3,019 research outputs found

    Two-Dimensional Scaling Limits via Marked Nonsimple Loops

    Full text link
    We postulate the existence of a natural Poissonian marking of the double (touching) points of SLE(6) and hence of the related continuum nonsimple loop process that describes macroscopic cluster boundaries in 2D critical percolation. We explain how these marked loops should yield continuum versions of near-critical percolation, dynamical percolation, minimal spanning trees and related plane filling curves, and invasion percolation. We show that this yields for some of the continuum objects a conformal covariance property that generalizes the conformal invariance of critical systems. It is an open problem to rigorously construct the continuum objects and to prove that they are indeed the scaling limits of the corresponding lattice objects.Comment: 25 pages, 5 figure

    Invading interfaces and blocking surfaces in high dimensional disordered systems

    Full text link
    We study the high-dimensional properties of an invading front in a disordered medium with random pinning forces. We concentrate on interfaces described by bounded slope models belonging to the quenched KPZ universality class. We find a number of qualitative transitions in the behavior of the invasion process as dimensionality increases. In low dimensions d<6d<6 the system is characterized by two different roughness exponents, the roughness of individual avalanches and the overall interface roughness. We use the similarity of the dynamics of an avalanche with the dynamics of invasion percolation to show that above d=6d=6 avalanches become flat and the invasion is well described as an annealed process with correlated noise. In fact, for d≥5d\geq5 the overall roughness is the same as the annealed roughness. In very large dimensions, strong fluctuations begin to dominate the size distribution of avalanches, and this phenomenon is studied on the Cayley tree, which serves as an infinite dimensional limit. We present numerical simulations in which we measured the values of the critical exponents of the depinning transition, both in finite dimensional lattices with d≤6d\leq6 and on the Cayley tree, which support our qualitative predictions. We find that the critical exponents in d=6d=6 are very close to their values on the Cayley tree, and we conjecture on this basis the existence of a further dimension, where mean field behavior is obtained.Comment: 12 pages, REVTeX with 2 postscript figure

    On the critical behavior of a lattice prey-predator model

    Full text link
    The critical properties of a simple prey-predator model are revisited. For some values of the control parameters, the model exhibits a line of directed percolation like transitions to a single absorbing state. For other values of the control parameters one finds a second line of continuous transitions toward infinite number of absorbing states, and the corresponding steady-state exponents are mean-field like. The critical behavior of the special point T (bicritical point), where the two transition lines meet, belongs to a different universality class. The use of dynamical Monte-Carlo method shows that a particular strategy for preparing the initial state should be devised to correctly describe the physics of the system near the second transition line. Relationships with a forest fire model with immunization are also discussed.Comment: 6 RevTex pages, 7 ps figure

    Cooperative Behavior of Kinetically Constrained Lattice Gas Models of Glassy Dynamics

    Full text link
    Kinetically constrained lattice models of glasses introduced by Kob and Andersen (KA) are analyzed. It is proved that only two behaviors are possible on hypercubic lattices: either ergodicity at all densities or trivial non-ergodicity, depending on the constraint parameter and the dimensionality. But in the ergodic cases, the dynamics is shown to be intrinsically cooperative at high densities giving rise to glassy dynamics as observed in simulations. The cooperativity is characterized by two length scales whose behavior controls finite-size effects: these are essential for interpreting simulations. In contrast to hypercubic lattices, on Bethe lattices KA models undergo a dynamical (jamming) phase transition at a critical density: this is characterized by diverging time and length scales and a discontinuous jump in the long-time limit of the density autocorrelation function. By analyzing generalized Bethe lattices (with loops) that interpolate between hypercubic lattices and standard Bethe lattices, the crossover between the dynamical transition that exists on these lattices and its absence in the hypercubic lattice limit is explored. Contact with earlier results are made via analysis of the related Fredrickson-Andersen models, followed by brief discussions of universality, of other approaches to glass transitions, and of some issues relevant for experiments.Comment: 59 page

    A topological approximation of the nonlinear Anderson model

    Full text link
    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrodinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance-overlap in phase space, ranging from a fully developed chaos involving Levy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on a Cayley tree. It is found in vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t\rightarrow+\infty. The second moment grows with time as a powerlaw t^\alpha, with \alpha = 1/3. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of stripes propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the transport.Comment: 20 pages, 2 figures; improved text with revisions; accepted for publication in Physical Review

    The scaling limits of the Minimal Spanning Tree and Invasion Percolation in the plane

    Get PDF
    We prove that the Minimal Spanning Tree and the Invasion Percolation Tree on a version of the triangular lattice in the complex plane have unique scaling limits, which are invariant under rotations, scalings, and, in the case of the MST, also under translations. However, they are not expected to be conformally invariant. We also prove some geometric properties of the limiting MST. The topology of convergence is the space of spanning trees introduced by Aizenman, Burchard, Newman & Wilson (1999), and the proof relies on the existence and conformal covariance of the scaling limit of the near-critical percolation ensemble, established in our earlier works.Comment: 56 pages, 21 figures. A thoroughly revised versio

    The scaling limits of near-critical and dynamical percolation

    Full text link
    We prove that near-critical percolation and dynamical percolation on the triangular lattice ηT\eta \mathbb{T} have a scaling limit as the mesh η→0\eta \to 0, in the "quad-crossing" space H\mathcal{H} of percolation configurations introduced by Schramm and Smirnov. The proof essentially proceeds by "perturbing" the scaling limit of the critical model, using the pivotal measures studied in our earlier paper. Markovianity and conformal covariance of these new limiting objects are also established.Comment: 72 pages, 7 figures. Slightly revised, final versio
    • …
    corecore