124 research outputs found

    Mobility of bodies in contact. II. How forces are generated bycurvature effects

    Get PDF
    For part I, see ibid., p.696-708. The paper considers how forces are produced by compliance and surface curvature effects in systems where an object a is kinematically immobilized to second-order by finger bodies Al,...,Ak. A class of configuration-space based elastic deformation models is introduced. Using these elastic deformation models, it is shown that any object which is kinematically immobilized to first or second-order is also dynamically locally asymptotically stable with respect to perturbations. Moreover, it is shown that for preloaded grasps kinematic immobility implies that the stiffness matrix of the grasp is positive definite. The stability result provides physical justification for using second-order effects for purposes of immobilization in practical applications. Simulations illustrate the concepts

    Searching force-closure optimal grasps of articulated 2D objects with n links

    Get PDF
    This paper proposes a method that finds a locally optimal grasp of an articulated 2D object with n links considering frictionless contacts. The surface of each link of the object is represented by a finite set of points, thus it may have any shape. The proposed approach finds, first, an initial force-closure grasp and from it starts an iterative search of a local optimum grasp. The quality measure considered in this work is the largest perturbation wrench that a grasp can resist with independence of the direction of the perturbation. The approach has been implemented and some illustrative examples are included in the article.Postprint (published version

    Determining force-closure grasps reachable by a given hand

    Get PDF
    The paper presents an approach to find contact points on an object surface that are reachable by a given hand and such that the resulting grasp satisfies the force-closure condition. This is a very common problem that still requires a practical solution. The proposed method is based on the computation of a set of independent contact regions on the object boundary such that a finger contact on each region produces a force-closure grasp, and then this set of regions is iteratively recomputed while looking for a set of contact points that are reachable by a given hand. The search is done guided by a cost function that indicates the proximity of the hand fingertips to a candidate set of grasping contact points. The approach has been implemented for the Schunk Anthropomorphic Hand and planar objects,and application examples are included to illustrate its performance.Postprint (published version

    Independent contact regions for discretized 3D objects with frictionless contacts

    Get PDF
    This paper deals with the problem of determining independent contact regions on a 3D object boundary such that a seven finger frictionless grasp with a contact point in each region assures a force-closure grasp on the object, independently of the exact position of the contact points. These regions provide robustness in front of finger positioning errors in grasp and fixturing applications. The object’s structure is discretized in a cloud of points, so the procedure is applicable to objects of any arbitrary shape. The procedure finds an initial form-closure grasp that is iteratively improved through an oriented search procedure: once a locally optimum grasp has been reached, the independent contact regions are computed. The procedure has been implemented, and application examples are included in the paper

    Grasping bulky objects with two anthropomorphic hands

    Get PDF
    © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis paper presents an algorithm to compute precision grasps for bulky objects using two anthropomorphic hands. We use objects modeled as point clouds obtained from a sensor camera or from a CAD model. We then process the point clouds dividing them into two set of slices where we look for sets of triplets of points. Each triplet must accomplish some physical conditions based on the structure of the hands. Then, the triplets of points from each set of slices are evaluated to find a combination that satisfies the force closure condition (FC). Once one valid couple of triplets have been found the inverse kinematics of the system is computed in order to know if the corresponding points are reachable by the hands, if so, motion planning and a collision check are performed to asses if the final grasp configuration of the system is suitable. The paper inclu des some application examples of the proposed approachAccepted versio

    Determination of seven frictionless fixturing points searching the object surface with a homogeneous deterministic distribution

    Get PDF
    The paper deals whit the problem of finding a form-closure fixturing of objects modeled whit triangular meshes and considering as quality measure the maximum wrench that the object can resist in any direction. Although a triangular mesh is a polyhedral representation of the object, the number of faces is too large to allow a practical application of existing approaches for polyhedral objects, and therefore some search procedure have to be applied. In the proposed approach the search of contact points is done looking for points directly on the object boundary instead of on the wrench space. In this way, all the object surface is homogeneously considered, while the quality is evaluated in the wrench space. The procedure iteratively looks, using heuristic criteria, for sets of points that improve the quality. The procedure was implemented and some application examples are included in the paper to illustrate the performanc
    corecore