49,456 research outputs found

    The Impact of New Communication Technologies

    Get PDF

    Structuring information work: Ferranti and Martins Bank, 1952-1968

    Get PDF
    The adoption of large-scale computers by the British retail banks in the 1960s required a first-time dislocation of customer accounting from its confines in the branches, where it had been dealt with by paper-based and mechanized information systems, to a new collective space: the bank computer center. While historians have rightly stressed the continuities between centralized office work, punched-card tabulation and computerization, the shift from decentralized to centralized information work by means of a computer has received little attention. In this article, I examine the case of Ferranti and Martins Bank and employ elements of Anthony Giddens’s structuration theory to highlight the difficulties of transposing old information practices directly onto new computerized information work

    Subject: Human Resource Management

    Get PDF
    Compiled by Susan LaCette.HumanResourceManagement.pdf: 5527 downloads, before Oct. 1, 2020

    The New Crafts: On the Technization of the Workforce and the Occupationalization of Firms

    Get PDF
    [Excerpt] In the late 1960s and early 1970s American students were told that the value of a college education was declining (see Freeman 1976). Although liberal arts students were particularly discouraged by reports of recent graduates driving taxicabs, even the demand for engineers and other technical specialists seemed bleak. Two decades later, the headlines have reversed. Study after study proclaims that American children are performing more poorly on achievement tests than the children of most other industrialized nations. Employers complain of a shortage of skilled workers: young people are said to be ill-prepared for the demands of the workplace and older workers are said to lack the educational background requisite for retraining (Johnson and Packer 1987). Studies by labor economists have largely confirmed the employers\u27 contentions and foretell of even greater shortages of skilled labor in the near future (Bishop and Carter 1991)

    The evolution of retail banking services in United Kingdom: a retrospective analysis

    Get PDF
    The purpose of this paper is to assess the sequence of technological changes occurred in the retail banking sector of the United Kingdom against the emergence of customer services by developing an evolutionary argument. The historical paradigm of Information Technology provides useful insights into the ‘learning opportunities’ that opened the way to endogenous changes in the banking activity such as the reconfiguration of its organizational structure and the diversification of the product line. The central idea of this paper is that innovation never occurs without simultaneous structural change. Thus, a defining property of the banking activity is the diachronic adaptation of formal and informal practices to an evolving technological dimension reflecting the extent to which the diffusion of innovation (re)generates variety of micro level processes and induces industry evolution.Information Technology; Retail Banking; History of Technology; Innovation Systems.

    Achieving Level 2 BIM by 2016 in the UK

    Get PDF
    The growth and advantage of Building Information Modeling (BIM) has recently gained momentum in the expanding needs of the construction industry, one that varies across disciplines. The UK government is the largest public stakeholder client that has realized the benefits and advantages of BIM when used in procuring projects. The usage and adoption of BIM in all UK government-procured projects with a Level 2 BIM status will be mandatory by 2016. Will this target be achievable by 2016? This study investigates that possibility. A critical review of the BIM literature was carried out and the evidence based on the government target of 2016. At the current stage, it appears that Level 2 adoption is achievable by 2016 for large construction firms. However, the technology needs to be properly tailored to meet SMEs variables, if the Level 2 status is to be achieved for the entire industry

    Industry 4.0: The Future of Indo-German Industrial Collaboration

    Get PDF
    Industry 4.0 can be described as the fourth industrial revolution, a mega- trend that affects every company around the world. It envisions interconnections and collaboration between people, products and machines within and across enterprises. Why does Industry 4.0 make for an excellent platform for industrial collaboration between India and Germany? The answers lie in economic as well as social factors. Both countries have strengths and weakness and strategic collaboration using the principles of Industry 4.0 can help both increase their industrial output, GDP and make optimal use of human resources. As a global heavy weight in manufacturing and machine export, Germany has a leading position in the development and deployment of Industry 4.0 concepts and technology. However, its IT sector, formed by a labor force of 800,000 employees, is not enough. It needs more professionals to reach its full potential. India, on the other hand, is a global leader in IT and business process outsourcing. But its manufacturing industry needs to grow significantly and compete globally. These realities clearly show the need for Industry 4.0-based collaboration between Germany and India. So how does Industry 4.0 work? In a first step, we look at the technical pers- pective – the vertical and horizontal integration of Industry 4.0 principles in enterprises. Vertical integration refers to operations within Smart Factories and horizontal integration to Smart Supply Chains across businesses. In the second step, we look at manufacturing, chemical industry and the IT sector as potential targets for collaboration between the two countries. We use case studies to illustrate the benefits of the deployment of Industry 4.0. Potential collaboration patterns are discussed along different forms of value chains and along companies’ ability to achieve Industry 4.0 status. We analyse the social impact of Industry 4.0 on India and Germany and find that it works very well in the coming years. Germany with its dwindling labor force might be compensated through the automation. This will ensure continued high productivity levels and rise in GDP. India, on the other hand has a burgeoning labor market, with 10 million workers annually entering the job market. Given that the manufacturing sector will be at par with Europe in efficiency and costs by 2023, pressure on India’s labor force will increase even more. Even its robust IT sector will suffer fewer hires because of increased automation. Rapid development of technologies – for the Internet of Things (IoT) or for connectivity like Low-Power WAN – makes skilling and reskilling of the labor force critical for augmenting smart manufacturing. India and Germany have been collaborating at three levels relevant to Industry 4.0 – industry, government and academics. How can these be taken forward? The two countries have a long history of trade. The Indo-German Chamber of Commerce (IGCC) is the largest such chamber in India and the largest German chamber worldwide. VDMA (Verband Deutscher Maschinen- und Anlagenbau, Mechanical Engineering Industry Association), the largest industry association in Europe, maintains offices in India. Indian key players in IT, in turn, have subsidia- ries in Germany and cooperate with German companies in the area of Industry 4.0. Collaboration is also supported on governmental level. As government initiatives go, India has launched the “Make in India” initiative and the “Make in India Mittelstand! (MIIM)” programme as a part of it. The Indian Government is also supporting “smart manufacturing” initiatives in a major way. Centers of Excellence driven by the industry and academic bodies are being set up. Germany and India have a long tradition of research collaboration as well. Germany is the second scientific collaborator of India and Indian students form the third largest group of foreign students in Germany. German institutions like the German Academic Exchange Service (DAAD) or the German House for Research and Innovation (DWIH) are working to strengthen ties between the scientific communities of the two countries, and between their academia and industry. What prevents Industry 4.0 from becoming a more widely used technology? Recent surveys in Germany and India show that awareness about Industry 4.0 is still low, especially among small and medium manufacturing enterprises. IT companies, on the other hand, are better prepared. There is a broad demand for support, regarding customtailored solutions, information on case studies and the willingness to participate in Industry 4.0 pilot projects and to engage in its platform and networking activities. We also found similar responses at workshops conducted with Industry 4.0 stakehold- ers in June 2017 in Bangalore and Pune and in an online survey. What can be done to change this? Both countries should strengthen their efforts to create awareness for Industry 4.0, especially among small and medium enterprises. Germany should also put more emphasis on making their Industry 4.0 technology known to the Indian market. India’s IT giants, on the other hand, should make their Industry 4.0 offers more visible to the German market. The governments should support the establishing of joint Industry 4.0 collaboration platforms, centers of excellence and incubators to ease the dissemination of knowledge and technology. On academic level, joint research programs and exchange programs should be set up to foster the skilling of labor force in the deployment of Industry 4.0 methods and technologies
    • 

    corecore