5,357 research outputs found

    Handwritten Character Recognition of South Indian Scripts: A Review

    Full text link
    Handwritten character recognition is always a frontier area of research in the field of pattern recognition and image processing and there is a large demand for OCR on hand written documents. Even though, sufficient studies have performed in foreign scripts like Chinese, Japanese and Arabic characters, only a very few work can be traced for handwritten character recognition of Indian scripts especially for the South Indian scripts. This paper provides an overview of offline handwritten character recognition in South Indian Scripts, namely Malayalam, Tamil, Kannada and Telungu.Comment: Paper presented on the "National Conference on Indian Language Computing", Kochi, February 19-20, 2011. 6 pages, 5 figure

    Feature Extraction Methods for Character Recognition

    Get PDF
    Not Include

    Off-line hand-printed chinese character recognition based on stroke matching

    Get PDF
    The specific purpose of this thesis is the automated recognition of the off-line Chinese hand-printed characters by using a blue ball-point pen. Through mask processing, the main components in a Chinese character such as vertical, horizontal, and slant strokes can be extracted. Then, the connected components with the coordinates of the top, bottom, leftmost, and rightmost ends of each stroke extracted are found. From these coordinates, the length and position of each stroke can be computed. According to the number, relative length, and relative position of each stroke, both of the coarse and fine rule-based classification can be made, and the goal of this thesis is able to be reached. Excluding the load and segmentation of the original image, the computing time for the feature extraction and classification depends on the image size and the number of strokes. It is about 0.3 seconds per Chinese character on an IBM PC 80486 DX33. The advantages of the proposed method include efficient time complexity, strong ability to detect very similar Chinese characters, tolerance of the slope of the stroke, and 96% or higher recognition rate. The disadvantage is the inflexibility for learning driven by the users since the matching rules are open to the manufactures only at present

    Arabic/Latin and Machine-printed/Handwritten Word Discrimination using HOG-based Shape Descriptor

    Get PDF
    In this paper, we present an approach for Arabic and Latin script and its type identification based onHistogram of Oriented Gradients (HOG) descriptors. HOGs are first applied at word level based on writingorientation analysis. Then, they are extended to word image partitions to capture fine and discriminativedetails. Pyramid HOG are also used to study their effects on different observation levels of the image.Finally, co-occurrence matrices of HOG are performed to consider spatial information between pairs ofpixels which is not taken into account in basic HOG. A genetic algorithm is applied to select the potentialinformative features combinations which maximizes the classification accuracy. The output is a relativelyshort descriptor that provides an effective input to a Bayes-based classifier. Experimental results on a set ofwords, extracted from standard databases, show that our identification system is robust and provides goodword script and type identification: 99.07% of words are correctly classified

    Off-line text-independent writer recognition for Chinese handwriting: a review

    Get PDF
    This paper provides a comprehensive review of existing works including the characteristics of Chinese characters’ complex stroke crossing and challenges, which is still a largely unexplored subject for off-line text-independent Chinese handwriting identification

    Recognition of off-line handwritten cursive text

    Get PDF
    The author presents novel algorithms to design unconstrained handwriting recognition systems organized in three parts: In Part One, novel algorithms are presented for processing of Arabic text prior to recognition. Algorithms are described to convert a thinned image of a stroke to a straight line approximation. Novel heuristic algorithms and novel theorems are presented to determine start and end vertices of an off-line image of a stroke. A straight line approximation of an off-line stroke is converted to a one-dimensional representation by a novel algorithm which aims to recover the original sequence of writing. The resulting ordering of the stroke segments is a suitable preprocessed representation for subsequent handwriting recognition algorithms as it helps to segment the stroke. The algorithm was tested against one data set of isolated handwritten characters and another data set of cursive handwriting, each provided by 20 subjects, and has been 91.9% and 91.8% successful for these two data sets, respectively. In Part Two, an entirely novel fuzzy set-sequential machine character recognition system is presented. Fuzzy sequential machines are defined to work as recognizers of handwritten strokes. An algorithm to obtain a deterministic fuzzy sequential machine from a stroke representation, that is capable of recognizing that stroke and its variants, is presented. An algorithm is developed to merge two fuzzy machines into one machine. The learning algorithm is a combination of many described algorithms. The system was tested against isolated handwritten characters provided by 20 subjects resulting in 95.8% recognition rate which is encouraging and shows that the system is highly flexible in dealing with shape and size variations. In Part Three, also an entirely novel text recognition system, capable of recognizing off-line handwritten Arabic cursive text having a high variability is presented. This system is an extension of the above recognition system. Tokens are extracted from a onedimensional representation of a stroke. Fuzzy sequential machines are defined to work as recognizers of tokens. It is shown how to obtain a deterministic fuzzy sequential machine from a token representation that is capable'of recognizing that token and its variants. An algorithm for token learning is presented. The tokens of a stroke are re-combined to meaningful strings of tokens. Algorithms to recognize and learn token strings are described. The. recognition stage uses algorithms of the learning stage. The process of extracting the best set of basic shapes which represent the best set of token strings that constitute an unknown stroke is described. A method is developed to extract lines from pages of handwritten text, arrange main strokes of extracted lines in the same order as they were written, and present secondary strokes to main strokes. Presented secondary strokes are combined with basic shapes to obtain the final characters by formulating and solving assignment problems for this purpose. Some secondary strokes which remain unassigned are individually manipulated. The system was tested against the handwritings of 20 subjects yielding overall subword and character recognition rates of 55.4% and 51.1%, respectively

    Kannada Character Recognition System A Review

    Full text link
    Intensive research has been done on optical character recognition ocr and a large number of articles have been published on this topic during the last few decades. Many commercial OCR systems are now available in the market, but most of these systems work for Roman, Chinese, Japanese and Arabic characters. There are no sufficient number of works on Indian language character recognition especially Kannada script among 12 major scripts in India. This paper presents a review of existing work on printed Kannada script and their results. The characteristics of Kannada script and Kannada Character Recognition System kcr are discussed in detail. Finally fusion at the classifier level is proposed to increase the recognition accuracy.Comment: 12 pages, 8 figure

    Character Recognition

    Get PDF
    Character recognition is one of the pattern recognition technologies that are most widely used in practical applications. This book presents recent advances that are relevant to character recognition, from technical topics such as image processing, feature extraction or classification, to new applications including human-computer interfaces. The goal of this book is to provide a reference source for academic research and for professionals working in the character recognition field
    corecore