6= b.

For p ≥ 0, we say that the cluster Φ(p) := Φ ∩ Ω
(p)
m is obtained from the m-ary

cluster Φ by restricting the breadth to p.

Lemma 6.6. Let Φ be an m-ary cluster on A. Then f : An → A preserves Φ if
and only if f preserves Φ(p) for all p ≥ 0.

Proof. Assume first that f B Φ. Let [M1|M2] ≺ Φ(p). Since Φ(p) ⊆ Φ, we have
that [M1|M2] ≺ Φ, and hence [fM1|M2] ≺ Φ by our assumption. The number
of columns of [fM1|M2] is at most p, so we have that [fM1|M2] ≺ Φ(p). Thus,
f B Φ(p).

Assume then that f B Φ(p) for all p ≥ 0. Let M := [M1|M2] ≺ Φ, and let q be
the number of columns in M. Then [M1|M2] ≺ Φ(q), and hence [fM1|M2] ≺ Φ(q)

by our assumption. Since Φ(p) ⊆ Φ, we have that [fM1|M2] ≺ Φ, and we conclude
that f B Φ. �

We say that a set K ⊆ KA of clusters is closed under quotients, if for any Φ ∈ K,
every quotient Φ/S is also in K. We say that K is closed under dividends, if for

every cluster Φ ∈ KA, say of arity m, it holds that Φ ∈ K whenever Ω
(p)
m ⊆ Φ and

Φ/S ∈ K for every multiset S on Am of cardinality at least p. We say that K is
locally closed, if Φ ∈ K whenever Φ(p) ∈ K for all p ≥ 0. We say than K is closed
under unions, if

⋃
j∈J Φj ∈ K whenever (Φj)j∈J is a nonempty family of m-ary
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clusters in K. We say that K is closed under formation of conjunctive minors, if all
conjunctive minors of nonempty families of members of K are members of K.

Theorem 6.7. Let A be an arbitrary, possibly infinite nonempty set. For any set
K ⊆ KA of clusters on A, the following two conditions are equivalent:

(i) K is locally closed and contains the binary equality cluster, the unary empty
cluster, and all unary trivial clusters of breadth p ≥ 0, and it is closed under
formation of conjunctive minors, unions, quotients, and dividends.

(ii) K is characterized by some set F ⊆ OA of operations.

Similarly to the proof of Theorem 4.6, we extend the notion of cluster to arbitrary,
possibly infinite arities. This extended notion has no bearing on Theorem 6.7 but is
only used as a tool in its proof. We use the terms conjunctive ∞-minor and simple
∞-minor to refer to conjunctive minors and simple minors via a scheme whose
target and source ordinals may be infinite or finite. The use of the term “minor”
without the prefix “∞” continues to mean the respective minor via a scheme whose
target and source ordinals are all finite. Matrices can also have infinitely many
rows but only a finite number of columns.

For a set K of clusters on A of arbitrary, possibly infinite arities, we denote by
K∞ the set of those clusters which are conjunctive∞-minors of families of members
of K. This set K∞ is the smallest set of clusters containing K which is closed under
formation of conjunctive∞-minors, and it is called the conjunctive∞-minor closure
of K. Considering the formation of repeated conjunctive ∞-minors, we can show
that the following analogues of Lemma 4.7 and Corollary 4.8 hold.

Lemma 6.8. If Φ is a conjunctive ∞-minor of a nonempty family (Φj)j∈J of
clusters on A via the scheme H, and, for each j ∈ J , Φj is a conjunctive ∞-minor
of a nonempty family (Φij)i∈Ij via the scheme Hj, then Φ is a conjunctive ∞-minor

of the nonempty family (Φij)j∈J, i∈Ij via the composite scheme K := H(Hj | j ∈ J).

Corollary 6.9. Let K ⊆ KA be a set of finitary clusters, and let K∞ be its con-
junctive ∞-minor closure. If K is closed under formation of conjunctive minors,
then K is the set of all finitary clusters belonging to K∞.

Lemma 6.10. Let A be an arbitrary, possibly infinite nonempty set. Let K ⊆ KA
be a locally closed set of finitary clusters that contains the binary equality cluster,
the unary empty cluster, and all unary trivial clusters of breadth p ≥ 0, and is closed
under formation of conjunctive minors, unions, quotients, and dividends. Let K∞
be the conjunctive ∞-minor closure of K. Let Φ ∈ KA \ K be finitary. Then there
exists a function in OA which preserves every cluster in K∞ but does not preserve
Φ.

Proof. We shall construct a function g that preserves all clusters in K∞ but does
not preserve Φ.

Note that, by Corollary 6.9, Φ cannot be in K∞. Let m be the arity of Φ. Since

K is locally closed and Φ /∈ K, there is an integer p such that Φ(p) := Φ∩Ω
(p)
m /∈ K;

let n be the smallest such integer. By Lemma 6.6, every function not preserving
Φ(n) does not preserve Φ either, so we can consider Φ(n) instead of Φ. Due to the
minimality of n, the breadth of Φ(n) is n. Observe that Φ is not the trivial cluster
of breadth n nor the empty cluster, because these are members of K. Thus, n ≥ 1.

We can assume that Φ is a minimal nonmember ofK with respect to identification
of rows, i.e., every simple minor of Φ obtained by identifying some rows of Φ is a
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member of K. If this is not the case, then we can identify some rows of Φ to obtain
a minimal nonmember Φ′ of K and consider the cluster Φ′ instead of Φ. Note that
by Lemma 6.1, every function not preserving Φ′ does not preserve Φ either.

We can also assume that Φ is a minimal nonmember of K with respect to taking
quotients, i.e., whenever S 6= ε, we have that Φ/S ∈ K. If this is not the case,
then consider a minimal nonmember Φ/S of K instead of Φ. By Lemma 6.4, every
function not preserving Φ/S does not preserve Φ either.

The fact that Φ is a minimal nonmember of K with respect to taking quotients

implies that Ω
(1)
m 6⊆ Φ. For, suppose, on the contrary, that Ω

(1)
m ⊆ Φ. Since all

quotients Φ/S where |S| ≥ 1 are in K and K is closed under dividends, we have
that Φ ∈ K, a contradiction.

Let Ψ :=
⋃
{Φ′ ∈ T | Φ′ ⊆ Φ}, i.e., Ψ is the largest cluster in T such that

Ψ ⊆ Φ. Note that this is not the empty union, because the empty cluster is a
member of K. It is clear that Ψ 6= Φ. Since n was chosen to be the smallest
integer satisfying Φ(n) /∈ K, we have that Φ(n−1) ∈ K and since Φ(n−1) ⊆ Φ(n), it
holds that Φ(n−1) ⊆ Ψ. Thus there is a multiset Q ∈ Φ \ Ψ with |Q| = n. Let
D := (d1, . . . ,dn) be an m× n matrix whose multiset of columns equals Q.

The rows of D are pairwise distinct. Suppose, for the sake of contradiction, that
rows i and j of D coincide. Since Φ is a minimal nonmember of K with respect to
identification of rows, by identifying rows i and j of Φ, we obtain a cluster Φ′ that
is in K. By adding a dummy row in the place of the row that got deleted when we
identified rows i and j, and finally by intersecting with the conjunctive minor of
the binary equality cluster whose rows i and j are equal (the overall effect of the
operations performed above is the selection of exactly those multisets in Φ whose
rows i and j coincide), we obtain a cluster in K that contains Q and is a subset of
Φ. But this is impossible by the choice of Q.

Let Υ :=
⋂
{Φ′ ∈ K | Q ∈ Φ′}, i.e., Υ is the smallest cluster in K that contains

Q as an element. Note that this is not the empty intersection, because the trivial

cluster Ω
(n)
m is a member K and contains Q. By the choice of Q, Υ 6⊆ Φ.

Let Φ̂ := Φ ∪ Ω
(1)
m . We claim that for S 6= ε, Φ̂/S = Φ/S or Φ̂/S = Ω

(0)
m = {ε}.

For, we have (Φ ∪ Ω
(1)
m )/S = (Φ/S) ∪ (Ω

(1)
m /S) by Lemma 6.3. If |S| > 1, then

Ω
(1)
m /S = ∅ and hence we have Φ̂/S = Φ/S in this case. If |S| = 1, then Ω

(1)
m /S =

{ε}, and hence Φ̂/S = Φ/S ∪ {ε}. Since an m-ary cluster is an initial segment
of M(Am), we have either Φ/S = ∅ or ε ∈ Φ/S. In the former case, we have

Φ̂/S = {ε}, and in the latter case we have Φ̂/S = Φ/S. Thus, the claim follows.

Since Φ is a minimal nonmember of K with respect to quotients and Ω
(0)
m ∈ K,

by the above claim we have that Φ̂/S ∈ K whenever |S| ≥ 1. Since K is closed

under dividends, we have that Φ̂ ∈ K, and hence Υ ⊆ Φ̂. Thus, there exists an
m-tuple s ∈ Am such that {s} ∈ Υ \ Φ.

Let M := (m1, . . . ,mn) be a µ × n matrix whose first m rows are the rows of
D (i.e.,

(
m1(i), . . . ,mn(i)

)
=
(
d1(i), . . . ,dn(i)

)
for every i ∈ m) and whose other

rows are the remaining distinct n-tuples in An; every n-tuple in An is a row of M
and there is no repetition of rows in M. Note that m ≤ µ and µ is infinite if and
only if A is infinite.

Let Θ :=
⋂
{Φ′ ∈ T ∞ |M ≺ Φ′}. There must exist a µ-tuple u := (ut | t ∈ µ) in

Aµ such that u(i) = s(i) for all i ∈ m and {u} ∈ Θ. For, if this is not the case, then
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the projection of Θ to its first m coordinates would be a member of K containing
Q but not containing {s}, contradicting the choice of s.

We can now define a function g : An → A by the rule gM = u. The definition
is valid, because every n-tuple in An occurs exactly once as a row of M. It is clear
that g 6B Φ, because D ≺ Φ but gD = s ⊀ Φ.

We need to show that every cluster in K∞ is preserved by g. Suppose, on
the contrary, that there is a ρ-ary cluster Φ0 ∈ K∞, possibly infinitary, which
is not preserved by g. Thus, for some ρ × n′ matrix N := (c1, . . . , cn

′
) ≺ Φ0,

with N0 := (c1, . . . , cn), N1 := (cn+1, . . . , cn
′
), we have [gN0|N1] ⊀ Φ0. Let

Φ1 := Φ0/N
∗
1. Since K is closed under quotients, Φ1 ∈ K. We have that N0 ≺ Φ1

but gN0 ⊀ Φ1, so g does not preserve Φ1 either. Define h : ρ → µ to be any map
such that (

c1(i), . . . , cn(i)
)

=
(
(m1h)(i), . . . , (mnh)(i)

)
for every i ∈ ρ, i.e., row i of N0 is the same as row h(i) of M, for each i ∈ ρ. Let
Φh be the µ-ary simple ∞-minor of Φ1 via H := {h}. Note that Φh ∈ K∞.

We claim that M ≺ Φh. To prove this, by the definition of simple ∞-minor, it
is enough to show that (m1h, . . . ,mnh) ≺ Φ1. In fact, we have for 1 ≤ j ≤ n,

mjh = (mjh(i) | i ∈ ρ) = (cj(i) | i ∈ ρ) = cj ,

and (c1, . . . , cn) = N0 ≺ Φ1.
Next we claim that {u} /∈ Φh. For this, by the definition of simple ∞-minor, it

is enough to show that uh ⊀ Φ1. For every i ∈ ρ, we have

(uh)(i) =
(
g(m1, . . . ,mn)h

)
(i)

= g
(
(m1h)(i), . . . , (mnh)(i)

)
= g
(
c1(i), . . . , cn(i)

)
.

Thus uh = gN0. Since gN0 ⊀ Φ1, we conclude that {u} /∈ Φh.
Thus, Φh is a cluster in K∞ that contains M but does not contain {u}. By the

choice of u, this is impossible, and we have reached a contradiction. �

Proof of Theorem 6.7. (ii)⇒ (i): It is clear that every function preserves the equal-
ity, empty, and trivial clusters. By Lemmas 6.1, 6.2, 6.4, and 6.5, K is closed under
formation of conjunctive minors, unions, quotients, and dividends.

It remains to show that K is locally closed. Suppose on the contrary that there

is a cluster Φ ∈ KA \ K, say of arity m, such that Φ(p) = Φ ∩ Ω
(p)
m ∈ K for all

p ≥ 0. By (ii), there is an operation f : An → A that preserves every cluster
in K but does not preserve Φ. Thus, there is a p ≥ 0 and an m × p matrix
M := [M1|M2] ≺ Φ such that [fM1|M2] ⊀ Φ. By our assumption, Φ(p) ∈ K, but
we have that [M1|M2] ≺ Φ(p) and [fM1|M2] ⊀ Φ(p), which is a contradiction to
the fact that f B Φ(p).

(i) ⇒ (ii): By Lemma 6.10, for every cluster Φ ∈ KA \ K, there is a function in
OA which preserves every cluster in K but does not preserve Φ. The set of these
“separating” functions, for each Φ ∈ KA \ K, characterizes K. �
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