1,522 research outputs found

    A traffic classification method using machine learning algorithm

    Get PDF
    Applying concepts of attack investigation in IT industry, this idea has been developed to design a Traffic Classification Method using Data Mining techniques at the intersection of Machine Learning Algorithm, Which will classify the normal and malicious traffic. This classification will help to learn about the unknown attacks faced by IT industry. The notion of traffic classification is not a new concept; plenty of work has been done to classify the network traffic for heterogeneous application nowadays. Existing techniques such as (payload based, port based and statistical based) have their own pros and cons which will be discussed in this literature later, but classification using Machine Learning techniques is still an open field to explore and has provided very promising results up till now

    Impact of Packet Inter-arrival Time Features for Online Peer-to-Peer (P2P) Classification

    Get PDF
    Identification of bandwidth-heavy Internet traffic is important for network administrators to throttle high-bandwidth application traffic. Flow features based classification have been previously proposed as promising method to identify Internet traffic based on packet statistical features. The selection of statistical features plays an important role for accurate and timely classification. In this work, we investigate the impact of packet inter-arrival time feature for online P2P classification in terms of accuracy, Kappa statistic and time. Simulations were conducted using available traces from University of Brescia, University of Aalborg and University of Cambridge. Experimental results show that the inclusion of inter-arrival time (IAT) as an online feature increases simulation time and decreases classification accuracy and Kappa statistic

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Hybrid Approach for Botnet Detection Using K-Means and K-Medoids with Hopfield Neural Network

    Get PDF
    In the last few years, a number of attacks and malicious activities have been attributed to common channels between users. A botnet is considered as an important carrier of malicious and undesirable briskness. In this paper, we propose a support vector machine to classify botnet activities according to k-means, k-medoids, and neural network clusters. The proposed approach is based on the features of transfer control protocol packets. System performance and accuracy are evaluated using a predefined data set. Results show the ability of the proposed approach to detect botnet activities with high accuracy and performance in a short execution time. The proposed system provides 95.7% accuracy rate with a false positive rate less than or equal to 3%

    Detection of encrypted traffic generated by peer-to-peer live streaming applications using deep packet inspection

    Get PDF
    The number of applications using the peer-to-peer (P2P) networking paradigm and their popularity has substantially grown over the last decade. They evolved from the le-sharing applications to media streaming ones. Nowadays these applications commonly encrypt the communication contents or employ protocol obfuscation techniques. In this dissertation, it was conducted an investigation to identify encrypted traf c ows generated by three of the most popular P2P live streaming applications: TVUPlayer, Livestation and GoalBit. For this work, a test-bed that could simulate a near real scenario was created, and traf c was captured from a great variety of applications. The method proposed resort to Deep Packet Inspection (DPI), so we needed to analyse the payload of the packets in order to nd repeated patterns, that later were used to create a set of SNORT rules that can be used to detect key network packets generated by these applications. The method was evaluated experimentally on the test-bed created for that purpose, being shown that its accuracy is of 97% for GoalBit.A popularidade e o número de aplicações que usam o paradigma de redes par-a-par (P2P) têm crescido substancialmente na última década. Estas aplicações deixaram de serem usadas simplesmente para partilha de ficheiros e são agora usadas também para distribuir conteúdo multimédia. Hoje em dia, estas aplicações têm meios de cifrar o conteúdo da comunicação ou empregar técnicas de ofuscação directamente no protocolo. Nesta dissertação, foi realizada uma investigação para identificar fluxos de tráfego encriptados, que foram gerados por três aplicações populares de distribuição de conteúdo multimédia em redes P2P: TVUPlayer, Livestation e GoalBit. Para este trabalho, foi criada uma plataforma de testes que pretendia simular um cenário quase real, e o tráfego que foi capturado, continha uma grande variedade de aplicações. O método proposto nesta dissertação recorre à técnica de Inspecção Profunda de Pacotes (DPI), e por isso, foi necessário 21nalisar o conteúdo dos pacotes a fim de encontrar padrões que se repetissem, e que iriam mais tarde ser usados para criar um conjunto de regras SNORT para detecção de pacotes chave· na rede, gerados por estas aplicações, afim de se poder correctamente classificar os fluxos de tráfego. Após descobrir que a aplicação Livestation deixou de funcionar com P2P, apenas as duas regras criadas até esse momento foram usadas. Quanto à aplicação TVUPlayer, foram criadas várias regras a partir do tráfego gerado por ela mesma e que tiveram uma boa taxa de precisão. Várias regras foram também criadas para a aplicação GoalBit em que foram usados quatro cenários: com e sem encriptação usando a opção de transmissão tracker, e com e sem encriptação usando a opção de transmissão sem necessidade de tracker (aqui foi usado o protocolo Kademlia). O método foi avaliado experimentalmente na plataforma de testes criada para o efeito, sendo demonstrado que a precisão do conjunto de regras para a aplicação GoallBit é de 97%.Fundação para a Ciência e a Tecnologia (FCT

    A P2P Botnet detection scheme based on decision tree and adaptive multilayer neural networks

    Get PDF
    In recent years, Botnets have been adopted as a popular method to carry and spread many malicious codes on the Internet. These malicious codes pave the way to execute many fraudulent activities including spam mail, distributed denial-of-service attacks and click fraud. While many Botnets are set up using centralized communication architecture, the peer-to-peer (P2P) Botnets can adopt a decentralized architecture using an overlay network for exchanging command and control data making their detection even more difficult. This work presents a method of P2P Bot detection based on an adaptive multilayer feed-forward neural network in cooperation with decision trees. A classification and regression tree is applied as a feature selection technique to select relevant features. With these features, a multilayer feed-forward neural network training model is created using a resilient back-propagation learning algorithm. A comparison of feature set selection based on the decision tree, principal component analysis and the ReliefF algorithm indicated that the neural network model with features selection based on decision tree has a better identification accuracy along with lower rates of false positives. The usefulness of the proposed approach is demonstrated by conducting experiments on real network traffic datasets. In these experiments, an average detection rate of 99.08 % with false positive rate of 0.75 % was observed

    Identificação de aplicações de vídeo em canais protegidos com aprendizagem automática

    Get PDF
    As encrypted traffic is becoming a standard and traffic obfuscation techniques become more accessible and common, companies are struggling to enforce their network usage policies and ensure optimal operational network performance. Users are more technologically knowledgeable, being able to circumvent web content filtering tools with the usage of protected tunnels such as VPNs. Consequently, techniques such as DPI, which already were considered outdated due to their impracticality, become even more ineffective. Furthermore, the continuous regulations being established by governments and international unions regarding citizen privacy rights makes network monitoring increasingly challenging. This work presents a scalable and easily deployable network-based framework for application identification in a corporate environment, focusing on video applications. This framework should be effective regardless of the environment and network setup, with the objective of being a useful tool in the network monitoring process. The proposed framework offers a compromise between allowing network supervision and assuring workers’ privacy. The results evaluation indicates that we can identify web services that are running over a protected channel with an accuracy of 95%, using low-level packet information that does not jeopardize sensitive worker data.Com a adoção de tráfego cifrado a tornar-se a norma e a crescente utilização de técnicas de obfuscação de tráfego, as empresas têm cada vez mais dificuldades em aplicar políticas de uso nas suas redes, bem como garantir o seu bom funcionamento. Os utilizadores têm mais conhecimentos tecnológicos, sendo facilmente capazes de contornar ferramentas de filtros de conteúdo online com a utilização de túneis protegidos como VPNs. Consequentemente, técnicas como DPI, que já estão ultrapassadas devido à sua impraticabilidade, tornam-se cada vez mais ineficazes. Além disso, todos os regulamentos que têm vindo a ser estabelecidos por governos e organizações internacionais sobre a privacidade dos cidadãos tornam a tarefa de monitorização de uma rede cada vez mais difícil. Este documento apresenta uma plataforma escalável e facilmente instalável para identificação de aplicações numa rede empresarial, focando-se em aplicações de vídeo. Esta abordagem deve ser eficaz independentemente do contexto e organização da rede, com o objectivo de ser uma ferramenta útil no processo de supervisão de redes. O modelo proposto oferece um compromisso entre a capacidade de supervisionar uma rede e assegurar a privacidade dos trabalhadores. A avaliação de resultados indica que é possível identificar serviços web em ligações estabelecidas sobre canais protegidos com uma precisão geral de 95%, usando informações de baixo-nível dos pacotes que não comprometem informação sensível dos trabalhadores.Mestrado em Engenharia de Computadores e Telemátic

    The Dynamics of Internet Traffic: Self-Similarity, Self-Organization, and Complex Phenomena

    Full text link
    The Internet is the most complex system ever created in human history. Therefore, its dynamics and traffic unsurprisingly take on a rich variety of complex dynamics, self-organization, and other phenomena that have been researched for years. This paper is a review of the complex dynamics of Internet traffic. Departing from normal treatises, we will take a view from both the network engineering and physics perspectives showing the strengths and weaknesses as well as insights of both. In addition, many less covered phenomena such as traffic oscillations, large-scale effects of worm traffic, and comparisons of the Internet and biological models will be covered.Comment: 63 pages, 7 figures, 7 tables, submitted to Advances in Complex System

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering
    • …
    corecore