3,811 research outputs found

    Off-line identification of concurrent Discrete Event Systems exhibiting cyclic behaviour

    Full text link

    Stepwise identification of automated discrete manufacturing systems

    Full text link

    Automated modelling of reactive discrete event systems from external behavioural data

    Full text link
    International audienceThis paper deals with automated modelling of reactive discrete event systems (DES). A software tool for building automatically interpreted Petri net models from an observed system's input/output sequence is presented. The tool is based on a black-box identification method that processes the input/output sequence, and synthesises and draws the model corresponding to such a sequence. First, the identification method is outlined; then the developed software is described and applied to an illustrative example from the manufacturing area

    Learning object behaviour models

    Get PDF
    The human visual system is capable of interpreting a remarkable variety of often subtle, learnt, characteristic behaviours. For instance we can determine the gender of a distant walking figure from their gait, interpret a facial expression as that of surprise, or identify suspicious behaviour in the movements of an individual within a car-park. Machine vision systems wishing to exploit such behavioural knowledge have been limited by the inaccuracies inherent in hand-crafted models and the absence of a unified framework for the perception of powerful behaviour models. The research described in this thesis attempts to address these limitations, using a statistical modelling approach to provide a framework in which detailed behavioural knowledge is acquired from the observation of long image sequences. The core of the behaviour modelling framework is an optimised sample-set representation of the probability density in a behaviour space defined by a novel temporal pattern formation strategy. This representation of behaviour is both concise and accurate and facilitates the recognition of actions or events and the assessment of behaviour typicality. The inclusion of generative capabilities is achieved via the addition of a learnt stochastic process model, thus facilitating the generation of predictions and realistic sample behaviours. Experimental results demonstrate the acquisition of behaviour models and suggest a variety of possible applications, including automated visual surveillance, object tracking, gesture recognition, and the generation of realistic object behaviours within animations, virtual worlds, and computer generated film sequences. The utility of the behaviour modelling framework is further extended through the modelling of object interaction. Two separate approaches are presented, and a technique is developed which, using learnt models of joint behaviour together with a stochastic tracking algorithm, can be used to equip a virtual object with the ability to interact in a natural way. Experimental results demonstrate the simulation of a plausible virtual partner during interaction between a user and the machine

    Functional imaging studies of visual-auditory integration in man.

    Get PDF
    This thesis investigates the central nervous system's ability to integrate visual and auditory information from the sensory environment into unified conscious perception. It develops the possibility that the principle of functional specialisation may be applicable in the multisensory domain. The first aim was to establish the neuroanatomical location at which visual and auditory stimuli are integrated in sensory perception. The second was to investigate the neural correlates of visual-auditory synchronicity, which would be expected to play a vital role in establishing which visual and auditory stimuli should be perceptually integrated. Four functional Magnetic Resonance Imaging studies identified brain areas specialised for: the integration of dynamic visual and auditory cues derived from the same everyday environmental events (Experiment 1), discriminating relative synchronicity between dynamic, cyclic, abstract visual and auditory stimuli (Experiment 2 & 3) and the aesthetic evaluation of visually and acoustically perceived art (Experiment 4). Experiment 1 provided evidence to suggest that the posterior temporo-parietal junction may be an important site of crossmodal integration. Experiment 2 revealed for the first time significant activation of the right anterior frontal operculum (aFO) when visual and auditory stimuli cycled asynchronously. Experiment 3 confirmed and developed this observation as the right aFO was activated only during crossmodal (visual-auditory), but not intramodal (visual-visual, auditory-auditory) asynchrony. Experiment 3 also demonstrated activation of the amygdala bilaterally during crossmodal synchrony. Experiment 4 revealed the neural correlates of supramodal, contemplative, aesthetic evaluation within the medial fronto-polar cortex. Activity at this locus varied parametrically according to the degree of subjective aesthetic beauty, for both visual art and musical extracts. The most robust finding of this thesis is that activity in the right aFO increases when concurrently perceived visual and auditory sensory stimuli deviate from crossmodal synchrony, which may veto the crossmodal integration of unrelated stimuli into unified conscious perception

    A Study on the Integration of a High-Speed Flywheel as an Energy Storage Device in Hybrid Vehicles

    Get PDF
    The last couple of decades have seen the rise of the hybrid electric vehicle as a compromise between the outstanding specific energy of petrol fuels and its low-cost technology, and the zero tail-gate emissions of the electric vehicle. Despite this, considerable reductions in cost and further increases in fuel economy are needed for their widespread adoption. An alternative low-cost energy storage technology for vehicles is the high-speed flywheel. The flywheel has important limitations that exclude it from being used as a primary energy source for vehicles, but its power characteristics and low-cost materials make it a powerful complement to a vehicle's primary propulsion system. This thesis presents an analysis on the integration of a high-speed flywheel for use as a secondary energy storage device in hybrid vehicles. Unlike other energy storage technologies, the energy content of the flywheel has a direct impact on the velocity of transmission. This presents an important challenge, as it means that the flywheel must be able to rotate at a speed independent of the vehicle's velocity and therefore it must be coupled via a variable speed transmission. This thesis presents some practical ways in which to accomplish this in conventional road vehicles, namely with the use of a variator, a planetary gear set or with the use of a power-split continuously variable transmission. Fundamental analyses on the kinematic behaviour of these transmissions particularly as they pertain to flywheel powertrains are presented. Computer simulations were carried out to compare the performance of various transmissions, and the models developed are presented as well. Finally the thesis also contains an investigation on the driving and road conditions that have the most beneficial effect on hybrid vehicle performance, with a particular emphasis on the effect that the road topography has on fuel economy and the significance of this

    Advanced measurement for sports surface system behaviour under mechanical and player loading

    Get PDF
    This research project has investigated the mechanical behaviour of artificial turf surface systems used for sports under a range of real player movements, and the contribution of component layers to the overall system response by developing advanced measurement systems and methods. Artificial turf surface systems are comprised of a number of different materials and commonly with several layers, all of which contribute to their composite behaviour. During sports movements a player loads the surface, resulting in deformation that can change the surface behaviour, which in turn modifies the player biomechanical response. Improving the understanding of surface response to actual player loading is important for developing enhanced products for improving play performance. Likewise, by improving knowledge of surface effects on players, the understanding of injury risk can be improved. However, there is currently no published research to measure and analyse the behaviour of artificial turf system during real player locomotion. This research was undertaken to address this current lack of knowledge within the interaction between player and sports surface regarding the effects of player loading on the mechanical behaviour of artificial turf systems. In addition to support player loading regime, mechanical behaviour of hockey and third generation artificial turf surface systems and their component shockpad layers (a rubber shreds bonded shockpad and a polyurethane foam shockpad) was examined through dynamic cyclic compressive loading using an advanced material testing machine in laboratory environment. Each layer and carpet-shockpad system was subjected to controlled loading designed with previous biomechanical data at various loading frequencies (0.9 Hz, 3.3 Hz and 10 Hz) and under two different contact areas (50 mm and 125 mm diameter) to simulate aspects of player walking, running and sprinting. All layers and surface systems tested showed nonlinear stress-strain behaviour with hysteresis. Increasing the contact area resulted in reduced surface vertical deflection and more linear response. Increasing the loading frequency led to stiffer response in the lower stress range ( 600 kPa) and a decrease in maximum strain as the loading frequency increased. Hysteresis loops obtained at different loading frequencies indicated that the amount of energy lost at the same peak load of 1900 N in each surface system decreased with an increase in loading rate. Player loading regime was performed to quantify the load/stress and the resulting surface deformation/strain under subject loading. Measurement systems including motion capture system, force plate and high speed were developed to characterise the response behaviour in a novel way. The mechanical behaviour of artificial turf surface systems under three player movement patterns (heel-toe walking, forefoot running and forefoot single leg landing) was measured. Boot-surface contact area of each movement varied during the stance. The heel-toe walking results indicated that the maximum applied stress and surface strain occurred in very early stance (first 10%) when the boot-surface contact area was small. For forefoot running and landing, the peak surface strain occurred around mid-stance concurrent with the time of peak applied stress. The maximum strain measured under running was smaller than under landing. A thin-film pressure sensing mat was used in both mechanical and player loading regimes and proved to be a useful tool for evaluating the pressure distributions and contact areas at different interfaces of the surface system. The applied stress on surface was observed to greatly reduce with depth over increasing contact area through the surface systems. Although the average pressure was reduced, pressure distribution contour showed directly under the surface load area the pressure at depth was still relatively large and that outside of this area the pressure was much lower. A comparison of the mechanical behaviour of artificial turf systems in terms of compressive strain, modulus of elasticity, stress distribution and energy loss under mechanical and player loading was evaluated. Key loading parameters in different loading regimes and their influence on surface system response were determined. The structure and material intrinsic properties of shockpad were considered to further explain the observed surface system behaviour. Two mathematical models were used to fit through the experimental data and found to be able to describe the loading behaviour. A breakthrough in understanding of the effects of real player loading on the mechanical behaviour response of artificial turf systems, and the contribution of the components to the whole system response has been achieved through the development of advanced measurement techniques

    Guaranteed set-based controller design for hybrid dynamical systems

    Get PDF

    Process time patterns: A formal foundation

    Get PDF
    Companies increasingly adopt process-aware information systems (PAISs) to model, execute, monitor, and evolve their business processes. Though the handling of temporal constraints (e.g., deadlines or time lags between activities) is crucial for the proper support of business processes, existing PAISs vary significantly regarding the support of the temporal perspective. Both the formal specification and the operational support of temporal constraints constitute fundamental challenges in this context. In previous work, we introduced process time patterns, which facilitate the comparison and evaluation of PAISs in respect to their support of the temporal perspective. Furthermore, we provided empirical evidence for these time patterns. To avoid ambiguities and to ease the use as well as the implementation of the time patterns, this paper formally defines their semantics. To additionally foster the use of the patterns for a wide range of process modeling languages and to enable pattern integration with existing PAISs, the proposed semantics are expressed independently of a particular process meta model. Altogether, the presented pattern formalization will be fundamental for introducing the temporal perspective in PAISs

    Digital predistortion of RF amplifiers using baseband injection for mobile broadband communications

    Get PDF
    Radio frequency (RF) power amplifiers (PAs) represent the most challenging design parts of wireless transmitters. In order to be more energy efficient, PAs should operate in nonlinear region where they produce distortion that significantly degrades the quality of signal at transmitter’s output. With the aim of reducing this distortion and improve signal quality, digital predistortion (DPD) techniques are widely used. This work focuses on improving the performances of DPDs in modern, next-generation wireless transmitters. A new adaptive DPD based on an iterative injection approach is developed and experimentally verified using a 4G signal. The signal performances at transmitter output are notably improved, while the proposed DPD does not require large digital signal processing memory resources and computational complexity. Moreover, the injection-based DPD theory is extended to be applicable in concurrent dual-band wireless transmitters. A cross-modulation problem specific to concurrent dual-band transmitters is investigated in detail and novel DPD based on simultaneous injection of intermodulation and cross-modulation distortion products is proposed. In order to mitigate distortion compensation limit phenomena and memory effects in highly nonlinear RF PAs, this DPD is further extended and complete generalised DPD system for concurrent dual-band transmitters is developed. It is clearly proved in experiments that the proposed predistorter remarkably improves the in-band and out-of-band performances of both signals. Furthermore, it does not depend on frequency separation between frequency bands and has significantly lower complexity in comparison with previously reported concurrent dual-band DPDs
    corecore