

This item is held in Loughborough University’s Institutional Repository
(https://dspace.lboro.ac.uk/) and was harvested from the British Library’s
EThOS service (http://www.ethos.bl.uk/). It is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

RECOGNITION OF

OFF-LINE HANDWRITTEN CURSIVE TEXT

by

Ibrahim Sulaiman Ibrahim Abuhaiba

A Doctoral Thesis

Submitted in partial fulfilment of the requirements

for the award of the degree of

Doctor of Philosophy

Department of Electronic and Electrical Engineering

of the Loughborough University of Technology

1996-'

© by Ibrahim Sulaiman Ibrahim Abuhaiba, 1996

0
J

ACKNOWLEDGEMENT

I first thank God Almighty for giving me the strength and patience to go through

with this research and for the knowledge He has bestowed upon me for fulfilling its

requirements.

I would like to express my sincere thanks, appreciation, and special

acknowledgements to my supervisors Dr. M. J. J. Holt and Dr. S. Datta for their advise

through the entire phases of the research. They were very kind in granting me from their

time and knowledge.

Last and not least, I would like to thank my sincere wife, Suhad, for her patience and

encouragement.

JJ
400

.

IV

PAGE
MISSING

IN
ORIGINAL

CONTENTS

LIST OF ALGORITHMS
..................... xi

ABSTRACT
............................ xii

1 Introduction 1

I. I. PROBLEM DEFINITION
..................... 1

1.2. GENERAL MOTIVATIONS
................... 2

1.3. CHARACTERISTICS OF ARABIC HANDWRITING 3
1.4. MAIN PROBLEMS TO BE SOLVED IN A TEXT

RECOGNITION SYSTEM
.

6
1.5. STATE OF THE ART OF ARABIC TEXT RECOGNITION

... 8
1.6. CURRENT OBJECTIVES 13
1.7. SYSTEMS OVERVIEW 18

Part One
Preprocessing

OVERVIEW..
................................

24

2 Straight Line Approximation 27

2.1. STRAIGHT LINE APPROXIMATION OF DIGITAL CURVES
. 28

2.1.1. Definitions 28
2.1.2. Example 32
2.1.3. Causes of Failure

.......
34

2.2. ENHANCED STRAIGHT LINE APPROXIMATION
......

36
-2.2.1. Definitions

...................... 38
2.2.2. Examples 40
2.2.3. Results and Causes of Failure.

.......... 43
2.3. LOOP REDUCTION

....................... 47
2.3.1. Definitions

....................... 47
2.3.2. Example

.......
48

VI

3 Enforcement of Temporal Information 51

3.1. DETERMINATION OF START VERTEX: HEURISTICS
.... 52

3.1.1. Examples
..... 54

3.1.2. Causes of Failure
....... 57

3.2. DETERMINATION OF END VERTEX: HEURISTICS
..... 58

3.2.1. Examples
........................ 59

3.2.2. Causes of Failure 62
3.3. DETERMINATION OF START AND END VERTICES:

THEOREMS 63
3.3.1. Definitions 64
3.3.2. Theorem 1...................... 64
3.3.3. Theorem 2....................... 65

3.4. ENFORCEMENT OF TEMPORAL INFORMATION 66
3.4.1. Solution of the Chinese Postman's Problem.

...... 67
3.4.2. Algorithm to Enforce Temporal Information

...... 70
3.4.3. Example

........................
73

3.4.4. Testing
75

3.4.4.1. Data Acquisition 75
3.4.4.2 Results 77

3.4.5. Causes of Failure 82

Part Two
Isolated Arabic Character Recognition System

(IACR)

OVERVIEW 87

4 Tempo-Structural Representation ..:........... 93

4.1. . STROKE SEGMENTATION
....

93
4.2. INHERENT PROPERTIES OF PRIMITIVE SEQUENCES,

....
95

4.3. PRIMITIVE RELATIONSHIPS
.................. 96

4.4. GLOBAL FEATURES OF STROKE
............... 97

4.4.1. Selected Global features
. 97

4.5. EXAMPLE
98

5 Stroke Recognition 101

5.1. BACKGROUND
.... 101

5.1.1. Toward a Sequential Machine Model of Handwriting. 102
5.1.2. Concepts Based on Fuzzy Set Theory

104

VII

5.1.3. Fuzzy numbers 106
5.2. THE FUZZY SEQUENTIAL MACHINE 108

5.2.1. Definition of Fuzzy Sequential Machine 109
5.2.2. Example

........... 111
5.3. RECOGNITION ALGORITHM 113

5.3.1. Definitions
......................

113
5.3.2. Example 118

6 Stroke Learning 123

6.1. LEARNING
.............. 124

6.2. GENERATION OF FUZZY SEQUENTIAL MACHINES ... 126
6.2.1. Example

.......................
130

6.3. MERGING OF FUZZY SEQUENTIAL MACHINES 135
6.3.1. Definitions

135
6.3.2. Algorithm to Merge Two Fuzzy Sequential Machines 137
6.3.3. Example

.......................
139

6.4. MODIFICATION OF A FUZZY SEQUENTIAL MACHINE
.

144
6.4.1. Example

146

7 Experimentation 149

7.1. CHOOSING THE CHARACTER SET
............. 149

7.2. DATA ACQUISITION
150

7.3. LEARNING
152

7.4. TESTING
152

7.5. REJECTION AND ERROR ANALYSIS
......

155

Part Three
Cursive Arabic Script Recognition System

.-
(CASR)

OVERVIEW 160

8 Stroke Segmentation 169

8.1. ALGORITHM FOR STROKE SEGMENTATION
..... ..

169
8.1.1. Definitions

...................... 170
8.1.2. Example

....................... 173
8.2. TOKEN FEATURES

...................... 174

viii

9 Token Recognition 178

9.1. TOKEN FUZZY SEQUENTIAL MACHINE
.......... 179

9.1.1. Definition of Token Fuzzy Sequential Machine
.... 180

9.1.2. Example 181
9.2. RECOGNITION ALGORITHM 182

9.2.1. Definitions
...................... 182

9.2.2. Algorithm Description 183
9.2.3. Example

....................... 185

10 Token Learning
.........................

189

10.1. LEARNING ALGORITHM
................... 190

10.2. GENERATION OF FUZZY SEQUENTIAL MACHINES ... 192
10.2.1. Example 195

10.3. MERGING OF FUZZY SEQUENTIAL MACHINES 199
10.3.1. Example

... 199
10.4. MODIFICATION OF A FUZZY SEQUENTIAL MACHINE.

. 203
10.4.1. Example 205

11 Learning of Token Strings 207

11.1. FROM TOKENS TO TOKEN STRINGS 207
11.1.1. Definitions 208
11.1.2. Features of Token Strings 215

11.2. LEARNING OF TOKEN STRINGS 216
11.3. EXAMPLE

........................... 218

12 Line Extraction and Stroke Ordering
.............. 223

12.1. " BACKGROUND 224
12.2. SEPARATING MAIN AND SECONDARY STROKES

....
225

12.2.1. Definitions
....... 225

12.2.2. Example 227
12.3. "LINE EXTRACTION AND STROKE ORDERING. 228

13 Word Formation
........................ 238

13.1. CSH INTERPRETATIONS OF MAIN STROKES 240
13.1.1. Definitions 240
13.1.2. Example

............. 244

ix

13.2. CHARACTER FORMATION
................. 248

13.2.1. Definitions
...................... 250

13.2.2. Problem Formulation 250
13.2.3. Example

....................... 255
13.3. MANIPULATION OF REDUNDANT

SECONDARY STROKES 258
13.3.1. Manipulation of Vertical Bar Secondary Stroke

... 258
13.3.2. ' Extraction of Isolated Ra and '

Isolated Zain Characters
............... 259

13.3.3. Extraction of Miscellaneous Characters
....... 260

14 Experimentation 262

14.1. DATA ACQUISITION
..................... 262

14.2. LEARNING
........................... 263

14.3. TESTING
............................ 264

14.4. REJECTION ANALYSIS
.......... 269

14.5. ERROR ANALYSIS
....................... 269

15 Conclusions 274

15.1. PREPROCESSING 274
15.2. IACR SYSTEM

......................... 277
15.3. CASR SYSTEM

......................... 278
15.4. HOW THIS WORK CONTRIBUTED TO THE FIELD.

.... 280
15.5. SUGGESTIONS FOR FURTHER WORK

........... 282

References 285

Publications from the Thesis 292

Appendices

A
B
C
D

Learning Data Set of the IACR System..:........ 293
Testing Data Set of the IACR System 305
Learning Data Set of the CASR System 327
Testing Data Set of the CASR System 341

I

LIST OF ALGORITHMS

Algorithm Use to Page

2.1 obtain a direct straight line approximation of a stroke 31

2.2 obtain an enhanced direct straight line approximation of 39

a stroke

2.3 obtain a reduced graph of a stroke 48

3.1 find the start vertex of a stroke 52

3.2 find the end vertex of a stroke 58

3.4 enforce temporal information on an off-line handwritten Arabic 70

stroke

4.1 segment a stroke into a sequence of primitives 94

5.3 recognize a stroke 115

6.1 learn a stroke 125

6.2 generate a fuzzy sequential machine from a stroke 128

6.3 merge two fuzzy sequential machines 137

6.4 learn a stroke by modifying a fuzzy sequential machine 145

8.1 segment a cursive stroke into tokens 172

9.2 recognize a token 183

10.1 learn a multi-vertex token 191

10.2 generate a fuzzy sequential machine from a multi-vertex token 193

10.4 learn a token by modifying a fuzzy sequential machine 204

11.2 learn logical token strings in a stroke 216

12.2 find main strokes and secondary stroke candidates 226

12.3 extract lines, order main strokes, and present secondary stroke 235
candidates to main strokes

13.1 enumerate all possible common shape interpretations of a main 240
stroke

13.2 combine common shapes with secondary strokes to form 254
characters

xi

RECOGNITION OF OFF-LINE HANDWRITTEN CURSIVE TEXT
by

Ibrahim Sulaiman Ibrahim Abuhaiba
Keywords-Handwritten Cursive Text, Off-Line Recognition, Straight Line
Approximation, Temporal Information

ABSTRACT
The author presents novel algorithms to design unconstrained handwriting

recognition systems organized in three parts:
In Part One, novel algorithms are presented for processing of Arabic text prior to

recognition. Algorithms are described to convert a thinned image of a stroke to a straight
line approximation. Novel heuristic algorithms and novel theorems are presented to
determine start and end vertices of an off-line image of a stroke. A straight line
approximation of an off-line stroke is converted to a one-dimensional representation by
a novel algorithm which aims to recover the original sequence of writing. The resulting
ordering of the stroke segments is a suitable preprocessed representation for subsequent
handwriting recognition algorithms as it helps to segment the stroke. The algorithm was
tested against one data set of isolated handwritten characters and another data set of
cursive handwriting, each provided by 20 subjects, and has been 91.9% and 91.8%
successful for these two data sets, respectively.

In Part Two, an entirely novel fuzzy set-sequential machine character recognition
system is presented. Fuzzy sequential machines are defined to work as recognizers of
handwritten strokes. An algorithm to obtain a deterministic fuzzy sequential machine from
a stroke representation, that is capable of recognizing that stroke and its variants, is
presented. An algorithm is developed to merge two fuzzy machines into one machine. The
learning algorithm is a combination of many described algorithms. The system was tested
against isolated handwritten characters provided by 20 subjects resulting in 95.8%
recognition rate which is encouraging and shows that the system is highly flexible in
dealing with shape and size variations.

In Part Three, also an entirely novel text recognition system, capable of recognizing
off-line handwritten Arabic cursive text having a high variability is presented. This system
is an extension of the above recognition system. Tokens are extracted from a one-
dimensional representation of a stroke. Fuzzy sequential machines are defined to work as
recognizers of tokens. It is shown how to obtain a deterministic fuzzy sequential machine
from a token representation that is capable'of recognizing that token and its variants. An
algorithm for token learning is presented. The tokens of a stroke are re-combined to
meaningful strings of tokens. Algorithms to recognize and learn token strings are
described. The. recognition stage uses algorithms of the learning stage. The process of
extracting the best set of basic shapes which represent the best set of token strings that
constitute an unknown stroke is described. A method is developed to extract lines from
pages of handwritten text, arrange main strokes of extracted lines in the same order as
they were written, and present secondary strokes to main strokes. Presented secondary
strokes are combined with basic shapes to obtain the final characters by formulating and
solving assignment problems for this purpose. Some secondary strokes which remain
unassigned are individually manipulated. The system was tested against the handwritings
of 20 subjects yielding overall subword and character recognition rates of 55.4% and
51.1%, respectively.

%11

Introduction

xzxttýi".: : : `¢xoe

OVERVIEW

In this introductory chapter, the problem of Arabic handwriting recognition is

defined. The general motivations behind this work are revealed. The characteristics of
Arabic cursive script are presented Main problems of a text recognition system are

explained State of the art ofArabic text recognition is discussed Our current objectives

are clearly stated Finally, overviews of the systems to be developed are presented

1.1. PROBLEM DEFINITION

Machine recognition of Arabic handwriting is the long-term problem which we

address in this research. It is the problem of transforming Arabic handwritten text from

a two-dimensional spatial writing form into a symbolic representation. The recognition of
Arabic text, the character set of which and similar other character sets are used by more

than 30% of world population and serve in writing of many widespread languages such

as Arabic, Farsi and Urdu [1], is a great challenge.
For writing systems other than Arabic, handwriting -can be divided into two

categories: text of isolated characters and cursive scripts. In Practice, it is difficult to draw

a clear distinction between them. A combination of these two forms can be seen
frequently. However, Arabic script, is always cursive whether it is handwritten or printed.

Handwriting recognition is a most challenging problem, especially when off-line

cursive script recognition is addressed [2 - 37]. A main problem in off-line recognition is

1

the loss of dynamic information, chiefly the disappearance of natural segmentation. The

lifeless drawing has no speed, no direction; pen up and pen down places cannot be

situated. It is practically impossible to restore the real trajectory of the pen. On the other
hand, in on-line recognition, [28,38 - 42], all such information is available which makes
it easier than off-line recognition. Off-line recognition is more difficult than on-line

recognition not only because of the loss of dynamic information, but also because the

scanning process brings additional noise on the remaining information. However, one can

assume that the recognition remains possible, since a man is able to do so.

1.2. GENERAL MOTIVATIONS

(a) Economical: Developing input devices capable of capturing data at its source

has been one of the primary objectives of the data processing industry. Development

of efficient text recognition systems is an effort in this direction. The reading ability

of such systems not only provides solutions to data entry problems but also it gives

a very flexible and economic means to use computers to solve various real-life

problems that might not be solved otherwise. Recent advances in office automation

and rising data entry cost, which, according to some estimates, is increasing by 14

percent annually [43], have created more than ever needs for efficient and reliable

automatic reading systems to enable communicating with machines in a person's

natural modalities such as handwriting.

(b) Seeking for Better Performance: Since the performance of a reading machine
heavily depends on the recognition process, for the past several decades,

development of a good character recognition technique for handwritten and printed
isolated characters and cursive scripts of European languages (English; French,

German, etc) and other languages (Arabic, Farsi, Chinese, etc.) has been a

challenging research issue. * Numerous interdisciplinary approaches to devise a

reliable character recognition technique have been reported [4 - 15,20 - 42]. These

techniques differ from one another on their feature extraction and classification

schemes depending upon character recognition applications and complexity of input

character images. It has been observed that the high variability in handwriting makes
it difficult to apply decision theoretic approaches because often real-life data do not

2

hold assumptions of decision theoretic approaches. For the same and other similar

reasons, fuzzy set theoretic approaches have been suggested [2,3,16,17].

Recently, artificial neural networks have been applied in pattern recognition [18,

19].

Therefore, it is clear that the problem of character and cursive script recognition

remains an open problem for the researchers to devise solutions. The ultimate goal

of such research is to obtain recognition systems with performance comparable to

that of human.

(c) Lack of Studies on Arabic Text Recognition: In contrast to the advance, both

in theory and practice, in the recognition of other systems of characters, such as

Latin and Chinese [9 - 15,20 - 37,40 - 42], relatively few studies have been

devoted to Arabic character recognition [2 - 9,38,39]. Arabic text recognition is

not a direct implementation of the recognition techniques used for other languages.

The reason is simply Arabic text characteristics are different than those of texts of

other languages. The characteristics of Arabic handwriting are presented in the next

section.

1.3. CHARACTERISTICS OF ARABIC HANDWRITING

Since handwritten Arabic script is the domain of the proposed system, the reader is

first acquainted with some of its characteristics which are different from those of other

scripts [2,3,44 - 46]. Many of these characteristics impede the automatic recognition of

Arabic script, see Figure 1.1:

(a) Arabic script is cursive and is written from right to left. Several characters are

cursive by themselves; they consist of loops and curves (For a clear definition of a

loop, * see Definition 2.3.1(a)).

(b) An Arabic word consists of one or more cursive subwords, each comprising one or

more characters. The discontinuities between subwords result from subwords ending
in characters which are not connectable from the left side with the succeeding

character. Some Arabic characters appear only at the end of a subword.
(c) The cursive nature of Arabic script is the main problem in Arabic text recognition

and makes it difficult to segment a subword directly into characters.

3

a
ý 4

ýý
ýý

ýý

4

W

r, ý
aý ý
A
w

(d) Generally, an Arabic subword is written as a single main stroke, where the pen is not

lifted until the stroke is complete. There are also secondary strokes in which the pen

has to be lifted up to complete the writing of a subword. Accordingly, any Arabic

subword has exactly one main stroke and zero or more secondary strokes.

(e) Usually, a secondary stroke does not touch the main stroke. If this happens

inadvertently then, in the algorithms of the following chapters, it will be considered

as a part of the main stroke.

(f) Some Arabic characters have the same shape; however, they are distinguished from

each other by the addition of secondary strokes, e. g., dots, in different positions

relative to the main stroke. Sometimes, the ambiguity of the position of these

secondary strokes in handwriting brings out many different readings for one word.

(g) An Arabic character can have different shapes depending on its position in the word

(beginning, middle, end, or isolated). This increases the number of fundamental

shapes to more than twice the number of characters which complicates the

recognition of Arabic text.
(h) Some Arabic characters contain loops, but no more than two loops may be adjacent

(share a common link); for a clear definition of a loop, see Definition 2.3.1(a). There

is no Arabic stroke ending with two adjacent loops.

(i) Arabic characters vary in size, particularly in width, even within the same font of

typeprinted text which is an impeding property in automatic recognition of Arabic

text.

(j) Certain Arabic characters may overlap with neighbouring ones. The degree of

overlap varies according to the typeface and the typewriter design or the

handwriting style. The overlap adds to the difficulty in segmenting characters.
(k) Some Arabic characters use special marks to modify the character accent, such 'as

Hamza and Madda, which are positioned at a certain distance from the character..
(1) The Arabic writing system uses another type of special characters for short vowels,

which are called diacritics. When diacritics are used they appear above or below the

characters and they are drawn as isolated entities: Although different diacritics on

the same set of characters could lead to different words, an Arabic reader is trained

to deduce the meaning of undiacriticized text. Thus, diacritics will be overlooked in

5

(m)

this research.

Other characteristics of Arabic handwriting will be mentioned in proper places

through the next chapters since they require some terms to be understood first. Such

terms are not yet defined.

1.4. MAIN PROBLEMS TO BE SOLVED IN

A TEXT RECOGNITION SYSTEM

The main components of a text recognition system are explained below.

(a) Image Acquisition: In this context, it is the process of scanning a document to

represent its image as a gray-scale array. Since text is usually printed as dark points

on light background (or vice versa) binary images are generally sufficient for text

reading. Recent advances in scanning technologies make it possible to scan

documents with high resolutions which reach 1200 dots per inch (dpi). For the

purpose of handwriting recognition, a resolution of 300 dpi is commonly used.

(b) Preprocessing: The information obtained during acquisition is redundant and noisy.

Thus, the acquired image undergoes some preprocessing operations such as

thresholding, smoothing, skew detection and correction, gap filling, normalization,

thinning, connected component analysis, etc. These are very important operations

which highly contribute in determining the level of success of the recognition

system. There are plenty of algorithms addressing such low level operations [47 -
57,70].

(c) Segmentation: This is an ambiguous process which may be counted, or part of it,

as a preprocessing step. However, we list this problem separately due to its

importance and the difficulty encountered when dealing with it especially in cursive

text. Segmentation includes line segmentation, word segmentation, and character

segmentation.
(d) Representation: This is the problem of choosing the data structure that both

abstractly represents the character or word and is the source of information for the

analysis mechanisms necessary for recognition. The accuracy and efficiency of

recognition systems rely directly upon the degree of the success of chosen shape

representations. In deriving a shape representation, several factors must be

6

considered: (1) Can most patterns be represented?, (2) Can the representations be

easily implemented?, and (3) What is the sensitivity of this representation to noise

and other degradations? For example, in character recognition, is this representation

very sensitive to small variations in contour images?

Many specific representations have been created for special applications, for

example, the straight line approximation of digitized curves [3,45,46,58 - 65],

Fourier descriptors [32,33,42], Walsh functions [19], and structural

representations [34] are widely used in character recognition. It is worth mentioning

that the selected representation determines the characteristic signs of the

classification stage.

(e) Classification: This component reads the underlying text by recognizing extracted

shape representations as members of known character classes. Text recognition

approaches are characterized by their adopted representation. Three main

approaches used in the classification stage are:

1. Statistical Approach: [6,8,10 - 12,21,30,32,33,38 - 40,42], where the

features extracted from the pattern are arranged in a list of ordered values.

The feature space is partitioned into a number of classes (equal to the number

of patterns to be classified). Distance measures are formulated to quantify the

degree of dissimilarity between a pattern and the classes. An unknown pattern

is assigned the class which satisfies a minimum distance criterion in the feature

space.

2. Structural Approach: [2 - 5,7,9,13 - 17,21 - 23,26,28,34 - 37,40],

It is claimed that the principle underlying the statistical approach is really only

appropriate for the recognition of printed characters. The variation of shape

of handwritten characters is so large that it is difficult to rely on statistical

features to classify them. Thus, a so-called structure analysis method has been

applied to handwritten character recognition. In this method, there is no

mathematical principle. Rather it is still an open problem. Since a structure can

be broken into parts, it can be described by the features of these parts and by

the relationships between these parts. Then the problem is how to choose
features and relationships between them so that the description gives each

7

character clear identification.

3. Hybrid Statistical and Structural Approaches: [12,20,21,24,27,40], In

general, it is difficult to draw a clear boundary to separate the classes in the

space of the previous two recognition approaches since a pattern usually has

both statistical features and structural attributes. Thus, hybrids of the statistical

and structural approaches were tried.

(n Learning: A system is learned so that the application of a set of input textual

materials produces the desired performance. Learning approaches are of same type

as those of the classification component, i. e., if a statistical approach is followed in

the classification stage then also a statistical approach is used in the learning stage.

1.5. STATE OF THE ART OF ARABIC TEXT RECOGNITION

We could have access only to ten studies, [2 - 9,38,39], addressing Arabic text

recognition. Of course, there are other references in the field which are not available to

us, however, they are rare. These studies are explained below in a chronological order.

Since high variability is expected even in printed characters, due to the large number

of font styles and other reasons, Nouh et al. [4], in 1980, suggested a standard Arabic

character set, in order to facilitate computer processing of Arabic characters. Isolated

characters are simulated and described by suitably chosen components (radicals). The

simulated Arabic alphabet is classified utilizing a sequential tree search technique and

certain correlation measurements. The disadvantage of the proposed system is the

assumption that the incoming characters are generated according to specified standard

rules putting strict constrains on font style design.

In 1981, Parhami and Taraghi [8] presented a technique for the' automatic

recognition of printed Farsi text. The technique is applicable, with little or no

modification, to printed Arabic text (it has an alphabet similar to Farsi). Recognition of
handwritten Farsi text is not addressed. The authors state that this kind of problem is

beyond present day capabilities, since even human readers experience considerable
difficulties in this respect. The most important parts of the system are: (1) the isolation of

symbols within each subword and (2) the recognition. After symbols are separated

according to specified rules, the recognition procedure, which is based on certain

8

geometric properties of the Farsi symbols such as relative width and the existence of

concavities and loops, is applied. Twenty geometric features are used for each'symbol to

be recognized. Practical application of the technique to Farsi newspaper headlines has

been 100% successful, as reported by the authors. However, smaller type fonts will result
in less than perfect recognition. The system is heavily font dependent and the

segmentation process is expected to give wrong results in some cases.

Almuallim and Yamaguchi [7], in 1987, proposed a structural recognition method

of Arabic handwritten words. Since it is difficult to separate a cursive word directly into

characters, words are first segmented into strokes. These strokes are then classified using

their geometrical and topological properties. The relative position of the classified strokes

are examined, and the strokes are combined in several steps into a string of characters that

represents the recognized word. A maximum recognition rate of 91% was achieved. The

system failure, in most of the cases, was due to wrong segmentation of words.

Ramsis et al. [6], in 1988, adopted a statistical approach for Arabic typewritten

character recognition. This approach uses accumulative invariant moments to build the

feature space. This measure is invariant with respect to size, translation and rotation. ' The

calculations of the moments were implemented accumulatively in what is called

accumulative moment invariants. A total of up to seven moments is needed to reach a

practical recognition rate which requires heavy computations. In this approach, characters

are segmented after they are recognized. Two character segmentation models are

proposed and tested. These models seem to be sensitive to font variations. The system is

limited to the recognition of typewritten fonts. Moreover, it is font-dependent and-

sensitive to small variations in input patterns. No figures are reported regarding the system

recognition rate and efficiency.

In 1989, El-Wakil and Shoukry [38], 'proposed a system for recognition'of on-line
isolated handwritten Arabic characters. Features which are found to be independent. of the

writer style are represented as a list of integer values, while those which are subject to

more variations are represented using a Freeman-like chain code. This mixing of the

representation combined with a hierarchical organization of the characters aimed at

reducing the recognition time. The system was tested on a small data set of 58 characters
(seven samples per character, for a total of 7x 58 = 406 samples) and the maximum

9

recognition rate was 93%.

In 1989, also, Amin and Mari [9] presented a structural probabilistic approach to

recognize Arabic printed text. The system is based on character recognition and word

recognition. Character recognition includes segmentation of words into characters and

identification of characters. Word recognition is based on Viterbi algorithm and can handle

some identification errors. The system was tested on just few words and no figures are

reported about its performance.

In 1990, Al-Emami and Usher [39] presented an on-line system to recognize

handwritten Arabic words. Words are segmented into primitives which are usually smaller

than characters. The system is taught by being fed by the specifications of the primitives

of each character. In the recognition process, the parameters of each primitive are, found

and special rules are applied to select the combination of primitives which best matches

the features of the learned characters. The method requires manual adjustment of some

parameters. The system was tested against 170 words written by 11 different subjects for

a total of 540 characters. The reported recognition rate was 100%.

Abuhaiba [3], in 1991, presented an off-line character recognition system for

handwritten Arabic characters. In this system, the character is converted to a tree

structure suitable for recognition. A set of fuzzy constrained character graph models

(FCCGM's), which tolerate large variability in writing, is designed. These models are

graphs, with fuzzily labelled arcs, used as prototypes for the characters. Rules are applied

in sequence to match a character tree to an FCCGM. Although the system proved to be

powerful in tolerance to variable writing, speed and recognition rate, it was restricted to

isolated characters. Details of the system can be found in [2].

Zahour et at [5], 1992, presented a method for automatic recognition of off-line
Arabic cursive handwritten words based on a syntactic description of words. The features

of a word are extracted and. ordered to perform a tree description of the script with two

primitive classes: branches and loops. In this description, the loops are characterized by

their classes and the branches by their marked curvature, their relationship, and if they are
in clockwise or counterclockwise direction. Some geometrical attributes are applied to the

primitives which are combined to basic forms. A character is then described by a sequence

of the basic forms. The reported recognition rate of the system is 86%.

10

A comparison between the studies mentioned above is shown in Table 1.1 from

which the following figures and conclusions can be drawn:

(a) The interest in Arabic text recognition started late, early in the eighties, although for

other languages in Germany and U. S. A., the first concepts of machine character

recognition appeared early in 1929 [72].

(b) Only two studies, [5,7], addressed the problem of off-line cursive handwritten

recognition.
(c) Eight studies, [2 - 9], addressed off-line recognition which agrees with the need to

devote more effort on automatic reading of static documents since they are the main

source of the bulky textual material.

(d) Two studies on isolated handwritten characters, [2,3], used fuzzy concepts which

is preferred to us since the high variability in handwriting, especially in the cursive

type, makes it difficult to only apply decision theoretic approaches.

(e) None of the studies addressing handwritten text addressed the line segmentation

problem. They were only starting from the image of either a single isolated

character or word. In practice, this is not sufficient since we want to read whole

pages of text.

(f) Three studies on cursive printed text, [6,8,9], were trying to directly segment the

word into characters. Actually, this very error prone especially in handwriting.

(g) Three studies, [5,7,39], on cursive handwriting segmented words into primitives

which are pieces of line drawing usually smaller than characters. These primitives

are recombined in a certain manner to form characters. In our research, we follow

a similar strategy due to the reason mentioned in (f).

From this survey, it becomes clear that the problem of off-line handwritten cursive'
Arabic script recognition remains an open problem for the researchers to devise solutions.

It requires advanced segmentation techniques, involving the interaction of segmentation

and recognition. For efficiency, it is desirable for the recognizer to be free of constraints

on primitive number. The ultimate goal is to obtain recognition systems with performance

comparable with that of human. The performance of a recognition system remains

unknown until it is complete and tested against real data, which is also a good reason for

researchers to develop and test new methods in this domain.

11

O ...
an O U

UU

.0

cd

'b U

ý
y. ý+
U

ý

N

., U
p
OO
ti ý

.ý t3.

cäý
Ö, V

UN
.Z

, .r
ý

F vý

Sb > LL

2
> > > > 1 1

U > > > >
tA

E > >

CL

c V > > >

E

co 0 > > >

c 1 > >

N

8 > >

E O
ö

ä > > > > > > > >
0

> IN 1 >
U

Bi

> > > >

. . IN > > >
CL

?
t t0 h i0 ý O) M 10 N

12

1.6. CURRENT OBJECTIVES

This research aims at designing an off-line cursive Arabic handwriting recognition

system. This is achieved in two steps:

(a) First, we design an Isolated Arabic Character Recognition system (IACR) for

recognizing off-line isolated handwritten Arabic strokes.

(b) After having the above system operational, its methods are extended and new other

methods are formulated to obtain a Cursive Arabic Script Recognition system

(CASR) to recognize off-line handwritten cursive Arabic script having high

variability.

Although, the components of these systems are designed to work with Arabic text,

other writing systems can benefit from our new methods as well.

The strong cursive nature of Arabic text lends itself better to a structural or hybrid

approach. Thus, the structural approach is followed to design both systems. The simplified

data flow diagram of Figure 1.2 depicts the basic components of both systems which

shows that they incorporate the basic components of any document recognition system.

In this research, completely new methods will be developed, to design the representation,

classification, and learning components:

(a) Representation: New methods will be developed to obtain the following

representations:

1. Straight Line Approximation of Strokes: This is an intermediate

representation used in both systems: the Isolated Arabic Character

Recognition system and the Cursive Arabic Script Recognition system.

Why? Many specific representations have been created . for special

applications. Straight line approximation is often an efficient, representation for

expressing the structural relationship of the major components of an object.
One advantage of the straight line approximation of digitized curves is to

reduce memory space required for storing the essential structural information

present in the characters. It also simplifies the data structures required in

processing the character and reduces the required processing time. Many

algorithms have been formulated to solve the problem of straight line

approximation of digitized curves [3,45,46,58 - 65]. Straight line

13

0 I Document

Image Acquisition

Image

Preprocessing

Figure 1.2. Simplified data flow diagram of the IACR and CASR systems.

approximations are usually obtained by finding the skeleton of a digital image,

using a thinning, distance transform, etc., operation, locating dominant points

(end, bifurcation, high curvature, and inflection points), and finally connecting

these points by straight line segments. In text and signature recognition,

thinning is the widely-used operation to obtain skeletons [47 - 56,66].

However, the thinning process has an undesirable side effect of producing

artifacts, i. e., artificially created patterns that do not conform with the original

patterns, e. g., spurious bifurcation points [67]. Because artifacts adversely

affect the accurate extraction of end and bifurcation points from the skeleton,

resulting in incorrect representation of a pattern, it may be better to handle

such artifacts a priori.

14

Thus, in this research, thinned images are converted to straight line

approximations, consisting of vertex coordinates connected by straight line

segments. The likelihood of spurious tails is reduced and, spurious
bifurcation points, which are unavoidable when thinning algorithms are used,

are removed, and the actual bifurcation points are recovered The obtained

straight line approximations preserve the structural information of the

original patterns. The suggested method does not resort to distortable

geometrical properties.

2. Temporal Information: This helps to segment strokes in both systems.

Why? Many recognition systems have gained more sophistication in

recent years by exploiting the dynamic information and drawing from research

on understanding the handwriting process and on the analysis of character

shape deformation [38 - 41]. The dynamic information consists of the number

of the strokes, the order of the strokes, and the direction of the writing of each

stroke. The availability of dynamic information often permits the use of more

accurate recognition algorithms. Since, textual documents are usually stored

as off-line / static images, many techniques have been suggested to recover

such dynamic information from these images and exploit this information to

recognize the textual material [67 - 69].

Off-line data have been converted by line thinning to sequences of points

similar to on-line data (but without the timing information), achieving

reasonable recognition accuracy [31,71]. Recently, a heuristic-rule-based

tracing algorithm has been presented which transforms the skeleton of an off-

line image of a signature into a particular sequence of strokes, simulating the

original writing sequence [67]. Although robust recognition and verification

are claimed, the system uses a relatively complicated set of rules, that mainly

operate at pixel level. In [68], the recovery of some temporal clues from static
images of handwritten text is addressed. Of these clues are the position of the

stroke segment, 'classification of end points, junction interpretations, stroke

segment curvature and distances between stroke endpoints. Although the

temporal clues recovered in [68] appear useful, the technique operates on a

15

(b)

multi-level, high-resolution digital image, and must inevitably incur

considerable memory and processing overheads.

Thus, after recognizing the benefits of such dynamic information and due to

drawbacks of some previous methods, we will try to recover the original

sequence of writing off-line Arabic strokes as an aid to their straight line

approximations to segment strokes.

3. Stroke Segmentation: Here methods are introduced to accept a straight

line approximation and temporal information of a stroke and produce small

basic units constituting the stroke as the final representation.

Why? The cursive nature makes it difficult to segment a subword directly

into characters. Rather, a subword is segmented into basic units which are

usually smaller than characters.

Classification: As mentioned above, strokes will be segmented into small basic

units in both systems. In the CASR system, these basic units are combined into

strings of basic units. These strings are hypothesized into characters to obtain the

target word. Also, we adopt a new method for line segmentation which tolerates

large variations in handwriting. Our approach; is constructed using concepts from

sequential machine, fuzzy set, and graph theories.

Why?

1. The strategies for cursive script recognition can be classified into three broad

categories [10]:

i. In the first category, the word is segmented into several characters and

the character recognition techniques are applied to each segment. This

method depends heavily on the accuracy of the segmentation points
found. However, such accurate segmentation technique is not yet

available, and may need . to combine the interaction of word

segmentation and character recognition. Thus, this strategy will not be

used in our research.
ii. - In the second category, the whole words are recognized without doing

any kind of formal segmentation. This strategy may be useful when the

word vocabulary is very limited. Our current and long term goals go far

16

beyond this since we are looking for an unconstrained cursive
handwriting recognition system in all respects.

iii. The third category is a compromise solution between the above two

schemes. It does a loose segmentation to find a number of potential

segmentation points in the pre-segmentation procedure. The final

segmentation and the word length are determined later in the recognition

stage by the help of a lexicon which is the current more efficient trend

in cursive handwriting recognition.

Thus, in our system for handwritten cursive recognition, a similar

strategy is followed, but without using a lexicon. A cursive word is

recognized through a hierarchical analysis by proceeding from

segmented small basic units, to strings of basic units, to hypothesized

characters, and then to the final string of characters.

2. The methods used by researchers to segment lines, words and characters were

primarily developed for printed text in which a horizontal baseline usually

exists. This enabled them to use simple horizontal and vertical projections or

Hough transform methods in segmentation. This means that, in case of printed

text, segmentation can be usually performed as an independent process before

classification. The situation is different in handwritten cursive text due to the

following reasons:

i. A horizontal baseline does not exist in unconstrained handwriting.

ii. There is a change in the slant even in a single line of handwritten text.
iii. Secondary strokes (e. g., dots and dashes) are not carefully plotted, in

handwriting, with respect to main strokes.
Thus, the above reasons make it natural to us to view line and charaicter
'segmentation processes as part of the classification process and to seek for

other general methods for initial segmentation. Initial. segmentation is

already discussed in (a)3, above.
(c) Learning: The consequences of this problem are similar to those of the

classification problem. Thus, the learning methods and the classification methods

will be developed to form one couple. The important thing here is that, as you

17

notice in the data flow diagram of Figure 1.2, the learning stage comes after the

classification stage! Actually this arrangement is preferred to us because our

philosophy lies in: "What is this,, z? If you know then you earn, otherwise come

to learn. " This means that trying to recognize comes first. If the system fails then

it is taught.

1.7. SYSTEMS OVERVIEW

A data flow diagram of the Isolated Arabic Character Recognition system (IACR)

is shown in Figure 1.3. My new contribution is represented by the filled processes /

rounded rectangles, i. e., Straight Line Approximation, Enforcement of Temporal

Information, Stroke Segmentation, Stroke Recognition, and Stroke Learning. The data

flow diagram of the IACR system consists of the following processes:

(a) Image Acquisition: where an off-line binary image of a handwritten stroke is

captured using a scanner.

(b) Low Level Preprocessing: which includes:

1. Smoothing: where the acquired binary image of the stroke is smoothed.

2. Thinning: where the smoothed binary image of the stroke is thinned.

(c) Straight Line Approximation, Chapter 2: which accepts a smoothed thinned

binary image of the stroke and produces two representations of the stroke. The first

representation is a direct straight line approximation and the other is called a

reduced graph which is also a straight line approximation with loops represented as

vertices.

(d) Enforcement of Temporal Information, Chapter3: Here temporal information

of the stroke are extracted from its straight line approximations.

(e) Stroke Segmentation, Chapter 4: The reduced graph and temporal information

are used to segment the stroke into small units, called primitives. The reduced graph

and segmented primitives are necessary inputs for the subsequent two processes,
i. e., Stroke Recognition and Stroke Learning.

Stroke Recognition, Chapter S: which receives a fuzzy sequential machine, which
is a representation of the learned strokes, a reduced graph, and primitives of the

stroke. It outputs recognition results indicating whether the stroke belongs to a

18

Handwritten stroke

r
Image Acquistion

Binary image of stroke

__ý

Direct straight line

approximation of stroke

: ýý: 1

: Enforcement of Temporal Information
........................

I Temporal Information

of stroke

................ : Stroke Segmentation

Stroke Recognitio

Acceptance tree of
unrecognized stroke

Stroke Learning

W:...:: New stroke fuzzy

sequential machine

Figure 1.3. Data flow diagram of the IACR system.

(g)

certain class or it could not be recognized. If a stroke could not be recognized, then
its acceptance information, represented as a tree data structure, is fed to the Stroke

Learning process.
Stroke Learning, Chapter 6: This process gets as inputs the fuzzy sequential

machine which was used in recognition but failed to recognize the stroke, a reduced

Reduced graph of stroke 'R

19

graph of the stroke, primitives of the stroke, and the acceptance tree which is passed

by the Stroke Recognition process. It outputs a new fuzzy sequential machine which

can recognize the input stroke and strokes of the old machine and variants of these

strokes.

Experimental results and performance of the IACR system are reported in Chapter 7.

Figure 1.4 shows a simplified data flow diagram, of the Cursive Arabic Script

Recognition system (CASR). Again, my new contribution is represented by the filled

processes / rounded rectangles in the figure, i. e., Straight Line Approximation,

Enforcement of Temporal Information, Stroke Segmentation, Token Recognition, Token

Learning, Learning of Token Strings, Line Extraction and Stroke Ordering, and Word

Formation. The data flow diagram of the CASR system consists of the following

processes:

(a) Image Acquisition: where an off-line binary image of a handwritten page of

cursive Arabic script is captured using a scanner.

(b) Low Level Preprocessing: which includes:

1. Smoothing: The acquired binary image of the page is smoothed.

2. Stroke Extraction: Here single component strokes'are extracted, where

each stroke is represented as a smoothed binary image.

3. Thinning: The smoothed binary images of the strokes are thinned.

(c) Straight Line Approximation, Chapter 2: which accepts smoothed thinned binary

images of the strokes and produces two representations for each stroke; a direct

straight line approximation and reduced graph.
(d) Enforcement of Temporal Information, Chapter3: Here temporal information

of the stroke are extracted from the reduced graphs of the strokes.

(e) Stroke Segmentation, Chapter 8. A cursive stroke is segmented into small

parts, called tokens. Tokens are logical units which are usually larger and more

suitable for cursive script than the primitives of the IACR system.
Token Recognition, Chapter 9: For every input token, this process finds whether

it belongs to a certain class or it could' not be recognized. If a token could not be

recognized, then its acceptance information, represented as a tree data structure, is

fed to the Token Learning process.

20

21

(A/

(1,)

Token Learning, Chapter 10: This process gets as an input the acceptance tree

which is passed by the Token Recognition process, in addition to other inputs. It

outputs a new token fuzzy sequential machine which can recognize the input token

and tokens of the old machine and variants of these tokens.

Learning of Token Strings, Chapter 11: where tokens are recombined into

meaningful sets of tokens; logical token strings. Logical token strings are associated

with possible interpretations and their fuzzy features.

(i) Line Extraction and Stroke Ordering: which includes:
-

G)

I. Separating Main and Secondary strokes, Chapter 12: where strokes which

can represent secondary strokes are marked. Remaining strokes are main

strokes.

2. Extracting Lines and Ordering Strokes, Chapter 12: where lines are

extracted and their constituent main strokes are ordered from right to left.

Secondary stroke candidates are presented to main strokes.
Word Formation: which includes:

1. Common Shape Interpretations of Main Strokes, Chapter 13: where all

possible basic shape interpretations of main strokes are enumerated and

represented in a tree data structure. We call this tree Enumeration and
Requirement Tree (ERT), in which information about secondary strokes

required to associate basic shapes to form characters is included.

2. Character Formation, Chapter 13: where ERT's are combined with

presented candidate secondary strokes to form characters. Assignment

problems are formulated and solved for this purpose. The solution which

exhibits the minimum cost is selected. This process results in some redundant

secondary strokes which cannot be combined with basic shapes to form

characters.
3. Manipulating Redundant Secondary Strokes, Chapter 13: Redundant

secondary strokes are manipulated to form some other characters which are
inserted in their proper places within lines. The final result is a list of ordered
lines of ordered lists of words.

Experimental results and performance of the CASR system are reported in Chapter 14.

22

Part One
Preprocessing

ý
. .,

Direct straight line

approximation of stroke

ý/

Handwritten stroke

1

Image Acquistion

Binary image of stroke

Smoothing

Smoothed binary
image of stroke

Thinning

I Smothed thinned binary

d image of stroke

Approximation_
Straight Line

Reduced graph of stroke

: Enforcement of Temporal
Information:

.,
Temporal Information

of stroke

U
ý

Figure I. I. Preprocessing operations in the IACR system.

OVERVIEW

In this part, preprocessing operations are addressed. A data flow diagram of

preprocessing operations in the Isolated Arabic Character Recognition system (IACR)

is shown in Figure 1.1. This data flow diagram consists of the following processes:

(a) Image Acquisition: where an off-line binary image of a handwritten stroke is

captured using a scanner.

(b) Smoothing: where the acquired binary image of the stroke is smoothed

(c) Thinning: where the smoothed binary image of the stroke is thinned.

(d) Straight Line Approximation, Chapter 2: which accepts a smoothed thinned

binary image of the stroke and produces two representations for the stroke. The

24

first representation is a direct straight line approximation and the other is called

a reduced graph which is also a straight line approximation with loops represented

as vertices.

(e) Enforcement of Temporal Information, Chapter 3: Here temporal information

of the stroke are extracted from its straight line approximations. Temporal

information helps to segment strokes.

Figure I. 2 shows a data flow diagram of preprocessing operations in the Cursive

Arabic Script Recognition system (CASR). This data flow diagram consists of the

following processes:

(a) Image Acquisition: where an off-line binary image of a handwritten page of

cursive Arabic script is captured using a scanner.

(b) Smoothing: The acquired binary image of the page is smoothed
(c) Stroke Extraction: Here single component strokes are extracted, where each

stroke is represented as a smoothed binary image.

(d) Thinning: The smoothed binary images of the strokes are thinned
(e) Straight Line Approximation, Chapter 2: which accepts smoothed thinned

binary images of the strokes and produces two representations for each stroke. The

first representation is a direct straight line approximation and the other is a

reduced graph.

(j9 Enforcement of Temporal Information, Chapter 3: Here temporal information

of the strokes are extracted from their straight line approximations.

Notice that in Figures I. I and I. 2, our new contribution is represented by the filled

processes / rounded rectangles, i. e., Straight Line Approximation and Enforcement of
Temporal Information.

Although stroke segmentation in both the IACR and CASR systems is an extra

preprocessing step, it is not addressed in this part. Instead, it is postponed. to their

corresponding parts; Two and Three. This is due to the difference in complexity of the

problem in these systems which implies different ways of stroke segmentation.
There are some points which we make clear. Firstly,, the images which appear in

the following chapters are off-line images which are captured using a scanner. Secondly,

for the second process, smoothing, in the IACR and CA SR systems, a suitable smoothing

25

Handwritten page

r
Image Acquistion

Binary image of page

Smoothing

Smoothed binary
image of page

Stroke Extraction

Smoothed binary
Y

images of strokes

Thinning

Smoothed thinned binary images of

strokes

Straight Line

Direct staright line Approximation

approximations of strokes
_____ . TReduced

graphs of strokes
r --- "-1

:: Enforcement of Temporal
:: Information:

Ü
Information
Temporal

of strokes

Figure 1.2. Preprocessing operations in the CASR system.

algorithm can be found in /57]. Finally, Whenever thinning is mentioned, it is achieved

by using the "Safe Point Thinning Algorithm, " or SP7A 1661. The reason for selecting

SPTA is not necessarily that the algorithm gives the best results, but mainly because it

provides a good compromise between quality and speed. Other thinning algorithms,

which may produce better results, can be found in references [48 - 551.

26

Straight Line

Approximation

OVERVIEW

In this chapter, methods are developed to convert a smoothed thinned binary image

of a stroke into a straight line approximation, consisting of vertex coordinates connected

by straight line segments. A two-subprocess data flow diagram of the process is shown

in Figure 2.1:

(a) Direct Straight Line Approximation, Sections 2.2,2.3: The input to this

module is a smoothed thinned binary image of a stroke. The output is a direct

(b)

straight line approximation, since it may contain loops as they are without any

special manipulation. The method, Section 2.2, incorporates heuristics which

ensure a unique centre for each intersection vertex, and to reduce the likelihood of

spurious tails. However, there are some cases in which these straight line

approximations have unavoidable spurious artifacts introduced by the thinning

process. These artifacts do not correspond to true. segments in the original image.

Thus, an alternative enhanced method, Section 2.3, is described It uses the

distance transform of thinned binary images to identify spurious bifurcation points,

remove them, and recover the original ones. The obtained straight line

approximations preserve the structural information of the original patterns. The

method does not resort to distortable geometrical properties
Loop Reduction, Section 2.4: This subprocess accepts a direct straight line

approximation, produced by the previous subprocess, and outputs a loopless

27

Smoothed thinned binary images of stroke/s

ý
Direct staright line approximation/s
of strokels

.................. Looo Reduction

yI

Reduced graphs of stroke/s

i

Figure 2.1. Data flow diagram of the Straight Line Approximation process.

straight line approximation (reduced graph), i. e., it does not have loops, as an

auxiliary compact representation of the stroke. Here, loops are replaced by vertices

with features.

2.1. STRAIGHT LINE APPROXIMATION OF DIGITAL CURVES

In this section an algorithm is described to convert a thinned image of a stroke into

a straight line approximation, consisting of vertex coordinates connected by straight line

segments. The algorithm incorporates heuristics which ensure a unique centre for each
intersection vertex, and to reduce the likelihood of spurious tails.

2.1.1. Definitions

Refer to Figure 2.2 while reading the following definitions.

(a) A stroke is the line art drawn from pen down to pen up, e. g., the stroke shown in

Figure 2.2(a).

(b) A straight line approximation of a stroke is represented as a non-directed graph,

G= (V, L), consisting of a set of vertices, V, and a set of links, L. Each vertex vE
V is represented by its x&y coordinates and each link in L is associated with

exactly two vertices in V. Figure 2.2(b) is a straight line approximation / non-

28

(a)

14 13

(b)

Figure 2.2. Explaining Definitions 2.1.1. (a - j): (a) handwritten stroke, and (b) straight
line approximation of the stroke.

directed graph, G, of the stroke of Figure 2.2(a). The set of vertices is V= (i, i=

1,2, ..., 18), and the set of links, L, is clear from the figure.

(c) A terminal vertex is a vertex having no more than one associated link, e. g., vertices

10 and 18.

(d) An intersection vertex is a vertex having three or more associated links in G, e. g.,

vertices 1 and 9.
(e) Two vertices are said adjacent if they are associated with at least one link, e. g.,

vertices 1 and 2 are adjacent.

(f) A path is a sequence of vertices such that each two consecutive vertices, in the

sequence, are adjacent, e. g., the sequence of vertices 1,2,3,4,5,6,7,1.

(g) An elementary path is a path which does'not use the same vertex more than once,

e. g., the path which consists of vertices 9,10.

(h) A tail is an elementary path with the following properties
1. One*end vertex of the path is a terminal vertex, u,
2. The other end vertex of the path is an intersection vertex, v, and
3. None of the intermediate vertices, in the path between u and v is an

29

bcd

efg

hýj

Figure 2.3. Thinned binary image to explain Definitions 2.1.1(k - q).

intersection vertex.

For example, in the elementary path 9,11,12,13,14,15,16,17,18, vertex 18 is

a terminal vertex, vertex 9 is an intersection vertex, and none of the vertices 11 to

17 is an intersection vertex. Thus, this constitutes a tail.

(i) The length of a tail is the sum of the lengths of the links constituting it.

(j) A spurious tail is a tail the length of which is less than a certain threshold.

The following definitions apply to thinned images which can be produced using any

thinning algorithm (or any other method) such that lines of one-point width are obtained.
For easy understanding of these definitions, refer to Figure 2.3.

(k) The 8-neighbourhood of a black point, p, is a3 x3 window centred at p, e. g., the 8-

neighbourhood of black point, f, is the 3 x3 window defined by the points b, c, d, e,

f, g, h, i, andj.

(1) Two black points are adjacent if one belongs to the 8-neighbourhood of the other,

e. g., points a and d.

(m) An endpoint, EP, is a black point that is adjacent to only one other black point, e. g.,

point a.

(n) A brcation point, BP, is a black point that is adjacent to at least three other black

points, e. g., points e, f, h, and i. ".
(o) A dominant point is an EP or BP. In the literature, a, dominant / critical point is an

end, bifurcation, high-curvature, or inflection point [63,70]. According to the

author's experimentation for the purpose of text recognition, it is found that the

most important dominant points are EP's and BP's, with straight line segments
between them, which are sufficient to preserve the structural properties of the

30

(P)

(q)

textual shape.
A cluster of dominants is a set of dominant points, each of which is adjacent to at

least one point in the cluster and is not adjacent to any dominant point that is outside

the cluster under consideration, e. g., the set of dominant points e, f, h, and i.

The mean point of a cluster of dominants, containing n dominant points, equals the

sum of these points divided by their number, n.
A formal description of the straight line approximation of a stroke follows.

Algorithm 2.1

Use: To obtain direct straight line approximation/s for input stroke/s

Input: Smoothed thinned binary image/s of stroke/s

Output: Direct straight line approximation/s of stroke/s

Procedure:

Step 1. In the thinned image of the stroke, ' the set of dominant points, S, is

found.

Step 2. ' For the set S, the set of clusters of dominants is found. The mean point

of each cluster is found. Each cluster of dominants will correspond to a vertex in the final

straight line approximation, G, with x&y coordinates equal to those of the mean point

of the cluster. Thus, initially the number of vertices in G equals the number of clusters.

Step 3. The dominant points which are adjacent only to dominant points are

deleted from S:

Step 4. The remaining dominant points of each cluster of dominants are

connected, by straight line segments, to the mean point of that cluster. These remaining
'dominant points and new segments are added to G.

Step 5. Each path of consecutive points connecting two points s,, s2 a S, such

that none of the intermediate points between s, and s2 is a bifurcation point, is divided into

a number of straight line segments. The length of each segment is proportional to the line

thickness of the stroke. New vertices are produced at the ends of these segments. The

generated vertices and segments are added to G.

Step 6. - Spurious tails, in G, are deleted. The threshold for the length of a

spurious tail is proportional to line thickness.

31

Step 7. Segments, in G, which are approximately collinear are merged.

In Step 2 of the above algorithm, a temporary image is created with the same size

as the original stroke image. In this image, only dominant points are retained while others

are deleted. Each cluster of dominants is viewed as a connected component. Thus, the

algorithm of [56] is used to extract the set of connected components (i. e., the set of

clusters of dominants).

The generated segments in Step 5 can be of variable or equal length. If they are

variable, then a segment can be grown point by point. A point is added to a segment if it

is collinear with that segment to a certain extent. However, in our algorithm, the skeleton
is initially reduced to equal length segments rather than variable length segments since it

is more noise-immune to quantify the collinearity measure on a segment basis rather than

on a point basis.

In Steps 5 and 6, the segment length and spurious tail length are determined as
follows. Let N, be the number of points in the stroke before thinning. In fact, N, equals

the area, in points, of the stroke. An approximate length of the line script of the stroke is

the number of points, N2, in the thinned image. An approximation of the line thickness is

given by w=N, / N2. In Step 4, the length of each segment is set equal to [k, x w1, and
in Step 5, the threshold for spurious tail determination is set equal to k2 x w, where k, and
k2 are constants. Suitable range of k, and value of k2, which were empirically found, are
1.0 s k, s 2.0 and 0.5, respectively.

2.1.2. Example

The smoothed thinned binary. image of a stroke and the image after thinning are

shown in Figures 2.4(a, b), respectively. To obtain a straight line approximation of this

stroke, Algorithm 2.1 is applied as follows:

Step 1. In the thinned image of Figure 2.4(b), there are 2 end points, which are

obvious, and 6 bifurcation points which are pointed to by arrows. Thus, S has initially 8
dominant points.

Step 2. In S, there exists 6 clusters of dominants: two of which represent 2 end
vertices while the others represent 4 intersection vertices in the final G. Notice that since

32

-----
.......

..............
......................... (a)

(b)

(c)

Figure 2.4. (a) Smoothed image, (b) smoothed and thinned image with bifurcation points
being pointed to by arrows, and (c) its straight line approximation, G.

..........

33

each of the left-most five clusters consists of only one point, the mean point of each of

these clusters equals its constituent point.

Step 3. Since each point in S is adjacent to at least another point which is not
dominant, no dominant point is deleted.

Step 4. For the right-most cluster, since no dominant point is deleted in Step 3,

each of its three dominant points is connected by a straight line segment to the mean point

of the cluster. The remaining points and new segments are added to G.

Step 5. An approximate length of the line script of the stroke is found to be 4.33

points. The constant k, is set to 1.0. Thus, the initial segment length is (k, x w] = (1.0 x

4.331 =5 points. Each path of consecutive points connecting two points s,, s2 E S, such

that none of the intermediate points between s, and s2 is a bifurcation point, is divided into

a number of straight line segments. The length of each segment is 5 points. New vertices

are produced at the ends of these segments. The generated vertices and segments are

added to G.

Step 6. The constant k2 is set to 0.5. The threshold for spurious tail

determination is k2 xw=0.5 x 4.33 = 2.17 points. According to this threshold, the stroke
has no spurious tails.

Step 7. Finally, the segments which are approximately collinear are merged

yielding the graph, G, shown in Figure 2.4(c).

2.1.3. Causes of Failure

There are some cases in which Algorithm 2.1 produces straight line approximations

which have spurious artifacts introduced by the thinning process. These artifacts do not

correspond to true segments in the original image, and are of two types:

(a) Elongation Artifact: When two line segments converge to a point with a small

angle such as a cusp, the thinning algorithm generates an elongated segment at the

end by merging the two line segments near the point. Figure 2.5 illustrates the image

of two lines converging to a point with a small angle and the corresponding pattern

that may be produced by a thinning algorithm. It can be observed that, the smaller

the converging angle becomes, the more prominently the elongation artifact

emerges. The cause of the elongation artifact lies in the fact that when two

34

(a) (b)

Figure 2.5. Elongation artifact: (a) two lines converging to a point, and (b) a pattern that

may be produced by a thinning algorithm.

(a) (b)

Figure 2.6. Bifurcation artifact: (a) two crossing lines, and (b) a pattern that may be

produced by a thinning algorithm.

(b)

unthinned line segments meet or cross, their junction is an area rather than a point.

The geometry of the junction area depends on the thickness of the lines and the

meeting or crossing angle. In Figure 2.5(a), when boundary points are stripped, by

applying a thinning algorithm, it may happen that one right-most point possesses the

properties of an EP so that it can not be deleted by a next stripping iteration.

Similarly, two other EP's are generated at the left side of the stroke. Thus, the

thinning algorithm ends by generating a BP. The segment between the BP and the

right-most EP is an elongation artifact.

Bifurcation Artifact: When two or more line segments cross each other at a
junction point, a thinning algorithm may generate a bifurcation artifact for the same

reason that it causes an elongation artifact. The simplest case of a bifurcation artifact

occurs when only two lines intersect as shown in Figure 2.6(a). In this simple case,

a bifurcation artifact can be considered as the overlapping of two elongation artifacts
in opposite directions. As'a result, two spurious bifurcation points, SBP's, depicted

as A and B in Figure 2.6(b), are generated separated by an elongation segment. The

length of the elongation segment is a function of the line thickness and crossing

angle. SBP's are undesirable as they complicate the skeleton representation which

35

may degrade any further postprocessing operation, e. g., recognition. Hence, it is

better to identify and remove them and recover the original intersection point to

ensure a natural representation of a pattern.

In the algorithm of the following section, a bifurcation artifact can be identified and

replaced with a single vertex. The replacement vertex is approximately equivalent to the

original crossing point in the sense that the topological properties of the thinned shape are

preserved. Also, the algorithm incorporates new measures for line thickness and spurious

tail length determination.

2.2. ENHANCED STRAIGHT LINE APPROXIMATION

In [67], a heuristic was suggested to identify SBP's, remove them, and recover

original ones. This heuristic depends on certain geometrical properties in the proximity of

the spurious points. However, although geometrical properties are maintained in ideal

images, they are rarely preserved in digital ones due to technical reasons such as

resolution of scanning device, thinning algorithm, etc. Moreover, that heuristic deals with

the simple case, i. e., only two intersecting lines since the output of the algorithm is a

binary image in which a bifurcation point can not have more than four branches. In this

section, a method is presented which identifies simple as well as complex spurious

bifurcation points, removes them, and substitutes with one point that is approximately

equivalent to the original crossing point in the sense that the topological properties of the

thinned shape are preserved. This new method does not resort to distortable geometrical

properties.

Figure 2.7 illustrates two intersecting straight lines of uniform thickness with an

angle of intersection, a. The line thickness is w and the area of intersection is the diamond

shown by dashed lines. When thinned, the skeleton for the two' lines may look like the'

dotted lines with two spurious bifurcation points, B and D. Ideally, the lines must intersect

at one point, C. The distance from A to B, dl, is the same as the distance from D to E.

Also, the distance from B to C, d2, equals . the distance from C to D. As long as a is not

smaller than a certain threshold, the distance d, is larger than d2. Let us define the domain

of a bifurcation point, BP, as the circle which is centred at BP and whose radius equals
the distance of BP to the nearest point on the boundary of the intersecting lines. For

36

Figure 2.7. Two intersecting lines: line thickness = w, angle of intersection = a, the

skeleton is dotted, the bifurcation area is the diamond surrounded with dashed lines, and

the circles are the domain circles of bifurcation points B and D.

example, the domain of the bifurcation point, B, is a circle centred at B with 'a radius dl.

Most of the skeleton points that lie inside the domain of B belong to the area of

intersection, i. e., the diamond. The same applies to point D. As long as d2 s dl, the

domain circles of B and D intersect or touch each other. Thus, a criterion for two BP's to

belong to the same crossing area is that their domain circles must intersect or at least

touch each other which is the new idea for determining SBP's.

A bifurcation point was defined as a black point that is adjacent to at least three

other black points which is different than the usually used definition of a bifurcation point.

In the literature, a bifurcation point, BP, is defined as a black point whose crossing

number is at least 3 where the crossing number is the number of white to black transitions

in the 8-neighbours of the point [67]. We find that our definition of a BP is more flexible

and useful as it is clear from Figure 2,8. The point configuration shown in this figure

frequently results when thinning algorithms, that produce skeletons of one-point width,

37

R

Figure 2.8. A point configuration that may result after thinning.

are applied to binary images. If the crossing number is used, then neither of the four

centred points is a BP. However, using our definition the four centred points are BP's.

Ultimately, these four points must be merged into one BP as this is one of the advantages

of the enhanced straight line approximation algorithm which is developed in this section.

Before the straight line approximation algorithm is described, the following definitions are

presented.

2.2.1. Definitions

(a) The distance of a black point from the image background is that which is determined

by a suitable distance transform [56,73]. The chamfer 3/4 distance transform is

recommended since the maximum distance error does not exceed 8.1%, as reported
in [73].

(b) If A is a BP with distance d, then its domain square is a square centred at A with

side =2xd-1. This is an approximation of the domain circle, defined earlier, for

the sake of an easy implementation. The domain square of an'EP is itself. For

example, consider the thinned image of Figure 2.3. If we assume that the distance

of point a, which is an EP, equals 2, then its domain square is that square centred

at a with side =2x2-13, i. e., it is a'3 x3 window centred at a. Similarly, if the

distance of points e, f, h, and i, which are BP's, is 2, then their domain squires are

the 3x3 windows centred at e, f, h, and i, respectively.

(c) Two domain squares are adjacent if they have at least two adjacent black points. A

dominant area is a set of adjacent domain squares each of which is not adjacent to

any domain square that lies outside the dominant area under consideration. In Figure

38

2.3, the domain squares of points e, f, h, and i are adjacent to each other and they

are not adjacent to any other domain square. Thus, they constitute a dominant area.
(d) A black point whose all black neighbours belong to a dominant area is an Inside-

Dominant-Area Point, IDAP, e. g., points a, d, e, f, h and i in Figure 2.3.

Now, a formal description of the enhanced straight line approximation algorithm

follows.

Algorithm 2.2

Use: To obtain enhanced direct straight line approximation/s for input stroke/s

Input: Smoothed thinned binary image, I, of one-point width for each input stroke.

We assume that the distance of I is already calculated, using a suitable distance

transform, as part of the thinning process.

Output: Direct straight line approximation/s of stroke/s

Procedure:

Step 1. The majority of the points in I have the distance d,,,
sj.

An estimated line

thickness of the stroke is w=2xd,,, aj -
1. A parameter of significance is ß=kxw,

where k is a constant. If the total number of points in I is less than ndot = (ß1 then the

skeleton is considered as a single dot stroke which is represented by a vertex located in

the mean point of the skeleton's points and the algorithm is exited.

Step 2.. The set, S, of dominant points in I is found. Mark each black point, p,
in S along with black points of I that lie inside the domain square of p. If the distance of

p is d then the side length of its domain square is 2xd-1. Identify IDAP's.

Step 3.
.A temporary image, T, is created with the same size as the original stroke

image. In. this image, only the points which were marked in Step 2 are retained while

others are deleted. The set of dominant areas is found by extracting the set of connected

components of T where there is a one-to-one correspondence between the dominant areas

and connected components. Each dominant area will correspond to a vertex, in the final

straight line approximation with x&y coordinates equal to those of the mean point of the

skeleton's points that lie inside that area. Thus, initially the number of vertices equals the

number of dominant areas:
Step 4. Delete the IDAP's from T. The remaining points in T will be vertices in

39

the final straight line approximation. Each vertex found in Step 3 is connected to the

points that are not IDAP's and lie inside the same dominant area.

Step 5. Each path in the skeleton image, I, connecting two points p,, P2 eT is

divided into a number of straight line segments, the length of each s Iß1.

Step 6. Tails whose length is less than w/2 are considered spurious; hence they

are deleted. If the remaining straight line approximation has no intersection points and its

length is less than Ido, = ß, then it is considered as a dot which is represented by the

straight line approximation's centre of gravity and the algorithm is exited.

Step 7. Segments which are approximately collinear are merged. That is, if the

angle, a, between two segments is larger than a specified threshold, they are merged into

one segment.

2.2.2. Examples

Figure 2.9(a) shows a smoothed binary image of a handwritten x. The skeleton, I,

is obtained using the SPTA thinning algorithm [66] as illustrated in Figure 2.9(b) with the

distance, indicated using a chamfer 3/4 distance transform [73]; the distance is coded

using hexadecimal numbers and is f times the actual Euclidean distance where f=3 for a

chamfer 3/4 distance transform. Algorithm 2.2 is applied to obtain a straight line

approximation for this stroke as follows:

Step 1. The majority of the points in I have the distance d,,,,, =8/3. The

estimated line thickness is w=2x8/3-1=4.3 points. The parameter of significance

is ß=1.5 x 4.3 = 6.5 (A suitable value fork was found to be 1.5). Since the total number

of dots in the skeleton is not less than iß1 = 16.51 =7 points, the skeleton is not a dot

stroke and the algorithm is continued.

Step 2. This skeleton has 6 dominant points: two BP's and four EP's. The domain

squares for the EP's are the points themselves. The distances of the upper and lower BP's

are F/3=5 and E/3=5, respectively, with domain squares each of side length =2x5

- 1. =9 points. The black points which lie inside these six domain squares are marked.
Step 3. The points which are marked in Step 2 constitute the image T as shown

in Figure 2.9(c). The domain squares of the two bifurcation points are adjacent

constituting one dominant area. Thus, the image, T, has five connected components which

40

8
8 A

8
8

87
A8
88

 ...

 .

None

(a)

B8
A8
B7
A8
B7
AB
AB

AB
8A
AB
CB

ED
F
E
0

C
C
D

E
CD

AB
8B

8B
7B

8A
78

88
8A
7A

8A
7A

89
7A

88
78

8 9
77

88
6 9

8
7

7
7
6
6
4

6
4
3

(b)

Figure 2.9. (a) Binary image of a stroke, (b) the skeleton, I, with indicated distance after
applying a chamfer 3/4 distance transform, (cont.)

are represented by five vertices in the straight line approximation; one for each EP and the

fifth for the dominant area.
Step 4. The points of the dominant area, except the four end points of that area,

are IDAP's, hence they are deleted. The remaining four points of the dominant area are

connected to the vertex that represents that area via straight line segments.
Step 5. Each path in the skeleton of Figure 2.9(b) connecting two points in T,

after the removal of IDAP's, is divided into straight line segments, the length of each is s

Iß1 =F6.51 =7 points. The obtained straight line approximation is shown in Figure 2.9(d).

41

8

8

8A
AB
CB

ED
F
E
D

C
C
D

E
CD

AB
8B

8B

6

3

(d)

(c) (e)

Figure 2.9. (c) dominant areas, the initial T image; chamfer 3/4 distance is coded using
hexadecimal numbers, -(d) the straight line approximation, and (e) the straight line
approximation after collinear segment merge.

Step 6. The threshold for spurious tail determination equals w/2=2.15 points.
In Figure 2.9(d), there is no tail the length of which is less than 2.15 points. Thus, no

parts are deleted from the straight line approximation. The length of this approximation
is not less than 1. =ß=6.5, hence, the stroke is not a dot and the approximation remains

42

as it is.

Step 7. Finally, after merging of collinear segments with angle greater than 165

the final straight line approximation of Figure 2.9(e) is obtained which has only one
4,

intersection point as it should be.

Figure 2.10 shows the binary image and the skeleton of another stroke, Arabic Ha.

The skeleton has bifurcation points with a point configuration similar to that of Figure 2.8.

The algorithm successfully yielded the straight line approximation shown in Figure

2.10(c).

Figure 2.11(a) shows the image of four intersecting lines. Ideally, the lines must
intersect at one point which can not be achieved by a thinning algorithm as it is clear from

Figure 2.11(b) which has many SBP's. Using Algorithm 2.2, the straight line

approximation of Figure 2.11(c) is obtained with only one intersection point; interesting!

2.2.3. Results and Causes of Failure

The algorithm was tested on the handwriting of two writers. The writers were given

a list of strokes with one intersection point where every stroke represents one or two

characters. The intersection point is associated with four branches which is the result of

two crossing segments. The writers provided 133 samples. Spurious bifurcation points and

tails could be detected and removed and the original bifurcation point could be recovered
in 98.5% of the samples. In 1.5% of the samples, the causes of failure are:

(a) For intersecting lines, the angle of intersection, a, is small which results in a long

elongation segment between the spurious bifurcation points. Thus, the domain

squares are not adjacent which ends with the bifurcation points as they are without

(b)

being merged.
The length of an actual spurious tail is not less than the threshold of spurious tail
determination which is one half the line thickness of the stroke. These tails are
thinning-elongation and blob artifacts. The algorithm can not be forced to remove
such tails as they may conform with the original pattern and thus may be informative

parts of it.

43

 U.

(a)

NONE

 Ei

 mom

 .

Mans.. s__..
 ::

U
U

U

'
 U

 E

(b)

U.
.

.

Figure 2.10. (a) Binary image, (b) the skeleton with a point configuration like the one
shown in Figure 2.8, (cont.)

44

(c)

Figure 2.10. (c) the straight line approximation with one intersection point.

..::.

..: eeeee8
... :.. eee eeee...

e:. '°Beeeeee.... ee. eee'
. EEEeee.. '°eeeeeeeee::. : eeeeeee

'°eeeeeeeeee:. eeeeeee:
............: 89eEecee'

::: " :.. '°eeeeeeeeeeeeeeeeeeeeee..
" ::::::::::::::::::: " ::::::. :::....... ::: "

.............:.................................
......... ":::::::::. .: 99EE9Ee° : E: eeeeeeee . eeeeeeee°.

.::::::::: ":::::::::. ::::::::::::::: " "::::: " :.....::
. ::::::: ":::: .: e: eeee:::::::: " ... eee eeee... : eeeee°.

.... :::

." eee:: ee"

(a)

Figure 2.11. (a) Four intersecting lines, ideally they should intersect at one point, (cont.)

45

".. :...:
.....

............
...........

............

."
.ý

.ý

. (c)

.ý '".
.ý ., .. .ý ., ..

(b)

Figure 2.11. (b) the skeleton with several bifurcation points, and (c) the final straight line
approximation with only one intersection point.

46

2

6

Figure 2.12. A graph, G, to explain Definitions 2.3.1. (a - c).

2.3. LOOP REDUCTION

It is easier to deal with a loop as a whole single entity whose position with respect

to other components of a stroke is retained rather than retaining every segment of the

loop. In the following, an algorithm will be developed to extract an auxiliary

representation (reduced graph) of the stroke in which the loops are reduced, represented

by vertices with features, and the loop segments are deleted.

2.3.1. Definitions

(a) A loop is a set of vertices and links in G such that

1. Given any vertex in the loop, there is a path from that vertex to itself which

visits all the other vertices in the loop only once, and which traverses all the

links in the loop only once.

2. No two vertices in the loop are connected by a path which crosses the interior

of the loop.

For example, in Figure 2.12, the set of vertices 1,2,3,4,5,6,9,1 and the set of

vertices 1,9,6,7,8,1 constitute two loops.

(b) Two loops, in G, are adjacent if they have at least one common link, e. g., the two
loops mentioned in (a) have two common links: (1,9) and (9, '6); hence, they are

adjacent.
(c) 'A loop set is a set of loops such that each loop is adjacent to at least one other loop

in the set and is not adjacent to any other loop outside the set, e. g., the two loops

mentioned in (a) and (b) constitute one loop set. If a loop is not adjacent. to any
other loop, then it also constitutes a loop set.
In Arabic script, a loop set can not contain more than two loops. Thus, every loop

set contains either a single loop or two adjacent loops. The algorithm which reduces loops

47

now follows.

Algorithm 2.3

Use: To obtain reduced graph/s of stroke/s
Input: Direct straight line approximation/s of stroke/s

Output: Reduced graph/s of strokes

Procedure:

Step 1. Find the set of all loops in the graph, G, of the stroke.

Step 2. Find all the loop sets in G.

Step 3. Replace each loop set with a single vertex (it will be called a loop set

vertex). The features of a loop set vertex are:
(a) the x&y coordinates of the mean point of the vertices of the loop set,

(b) the number of the loops in the loop set,

(c) length of the loop set which equals the sum of lengths of the links constituting the

loop set, and
(d) the minimum and maximum x&y coordinates of the vertices which constitute the

loop set.

Step 4. In each loop set, delete all the links in the set, together with any vertices

which do not have links outside the loop set.
Step 5. ' For every loop set vertex, introduce new links connecting the loop set

vertex to any vertices remaining in the loop set (i. e., to those vertices in the set which have

links outside the set).

Algorithm 2.3 yields a reduced graph, G', which contains no loops. If the original

graph G has no loops, then G and G' will be the same.

2.3.2. Example

Algorithm 2.3 is used to reduce the graph, G, of Figure 2.12 as follows:
Step 1. Two loops are found in the graph, G, which are represented by the sets

of vertices 1,2,3,4,5,6,9; 1 and 1,9,6,7,8,1.

Step 2. One loop set is found which consists of the two loops found in Step 1.

48

Figure 2.13. The reduced graph, G', of the graph, G, shown in Figure 2.12.

Step 3. The loop set is replaced with a single loop set vertex, vertex 1 in Figure

2.23.

Step 4. The links of the loop set are deleted. All vertices in the loop set, except

vertex 7, are deleted since they do not have links outside the loop set.

Step 5. Vertex 7 in Figure 2.12, which corresponds to vertex 2 in Figure 2.13,

is connected to loop set vertex 1. Notice that vertex 10 in Figure 2.12 corresponds to

vertex 3 in Figure 2.13.

SUMMARY

Algorithms were presented for processing Arabic text prior to recognition. First, an

algorithm was described which converts a smoothed thinned image into a straight line

approximation, consisting of vertex coordinates connected by straight line segments. The

algorithm incorporates heuristics which ensure a unique centre for each intersection

vertex, and to reduce the likelihood of spurious tails. This algorithm produces straight line

approximations which have spurious artifacts introduced by the thinning process which

complicate skeleton representation and may degrade further postprocessing operations.
Thus, another algorithm was developed which uses the distance transform of thinned

binary images to identify spurious bifurcation points which are unavoidable when thinning

algorithms are used, remove them, and recover the original ones. The obtained straight
line approximations preserve the structural information of the original pattern ensuring a

natural representation of it: Unlike existing approaches to the same problem (e. g., [67]),

this new method can deal with complex junctions where more than two lines cross, and
does not resort to geometrical properties which are prone to distortion by scanning and

quantization noise.

Finally, an algorithm is suggested in to obtain reduced straight line approximations
(reduced graphs) in which loops are represented by vertices with features. In this

49

approximation, a loop is dealt with as a whole single entity whose position, " with respect

to other components of a stroke, is retained rather than retaining every segment of the

loop. Reduced graphs are auxiliary representations which are used in subsequent

processes together with direct straight approximations to extract other useful information.

50

Enforcement

of Temporal

Information

OVERVIEW

ýýý\yýýýý\
ý

?

ý'ý
: ýý}

Sý4`

t

AQ\ýý .ý

<<ý

.ýý \\\

In this chapter, straight line approximations of off-line Arabic strokes are

converted into one-dimensional representations by algorithms which attempt to recover

the original sequence of writing. The data flow diagram of Figure 3.1 illustrates the

process which consists of two steps:

(a) Determining Start and End Vertices: This step accepts as input straight line

approximations of strokes, see Chapter 2, and outputs the start and end vertices of

strokes. The start and end vertices are determined based on heuristics, Sections. 3.1

and 3.2, two new theorems, Section 3.3, and a minimum distance path criterion,
Section 3.4.

(b) Solving a Minimum Distance Path Problem, Section 3.4: The inputs to thisstep

are straight line approximations of strokes and the start and end vertices which are
determined. using Step (a). The output is -the vertices of the input straight. line

approximation renumbered according to their order of appearance in the minimum
distance path. The method implements the following heuristic rule: The minimum
distance path that traverses the stroke's straight line approximation from the start

vertex to the end vertex has its vertices ordered in the same way as they were

generated when the stroke was written.

51

Direct straight line

approximation/s of stroke/s

I

I
I
1

Temporal information of stroke/s

r

Figure 3.1. Data flow diagram of the Enforcement of Temporal Information process.

3.1. DETERMINATION OF START VERTEX: HEURISTICS

Owing to stylistic variations in writing, the determination of the start and end points

of an off-line image of a stroke becomes a non-trivial matter. In this section and the next

one, algorithms are developed for this purpose. The vertex chosen for the start or end

point is either a terminal vertex or an intersection vertex in a loop. The algorithm for start

vertex determination follows after the following definition.

Definition

The rectangle of minimum area surrounding the graph, G, of a stroke is called the

hounding rectangle.

Algorithm 3.1

Use: To find the start vertex of every input stroke

Input: For each input stroke:

1. Direct straight line approximation, G

2. Reduced graph, G'

ý

. Determining Start and End Vertices

........... Start and end vertices
of stroke/s

Solving a Minimum Distance
Path Problem ; ',

52

Output: Start vertices of input strokes

Procedure:

Step 1. Locate the set of terminal vertices in G'. The nearest terminal vertex, t,

to the Upper-Right Corner, URC, of the bounding rectangle is found. If a terminal vertex,

v, represents a loop set, then the distance used to select v is the distance from URC to the

nearest of the vertices in G that constitute the loop set.
Step 2.

(a) If t does not represent a loop set, it is considered as the start vertex.

(b) If t represents a single loop having no intersection vertex (i. e., the stroke consists

of a single loop), then the nearest vertex to the Lower-Left Corner, LLC, of the

bounding rectangle is the start vertex.

(c) If t represents a single loop containing an intersection vertex, v, then:

If v has only one link to a vertex outside the loop set, then v is the start vertex.

2. Otherwise, find the set of terminal vertices, U, in the original graph, G, such

that for each uEU there is a path from u to v with the following property:

none of the intermediate vertices in the path between u and v is an intersection

vertex. In Arabic writing, the number of vertices in the set U does not exceed

two. If U is empty, the stroke is discarded since the algorithm concludes that

the structure of the stroke is not consistent with the characteristics of Arabic

script, otherwise:

i. If U has one vertex, u, then u is the start vertex.
ii. If U has two vertices and v lies to the left of the loop set vertex, then the

lower terminal vertex in U is chosen as the start vertex. I

iii.. If U has two vertices and v lies to the right of the loop set vertex, then

the right-most terminal vertex in U is chosen as the start vertex.
(d) If t represents a loop set of two adjacent loops then. the uppermost intersection

vertex, v, in G, which is part of the loop set, is the start vertex. In Arabic script, v

will have exactly three links in G.

53

()RC

LL C
(a)

i
2

3

(b)

Figure 3.2. (a) Bounding rectangle of a graph, G, with 1 being the start vertex, and
(b) the reduced graph, G', with vertices 1 and 2 representing a loop set of two adjacent
loops and a loop set of a single loop, respectively.

3.1.1. Examples

The steps of the Algorithm 3.1 are illustrated by examples in Figures 3.2 to 3.7.

Step 1. Figure 3.2(a) shows the graph, G, of a stroke having two connected

characters: Ha and Waw, from right to left. Ha has two adjacent loops, while Waw has

one loop. The two loops öfHa have two common links; therefore they constitute a loop

set of two adjacent loops. The third loop is not adjacent to any other loop; therefore it.

represents a second loop set consisting of one loop. The two loop sets are represented by

vertices 1 and 2 in the reduced graph, G', Figure 3.2(b). The minimum bounding rectangle
for the graph G of Figure 3.2(a) is shown in dashed lines. In Figure 3.2(b), there are three

terminal vertices: 1,2, and 3. Since 1 represents a loop set, its distance, d, to URC is that

shown in Figure 3.2(a). It is clear that 1 is the nearest terminal vertex to URC.

54

Figure 3.3. A graph of a stroke without loops: vertex 1 is the start vertex.

LLC

Figure 3.4. Arabic numeral "o", or isolated Ha character: vertex 1 is a start vertex.

(a)

(b)

Step 2.

An example of this case is vertex 1 of Figure 3.3.

This case occurs for Arabic numeral "o" and an isolated Ha character (both are just

closed loops) as shown in Figure, 3.4. For this special case, the start vertex can be

any one of the vertices in the closed straight line approximation. However, in most

of the handwritings the start vertex is the nearest one to LLC which is our choice
in this algorithm. Thus, in Figure 3.4, vertex 1, whose distance, d, to LLC is

minimum, is the start vertex.

(c) 1. This case is shown in Figure 3.5 with 1 as the start vertex.
2. In Figure 3.6(a), the loop when converted into a loop set vertex (vertex 4 in

Figure 3.6(b)), becomes the nearest terminal vertex to URC. The set U

consists only of vertex 1, which is chosen as the start vertex. In Figure 3.7, the

intersection vertex, 2, lies to the right of the loop set vertex in G' (not shown).
The set U consists of two vertices, 1 and 3. Since 1 is the right-most vertex,
it is selected as the start vertex.

55

Figure 3.5. A stroke that starts with a loop. The start vertex is 1.

OL URC

(a)

3
4

2

I

(b)

Figure 3.6. (a) A stroke that starts with a loop (1 is the start vertex), and (b) the
reduced graph, G'.

Figure 3.7.; A stroke'with a loop closest to URC, and two terminal vertices in the set
U, 1 is the start vertex.

56

Figure 3.8. Vertices 1 and 2 are incorrectly selected as the start and end vertices,
respectively. The converse is true.

3

Figure 3.9. The segment between vertices 1 and 2 is a spurious elongation artifact.
Vertices 1 and 7 are incorrectly selected as the start and end vertices, respectively. The

true start and end vertices are 3 and 5, respectively.

(d) An example of this case is vertex 1 of Figure 3.2(a).

3.1.2. Causes of Failure

Algorithm 3.1 can fail to identify the actual start vertex for the following reasons:
(a) There can be a terminal vertex, t, which is nearer than the actual start vertex to

URC. In such a case, t will be wrongly selected as the start vertex. In Figure 3.8, the

actual start vertex is 2 although its distance, d2, to URC is larger than the distance,

dl, of vertex 1. Thus, vertex 1 is incorrectly selected as the start vertex.
(b) A spurious elongation artifact may produce a terminal vertex with the same property'

as in the previous case. In Figure 3.9, the segment between 1 and 2 is a spurious

artifact that results in vertex 1 being the nearest to URC. Thus 1 is incorrectly

selected as the start vertex instead of 3, the actual start vertex.

(c) A secondary stroke may touch a main stroke with the former having a terminal

57

Figure 3.10. The segment between vertices 1 and 2 is a secondary stroke that touches
the main stroke. Thus, vertex 1 is incorrectly selected as the start vertex while the true
start vertex is 3.

vertex as in case (a). In Figure 3.10, the segment between vertices 1 and 2 is a

secondary stroke that touches the main stroke. This causes vertex 1 to be incorrectly

selected as the start vertex instead of vertex 3, the true start vertex.

3.2. DETERMINATION OF END VERTEX: HEURISTICS

A formal description of an algorithm to determine the end vertex of a stroke now
follows.

Algorithm 3.2

Use: To find the end vertex of every input stroke

Input: For each input stroke:

1. Direct straight line approximation, G

2. Reduced graph, G'

Output: End vertices of input strokes
Procedure:

Step 1. ' Locate the set of terminal vertices, T, in' G'. Arrange these vertices in

ascending order according. to their Euclidean distance from LLC of the bounding

rectangle. If a terminal vertex, v, represents a loop set, then the distance of v is the
distance from LLC to the nearest of the vertices in G that constitute the loop set. Let t be

the first vertex in T, i. e., t is the nearest terminal vertex to LLC.

58

Step 2. Let s represent the start vertex that was found using Algorithm 3.1.

(a) If t does not represent a loop set then:

1. If G consists of a single vertex, t is considered as the end vertex. This vertex
is also selected as the start vertex in Algorithm 3.1, Step 2(a).

2. If G consists of more than one vertex and t#s, then t is considered as the end

vertex.

3. If G consists of more than one vertex and t=s, then let t be the next vertex

in T and repeat Step 2.

(b) If t represents a single loop having no intersection vertex (i. e., the stroke consists

of a single loop), then the nearest vertex to LLC is the end vertex. This vertex is

also selected as the start vertex in Algorithm 3.1, Step 2(b).

(c) If t represents a single loop containing an intersection vertex, v, then:

1. If v has only one link to a vertex outside the loop set, then:

i. If v: s then v is the end vertex.
ii. If v=s, then let t be the next vertex in T and repeat Step 2.

2. Otherwise, find the set of terminal vertices, U, the same as in Step 2(c)2 of

Algorithm 3.1. If U is empty, the stroke is discarded since the algorithm

concludes that the structure of the stroke is not consistent with the

characteristics of Arabic script, otherwise, let u be the nearest of the vertices
in U to LLC:

i. If u#s, then u is the end vertex.
ii. If u=s and U has two vertices, then the other vertex in U is the end

vertex.
iii. If u=s and U has one vertex, then let t be the next vertex in T and

repeat Step 2.

(d)
.
If t represents a loop set of two adjacent loops then let t be the next vertex in T and

repeat Step 2 since an Arabic stroke can not end with two adjacent loops.

3.2.1. Examples

The steps of Algorithm 3.2 are illustrated by examples.
Step 1. In Figure 3.2, the set of terminal vertices, T, is (1,2,3) which, when

59

2

Figure 3.11. The start and end vertices are 1 and 2, respectively.

1

6L)
Figure 3.12. The start and end vertices are 1 and 2, respectively.

arranged in ascending order according to their Euclidean distance from LLC of the

bounding rectangle, becomes (3,2,1). Thus, the nearest terminal vertex to LLC is vertex

3.

Step 2.
(a) 1. The case in which G consists of a single vertex occurs in dot strokes. It is

obvious that this single vertex works as a start and end vertex.

2. In Figure 3.7, s=1, t=3#s. Thus, 3 is the end vertex.
3. In Figure -3.11, since t=s=1, the next vertex, 2, in T is selected and Step 2

is repeated.. This time, t=2#s, resulting in 2 being the end vertex.

(b) An example of this case is vertex 1 of Figure 3.4. This vertex is a start and end

vertex.
(c) 1. i. The loop in Figure 3.12, when converted to a loop set vertex (not shown

in the figure), becomes the nearest terminal vertex to LLC. Here, s=1,

v=2#s. Thus, 2 is the end vertex.
ii. In Figure 3.13, since v=s=1, the next vertex, 2, in T is selected and

60

Figure 3.13. The start and end vertices are 1 and 2, respectively.

Figure 3.14. The start and end vertices are 1 and 3, respectively.

Figure 3.15. The start and end vertices are 1 and 3, respectively.

Step 2 is. repeated. This time, t=2*s, resulting*in-2 being the end
vertex. .0.

2. i. In Figure 3.14, s=1, u=3*s. Thus, 3 is the end vertex.
ii. In Figure 3.15, u=s=1 and U has two vertices, 1 and 3. Thus, the

other vertex , 3, in U is the end vertex.
iii. In Figure 3.16, u=s=1 and U has one vertex. Thus, the next vertex in

61

Figure 3.16. The start and end vertices are 1 and 3, respectively.

Figure 3.17. The start and end vertices are 1 and 2, respectively.

T is selected and Step 2 is repeated. This time, t is a loop set vertex

which represents the uppermost single loop. Here, v=3*s and has only

one link to a vertex outside the loop set. Thus, 3 is the end vertex.

(d) If the loop set of Figure 3.17, which consists of two loops, is reduced to a loop set

vertex it becomes the nearest terminal vertex to LLC. Since Arabic strokes can not

end with two adjacent loops, another terminal vertex, 2, is selected and Step 2 is

repeated. Since s=1, t=2#s, 2 is the end vertex.

3.2.2. Causes of Failure

Algorithm 3.2 can fail to identify the actual end vertex for the following reasons:
(a) ' There can be a terminal vertex, t, which is nearer than the actual end vertex to LLC.

In such a case, t will be wrongly selected as the end vertex. In Figure 3.18, the

actual end vertex is 2 although its distance to LLC is larger than that of vertex 1.

62

Figure 3.18. Vertex 1 is incorrectly selected as the end vertex. The true end vertex is
2.

Figure 3.19. The segment between vertices 1 and 2 is a spurious elongation artifact.
Vertex 1 is incorrectly selected as the end vertex. The true end vertex is 3.

Thus, vertex 1 is incorrectly selected as the end vertex.

(b) A spurious elongation artifact may produce a terminal vertex with the same property

as in the previous case. In Figure 3.19, the segment between 1 and 2 is a spurious

artifact that results in vertex 1 being the nearest to LLC. Thus, 1 is incorrectly

selected as the end vertex instead of 3, the actual end vertex.

(c) It may happen that Algorithm 3.1 selects the true end vertex as a start vertex. Thus,

Algorithm 3.2 is forced to select another incorrect vertex to work as an end vertex.

This is clear from Figure 3.8 in which 1 is selected as the start vertex. Thus, the

algorithm is incorrectly forced to select 2 as the end vertex:

The earlier algorithms for the determination of start and end vertices can be

developed to be more sophisticated so that almost alt possible conditions that may arise
in Arabic handwriting can be dealt with successfully.

3.3. DETERMINATION OF START AND END VERTICES: THEOREMS

In this section, we present two theorems to determine start and vertices of an Arabic

stroke which are based on our observations of Arabic handwriting. First, some terms are

63

defined in the following subsection.

3.3.1. Definitions

(a) SNSENR Property of Cursive Arabic Handwriting: In correct cursive Arabic

writing, any segment having the start or end vertex as one of its vertices is not

retraced. This property will be called the SNSENR property which is the

abbreviation of. a Segment which is Near a Start or End vertex is Not Retraced.

(b) The degree of a vertex vEV is the number of links in L associated with v.
(c) A noiseless graph, G, is a graph that is written such that the SNSENR property is

not violated, and has no spurious tails.

(d) A multi-vertex graph, G, is a graph that has more than one vertex.
(e) An open graph, G, is a graph that does not consist of loops only, i. e., it contains at

least one link which is not one of the links of a loop in G.

3.3.2. Theorem 1

In a noiseless, multi-vertex, and open graph, G, of a stroke the start and end vertices

have odd degrees.

Proof See Figure 3.20.

(a) When a stroke is to be drawn, first the pen is laid on paper to plot the start vertex,

vo. Since G must be a multi-vertex graph, some vertex other than the start vertex

must be plotted. Thus, the start vertex is left by drawing a segment, s1. Drawing Si

generates another vertex which makes the degree of vo odd. If it is continued to plot

anything without returning to vo, then vo preserves its degree (i. e., it remains odd).

Now, if vo is to be returned to then this must be done via another segment, say sm,

otherwise the SNSENR property will be violated. Returning to vo via sm makes its

degree even. To preserve the SNSENR property and exclude the cases for which

G only consists of loops, vo has to be left again via a new segment, say sm+1, which

retains the previous odd degree of vo. Thus, it turns out to be true that whenever vo
is left it will have an odd degree. This completes the proof of the first half of the

(b)
theorem that concerns the start vertex.
If the vertex vZ is intended to be the end vertex of a stroke, then the first time it is

64

Figure 3.20. A graph used to assist the proofs of Theorems 1 and 2.

drawn it will have an odd degree since it has to be arrived at via a segment, say s,,.

If the writing subsequently leaves v,, via a segment, say si+1, then the degree of V,.

becomes even. But since vZ has to be returned to by some segment, sq, its degree

again becomes odd. Thus, it is true that whenever vZ is arrived at it has an odd

degree and whenever it is departed from it has an even degree. Sooner or later, vz

will be returned to and the writing process will terminate leaving vZ with an odd

degree. Of course, this also excludes the cases where G is a vertex. This completes

the proof of the theorem.

3.3.3. Theorem 2

If any of the start and end vertices of a stroke's graph, G, is an intersection vertex then

it must be one of the vertices of a loop in G. Alternatively, an intersection vertex that is

not one of the vertices of a loop in G can not be a start or an end vertex.

Proof According to the SNSENR property of Arabic handwriting, if a start or an end

vertex has to be returned to then the only way to-do that is via another segment other than

the firstly plotted one. Remember that in cursive writing the pen is not lifted from start to'

end which means that returning to the start or end vertex creates a loop whose one of its

vertices is the start or end vertex. This start or end vertex is already an intersection one

if it has been previously visited or it becomes an intersection by being departed from if it

is the first time to be returned to. Thus, if an intersection is either a start or end vertex, it

must be in a loop and this completes the proof of the theorem.

The importance of Theorem 1 is that not all of the vertices of a stroke's graph, G,

65

are candidates for start or end vertices. The start-end pair of vertices exists in the set of

those vertices with odd degree. Theorem 2 reduces the set of candidate start and end

vertices to those of degree 1, together with vertices of odd degree which exist in loops.

For example, in Figure 3.20 the vertices from v3 to v6 can not be start or end vertices.

Later, a method will be developed to determine the start-end pair of vertices.

3.4. ENFORCEMENT OF TEMPORAL INFORMATION

Any stroke has a start vertex, v1, an end vertex, v,, and a set of links some of which

may be traced more than once at the time of writing. It can be easily observed that if the

links of the stroke are traversed from v, to %, then the traversing path reveals the fact that

the writer usually tries to minimize the energy required to write the stroke. This energy

can be directly minimized by minimizing the overall distance moved by the pen on the

writing surface. Thus, the restoration of temporal information of off-line writing is based

on the following heuristic rule, which is consistent with our observations of Arabic script:

The minimum distance path that traverses the stroke's graph, G, starting at the start

vertex and ending at the end vertex has its vertices ordered in the same way as they were

generated when the stroke was written.

In graph theory, finding the minimum distance path described in the above rule is a

variant of the Chinese postman's problem for the corresponding graph: If the links of the

graph Gare weighted with positive costs, find a path which will traverse every link of G

at least once and for which the total cost of traversal (being the sum of nc, where nj is

the number of times a link lj is traversed and cj is its cost), is minimum [74]. For a

minimum distance solution, the cost of a link is equal to its length.

The author therefore proposes to enforce the temporal information by an algorithm

which is a 'variant of a standard approach to the Chinese postman's problem, applied to

the 'graph of the stroke. Before we proceed any further, we introduce the following

definitions.

Definitions

(a) An Eulerian path of G is a path that traverses every link of G once and only once.

(b) An Eulerian circuit of G is an Eulerian path that starts and ends at the same vertex.

66

3.4.1. Solution of the Chinese Postman's Problem

A standard method [74] for solving the Chinese postman's problem is as follows. It

can be shown that G possesses an Eulerian circuit if and only if all its vertices have even

degree. In the more general case, where G contains a non-empty set V- of vertices of odd

degree, an Eulerian circuit will not exist, and a path which traverses all the links of G will

inevitably traverse some links more than once. The problem then reduces to minimizing

the additional cost of the links which are retraced.

It can also be shown that the number I V- I of odd-degree vertices in G is always

even as follows. Of the vertices of V some vertices (say in the set V+) will have even

degrees and some (in the set V- =V- V) will have odd degrees. Now, the sum of the

degrees d; of all vertices v; eV is equal to twice the number of links in L (since each link

adds unity to the degrees of its two end vertices), and is therefore an even number 2m.

Hence:

Ed, = F
,

d, + E d, =2m
V, EV ViEV, V, EV-

(3.1)

and since E d, is even,
E d, is also even, which means that since all d; in this last

V, eV' V eV

expression are odd the number (V' I of vertices of odd degree is even.
Let M be a set of paths of G (p, say) between end vertices v; and v,, (vi, vj E V"), so

that no two paths have any end vertex the same, i. e., the paths are between disjoint pairs

of vertices of V- and M constitutes a pairwise vertex matching. The number of paths go
in M is '/21 V-1, and since I V- I was shown to be always even, this number is always an

integer, as of course, it should be. All the links forming a path p are added into G as

artificial links in parallel with the links of G already there. (In the first instance this means

that all links of q forming po are now doubled.) This is done for every path pÜ EM and

the resulting graph is called G-(M). Since some links of G may appear in more than one

path, µv, some links of G-(M) may (after all the paths pu have been added in) be'in

triplicate, quadruplicate, etc. All the vertices of G"(M). have even degree, and G-(M)

therefore possesses an Eulerian circuit.

For the solution of the Chinese postman's problem, it is necessary to find that set of

paths M* (matching the vertices of odd degree) which produces the least additional cost

67

(or distance in the case of writing). The least distance path traversing G would then

correspond to an Eulerian circuit of G-(M*), whose length is equal to the sum of the

lengths of the links of G plus the sum of the lengths of the links in the paths of M*.

It should be noted that since a minimum matching M* is used, no two paths pj and

pPq in such a matching (of, say, v; to vj and vp to vq) can now have any link in common.

This means that the graph G-(M*) does not have more than two links in parallel between

any two vertices, i. e., the optimal path never traverses any link of G more than twice. This

is consistent with Arabic writing since a stroke segment may be retraced only once (i. e.,
it is drawn twice).

An Eulerian circuit can be traced through G-(M*) by selecting an arbitrary start

vertex and adopting Fleury's Rule for finding an Eulerian path: Each time a link has been

traversed, erase it. Never traverse a link if the removal of this link will divide the

remaining graph into two connected components (excluding isolated vertices).
At any stage, in the construction of the Eulerian circuit of G-(M*), there is often

more than one choice for the next link to be traced which satisfies Fleury's Rule. Thus,

there will generally be a large number of distinct Eulerian circuits of G"(M*), all of which

correspond to minimum-distance paths through G.

Floyd's Algorithm for shortest paths between all pairs of vertices of a graph can be

used to check whether the graph is divided into two components [74]. If the removal of

a link produces at least two vertices of shortest path the length of which equals infinity,

then this means that the graph will be divided into two connected components. In that

case, the link is not removed and another vertex is searched for possible traversal.

As an illustration of the above method, consider the graph G depicted in Figure

3.21(a). This graph has 12 links, all of which are assigned unit cost. Here, V- consists of
the four vertices of odd degree, numbered 1,2,3, and 7.

An arbitrary, pairwise matching of the vertices in V- is M= {913 = 1-2-3,927 =. 2-5-

6-7}. When the paths in M are added to the graph G, the graph G-(M) which has 17 links,

is obtained, as shown in Figure 3.21(b). An Eulerian circuit of G7(M), obtained by starting

at vertex 1 and applying Fleury's Rule, is 1-2-3-4-8-7-6-9-10-7-6-5-2-3-6-5-2-1, and has

a total cost of 17.

The minimal distance matching of the vertices in V- is M* = {1112 = 1-2,1137 = 3-6-

68

i Z

5

3

6

9

(a)

9
(b)

1

5

'ý2 3

6

.9
(c)

4

to

10

4

ý

10

Figure 3.21. Solution of the Chinese postman's problem: (a) the original graph, G, (b)
the extended graph G-(M), from'an arbitrary matching M, and (c) the extended graph
G-(M*), from the minimum cost matching M*.

69

71. The extended graph G-(M*) has 15 links and is shown in Figure 3.21(c). An Eulerian

circuit of G-(M*) is 1-2-3-4-8-7-6-9-10-7-6-3-6-5-2-1, and the corresponding path in G

is therefore a solution of the Chinese postman's problem, having a total traversal cost of

15.

3.4.2. Algorithm to Enforce Temporal Information

For the purpose of enforcing temporal information in a graph extracted from an

Arabic handwritten stroke, it is necessary to find an Eulerian path (rather than circuit),

beginning at the start vertex and finishing at a distinct end vertex. If an Eulerian path

exists it means that the graph can be drawn on paper by following this path and without

lifting the pen from the paper. A path consistent with Arabic handwriting is found by the

algorithm introduced below, which differs from the solution of the Chinese postman's

problem in two important respects:
(a) The start and end vertices are removed from the set V- prior to constructing the

graph G-(M*). Three options will be suggested to determine the start and end

vertices. A start or end vertex has odd degree (either 1 or 3).

(b) Ambiguities in the application of Fleury's Rule are resolved by adopting heuristics

consistent with the properties of Arabic handwriting.

The algorithm which follows is applicable in all cases, with the exception of one

special case, where the stroke consists of a single closed loop. In that case, the loop is

traced in a clockwise direction, beginning and ending at the start vertex.

Algorithm 3.4,

Use: To enforce temporal information on an off-line handwritten Arabic stroke

Input: For each input stroke:

1. Direct straight line approximation, G

2. Reduced graph, G'

Output: Temporal information of stroke/s, i. e., an optimum Eulerian path traversing

the graph, G, from the start vertex to the end vertex, for every input stroke

Procedure:

Step 1. Determine the length of all links in G. Find the set, V', of vertices in G,

70

having odd degree. Using a shortest path algorithm [74], compute the 1V- I by I V' matrix

D= [di] where dy is the sum of the link lengths in the least-distance path from a vertex v;

E V- to another vertex vv c W.

Step 2. In Arabic writing the first drawn line segment after the start vertex is not

retraced. The same applies for the last drawn line segment just before the end vertex is

reached (see SNSENR property). Thus, the start and end vertices are excluded from the

matching, to be found, by removing them from the set V'. To determine the start and end

vertices, three options are suggested:

Option 1.

(a) Algorithms 3.1 and 3.2 are used to determine the start and end vertices,

respectively.
(b) Exclude the start and end vertices from the set V.

(c) Find that pairwise matching M* of the vertices in V' which produces the least

distance according to the distance matrix D. This can be done efficiently by the

minimum matching algorithm described in reference [74].

Option 2.

(a) Use Algorithm 3.1 to determine the start vertex.
(b) The end vertex is found as follows:

1. Remove the start vertex from the set V.

2. Each remaining v; E V- is a candidate to be an end vertex. Find that pairwise

matching M' of the vertices in V', excluding v;, which produces the least

distance according to the distance matrix D. This is repeated for each v; E V.

3. Determine which of the matchings M has the least additional cost, and denote

that matching by M*. The vertex v* E V', which is excluded from V- to obtain
M*, is considered as the end vertex.

Option 3. The start and end vertices"are determined as follows:

(a) A pair of vertices v;, vv E V-, i#j, such that Theorems 1 and 2 are satisfied is a

candidate fora start-end pair. Find that pairwise matching NP of the vertices in V-,

excluding v; and v,, which produces the least distance according to the distance

matrix D. This is repeated for every pair of vertices v;, vv e V, i#J.

(b) The pair of vertices v; *, vj* E V', such that Theorems 1 and 2 are satisfied, which

71

when excluded a minimum matching M* = min NO is obtained, is considered as the

start-end pair of vertices and hence v; * and vv* are removed from V-.

(c) The nearest vertex of v1* and v, * to URC is the start vertex and the other one is the

end vertex.

Step 3. In the matching, M*, if a vertex v; is matched to another vertex vj,

identify the least distance path µj (from v; to v3) corresponding to the distance du of Step

1. Insert artificial links in G corresponding to links in µÜ and repeat for all other paths in

the matching M* to obtain the graph G-(M*).

Step 4. Obtain an Eulerian path of G'(M*), and hence the corresponding

optimum path traversing the original graph G, by beginning at the start vertex and

applying Fleury's Rule in parallel with two additional rules:

Rule 1. If none of the links of G"(M*) has been traversed (we are at the start

vertex v,), then the degree of v, is either 1 or 3, and there are three possibilities:
(a) There is only one vertex to be visited after the start vertex provided that Fleury's

Rule is satisfied, in which case the traversal proceeds to that vertex.
(b) The number of vertices which may be visited after the start vertex, provided that

Fleury's Rule is satisfied, is two, say v; and vv (i. e., the start vertex is in a loop). Here

there is also a third vertex, vk, connected to v,. v; will be the next vertex to be visited

if the directional change between the two links (vi, v,) and (v� vk) is less than the

directional change between the two links (vp v,) and (v� vk), otherwise, vj will be the

next vertex to be visited.
(c) The number of vertices which may be visited after the start vertex, provided that

Fleury's Rule is satisfied, is three. The uppermost vertex of these three vertices is the

next vertex to be visited.

The reason for which the number of the above cases is limited to three simply is: In

Arabic script writing, the cases in which the number of vertices that can be visited; after

the start vertex, is greater than one occur in those characters starting with loops. If the

character starts with one loop, then this number equals two. For characters with two

adjacent loops, it is three. Finally, there is no single character that may start with more

than two adjacent loops; therefore only the above three cases are obtained.

Rule 2. Ifthe traversal is not at its start (i. e., we have left v), let vj be the current

72

visited vertex and v; be the previously visited vertex just before vj. Let V" be the set of

vertices which may be visited after vj such that Fleury's Rule is satisfied. The vertex vk E

V" that produces the minimum change between the directions of the two links (v;, v) and

(v,, vk) is selected as the next vertex to be visited.

The stroke's graph, G, and the temporal information extracted using the above

algorithm constitute a one-dimensional representation of a stroke that was originally

plotted in a plane.

The above algorithm can also be used to enforce temporal information on reduced

graphs. However, since in a reduced graph there are no loops, a start or end vertex is

always a terminal vertex.

3.4.3. Example

The various steps of Algorithm 3.4 are illustrated in the following detailed example.

Figure 3.22(a) shows the image of a stroke with two loops, and Figure 3.22(b) shows a

straight line approximation of the same stroke with initial numbering of vertices.

Step 1. The set of vertices of odd degree is V- = (1,2,3,4,5,6,8,9). Since

V-1 is 8, a shortest path algorithm obtains an 8x8 matrix D= [do], where do is the length

of the least-distance path from a vertex v; E V" to another vertex vv E V-.

Step 2. Any of the three options of this step yields vertices 9 and 1 as start and

end vertices, respectively. These two vertices are excluded from V-.

Step 3. The matching M* consists of: 2 to 6 with the shortest path 2-6,3 to 8

with the shortest path 3-8, and 4 to 5 with the shortest path 4-5. Artificial links are

inserted in G corresponding to the links of the paths 2-6,3-8, and 4-5 to obtain the graph

G"(M*) which is shown in Figure 3.22(c), where artificial links are dotted lines. Notice

that the graph G7(M*) does not have more than two links in parallel between any two

vertices. This is consistent with Arabic writing since a stroke segment may be retraced

only once (i. e., it is drawn twice).

Step 4. An Eulerian path of this graph, which is an optimum path traversing the

original graph G of Figure 3.22(b), is constructed, by applying Fleury's Rule taking into

account the previously mentioned rules for Arabic handwriting, as follows. The vertices

73

(a)

(6
-.., ., Z1 1. OL

Il 12

(b)

(c)

(d)

(e)

Figure 3.22. (a) An Arabic stroke, (b) its graph, G, (c) G"(M*), (d) the graph, G, after
finding the optimum Eulerian path and renumbering of vertices, and (e) the reduced graph,
G', with the optimum Eulerian path shown.

74

20 and 24 are candidates to be visited after the start vertex, 9. Since the directional change

between the two links (24,9) and (9,19) is less than that between the two links (20,9)

and (9,19), 20 is selected as the next vertex to be visited. When vertex 7 is reached,

vertices 5 and 15 are candidates for the next visited vertex. Since the directional change

achieved by going through the sequence 17,7,5 is less than that for the sequence 17,7,

15, vertex 5 is selected as the next visited vertex. The minimum Euler path is 9-20-21-22-

23-24-9-19-8-3-8-18-17-7-5-4-5-16-15-7-14-13-6-2-6-12-11-10-1. The vertices of the

minimum path are renumbered according to the order by which they appear in the

minimum path. Thus, the path becomes: 1-2-3-4-5-6-1-7-8-9-8-10-11-12-13-14-13-15-

16-12-17-18-19-20-19-21-22-23-24. The graph of the stroke after renumbering of

vertices is shown in Figure 3.22(d).

To clarify how reduced graphs are manipulated, the graph of Figure 3.22(b) is

reduced to the graph shown in Figure 3.22(e). The two loops are converted to loop set

vertices, 1 and 9 in Figure 3.22(e). The determined start and end vertices are 1 and 19, '

respectively. Traversing the reduced graph from start to end results in its vertices being

numbered as shown in the figure.

3.4.4. Testing

Algorithm 3.4 was tested against two different data sets. The first data set represents

samples of isolated handwritten characters provided by 20 subjects, see Appendix B,

Figures B. 2 to B. 21. The other data set represents samples of cursive Arabic handwriting

provided by 20 subjects, see Appendix D, Figures D. 1 to D. 20. A description of how

these data sets were acquired is given in the following subsection.

3.4.4.1. Data Acquisition

For the data set of isolated handwritten characters, the character set under test is

shown in Figure 3.23 which is, from right to left: Arabic numerals "" ", i "T "C", "f

"o "1", "v", "A", and Arabic secondary strokes and special characters: Hamza,

Madda, Shadda, slash, minus sign, right and left parenthesis, comma, and Damma.

Twenty subjects were asked to write one line of each character of the set. under

study. There was no restriction on pen type, ink type, or ink colour. Subjects were asked

75

,q dý () --iL, 0 . --, gýA v1o2 x'C'1 4
Figure 3.23. Set of stroke classes used to test Algorithm 3.4, from right to left: Arabic
numerals zero to nine, Hamza, Madda, Shadda, slash, minus sign, right parenthesis, left
parenthesis, comma, and Damma.

to avoid generating blobs as possible as they can since the algorithm was not designed to

deal with such a phenomenon. Each subject was given one A4 size blank sheet on top of

another guiding sheet, see Appendix B, Figure B. 1, with 20 x 20 empty squares. The

reasons for using squares are:

(a) With a sheet without squares as guidelines, the writing of a subject may deteriorates

as he proceeds from one end of the line to the other end since he knows that the

same character is to be written. Thus, he may not mind to move and re-adjust his

wrist as the pen moves. Including such guiding squares helps to achieve such wrist

re-adjustment, hence, produces more natural writing.
(b) Without squares, characters of the same line may touch each other which raises

some kind of a segmentation problem which is not addressed in the current research.
The squares of the guiding sheet eliminate this problem.

(c) If the same size of data is acquired by every subject then more accurate evaluation

of the algorithm is obtained. This is achieved by giving each subject a blank sheet

on top of another sheet with a fixed number of empty squares per sheet.
(d) If the same number of samples is acquired for each character then more accurate

evaluation of the algorithm is obtained. This is achieved by giving each subject a
black sheet on top of another sheet with a fixed number of empty squares per line.

Reproductions of the images of isolated, handwritten characters used to test
Algorithm 3,4 are shown in Appendix B, Figures B. 2 to B. 21. In these figures, notice that

there is an extra character, the plus sign, in which the pen has to be lifted once during

writing which produces two start vertices and two end vertices. Unfortunately, the current

version of Algorithm does not deal with such cases. Thus, the samples of the plus sign

were excluded from the test. They were only used in the testing stage of the IACR system,
Part Two.

76

The data set of cursive handwriting which was used to test Algorithm 3.4 was not

restricted to a limited list of words, i. e., an unlimited vocabulary was used. A subject can

pick any book, story, journal, etc., and select the parts he wishes to write. Also, there was

no restriction on pen type, ink type, or ink colour. The subjects were asked to fill an A4

size blank sheet of undiacriticized handwriting. Subjects were asked to use a common type

of chirography of Arabic handwriting which is called Arreka chirography. Subjects who

don't master Arreka chirography were asked to simply follow the rule: write every

subword as single piece without lifting the pen except for secondary strokes (dots, dashes,

etc.). They were asked to avoid generating blobs as possible as they can since the

algorithm was not designed to deal with such a phenomenon. Unfortunately, most of the

subjects were not conforming to these instructions. Mostly, a mixture of Arreka

chirography and another common chirography in Arabic handwriting called Annaskh were

used. In Annaskh chirography, the pen can be lifted more than once to write the main

stroke of a subword. The subjects were asked to write from 10 to 15 lines per page which

span the entire length of the A4 size sheet. Twenty unnormalized handwritten A4 size

pages written by 20 subjects were collected. The whole data provided by the 20 subjects

were used to test Algorithm 3.4 without discarding any proportion whether the subject
follows Arreka chirography or not. Reproductions of the images used to test the algorithm

are shown in Appendix D, Figures D. 1 to D. 20.

Images of the two data sets were captured using an HP ScanJet scanner. The

resolution used was 300 dots per inch in both the horizontal and vertical directions. The

reason for selecting this value of resolution is based on our observation that under-

sampled pictures, e. g., less than 300 dpi, may create disconnected images for very thin

strokes which produces multi-component straight line approximations for such strokes.
This is not accepted by the algorithm since it does not have the capability to handle

disconnected strokes.

3.4.4.2. Results

First, we have to mention the following:

(a) When writing a stroke, for most of Arabic writers, the generated vertices share a

common vertex ordering which is a result of following common writing rules. Thus,

77

to determine when the actual temporal information was recovered we depend on

these common rules and visual inspection of each processed sample without the

need to know the writer's conditions.

(b) In the case of cursive handwriting, sometimes the pen has to be lifted, after finishing

the main stroke, to write secondary strokes that complete the subword. Usually, a

secondary stroke does not touch the main stroke. A secondary stroke which touches

the main stroke will be treated as part of the main stroke.

The options in Algorithm 3.4 were used to generate three different methods. The

first method implements Option 1 of Step 2 of the algorithm [44]. In the second and last

methods, Options 2 and 3, of Step 2, are used, respectively. The key differences between

the three methods are:

(a) In Methods 1 and 2, the start vertex is determined according to certain heuristic

rules which depend on the geometrical properties of the stroke. In Method 3, the

start vertex is determined according to a minimum-distance criterion.

(b) In Method 1, the end vertex is also determined according to certain heuristic rules

which depend on the geometrical properties of the stroke. In Methods 2 and 3, the

end vertex is determined according to a minimum-distance criterion.
The results of the three methods for the two data sets are detailed below.

(a) Results of the Isolated Character Data Set

As mentioned in Section 3.4.4.1, the plus sign was excluded from the test. Also,

some other garbage samples were excluded. Thus, a total 7563 samples was used

to test Algorithm 3.4. The overall success rates of restoration of temporal

information for Methods 1,2, and 3 were 90.9%, 90.7%, and 91.9%, respectively.

Table 3.1 details the results of the three methods for the 20 subjects. In this table,

notice that Methods 1 and 2 have the same success rate for the start vertex, as it

should be, since they both use Algorithm 3.1 to determine the start vertex. From this

table, it is clear that Method 3 exhibits the highest overall success rate for

restoration of temporal information, 91.9%. The reason for this is that in Method

3 the start and end vertices are concurrently determined according to a minimum-
distance criterion. In other words, a candidate start-end pair of vertices is only

selected as the final start-end pair of vertices if the corresponding path has the

78

Table 3.1. Comparison between the performance of three methods for restoring temporal
information, where the data used to obtain this table are the isolated sample characters
shown in Appendix B, Figures B. 2 to B. 21.
S: Subject #, Temp. info.: Temporal information, Tot: Total.

Success Rate, %

N
Method I Method 2 Method 3

S

o.
of

strokes
Start

vertex
End

vertex
Temp.
info.

Start
vertex

End
vertex

Temp.
info.

Start
vertex

End
vertex

Temp.
info.

1 380 89.2 90.0 88.2 89.2 88.2 86.8 90.5 88.2 88.2

2 380 93.9 94.5 92.6 93.9 91.6 91.1 94.5 91.6 90.8

3 380 91.6 93.2 90.8 91.6 91.6 90.5 93.2 91.6 91.1

4 380 92.9 93.4 91.8 92.9 93.4 92.1 93.4 93.4 92.6

5 379 92.9 93.4 92.6 92.9 93.4 92.3 93.4 93.4 93.1

6 380 93.4 94.7 92.6 93.4 94.5 92.9 94.5 94.5 94.2

7 380 89.5 90.5 88.4 89.5 90.0 88.7 90.5 90.0 89.5

8 373 90.9 93.8 89.5 90.9 93.8 89.8 90.9 93.8 89.8

9 379 94.2 94.5 93.7 94.2 94.5 93.9 94.2 94.5 93.4

10 375 94.1 94.1 93.3 94.1 94.7 94.1 94.4 94.7 94.1

11 377 90.5 90.7 89.9 90.5 90.7 89.9 90.7 90.7 90.2

12 376 94.9 94.9 94.7 94.9 94.9 94.7 94.9 94.9 94.7

13 375 93.9 94.1 93.6 93.9 93.9 93.3 94.1 93.9 93.3

14 379 92.1 94.7 91.3 92.1 93.7 91.6 94.7 94.7 94.5

15 380 91.3 94.7 90.5 91.3 93.7 90.5 94.7 94.7 94.2

16 379 89.4 92.9 88.7 89.4 89.7 88.7 92.6 92.1 90.8

17 . 379 90.2 93.4 89.2 90.2 93.1 89.4 93.1 93.1 92.3

18 . 372 89.8 92.7 88.7 89.8 92.7 89.0 92.5 92.7 91.9

19 380 92.9 94.7 91.8 92.9 90.0 88.9 94.2 90.0 88.9

20 380 86.8 90.8 86.1 86.8 90.8 86.1 90.5 90.8 89.5

Tot 7563 91.7 . 93.3 90.9 91.7 92.4 90.7 93.1 92.7 91.9

79

minimum length such that Fleury's rule and other additional rules are not violated.

(b) Results of the Cursive Handwriting Data Set

Here, only the main strokes of the collected sample pages were used to test

Algorithm 3.4 since a secondary stroke is usually a dot, dash, or Hamza character

which were included in the test of the isolated characters, see (a) above. Thus, a

total of 4272 main strokes was used to test Algorithm 3.4. The overall success rates

of restoration of temporal information for Methods 1,2, and 3 were 89.3%, 90.2%,

and 91.8%, respectively. Table 3.2 details the results of the three methods for the

20 subjects. Notice that Methods 1 and 2 have the same success rate for the start

vertex, as it should be, since they both use Algorithm 3.1 to determine the start

vertex. Although Method 1 has high success rates for the determination of the start

and end vertices, it has the lowest overall success rate of restoring the temporal

information. The reason is that, in Method 1, the start and end vertices are

determined independent of each other depending on geometric properties only. The

result is that it happens more frequently that the start vertex, end vertex, or both are

incorrectly determined yielding incorrect temporal information. In Method 2, finding

the start vertex according to geometrical properties helps in the finding the end

vertex, which matches that start vertex, according to a minimum-distance criterion.

Thus, there is some kind of dependency of the determination of the end vertex on

the determination of the start vertex with the observation that: if the start vertex is

successfully determined, then the chance to successfully determine the end vertex

increases. This dependency increases in Method 3 since both the start and end

vertices are determined according to a minimum-distance criterion, i. e., they are

determined in parallel, which yields the highest overall success rate of restoring the

temporal information.

Due to its superiority, although it is slight, Method 3 will be used in the IACR and
CASR systems to enforce temporal information.

80

Table 3.2. Comparison between the performance of three methods for restoring temporal
information, where the data set used to obtain this table is the cursive handwritten cursive
pages shown in Appendix D, Figures D. 2 to D. 21.
S: Subject #, Temp. info.: Temporal Information, Tot: Total.

Success Rate, %

f
Method 1 Method 2 Method 3

S

No. o
main

strokes
Start

vertex
End

vertex
Temp.
info.

Start
vertex

End
vertex

Temp.
info.

Start
vertex

End
vertex

Temp.
info.

1 187 94.1 96.3 89.8 94.1 96.8 90.4 95.2 98.4 92.0

2 219 96.8 94.5 88.1 96.8 95.0 89.0 95.9 95.0 91.8

3 184 97.8 98.4 92.4 97.8 98.9 92.4 97.8 98.4 91.8

4 227 93.4 92.5 89.9 93.4 96.5 90.3 94.7 95.6 91.6

5 192 96.4 95.3 88.0 96.4 95.8 87.5 96.9 96.4 89.1

6 198 92.9 96.5 89.4 92.9 97.5 90.9 96.5 96.0 91.9

7 256 93.8 93.4 90.2 93.8 94.5 91.0 95.3 95.7 93.4

8 160 94.4 91.3 88.8 94.4 92.5 90.0 96.3 95.6 93.1

9 226 93.8 94.7 88.9 93.8 95.6 91.2 93.8 94.7 90.7

10 219 96.3 95.0 88.1 96.3 94.5 87.7 97.7 95.0 89.5

11 206 96.1 96.1 89.8 96.1 94.7 91.3 97.1 96.1 93.7

12 208 93.8 96.2 88.9 93.8 97.1 90.9 95.7 96.6 90.9

13 215 94.0 94.9 90.7 94.0 96.3 90.7 94.9 96.3 90.2

14 197 95.4 97.0 89.3 95.4 96.4 90.9 94.9 95.4 90.9

15 190 94.7 90.5 88.4 94.7 92.6 89.5 95.3 94.2 92.1

16 215 93.5 96.7 89.8 93.5 97.2 89.3 95.3 96.7 90.7

17 235 93.6 94.5 89.4 93.6 95.7 91.5 95.7 97.9 94.5

18 233 94.8
,

94.4 88.4 94.8 -94.8 90.1 96.6
.
94.4 91.8-

19 249 94.0 93.6 91.2 94.0 94.4 91.6 96.8 97.2 94.4

20 256 93.0 92.6 86.3 93.0 93.8 87.9 - 94.5 '95. L 91.0

Tot 4272 94.6 94.7 89.3 94.6 95.5 90.2 95.8 96.0 91.8

81

I

cy
Figure 3.24. Vertex 1 is incorrectly selected as the start vertex. The true start vertex
is 2.

3.4.5. Causes of Failure

Examples where Algorithm 3.4 fails to enforce the correct temporal information are
illustrated in Figures 3.8,3.9,3.24, and 3.25. The causes of failure of Algorithms 3.1 and

3.2 are also causes of failure of Algorithm 3.4. In addition, the failure can be due to the

incorrect determination of the start and / or end vertices which is a result of a new way

by which these vertices are determined:

(a) Although the start-end pair is determined correctly, of these two vertices the vertex

which is nearer to URC is not the actual start vertex (in fact it is the end vertex

while the other one is the start vertex). In Figure 3.8, the actual start vertex is 2

although its distance, d2, to URC is larger than the distance, d,, of vertex 1. Thus,

1 is incorrectly selected as the start vertex.

(b) There can be a terminal vertex, v, other than the actual start vertex, that produces
the minimum distance matching. In Figure 3.24, the algorithm selects vertex 1 as the

start vertex although the actual one is vertex 2.

(c) A different vertex from the true end vertex'may produce a matching with less cost,
in which case the former will be selected as the end vertex. In Figure 3.9, the actual

end vertex is 5. But since the distance from 4 to 5 is less than that from 6 to 7, it is
less costly to retrace the segment from 4 to 5 than to retrace the segment from 6 to

7. The removal of vertex 7 from V- gives the minimum distance matching, and 7 is

therefore wrongly selected as the end vertex.

82

Ld)ýo
(a)

(b)

Figure 3.25. (a) A stroke's image, and (b) its graph, G, with a spurious segment
between vertices 1 and 2.

Moreover, when the start and end vertices are located correctly, the minimum

distance criterion may still lead to incorrect temporal information. This is often a

consequence of errors introduced at the thinning stage:

(d) A bifurcation artifact due to thinning, see Section 2.1.3, can introduce a spurious

segment at a junction in a loop. This segment may change the order by which the

links are traversed producing temporal information that is partially incorrect (the

temporal information of the loop is reversed). For example, the straight line

approximation of the stoke of Figure 3.25(a) may look like Figure 3.25(b), where

the segment between 1 and 2 is a spurious bifurcation. artifact. When vertex 2. is

reached, Algorithm 3.4 finds that going to vertex 3 results in a smaller directional

change than going to 4. Thus, 3 is selected as the next vertex to be visited, although

the correct choice is 4. In Section 2.2, a spurious segment could be identified and

replaced with a single vertex. The replacement vertex is approximately equivalent

to the original crossing point in the sense that the topological properties of the

thinned shape are preserved. Thus, the temporal information of a loop is correctly

restored in most of the cases. In some cases, a spurious segment can not be

83-

identified due to small angle of intersection between lines, see Section 2.2.3. Thus,

a bifurcation artifact still remains a cause of error in Algorithm 3.4. It is worth

mentioning here that the problem of spurious segments does not appear in reduced

graphs in which loops, represented as vertices, are treated as whole entities.

(e) Temporal information is lost when thinning a small loop that has become a blob due

to blotting. Blotting occurs in both printed and handwritten text. The reasons for

this phenomenon are excess ink, type of paper, the way of motion of pen head,

overwriting, etc. For a human reader, these blobs can be easily recognized as loops

from the context. However, such instances are difficult to deal with and cause

problems in automatic recognition systems.

One trial was performed by the author to restore such lost loops. The idea depends

on removing points whose distance, based on a distance transform, from the image

boundary of the stroke exceeds a calculated threshold. This method was tried on the

handwritings of two writers. They supplied 65 subwords containing . 159 blobs.

Loops were recovered successfully with a rate of 83.6%. The main reason behind

this low rate of success is that the line width and blob size vary even in the same

subword which makes it difficult to recover all loops using a single threshold. It was

also noticed that spurious holes may be introduced into the image especially in thick

parts that are not blobs and at points of intersection that look like blobs. If these

holes are small then they can be removed by finally smoothing the image. However,

if the holes are big then it is difficult to remove them by a conventional smoothing

process. It was thought that a more accurate method is needed to calculate the

distance transform since the city-block distance transform was initially used. As

reported in [73], the city-block distance transform is the worst approximation of the

Euclidean distance; the maximal difference between the two may exceed 55%. Thus

a chamfer 3/4 transformation was tried since the maximum distance error does not

exceed 8.1%, as reported in [73]. Nevertheless, almost the same results were

obtained. The method was also tried on printed text. Unfortunately, the same results

of handwritten text were obtained for the same reasons mentioned above. The

generation of new spurious loops is the main problem that could not be eliminated.
Spurious loops may degrade the performance of a recognition system. Thus, it is

84

concluded that there should be no preprocessing stage to recover lost loops due to

blotting.

SUMMARY

In this chapter, algorithms were presented to process Arabic text prior to

recognition. In Sections 3.1 and 3.2, heuristic algorithms were presented to determine the

start and end vertices of an off-line image of Arabic stroke. Two novel theorems, which

restrict candidate start and end vertices, were presented in Section 3.3. Theorem 1 reduces

the set of vertices which are candidates for start or end vertices to those vertices with odd

degree. Moreover, Theorem 2 reduces the set of candidate start and end vertices to those

of degree 1, together with vertices of odd degree which exist in loops.

In Section 3.4, straight line approximations of off-line Arabic, strokes were

converted into one-dimensional representations by a novel algorithm, which aims to

recover the original sequence of writing according to a minimum-distance criterion. The

algorithm was developed from a standard solution of the Chinese postman's problem

applied to the graph of the stroke. Options in this algorithm were used to generate three

different methods to enforce temporal information. The results of Method 3, in which the

determination of the start and end vertices is based on Theorems 1 and 2, were superior.

Illustrative examples were presented to explain the algorithms. The main cases for which

the algorithms could not produce proper results were mentioned.

The algorithms presented in this chapter can deal with many of the situations that

may arise in Arabic handwriting, however, they can be developed so that more possible

conditions, which might not be faced during testing, are dealt with. The author considers

that the resulting ordering of the stroke segments is a suitable preprocessing method for

subsequent Arabic handwriting recognition algorithms.

85

Part Two
Isolated

Arabic

Character

Recognition

System

(IACR)

OVERVIEW

In this part, an Isolated Arabic Character Recognition System (IACR) is presented.
Figure 11.1 shows a data flow diagram, of the system. One important point here is that

Stroke Learning comes after Stroke Recognition! Actually this arrangement is preferred

to us because our philosophy, which was also highlighted in Chapter 1, lies in: "What

is this r? If you know then you earn, otherwise come to learn. " This means that trying

to recognize comes first. If the system fails then learning follows. Our new contribution
is represented by the filled processes I rounded rectangles in Figure 11.1, Le., Straight

Line Approximation, Enforcement of Temporal Information, Stroke Segmentation, Stroke

Recognition, and Stroke Learning. Straight Line Approximation and Enforcement of
Temporal Information were introduced in Chapters 2 and 3, respectively. The next three

chapters address the three other processes: Stroke Segmentation, Stroke Recognition,

and Stroke Learning. The data f low diagram of the IACR system consists of the following

processes:

(a) Image Acquisition: where an off-line binary image of a handwritten stroke is

captured using a scanner..
(b) Smoothing: The acquired binary image of the stroke is smoothed. A suitable

smoothing algorithm can be found in [57].

(c) Thinning: The smoothed binary image of the stroke is thinned using the "Safe

Point Thinning Algorithm, " or SPTA [661.

(d) Straight Line Approximation, Chapter 2: which accepts a smoothed thinned
binary image of the stroke and produces two representations of the stroke: a direct

straight line approximation and a loopless straight line approximation (reduced

graph).
(e) Enforcement of Temporal Information, Chapter 3: Here temporal information

of the stroke are extracted from the reduced graph of the stroke.
() Stroke Segmentation, Chapter 4: The reduced - graph and ' temporal

information are used to segment the stroke into small units, called primitives. The

reduced graph and segmented primitives are necessary inputs for the subsequent
two processes, i. e., Stroke Recognition and Stroke Learning.

(g) Stroke Recognition, Chapter S: which receives a fuzzy sequential machine, which

87

Handwritten stroke

Image Acquistion

Binary image of stroke

-

-Y-Smoothing

Smoothed binary image of stroke

r
Thinning

Smoothed thinned binary image of stroke

Straight Line Approximation
. __.........

Direct straight line Reduced graph of stroke i
R

approximation of stroke vr

:. --ý------. --->-aý--ý-: ý--: ý-:.;: -,,.,:: -- ý,.. ý:, <:: ýýýý: ý,::: ý::::: >:::: >:::: >::::::::: >::: >;: <: >:::: >:: ><<:.., .., ,,., ,.,,,,,,,, :,,, ý I
............... :: Enforcement of Temporal Information

Temporal Information

of stroke

: ý-,
Stroke Recognition

Acceptance tree of
unrecognized stroke

Stroke Learning; '

Stroke Fuzzy Sequential Machine

Figure 11.1. Data flow diagram of the IACR system.

88

(h)

is a representation of the learned strokes, a reduced graph, and primitives of the

stroke. It outputs recognition results indicating whether the stroke belongs to a

certain class or it could not be recognized If a stroke could not be recognized, then

its acceptance information, represented as a tree data structure, is fed to the Stroke

Learning process.

Stroke Learning, Chapter 6: This process gets as inputs the fuzzy sequential

machine which was used in recognition but failed to recognize the stroke, a reduced

graph of the stroke, primitives of the stroke, and the acceptance tree which is

passed by the Stroke Recognition process. It outputs a new fuzzy sequential

machine which can recognize the input stroke and strokes of the old machine and

variants of these strokes.

A hierarchical structural chart, which corresponds to the data flow diagram of

Figure 11.1, is shown in Figure 11.2. In the hierarchical structural chart, we would like

to make the following points clear:
(a) Again, our new contribution is represented by the filled modules /rectangles, i. e.,

Straight Line Approximation, Enforcement of Temporal Information, Stroke

Segmentation, Stroke Recognition, and Stroke Learning.

(b) The numbers near the head of an arrow indicate the type of the data flowing in the

direction of the arrow. If there is a link with two arrows between a higher-level

module, A, and a lower-level module, B, then module A first passes to B the data

shown near the head of the arrow entering B, then B returns to A the data shown

near the head of the arrow entering A. For example, the High Level Preprocessing

sub-coordinator passes a thinned binary image of a stroke, data type 5, to the

Straight Line Approximation module which returns to it a direct straight line

approximation, data type 6, and a loopless straight line approximation (reduced

graph), data type 7.

As shown in Figure 11.2, the ISOLATED CHARACTER RECOGNITION SYSTEM

(IACR) coordinator manages data exchange between the following modules/ sub-

coordinators:
(a) Input: which returns to the IACR coordinator the data base of learned items,

represented in as fuzzy sequential machine, and a binary image of the stroke to be

89

N'

a
A

Q

oý 5ý
aý

Oý

0

)0-

Al c

dLO

0)

N

i
O

1*

/ oi
n

m

01
/ma

N 66 it 4h 0

a,

f

ä ý'

I
5
a c

ýý .

i
ý

I

E`<§"si>§`: ý'; i"t'ý?

U, ý
ý a 'r-

ý v. Iý I

()i

b. -ýi ý-- ý ----
I=

yi
rn =m <- E r4

90

0)
ý C
ý

OI

ý

ý

Ný

ý_ V

v Y
O

b

OÖ

.ýý
r O.

_N
c3). -

0

Uy
pN

y

ir ýf ä

ý ro dri

NL

IVO

^ý E

rON

NN
Vy

rCO
CN

-0
QZ

ON

N

ý ý
aý ý ý
on

w

(b)

recognized or learned. Thus, the Input sub-coordinator calls the following two

modules:

1. Input Machine: which reads the Stroke Fuzzy Sequential Machine.

2. Acquire Image: which gets a binary image of a handwritten stroke.

Preprocessing: This sub-coordinator receives from the IACR coordinator a binary

image of the stroke and returns to it the stroke as a sequence of small segmented

units called primitives. It consists of two parts:

1. Low Level Preprocessing: which receives from the Preprocessing sub-

coordinator a binary image and returns to it a smoothed thinned binary

image of the stroke. It calls two modules:

i. Smoothing: which receives a binary image and returns a smoothed

binary image of the stroke.

ii. Thinning: which receives a smoothed binary image and returns

a smoothed thinned binary image of the stroke.

2. High Level Preprocessing: which receives from the Preprocessing sub-

coordinator a smoothed thinned binary image and returns to it the primitives

of the stroke. It calls three modules:
L Straight Line Approximation, Chapter2: which receives a smoothed

thinned binary image and returns two representations of the stroke: a

direct straight line approximation and a reduced graph.

ii. Enforcement of Temporal Information, Chapter3: which receives

the two representations of the stroke and returns its temporal

information.

iii. Stroke Segmentation, Chapter 4: which receives a reduced graph

and temporal information and returns the segmented primitives of the

stroke.
(c) Stroke Recognition, Chapter S: This module receives from the IACR coordinator

a fuzzy sequential machine which is used in recognition, a reduced graph, and the

primitives of the stroke. It returns to the IACR coordinator recognition results
indicating whether the stroke belongs to a certain class or it could not be

recognized If a stroke could not be recognized, then its acceptance information,

91

(d)

represented as a tree data structure, is returned to the IA CR coordinator. This tree

can be fed to the Learning module for learning.

Stroke Learning, Chapter 6: This module receives from the IACR coordinator

four data items: (1) the fuzzy sequential machine which was used in recognition but

failed to recognize the stroke, (2) a reduced graph of the stroke, (3) primitives of

the stroke, and (4) the acceptance tree which was returned by the Stroke

Recognition module. It returns to the IACR coordinator a new fuzzy sequential

machine which can recognize the input stroke and strokes of the old machine and

variants of these strokes.
(e) Output: which receives from the IACR coordinator recognition results and a new

fuzzy sequential machine. Thus, the Output sub-coordinator calls the following two

modules:

1. Output Machine: which outputs the Stroke Fuzzy Sequential Machine

which results from learning.

2. Output Results: which outputs results indicating whether the stroke belongs

to a certain class or it could not be recognized
Experimental results and performance of the IACR system are reported in Chapter 7.

92

Tempo-Structural

Representation

OVERVIEW

In this chapter, we suggest a structural representation of a handwritten character.

Not only the suggested representation is structural but it is also temporal since it carries

temporal information. Hence, what so-called a tempo-structural representation of a

stroke will be derived from its reduced graph, G and its temporal information, which

consists of.
(a) small segmented parts, called primitives, which are temporally ordered, where a

primitive can be a vertex, a loop set vertex, or a straight line segment. Primitives

have implicit relationships between them. Figure 4.1 shows a data flow diagram

of the segmentation process.
(b) features of primitives,
(c) implicit and explicit relationships between primitives, and
(d) global features of the whole stroke.

Global features of the stroke and explicit relationships between primitives are

extracted at the time of recognition or learning.

4.1. STROKE SEGMENTATION

In this section, an algorithm is presented to segment a stroke into ordered small

parts, called primitives, which have features, where a primitive can be:

(a) a vertex representing either an isolated vertex or an intersection vertex,

93

Temporal information

of stroke

Stroke Segmentation

Figure 4,1. Data flow diagram of the Stroke Segmentation process in the IACR

system.

(b) a loop set vertex, or

(c) a link (i. e., straight line segment).

Definitions

(a) A link, (v;, v), in the reduced graph, G', of a stroke, is an original link if both v; and

vj do not represent loop sets. Otherwise, (v;, vj) is an artificial link.

(b) The total length, L, of a stroke is the sum of lengths of all original links in G' plus

the lengths of all loop sets in the stroke.

The description of the segmentation algorithm now follows.

Algorithm 4.1

Use: To segment a stroke into a sequence of primitives

Input: 1. Reduced graph, G', of the stroke

2. Temporal information of the stroke, i. e., the path, l Se,
between the start

vertex vs and the end vertex v,
Output: Sequence of primitives qr,, l4'2, ..., arm, where m is the sequence length.

Procedure:

Step 1. If the path ps, consists of a single vertex, v,, vertex then:

(a) If the vertex represents a loop set, then it is represented by a loop set primitive 1P

= o(v,), where v, has the features of a loop set.

94

(b) Otherwise, it is represented by a vertex primitive Jr = *(v,).

Step 2. Otherwise, Let (v;, vv) be a link in the path p6e with v; visited first. The

path µ. is scanned from v. to vv and a sequence of primitives, qr,, ßr2, ..., which represent

the stroke, is generated by applying the following steps, in order, to each link of the path:
(a) If v; is an intersection vertex, then a new primitive, i= *(v1), is generated.

(b) If v; represents a loop set, then a new primitive, ijr = o(v;), is generated.
(c) If (v;, vj) is an original link, then it is represented by the primitive 'r =1(v;, vj).
(d) If (v;, vv) is the last link in the path, then apply Steps (a) and (b) to vj.

The primitives which are extracted by the above algorithm have the following

features:

(a) Feature of direction, 0, which applies only to link primitives, where 0 is the direction

angle of the link.

(b) Feature of length ratio, Ir =1 / L, where 1 is the primitive length and L is the total
length of the stroke. For an isolated vertex primitive, Ir is set to 1, since an isolated

vertex constitutes the whole stroke's graph. For an intersection vertex primitive, Ir

is set to 0, since the length of a vertex in a graph is ideally zero. The length of a link

primitive equals the Euclidean distance between its two vertices. The length of a
loop set primitive is the sum of lengths of links constituting the loop set.

(c) Feature of number of loops, n, which applies only to loop set primitives and specifies

the number of loops in the loop set.

4.2. INHERENT PROPERTIES OF PRIMITIVE SEQUENCES

A' sequence of primitives, IF _ {*i, ß(r2, generated using the above

segmentation algorithm, has inherent properties. Some important properties, which will
be used in recognition and learning, ' Chapters 5 and 6, are listed below.

(a) The sequence length mz1.,
(b) If the sequence length, m, is greater than 1, i. e. it does not represent a dot 'or loop

set stroke, `Y 1 or jm can not be a vertex primitive, i. e., it can not start or end with

a vertex primitive.

(c) If m>2 and *1 is a loop set, then ßr2 must be a vertex, i. e., for a sequence the

95

length of which is greater than 2 and starting with a loop set primitive, Y' 1, *1 must
be directly followed by a vertex primitive.

(d) If m>2 and *m is a loop set, then 'm_1 must be a vertex, i. e., for a sequence the
length of which is greater than 2 and ending with a loop set primitive, must
be directly preceded by a vertex primitive.

(e) If m>4 and tjr; is a loop set, i=3,4,
..., or m-2, then *i_1 and Jr1+1 must be

vertex primitives, i. e., a loop set in the middle of a sequence of primitives must

preceded and followed by vertex primitives.
(f) If m>2, *; is a vertex, i=2,3,

..., or m-1, and both lr;
_ 1 and Jr;.,, is not a loop

set vertex, then the vertex which is represented by i(r; must appear more than once
in the sequence, i. e., a vertex primitive that is not directly followed and preceded by

a loop set primitive must appear more than once in the sequence.

(g) If m>3, then two adjacent primitives, ir', and *'i+1, can not both be a vertex

primitive.

4.3. PRIMITIVE RELATIONSHIPS

There are two types of relationships between primitives:
(a) Explicit Relationships: which are defined between an intersection primitive and

a loop set primitive which are connected by an artificial link. For each intersection

primitive which is connected to the loop set primitive, a relationship is established

by defining the following two features:

X. (4.1)

fi = (Y - Yr, i,) / (ym - YMu,), (4.2)

where x&y are the coordinates of the intersection primitive, x,,,;,,, xm� , y,,;,,, and y,

are the minimum and maximum x&y coordinates of the vertices constituting the

(b)

loop set primitive, respectively. ...
Implicit Relationships: which are of two types:
1. Implicit Positional Relationships: The existence of such relationships

comes from the fact that the'vertices in the path 'p., are already ordered in a

way that enforces temporal information. The same happens during primitive

segmentation. For example, if a stroke is segmented into to link primitives, fir,

96

and 12, which have the features 01,1r,, and 02,1r2, respectively, then the

position of 1r, is completely defined with respect to the position of 1412 since

their directions, 0, and 02, are known and *2 follows 14r,.

2. Implicit size relationships: For example, if two primitives of a stroke were

*, = 0(v) and 12 = 0(v), with length ratios lr, and 1r2, respectively, then the

ratio Ir, / 1r2 expresses the length of tor, to that of Y' 2.

4.4. GLOBAL FEATURES OF STROKE

Feature selection is an important and delicate stage in pattern recognition. Features

must be adequate to describe samples of patterns in the classes under study. At the same

time, the number of features must be within limits in order to keep the computational

requirements reasonable. In our case, handwritten character recognition, a small set of

global features was developed and proved to be powerful, as will be shown in the next

three chapters, in the distinction between the highly different characters.

Definitions

(a) A vertex, in the path, µu, of the stroke, is a dominant vertex if it is either an
intersection vertex, an end vertex that is not a loop set vertex, or a vertex connected

to a loop set vertex.

(b) A dominant path, µÜ, is a path such that its two end vertices, v; and vv, are dominant

vertices and none of the vertices of µu, which lie between v; and vj, is a dominant

vertex.

4.4.1. Selected Global features'

In the following, a detailed description of the global features of a stroke is presented.
These features apply to strokes which consist of more than one vertex.

(a) Features of Dominant Paths (DP features)

For each dominant path, µü, in the stroke, add the following feature, which is of DP

type:
f= I(po) IL (4.3)

where 1(µO) is the length of the path and L is the total length of the stroke.

97

(b) Feature of Height to Height-plus- Width Ratio

Let H and W be the height and width of the bounding rectangle of the stroke,

respectively. Define the feature:

f= H/(H+W) (4.4)

The motivation for setting the dominator to H+W is to keep f always less than or

equal to 1.

(c) Features of Heights of Right and Left Ends

Some strokes have the same structure but only differ in the relative heights of both

ends of the stroke. Thus, the heights of the right and left ends of a stroke are related

to the height of the stroke by the following two features:

fi = (yr - yo) /H (4.5)

and f2 = (y, - yo) /H (4.6)

where yr and y, are the y coordinates of the right and left ends of the stroke,

respectively, and yo and H are the minimum y coordinate and the height of the

stroke, respectively.

(d) Feature of Curvature

Some strokes look similar but differ in the degree of curvature. An appropriate

measure of curvature is:

f= (D / L)a (4.7)

where D is the Euclidean distance between the two ends of the stroke and L is the

length of the stroke. A suitable value of the exponent, a, was found to be 5.

The last two features only apply to strokes that neither have intersections nor loop

sets.

It is worth mentioning here that global features of a stroke and explicit relationships

are calculated during the recognition 'or learning process, since these processes may

suppress some parts, which are assumed to be spurious, of the original stroke producing.

a modified stroke with new global features and new explicit relationships.

4.5. EXAMPLE

Figure 4.2(a) shows the graph, G, of a stroke, Damma. After converting the loop

to a vertex, the reduced graph, G', of Figure 4.2(b) is obtained. By applying Algorithm

98

7 (a) (b)

Figure 4.2. (a) A graph, G, of an Arabic stroke, Damma, and (b) its reduced graph,
G'.

3.4 which enforces temporal information, the vertices are numbered as shown in Figure

4.2(b). Vertex 3 represents a loop set consisting of one loop. Vertices 2 and 4 are
intersections, while vertices 1 and 6 are ends. The structure elements of the stroke are
found as follows:

(a) Primitive Segmentation: The links (2,3) and (3,4) are not original links since

vertex 3 represents a loop set vertex, i. e., it does not represent an original vertex in

G. The stroke is segmented to the following primitives: jrl = 1(1,2) with two

features 0= 207° and Ir = 0.13, ßr2 = *(2) with one feature lr = 0.0, *3 = 0(3) with

two features Ir = 0.37 and n=2, `Y4 = *(4) with one feature Ir = 0.0, qrs = 1(4,5)

with two features 0= 263 ° and Ir = 0.05, and *6 = 1(5,6) with two features 0=

219 ° and Ir = 0.45.

Explicit Relationships: Primitive *2 is an intersection that is connected to a

(b)

loop set primitive, jr3. This relationship is expressed by the two features: f1= (178

- 155) / (178 - 155) = 1.0 and f2 = (404 - 396) / (409 - 396) = 0.62. Similarly,

another relationship is expressed between the two primitives '4 and *3 by setting

the two features: f3= (175 - 155) / (178 - 155) = 0.87 and f4 = (407 - 396) / (409

- 396) = 0.85.

Global Features of the Stroke: There are four dominant vertices: 1,2,4, and 6.

1. DP features: The dominant paths are: µ12 = 1-2 and µ46 = 4-5-6, where
l(µ12) = 2O, 1(µ46) = 76. The loop set has a length c= 56. The total length of

the stroke is L= 152. The first two global features are of DP type: fs = I(µ12)

/L=0.13 and f6=l(p46)/L=0.50.

99

2. Feature of Height to Height-plus- Width Ratio: The height, H, and width,
W, of the bounding rectangle of the stroke are 63 and 75, respectively. The

global feature of height to height-plus-width ratio is f7 = 63 / (63 + 75) = 0.46.

3. In this stroke, the features of heights of right and left ends and the feature of

curvature are not defined since the stroke has intersection vertices or a loop.

SUMMARY

In this chapter, a tempo-structural representation of a stroke is derived from its

reduced graph and temporal information. The stroke is segmented into temporally ordered

small parts constituting the stroke. These parts have relationships between them.

Necessary features of the stroke and segmented parts are extracted. Some of these

features are extracted during recognition or learning, however, they are mentioned here

to show all the constituent parts of our suggested tempo-structural representation of a

stroke.

100

Stroke

Recognition

OVERVIEW

,,,....
ý

: ýý

sýýýa..
r ý

z::;

ý

a: w

ý'`ýý'
ýaý . "ý:.:: ii: ýý;;

This chapter addresses the recognition component of the IACR system. Fuzzy

sequential machines are defined to work as recognizers of handwritten Arabic strokes.
A data flow diagram of the recognition process is shown in Figure 5.1, which consists

of two subprocess:

(a) Construction of Acceptance Tree: This subprocess accepts as inputs the

segmented sequence of primitives of the unknown stroke to be recognized, a

reduced graph of the stroke, and a fuzzy sequential machine which is used in the

recognition. The acceptance information of the primitives is stored in a tree data

structure, which is output by this subprocess.

(b) Checks and Decisions: Here, the inputs are the same inputs of the previous

subprocess in addition to the acceptance tree. Some calculations, based on the

information in the acceptance tree, are performed to evaluate some features of the

stroke. Finally, recognition results are output indicating whether the unknown

stroke belongs to a'certain class or it could not be recognized If a stroke could not
be recognized then its acceptance tree is output which can be fed to a subsequent
learning stage.

5.1. BACKGROUND

A formal method is needed to flexibly describe handwritten text. If such descriptors

101

Primitives of stroke

Stroke Fuzzy
Sequential

Machine
i

Construction of
Acceptance Tree:

Acceptance
tree

:' '>; Checks an
....................

Acceptance tree
Y of unrecognized stroke

; Decisions;::
,;...... ýý:;:;: :;

r

Figure 5. I. Data flow diagram of the Stroke Recognition process in the IACR

system.

are designed, then they may be used as acceptors (i. e. recognizers) in automatic character

/ text recognition systems. In this chapter, it will be shown that, what we call, a fuzzy

sequential machine approach is a powerful tool for isolated handwritten Arabic stroke

recognition. Before we can proceed any further, a background leading to a sequential

machine formulation of the problem and some concepts from fuzzy set theory have to be

introduced first.

5.1.1. Toward a Sequential Machine Model of Handwriting

The process of writing an Arabic stroke using straight line segments starts by laying

the pen tip at the writing surface; the starting state. Then, the pen is moved according to

the stroke's requirements. Each time a new straight line segment is made, a new situation

(state) is created. The direction of the next segment depends on the current and previous

segments, i. e., the history. Finally, we end at some terminal state having the stroke

written. Thus, it is believed that Arabic handwriting is better described by a certain type

Reduced graph
of stroke

\)

Recognition results

102

Figure 5.2. Process of writing Arabic numeral "c" which is c in q3.

of 'flexible pen motion description scheme" [2,3]. For example, the process of writing

Arabic numeral "v" using a series of straight line segments can be achieved as follows:

(a) Start at some initial state, q0, by laying the pen on paper.

(b) Leave qo to a new state, q,, in which you move to the left some number of straight

line segments.

(c) Now, turn down. This can be done gradually by leaving q, to a series of new states,

e. g., q2 and q3 in which we move left-down and down, respectively, or abruptly by

leaving q, to q3. Also, some number of straight line segments are created while in

states q2 and q3 depending on the required final size.

The transition from state qo to q, can be labelled by the symbol "left" which dictates

that such a transition requires the segment to be pointing to the left direction. While in

state, q,, more left segments can be created without leaving q,. Thus, another transition

from q, to itself is added which is labelled with "left", also. The transitions between other

states are similarly labelled. When the final size is reached at state, q3. we have the target

(output) stroke written. We do not expect any output from state q0, since it is simply a

starting state, or from q, 'or q2 since they are transient states in which the intended stroke*
is still incomplete. The whole process is graphically displayed in Figure 5.2.

It is clear that we have obtained a system that can be characterized by a quintuple
M= (Q, E, Z, (, g)

where Q= finite nonempty set of states: q0, q,, q2, and q3
E= finite nonempty set of state entrance qualifiers: "left", "left-down", and

"down"

Z= next-state mapping function {: QxE-. Q: C(qo, "left") = q1, Z(q1,

103

F ,,
ý

Figure 5.3. Three of many possibilities for writing Arabic numeral "T".

"left") = q1, ý(q,, "left-down") = q2, C(q1, "down") = q3, ((q2, "left-

down") = q2, C(q2, "down") = q3, and ((q3, "down") = q3.

Z= finite nonempty set of output symbols: "T"

g= output mapping function g: Q-Z: g(qo) = g(q,) = g(q2) = nothing,

g(q3) _
01

f of

Actually this agrees with the definition of one type of deterministic sequential

machines, called Moore Machine [75, pages 237,238]. By a deterministic sequential

machine it is meant that for every combination of state-state entrance qualifier, (q;, v),

there is one and only, one next state. In a similar way, other sequential machines can be

derived to describe the writing process of other strokes. Thus, we conclude that the

process of writing a stroke can be modelled as a sequential machine.

5.1.2. Concepts Based on Fuzzy Set Theory

Following the steps mentioned in the previous section, Arabic numeral " c" can be

constructed, with many possibilities, as shown in Figure 5.3. There is no need to define

each direction precisely. For example, a segment to the left can be achieved by a number

of straight line segments each pointing to the approximate direction: "left". We will call

such directions fuzzy directions. Each of these segments can be associated by a truth value
indicating how much the proposition "move to left" is true. So, labels of directions such

as: right, left, up, and down can be viewed as fuzzy mapping of the closed interval [-

180°, 180°] to the closed interval [0,1]. When a segment (expressed as an angle) is tested

against a fuzzy direction, the latter maps the segment to some value which is the degree

to which the segment agrees with that direction.

In fuzzy set theory, there exists what so-called, fuzzy numbers [76]. It is a concept

104

I

Figure 5.4. A stroke, the structure of which is similar to Arabic numeral "c ",
however, it does not represent any valid Arabic stroke.

where numeric values are viewed as approximate rather than exact values. For example,
if we say 1, we do not mean exact 1; rather, it is a fuzzy 1. Any arbitrary value, u, can be

associated with a truth value telling to what degree u can be considered as 1. A fuzzy

number is characterized by a possibility distribution which involves a small number of

parameters which can be adjusted to fit the given distribution. Such possibility

distributions are used to calculate the truth value of u. Accordingly, a fuzzy direction, e. g.,

90° upward, can be easily viewed as a fuzzy 90, i. e., a fuzzy number, with a proper

possibility distribution.

One more point is that in the above example it is not always true that once q3 is

entered the shape of"s" is obtained. To be accepted, the resultant shape must pass some

tests. In other words, the class of accepted Arabic numeral "r" has some features which

must exist in any shape generated using the underlying sequential machine. These features

are embedded in q3. This is necessary since two shapes may have the saine structure but

different global features. For example, although the stroke of Figure 5.4 has the same

structure as the right-most stroke of Figure 5.3 (each consists of two link primitives, one
is vertical and the other is horizontal), the former does not represent any Arabic stroke,

while the latter represents Arabic numeral "T ". Thus, feeding such strokes to a machine

which does not have additional classifying features results in classifying them as belonging

to the same class. By introducing features, a sequential machine resolves this ambiguity.
For example, one feature might be that the height / width ratio of the shape must be equal

to 1.0. When we say 1.0, it is not meant that it is exactly 1.0. Rather, we consider it as a
fuzzy 1.0. Thus, we find ourselves once again talking about fuzzy numbers. It is concluded

that the embedded features in such states, e. g. q3, are fuzzy features which have possibility
distributions similar to fuzzy numbers. Due, to its importance in the development of the

IACR and CASR systems, possibility distributions of fuzzy numbers are explained in

Section 5.1.3.

Thus, what we obtained is a sequential machine with fuzzily labelled transitions. This

105

machine can be used to generate many shapes of Arabic numeral "T". Similarly, other

machines can be obtained for other strokes.

Now, we want to invert the problem, i. e., given such a sequential machine, can we

use it to decide whether a given stroke, represented as a sequence of straight line

segments, belongs to the class for which that machine was designed? The answer is YES,

but how? Simply, starting at state q0, use the sequence of segments as an input to excite

the states of the machine. If you could proceed from qo to a state, q;, that produces an

output, such as q3 in the previous example, such that all states' requirements are fulfilled

then you can say that the stroke is of the same class as the output of q;. An example of a

state requirement is to have an input segment point to the fuzzy direction of that state.

5.1.3. Fuzzy numbers

In this research, we are interested in the following fuzzy number distributions [76]:

(a) s-numbers: As its name implies, the possibility distribution of an s-number has

the shape of s. The equations defining an s-number, expressed as (p / ß), are:

7ZX(u)=0, usp -ß

= (2/ß2)(u-p+ß)2, p- ß susp- ß/2

=1-(2/ß2)(u-p)2, p- ß/2susp

= 1, uzp (5.1)

where ß (the bandwidth) is the length of the transition interval from nx =0 to nx =

1, and p is the left peak-point (i. e. the right end point of the transition interval), as

shown in Figure 5.5(a).

(b) z-numbers: A z-number is a mirror image of an s-number. Thus, the defining

equations for a z-number which is expressed as (p \ ß), are:

itx(u)1, u5p
1-(22)(u-, p)2, p: 5 p+ß/2
(2/ß2)(u-p- ß)2,

p+ß/2susp+ß

= 0, ukp+ (5.2)

where p is the right peak-point and ß is the bandwidth, as shown in Figure 5.5(b).

(c) s/z-numbers: An s/z number has a flat-top possibility distribution, which may be

regarded as the intersection of the possibility distribution of an s-number and a

106

ý (U)
t

1.0-L --------------------=-

0.5.

0.0

it (u)
x

1.0

0.5

0.0

P-ß P-ß/2 p

(a)

(b)

it (U)
t

x

1.0
_

0.5 1

0.0

------------------------ r--------- T----------I

I.
"""""" I

MJ

p1-ß p1-ßl/2" Pl p2 p2+ß2/2 p2+ß2
(c)

Figure 5.5. Distributions of fuzzy numbers: (a) s-number, (b) z-number, and (c) s/z-
number.

(I.

107

z-number, with the understanding that the left peak-point of the s-number lies to the

left of the right peak-point of the z-number, see Figure 5.5(c). An s/z-number is

represented as an ordered pair (p, / ßl; P2 \ P2).

We will regard fuzzy directions and fuzzy features as having s/z-number possibility

distributions. For example, the fuzzy direction "left" has an s/z possibility

distribution defined in the interval 0° to 360°. The four parameters of the

distribution can be: p, = 165°, ß, = 30°, p2 = 195°, and ß2 = 30°. Therefore, tloft

(0) = (165 °/ 30°; 195° \ 30°). If a line segment, with a direction angle, 0, is tested

, ft(0) gives the degree to which this against this fuzzy direction, the value of it,,

segment is pointing to the left. An example on fuzzy features might be: the height

to width ratio equals "fuzzy V. where 7tfi,,.,. y ,
(u) = (0.8 / 0.2 ; 1.2 \ 0.2).

5.2. THE FUZZY SEQUENTIAL MACHINE

In this section, the complete definition of a fuzzy sequential machine, which is

capable of recognizing a set of handwritten strokes, will be given. To be able to define our

machine, two questions have to be answered:

(a) Are there other types of state entrance qualifiers?

The fuzzy sequential machine, to be defined, works on a sequence of segmented

primitives of the stroke. Recall that such a sequence can contain up to three types

of primitives: vertex primitive, loop set primitive, and link primitive. So far, the only

state entrance qualifiers which have been investigated are fuzzy directions, which act

on link primitives. Thus, to generalize the model such that other strokes can be

recognized, additional state entrance qualifiers must be defined. Thus, a state

entrance qualifier can be one of the following:

1. 'a vertex referred to as

. 2. .a
loop set which is referred to by O(n) where n is the number of loops in the

loop set.
3. a fuzzy direction expressed as an s/z-number (pl / ß,; P2 \ ß2), where pl, P,

p2; and ß2 are as defined earlier.
The reader should not mix between the notation used to describe a sequence of

primitives of a stroke and the notation used to describe state entrance qualifiers. To

108

Table 5.1. Notations used to describe primitives of a stroke and state entrance qualifiers.

Tempo-structural representation State entrance qualifier

Primitive type Notation Qualifier type Notation

vertex *(v;) vertex ýk-

loop set o(v;) loop set O(n)

link
T

IN, vi) fuzzy direction (Pl / ßi; P2 \ P2)

remove any confusion that might occur, see Table 5.1.

(b) What fuzzy features are needed for further discrimination behveen stroke

classes?

The required fuzzy features are:

1. Fuzzy features which are of the same types as explicit relationships between

primitives of a stroke, see Section 4.3.

2. Fuzzy features which are of the same types as global features of a stroke, see
Section 4.4.

Although they have similar types, there is an intrinsic difference between global
features of a given stroke and explicit relationships between primitives on one side

and fuzzy features on the other side. Global features of a given stroke and explicit

relationships have exact values, i. e., they are deterministic or they are not fuzzy.

Fuzzy features are fuzzy numbers having s/z possibility distributions.

Now, having the background material being laid, our complete definition of a fuzzy

sequential machine can presented.

5.2.1. Definition of Fuzzy Sequential Machine

A deterministic fuzzy sequential Machine which recognizes a set of stroke classes,

where a stroke is supplied as a reduced graph and a sequence of primitives, is a system

that is characterized by the 5-tuple FM = (C, Q, E, C, T), where
(a) C is the set of stroke classes that are recognized by this machine.
(b) Q is a finite set of states q0, q1, ..., qo being the starting state.
(c) E is a finite nonempty set of state entrance qualifiers v1, U2, Each state, q;,

109

except q0, has one and only one entrance qualifier, o;.
(d) C is the next-state mapping function C: QxE -- Q.

(e) TcQ is a finite nonempty set of terminal states. A terminal state q, eT recognizes

the stroke classes c;,, c; 2, ... EC, each of which has R. fuzzy features of the same

type, i. e., more than one stroke class can be recognized in one terminal state with

the same number and types of fuzzy features. We mean by same types of fuzzy

features that the first fuzzy feature of c, 1 has the same type of the first fuzzy feature

of c; 2, c; 3, The same applies to the remaining fuzzy features.

Of course, there is a recognition algorithm which explains how a stroke is handled

by the fuzzy sequential machine to decide whether it belongs to a stroke class c EC. The

details of the recognition algorithm are presented in Section 5.3.

Based on the background material given in Section 5.1, the differences between this

definition and that of a conventional sequential machine should be clear, however, we

summarize these differences in the following two points:
(a) A state entrance qualifier, a, of a fuzzy sequential machine can be a fuzzy direction

allowing for a high degree of variability of accepted shapes. In conventional

sequential machines, a state entrance qualifier is exact which is usually binary, i. e.,
it is either 1 or 0, Exact qualifiers restrict the set of accepted shapes to those which

exactly satisfy the qualifiers. Real-life patters have fuzzy rather than exact properties

which makes handling them by systems with fuzzy capabilities (fuzzy sequential

machines, in our case) more appropriate.

(b) A fuzzy sequential machine has terminal states in which fuzzy features of accepted

shapes are inserted. An output class, cEC, is not generated unless its features are

satisfied. In conventional sequential machines, states do not contain features. Once

a state is reached, outputs are generated which is inadequate to differentiate between

patterns having the same structure.

A fuzzy sequential machine will be pictorially described by a transition diagram. The

automatic generation of fuzzy sequential machines is a learning process which is described

in the next chapter.

110

w
11

Figure 5.6. A deterministic fuzzy sequential machine which can recognize two stroke
classes: Arabic Damma and Arabic numeral "T".

5.2.2. Example

Figure 5.6 shows a transition diagram of a deterministic fuzzy sequential machine

FM = (C, Q, E, (, T), where

(a) C= {Arabic Damma, Arabic numeral "T

(b) Q= (q;, i=0,1,
..., 11),

(c) E_ {0p i=1,2,
..., 11), a1= (195 °/30°; 225 °\30°), 02 = *, 03 = 0(1), 04 = *,

as = (255°/30°; 285°\30°), 06 = (225°/30°; 255°\30°), 07 = (195°/30°;

225°\30°), as = (225°/30°; 255°\30°), a9 = (255°/30°; 285°\30°), alo =
(285°/30°; 315°\30°), and ali = (315°/30°; 345°\30°).

(d) (is the next-state mapping function C: QxEQ. This mapping can be easily read
from the figure, .

(e) T= {q7, q11), where
1. A Damma class is embedded in the terminal state q7. One stroke, belonging

to this class is shown in Figure 5.7. Strokes belonging to a Damma class can
have one loop set primitive connected to two intersection primitives. For the

first intersection primitive, there are two fuzzy features: F1= (0.8 / 0.2; 1.0 \

111

z

(a) (b)

Figure 5.7. (a) A graph, G, of an Arabic Damma stroke and (b) its reduced graph,
G'

0.2) and F2 = (0.6 / 0.2; 0.8 \ 0.2) which relate the x&y coordinates of the

intersection primitive to the x&y coordinates of centre of gravity of the loop

set primitive, respectively. Similarly the other intersection primitive has the

features F3 = (0.8 / 0.2; 1.0 \ 0.2) and F4 = (0.8 / 0.2; 1.0 \ 0.2). The next two

fuzzy features are global and of DP type since a stroke belonging to Damma

class has two dominant, paths, see Section 4.4. These two fuzzy features are
Fs = (0.0 / 0.2; 0.2 \ 0.2) and F6 = (0.4 / 0.2; 0.6 \ 0.2). There is a global fuzzy

feature of height to height-plus-width ratio: F7 = (0.4 / 0.2; 0.6 \ 0.2). For

Damma class, the global fuzzy features of heights of right and left ends and

the fuzzy feature of curvature are not defined since a stroke belonging to this

class has intersection or loop set primitives. Thus, we end up with seven fuzzy

features associating this stroke class.
2. A class of Arabic numeral "T" is embedded in the terminal state q11. Strokes

belonging to this class are shown in Figure 5.3. This class has five fuzzy

features. The f rst fuzzy feature is F1= (0.8 / 0.2; 1.0 \ 0.2) which is of DP

type since this class has one dominant path. A fuzzy feature of height to

height-plus-width *ratio is F2 = (0.4 / 0.2; 0.6 \ 0.2). Two 'other fuzzy features

are F3 = (0.0 / 0.0; 0.2 \ 0.2) and F4 = (0.8 / 0.2; 1.0 \ 0.2), which relate the

heights of the right and left ends to the total height of a stroke belonging to

this class. The last fuzzy feature is Fs = (0.0 / 0.0; 0.2 \ 0.2) which is a measure

of curvature of such strokes.

112

5.3. RECOGNITION ALGORITHM

A fuzzy sequential machine has a recognition algorithm, R, which details how the

recognition process is achieved. The description of such algorithm is necessary which is

a result of the existence of fuzzy state entrance qualifiers, i. e., fuzzy directions, and fuzzy

features. In conventional sequential machine there is also a recognition algorithm,

however, it is so simple: if the input exactly matches the state entrance qualifier, then enter

that state.

To clarify what kind of jobs are handled by the recognition algorithm, R, we present

the following scenario. Suppose that we have a stroke consisting of two link primitives,

*1 and V2 which is to be recognized by the machine of Figure 5.6. Initially, we start from

q0. Then, the first primitive, xV1, is tested to see if it can satisfy the state entrance qualifier,

ol, of q1. If so, then a transition is made to q1, otherwise, we can not proceed any further

which means that the input stroke is rejected. Suppose that the transition could be

achieved, so we are, now, in state q1. Next, the second primitive, '2i is tested against six
state entrance qualifiers: ol, 02, og, 09, olo, and a,,. Of course, a transition to q2 is

impossible since'V2 is a link primitive and o2 is a loop set state entrance qualifier, i. e.,

their types are different. Regarding the other state entrance qualifiers, all of them are fuzzy

directions. This means that 'V2, which is a link having a direction, can be tested against

these qualifiers to decide where we can go. It may happen that a transition should be made

to many states in parallel. Now, what will be the situation if the stroke has several

primitives? Clearly, a huge keep-tracking job is required. So, who keeps track of all of

this? It is the brain, i. e., the recognition algorithm, R, of the fuzzy sequential machine.
Still, one more job is needed if a terminal state could be reached. It may happen also that

many terminal states are reached. There, some features. of the stroke have to be tested.

against the fuzzy features of the terminal states. Who performs this? Again, it is the

recognition algorithm, R, of the fuzzy sequential machine. .

5.3.1. Definitions

(a) Testing a primitive, fir, to see whether it can be accepted by a state, q, is called state

excitation. Thus, we say: qr excites q for possible acceptance. Testing the sequence

of primitives against states of a fuzzy sequential machine is called machine

113

excitation. Here, primitive acceptance by a state means that a transition can be made

to that state.
(b) In the recognition algorithm, a primitive will be considered for the two situations:

spurious and non-spurious. This is due to the fact that an input stroke may have

some spurious (noisy) primitives, i. e., their deletion does not alter the stroke's class.

Initially, such primitives are unknown. Thus, we enforce every primitive to be a

spurious candidate. This way, noisy strokes are given the chance to be recognized

as well as clean strokes.
(c) Any spurious primitive, jr, ican be only accepted by a current state, q, with an

acceptance degree x(qr, q) = 0. For example in Figure 5.6, if we are currently at

state qO and the input is a spurious primitive, fir;, then we can not leave qO to a new

state. Instead we enforce qO to accept *i with x(*;, q0) = 0. This means that

transitions between different states will be caused only by non-spurious primitives.

(d) A non-spurious primitive, fir, is accepted, by a state, q, the state entrance qualifier

of which is a, with an acceptance degree x(*, q) if

1. iV is a vertex primitive and a is a vertex state entrance qualifier, where x(qr,

q) = 1.0.

2. hr is a loop set primitive having n loops and a is a loop set state entrance

qualifier having the same number of loops, n, where x(*, q) = 1.0.

3. hr, is a link primitive and a is a fuzzy direction state entrance qualifier, where

x(hr, q) = no(0), no is the possibility distribution that characterizes a, and 0

is the angle of the link primitive, qr.
(e) Using a sequence of primitives, Y', to excite a machine, FM, starting from q0, results

in many possible paths of states accepting the primitives which requires huge

amount of memory. These paths have many common states.. Searching operations

and other calculations are performed on these paths which requires fast processing.

A tree is one data structure that can be fastly searched with reduced memory

requirements. Thus, the information resulting from machine excitation will be saved
in what we call an acceptance tree which has the following properties:

1. The root node of the acceptance tree, which is considered as level 0 of the

tree, contains the 2-tuple (q0,1.0), where qO is the starting state of FM and the

114

1.0 is the initial credit, ca, assigned to the unknown stroke. This credit is an
initial acceptance degree of the stroke.

2. The nodes of level i of the acceptance tree, iz1, contain acceptance
information only about primitive ̀ Y i of the unknown stroke. Thus, you expect
that the maximum level of the tree will not exceed the number of primitives in

the stroke.
3. Each time a primitive, ijr, is accepted by a state, q, the stroke is punished by

subtracting from its credit, ca, a value, S= Ir x (1.00 - x(qr, q)), where x(tJr,

q) is determined according to Definitions 5.3.1(c, d) depending on whether the

primitive is spurious or non-spurious. Notice that, 6, is proportional to the

length ratio, Ir, of the primitive, ter, and the degree of disagreement between

* and the state entrance qualifier of q, which is a logical punishment rule.

4. Any node in the acceptance tree, other than the root node, contains the 3-tuple

(q;, t, (a), where qq is an accepting state in FM that was entered after being

excited by a primitive, Qri, tE {S, N}, (S refers to spurious and N refers to

non-spurious), and ca is the remaining credit for the unknown stroke.

The detailed description of the recognition algorithm, R, which associates a
deterministic fuzzy sequential machine, now follows.

Algorithm 5.3

Use: To recognize a stroke

Input: 1. A fuzzy sequential machine FM = (C, Q, E, (, T)

2. Reduced graph of the stroke

3. The sequence of primitives tF i=1,2,
..., m) of the stroke

Output: 1. Recognition results: If the stroke is recognized, the output is the class,

c*, of the stroke and the overall acceptance degree, otherwise, a

rejection is reported.
2. If the stroke could not be recognized, the acceptance tree is output to

be passed to a subsequent learning process.

115

Procedure:

Step 1. Construction of acceptance tree

(a) Create the root node, node 0, which constitutes level 0 of the tree, with the 2-tuple

(q0,1.0),

(b) Create level i of the tree which contains acceptance information of primitive, *j, i

= 1,2, ..., m as follows. For every node, d,, that exists in level i-1 and has the

state q and credit W as tuples:

1. First assume that *i is a spurious primitive. Add a new node, dk, that is a son

of node d,, where dk has the 3-tuple (q, S, w- 6), and S =1r;, such that the

remaining credit, w-6, is not less that a specified threshold, THRI.

2. Next, assume that *I is non-spurious. For every next state, {(q, a), of q that

can accept jro add a new node, dk, that is a son of node, dd, where dk contains

the 3-tuple («(q, a), N, (a - S), S= lrr, x (1.00 - x(*;, ((q, a))), such that

the remaining credit, w-6, is not less that a specified threshold, THRI.

For example, consider the machine of Figure 5.8 where the sate entrance qualifiers,

of states ql to q3, are fuzzy directions. Assume that a stroke consisting of a single link

primitive, llrl, is to be recognized using this machine. The above steps are applied as

follows:

(a)

(b)

Create the root node, node 0, which contains the tuple (qo, 1.0).

To create level 1 of the tree which contains acceptance information of the first

primitive, *1, i. e., i=1, we have to consider the nodes of level 1- 1= 0. Level 0

has one node, the root node, thus:

1. First assume that *1 is a spurious primitive. Thus, a new node that is a son of

the root node is added with the 3-tuple (q0, S, 1.00 - b), where 8= lr1.

2. Next, assume that Qrl is non-spurious. There are three next states of q0 which

can accept iJr1. These next states are «(qo, ol) = q1, «(q0, Q2) =q2, and C(qo,

03) = Q3. Thus, for every state of ql to q3, a new node that is a son of node 0

is added. These nodes contain the 3-tuples (q1, N, 1-S 1), (q2, N, 1- 62), and

(q3, N, 1- S3), where 61= lr1 x (1.00 - x(*i, q1)), S2 = lr1 x (1.00 - x(*1,

q)), and S3 =1r1 x (1.00 - x(gr1, q3)), respectively. Of course, we assume that

the remaining credit in every newly generated node is not less that a specified

116

Ot

Figure 5.8. Four state fuzzy sequential machine, where al, a2, and a3 are fuzzy
directions.

threshold, THR,.

Step 2. Checks and decisions

After constructing the acceptance tree, one of the following two cases occurs:
(a) The last level of the tree is less than the number of the primitives, m. This occurs if

there is no state sequence that can accept the primitive sequence, ', provided that

the final credit is not less than THR,, in which case the stroke is unknown.
(b) The last level, of the tree equals m. In this case, retain the set of leaf nodes, D, of

level in. For each node deD, where the node d contains the remaining credit, w,,

of the stroke, do:

1. Trace the path from d to its father node in level 1. Extract those primitives

which were counted non-spurious. Let these primitives be represented, from

top to bottom of the tree, by the new sequence Y" m'

s m, with *',,,, being accepted by some state, q.

2. Check if the sequence 'f" is valid. A sequence of primitives is considered valid
if the following two conditions are satisfied:
i. The inherent properties, mentioned in Section 4.2, are satisfied, and

ii. qeT, i. e., q is a terminal state, since the last primitive of a sequence

should be accepted by a terminal state where stroke classes and their
fuzzy features reside.

3. If the sequence 'P' is invalid, then it is discarded. Otherwise, let n be the

number of the fuzzy features in the terminal state q:
i. Compute the features of explicit relationships between the primitives of

117

T', see Section 4.3.

ii. Compute the global features of the sequence 'F', see Section 4.4.

Append these to the features computed in (i). The total number of
features must sum to the number, n, of fuzzy features in q, which is an
inherent property of the recognition algorithm.

iii. For each stroke class, c, in q:
Find the acceptance degree, 3tF(f), of each feature, f, computed in

(i) and (ii) above, in the corresponding fuzzy feature, F, of the

class, c. If the minimum, w2, of these acceptance degrees is less

than a specified threshold, THR2, then the stroke can not be

recognized as belonging to class c. Otherwise, the class, c, and the

minimum acceptance degree are retained and a triple of the form
(wl, w2, c) is created.

If it was not possible to obtain at least one triple, (w,, w2, c), then the stroke is

unknown. Otherwise, the stroke is assigned the class, c, of the triple which has the

maximum w3 = min(wl, w2), which is the overall acceptance degree of the stroke.

5.3.2. Example

A graph of Arabic numeral "r" and its reduced graph are shown in Figure 5.9. The

loop in Figure 5.9(a) is spurious. This stroke is to be recognized by the fuzzy machine

shown in Figure 5.6. The stroke is segmented into the following primitives: *1 = 1(1,2),

`Y2= *(2), *3 = 0(3), *4 = *(2), and ors =1(2,4). The lengths of these primitives are: 11

s
= 144,12 = 0,13 = 56, l4 = 0, and is = 195. The total length of the stroke is L=El; =

1.1

395. Length ratios are: Ir, = 0.37, lr2 = 0.00, lr3 = 0.14, lr4 = 0.00, and 1r3 = 0.49. The two

link primitives *, and tjrs have angles 0, = 208° and 0S = 329°, respectively. The loop set

primitive *3 has one loop. In this example, THR, and THR2 are set to 0.6.

Step 1. Construction of acceptance tree, see Figure 5.10.

(a) Create the root of the tree, node 0, with the 2-tuple (q0,1.00), i. e., we start from the

starting state, q0, of the machine shown in Figure 5.6 with an initial credit w=1.00.

118

(a) (b)

Figure 5.9. (a) A graph of Arabic numeral "r" with a spurious loop, and (b) it's

reduced graph.

Level 0 q0,1.00

H/2

TO

Level 1 g0, S, 0.63 g1, N, 1.00

ý

Level 3 q1, S, 0.86

314/5
Level 2 g0, S, 0.63 g1, S, 1.00 g2, NO

6

Level 4 q1, S, 0.86 g2, N. 0.86

q3, N, 1.00

q3, S. 1.00
12

Level 5

c(2, S, 0.86

q10, N. 0.65 q11, N, 0.86

Figure 5.10. Acceptance tree for Example 5.3.2.

(b) Create level 1 of the tree which contains acceptance information about the first

primitive, *1. In level 1-1=0, there is one node, 0, which has qo as one tuple,

thus:

1. First, the primitive i{rl is considered spurious. The value to be discounted from

the credit of node 0, is 6= lr1= 0.37. The remaining credit will be 1.0 - 0.37

= 0.63 > THRI. Thus, a new node, 1, is created with the 3-tuple (q0, S, 0.63).

2. Now, consider *I as non-spurious. There is one next state, q1, of qo with a

119,

fuzzy direction state entrance qualifier Q1= (195°/30°; 225°\30°). Thus, the

link primitive, i{r,, can be accepted by state q, with an acceptance degree

x(jr,, q,) = n°, (01 = 208°) = 1.00. If a value S =1r1 x (1.00 - x(*1, q,)) =

0.0 is discounted from the credit of node 0, then the remaining credit will be

1.0 - 0.0 =1.0 > THR1. Thus, a new node, 2, is created with the 3-tuple (q1i

N, 1.00).

Create level 2 of the tree which contains acceptance information about the second

primitive; '1'2. In level 2- 1=1, there are two nodes, 1 and 2. Thus:

First, consider node 1, which has qa as one tuple:

1. Consider tlr2 as spurious. The value to be discounted from the credit of node
1 is 6 =1r2 = 0.00. The remaining credit will be 0.63 - 0.00 = 0.63 > THR1.

Thus, a new node, 3, is created with the 3-tuple (q0, S, 0.63).

2. Consider `Y 2 as non-spurious. Since *2 is a vertex primitive and there is no

next state of qo with a vertex state entrance qualifier, no more sons are added

to node 1.

Second, consider node 2, which has q1 as one tuple:
1. Consider *2 as spurious. The value to be discounted from the credit of node

2 is 6= lr2 = 0.00. The remaining credit will be 1.00 - 0.00 = 1.00 > THR1.

Thus, a new node, 4, is created with the 3-tuple (q1, S, 1.00).

2. Consider *2 as non-spurious. For state q,, there is only one next state, q2,

which has a vertex state entrance qualifier. Thus, *2, which is a vertex

primitive, can be accepted by q2. The value to be discounted from the credit

of node 2 is 6= lr2 = 0.00. The remaining credit will be 1.00 - 0.00 = 1.00 >

THR1. Thus, a new node, 5, is created with the 3-tuple (q2, N, 1.00).

Similarly, levels 3 to 5 are created. Finally, the tree of Figure 5.10 is obtained with

the nodes being referenced by the numbers underneath.

Step 2. Checks and decisions

Here, case (b) of Step 2 of Algorithm 5.3, applies:
(b) The tree has node, 13, with its level equal to 5=m; the number of primitives. The

remaining credit in node 13 is 0.65:

1. By following the path from node 13 to node 2 and extracting the primitives

120

that were counted non-spurious, a new stroke sequence, T' *2) is

obtained where lll'1 = *1 and *'2 The primitive *12 is accepted by the

state q10.

2. The sequence 'I" fulfils the inherent properties mentioned in Section 4.2,

however, q10 (r T, where T is the set of terminal states of the fuzzy machine

of Figure 5.6. Thus, condition (ii) of the two conditions mentioned in Step

2(b)2 of Algorithm 5.3 is not satisfied which makes T' an invalid sequence.

Hence, it is discarded.

Also, the tree has node, 14, with its level equal to 5=m; the number of primitives.

The remaining credit in node 14 is 0.86:

1. By following the path from node 14 to node 2 and extracting the primitives

that were counted non-spurious, a new stroke sequence, 1F' *
2) is

obtained where `Y'1 = *1 and I'2 = 1115. The primitive *12 is accepted by the

state q11.

2. The sequence 'I" fulfils the inherent properties mentioned in Section 4.2 and

q11 E T, where T is the set of terminal states of the fuzzy machine of Figure

5.6. Thus, the two conditions mentioned in Step 2(b)2 of Algorithm 5.3 are

satisfied which makes 1F' a valid sequence.

3. i. There is no explicit relationship features for the sequence 'I" since
it does not have connected loop set and vertex primitives.

ii. Five global features are calculated for the sequence 'I": DP type
feature f1=1.00, height to height-plus-width ratio feature f2 = 0.50, two
features to relate the heights of the right and left ends to the total height

of the stroke f3 = 0.00, f4 = 1.00, respectively, and feature of curvature
f, = 0.03. Thus, we end at a total number of features, 5, which equals the

number of fuzzy features in q11i as it should be.
iii. State q11 has one class, Arabic numeral "c" with five fuzzy features, F1

to F,, refer to Example 5.2.3. The acceptance degrees of the features

which were computed in (ii) in the corresponding fuzzy features are:

7r (E) = 1.00, i=1,2,3,4,5. The minimum value of the acceptance of

121

features is min (7t1(f)) =1.00 > THR2. Thus, the class "c" and the value
i-i

1.00 are retained and the triple (0.86,1.00, "c ") is created.

Since only one triple, (0.86,1.00, "T"), could be obtained, the stroke is recognized

as a member of the class "T" with an overall acceptance degree of 0.86 = min(0.86,

1.00).

SUMMARY

In this chapter, The recognition component of the IACR system was described in

detail. It was shown how a sequential machine model can be used to define recognizers

of handwritten Arabic strokes. Flexibility is added to the system by building on concepts
from fuzzy set theory to finally define fuzzy sequential machines. The recognition

algorithm was formally presented and demonstrated by an example. The automatic

generation of such fuzzy sequential machines will be addressed in the next chapter.

122

Stroke

Learning

OVERVIEW

In this chapter the learning component of the IACR system is presented A data

flow diagram of the learning process is shown in Figure 61, which consists of two sides,

where only one side is active at a time. The learning algorithm determines which side to

activate, depending on the last level of the acceptance tree of an unrecognized stroke

which is passed by the recognition algorithm, as follows:

(a) If the last level of the acceptance tree is less than the number of primitives in the

(b)

stroke, then the right side is activated which consists of the following

subprocesses:

1. Generating Fuzzy Sequential Machine from the Input Stroke, Section 6.2:

where the inputs are the sequence of primitives and reduced graph of the

stroke. The output is a fuzzy sequential machine which can recognize the

input stroke and variants of it.

2. Merging Fuzzy Sequential Machines, Section 6.3: which accepts as inputs

the machine generated in (1) and the old machine which was used in

recognition but failed to recognize the stroke. The result is a new machine

which can recognize the input stroke and strokes of the old machine and

variants of these strokes.

If the last level of the acceptance tree equals the number of primitives in the stroke,

then the left side of Figure 6.1 is activated, where some modifications are

123

Figure 6.1. Data flow diagram of the Stroke Learning process in the IACR system.
Only one side of this diagram is active at a time. If the last level of the acceptance tree is
less than the number of primitives in the unknown stroke, then the right side is activated,
otherwise, the left side is activated.

introduced into the machine that was used in recognition, which are sufficient to

learn the stroke, Section 6.4. The inputs in this case are the sequence of primitives,

reduced graph of the stroke, and the acceptance tree. The output is a modified

fuzzy sequential machine which can recognize the input stroke and strokes of the

old machine and variants of them.

6.1. LEARNING

In Chapter 5, fuzzy sequential machines were introduced as a new model to

recognize handwritten Arabic strokes. If the system is unable to recognized a stroke, then

there should be somemeans to learn it. This chapter is concerned with the learning process

of unrecognized strokes. If FM, = (Cl, Q1, E,, ý,, T,) is the machine that was used when

recognition was tried but failed, then our goal is to modify or expand FM, so that it

124

becomes, capable of recognizing strokes belonging to the unknown stroke's class. Of

course, the set Ql is initially empty. FMl possesses new states and classes when more

strokes are learned. An algorithm to learn strokes is described below.

Algorithm 6.1

Use: To learn a-stroke
Input: 1. Sequence of primitives, LF, of the stroke to be learned

2. Reduced graph of the stroke to be learned

3. Acceptance tree of the stroke which is unrecognized by Algorithm 5.3

4. Fuzzy sequential machine, FM,, of strokes which are already learned

Output: New fuzzy sequential machine, FM, which can recognize the underlying stroke

and previously learned strokes

Procedure:

Depending on the last level of the acceptance tree of the unrecognized stroke, one

of the following two cases occurs:

(a) The last level of the acceptance tree is less than the number of primitives, m: This

means that it was not possible for the whole sequence of primitives to terminate at

(b)

some state such that the remaining credit of the stroke z THRI. In this case, simple

modifications of some states are not adequate. We adopted the following solution:

1. Obtain a new fuzzy sequential machine, FM2, from the stroke's sequence of

primitives, T. This machine can recognize strokes belonging to the underlying

stroke's class. Section 6.2 explains how to obtain a fuzzy sequential machine

from a given input stroke.

2. Merge FM, and FM2 to obtain the machine FM that is capable of recognizing

the strokes belonging to the underlying stroke's class with an overall

acceptance degree equal to 1.00. The new machine still memorizes all

previously learned strokes. Merging of sequential machines is explained in

Section 6.3.

The last level of the tree equals, m, the number of primitives in the sequence, T.

This case occurs:

1. if the stroke sequence could terminate at one or more terminal state such that

125

the remaining credit of the stroke did not fall below THR,, but could not be

recognized due to severe deviation of the stroke's features from the fuzzy

features of the classes embedded in any of these terminal states, i. e., the

acceptance degree of the stroke's features is less than THR2.

2. and / or the stroke sequence terminated in one or more states, NT, which are

not terminal states and such that the remaining credit of the stroke is not less

than THR,.

In this case, there is no need to create a new fuzzy sequential machine as in (a). Only

some modifications to FM, are sufficient, which are:

1. Either add a new class, with its fuzzy features, in one terminal state which

already exists and could be reached by the sequence of primitives, T, or

2. Change one of the states in NT into a terminal state, i. e., append it to the set

T, and insert in it the class of the stroke with its fuzzy features.

These modifications are explained in detail in Section 6.4.

6.2. GENERATION OF FUZZY SEQUENTIAL MACHINES

As shown in Figure 6.1, a necessary step in the learning process is to obtain a fuzzy

sequential machine from an input stroke. The manual generation of this machine is

cumbersome, since it may contain several states requiring proper state entrance qualifiers,

next state mapping function, and insertion of stroke classes with their fuzzy features in

suitable states. Thus, it is important to search for somemeans to automate the generation

of fuzzy sequential machines. In this section, an algorithm is developed for this purpose

which is based on the following points:
(a) For a vertex or loop set primitive, one state is generated which has a vertex or loop

set state entrance qualifier. Thus, when the primitive excites this state,. the later will

accept it.

(b) For a link primitive, a state is generated which has an adjusted fuzzy direction state

entrance qualifier such that the link is 100% accepted by that state.
(c) For each two consecutive link primitives, a sequence of states is generated, each

having an adjusted fuzzy direction state entrance qualifier. Transitions can be made
from any of these states to itself in addition to the other states following it in the

126

at 02 Q3

04

Q4

Figure 6.2. A fuzzy sequential machine which can be generated from a stroke
consisting of two link primitives.

sequence. By adopting this, we add flexibility to the generated fuzzy sequential

machine since the change from a given direction of a link primitive to another.

direction of another link primitive can be achieved either directly or gradually by

passing via many intermediate states. For example, consider the machine of Figure

6.2, in which Q1 = (15°/30°; 45°\30°), Q2 = (45°/30°; 75°\30°), U3 = (75°/30°;

105°\30°), and (14= (1050/30°; 135°\30°). This kind of machine can be generated
by a stroke having two link primitives, *Jri and *2, which have the angles 25 ° and

130°, respectively. Other similar strokes consisting of link primitives which can be

accepted by q1 followed by link primitives which can be accepted by q4, can be

recognized. Now, what happens for a stroke consisting of the four link primitives,

*1 *2) 73, and `Y Jr4, which have the direction angles 25 °, 50 °, 90 °, and 130".

respectively?. Clearly, We can not proceed from q0 to q1 to q4, without passing

through other intermediate states. The best sequence of states which can accept

these primitives is q0, q12 q2, q3, q4. From this example, we can see that although the

stroke which is used to generate this machine requires only states q0, q1, and q4,
future variants of this stroke were taken into account by adding states q2 and q3.
Thus, it becomes clear how much flexibility is added by adopting such. a scheme in

generating fuzzy sequential machines.

(d) In the final generated state, a class of the underlying stroke is added with fuzzy

features which are obtained from the calculated stroke's features.
A formal description of the algorithm follows.

127

Algorithm 6.2

Use: To generate a fuzzy sequential machine from a stroke
Input: 1. - Sequence of primitivesof the stroke to be learned 'f' = (Irk, j=1,2,3,

..., m)

2.. Reduced graph of the stroke to be learned

Output: Fuzzy sequential machine FM = (C, Q, E, (, T) which can recognize strokes

belonging to the class of the input stroke

Procedure:

Step 1. Initialization

Let i=1 and j=1, where i and j are used as indices for the generated states and the

primitives of the stroke, respectively.
Step 2. Creation of the starting state

(a) Create the starting state q0.

(b) If 1rl is a vertex then go to Step 3, else if is a loop set then go to Step 4, else go

to Step S.

Step 3. Creation of an accepting state for the vertex primitive qrj

(a) Create a new state, q;, which has of =* as a vertex state entrance qualifier. A

directed arc, which is labelled with a;, is added to point from state q; _1 to state %,

i. e., we set ((q;
_1, a.) = q;.

(b) If Irj is the last primitive then go to Step 7, else: (a) increment i and j; (b) ifis a
loop set then go to Step 4, else go to Step 5.

Step 4. Creation of an accepting state for the loop set primitive iJrj
(a) Create a new state q; which has o; = O(n) as a loop set state entrance qualifier,

(b)

where n is the number of loops in the loop set primitive. A directed arc, which is

_ labelled with a; is added to point from state q; _, to state %, i. e., we set .
((q;

_1, a)

CL.
If qrj is the last primitive then go to Step 7, else increment i and j and go to Step 3.

According to inherent properties of sequences of primitives, Section 4.2, notice that

for a loop set primitive, %, *j.,, must be a vertex primitive.

Step 5. Creation of an accepting state for the link primitive t(rj, which is not

128

preceded by a link primitive, i. e., either j=1 or ij_I is a vertex primitive. According to

inherent properties of sequences of primitives, Section 4.2, notice that for a link primitive

*j, *j_1 or *j+1 can not be a loop set primitive.

(a) Fuzzify the direction angle, 0, of ýj by transforming it into a fuzzy direction ai =
(pi/ßi; P2\ß2) as follows:

1. Set both the left and right bandwidths, ßi and ß2, to suitable values.
2. The range from 0° to 360° is divided into 360° / core angular intervals. The

first angular interval is centred at 0°. If 0 lies in the angular interval the centre

of which is 00, then set the left peak point pi = GO core /2 and the right

peak point p2 = 00 + core / 2.

(b) Create a new state qi which has the fuzzy direction, ai, as its state entrance qualifier.
Two directed arcs, which are labelled with ai, are added to point from chi-1 to q; and
from qi to itself and, i. e., we set ((qi_i, aJ=q, and Z(q;, a) = qi.

(c) If tJrj is the last primitive then go to Step 7, else: if týrj+i is a vertex primitive then

increment i and j and go to Step 3, else go to Step 6.

Step 6. Creation of an accepting state for the link primitive tJrj+i and a sequence of

states which He between state qi and the state which accepts *j+i to allow for gradual

change of direction

Let 6k be the angle of the primitive, tIrr+1, which lies in the angular interval the centre of

which is Or:

(a) Consider the centres 0,, O2,
...,

Ok, of the angular intervals which he between 00

and O,, where 01= 00 ±1x core, I= 1,
...,

k. The plus sign is used if 00 < Ok, and

vice versa.
(b) Create k new states qi+i, h. +2, ..., q1+k, where state L. +, has the fuzzy direction Qi+r =

(pn/ß 1; p, 2\ß2) as its state entrance qualifier, p,, = 01- core / 2, pn = 0, + core / 2,

, and ß2 are the left and right bandwidths.

(c) Add directed arcs from state q, to states q, +1, q, +2, ..., ,, k, where a=i, i+1,
...,

i+k-1. All arcs entering a state qi+, are labelled with the fuzzy direction state

entrance qualifier o; +,. Thus, we get Z(q� Ub) = qb, a=i, i+1,
...,

i+k -'I, and b

a+1, ...,
i+k.

(d) For every'state q; +r add a directed arc, which is labelled with ai+n to point from that

129

(e)

(f)

state to itself, i. e., «(L-+,, ai+) = qi+h 1= 1,2,
...,

k.

Increment i by k and j by 1.

If iJcj is the last primitive then go to Step 7, else if jrJ+, is a link primitive then let 00

= 0k and repeat Step 6, else increment i and j and go to Step 3.

In Steps 5 and 6, the three parameters: core, ßl, and ß2 were suitably found to be

equal to 30°.

Step 7. Setup of a terminal state

The last created state, q, is considered as a terminal state. Thus, for the machine, FM, T

A class, c�.,,, of the underlying stroke, with fuzzy features, is embedded in q;,
hence, C= {c�,

�}. The fuzzy features are calculated as follows:

(a) Find the explicit relationships between primitives of the sequence ', see Section

4.3. Find the global features of the stroke, see Section 4.4, and append them to the

features of explicit relationships.
(b) Fuzzify every feature, t computed in (a), of the stroke by transforming it into an s/z-

number as follows:

1. Set both the left and right bandwidths to ß f.
2. The range from 0.0 to 1.0 is divided into nf equal intervals. The left and right

peak points, pl and p2, are taken to be equal to the limits of the interval in

which the value f lies.

Suitable values of ßf and nfwere found to be 0.2 and 5, respectively. For example
if f=0.65, then the corresponding fuzzy feature will be F= (0.6 / 0.2 ; 0.8 \ 0.2).

6.2.1. Example

Figures 6.3(a, b) show the graph, G, and the reduced graph, G', of a stroke,

Damma. The stroke consists of the following primitives: *1 =1(1,2), *2 *(2), i(r3 =

0(3), *4 = *(4), is = 1(4,5), and *6 = 1(5,6). A fuzzy sequential machine, FM1= (C1,

Q1, E1, (1, T1), is to be obtained which can recognize this stroke and other strokes

belonging to Damma class. For the sake of easy referencing, in the next sections where

other machines are generated, we use two subscripts to refer to a state in the machine,

FM1, e. g., q11 refers to state q; of machine FM1. See Figure 6.3(c) while reading the

following steps.

130

(a)

(c)

(b)

Figure 6.3. (a) A graph, G, of an Arabic stroke, Damma, (b) its reduced graph, G',
and (c) a deterministic fuzzy sequential machine obtained from this stroke.

Step 1. Initialization

Leti=1andj=1.

Step 2. Creation of the starting state
(a) Create the starting state, q10.
(b) Since *1 is a link primitive go to Step 5.

Step 5. Creation of an accepting state for the link primitive qrl =1(1,2) with

angle 0= 207°:

(a) Fuzzify the angle value 207° by transforming it into a fuzzy direction a11= (pl/F'1;

p2\ß2) as follows:

1. Set both the left and right bandwidths, ßl and ß2, to 30

2. By dividing the range from 0° to 360° to 360° / core = 360° / 30° = 12

angular intervals, we find that the angle 207° lies in the angular interval the

centre of which is Oo = 210°. The left peak point is set to p1= 210° - core /

2= 210° - 30° /2= 195°and the right peak point is set to p2 = 210° + core
/2= 210° + 30° /2= 225°. Finally, we get vll = (195° / 30°; 225° \ 30°).

131

(b) Create a new state q11 which has the fuzzy direction 011 as its state entrance

qualifier. Two directed arcs, which are labelled with 011, are added to point from q10

to q11 and from q11 to itself, i. e., we set (1(glo, 011) = qu and C1(g11,011) = q11.

(c) Since there are more primitives and"the next primitive, ßr2, is a vertex we increment

i to 2 and j to 2 and go to Step 3.

Step 3. " - Creation of an accepting state for the vertex primitive *2
(a) Create a new state q, 2 which has 012 =* as a vertex state entrance qualifier. A

directed arc, which is labelled with 012, is added to point from state q11 to state q12,
i. e., we set (1(g11,012) = q12.

(b) Since there are more primitives: (1) increment i to 3 and j to 3 and (2) go to Step

4 since *3 is a loop set primitive.

Step 4. Creation of an accepting state for the loop set primitive ßr3

(a) Create a new state q13 which has 013 = 0(1) as a loop set state entrance qualifier,

where the 1 is the number of loops in the loop set primitive. A directed arc, which
is labelled with 013, is added to point from state q12 to state q13, i. e., we set (1(g12,
('13)=q13"

(b) Since there are more primitives, increment i to 4 and j to 4 and go to Step 3.

Step 3. Creation of an acceptance state for the vertex primitive Jr4

(a) For the vertex primitive, llr4, create a new state q14 which has 014 =* as a vertex

state entrance qualifier. A directed arc, which is labelled with 014, is added to point
from state q13 to state q14, i. e., we set (1(g13,014) = q14.

(b) Since there are more primitives: (1) increment i to 5 and j to 5 and (2) go to Step

5 since i{rs is a link primitive.

Step 5. ̀ Creation of an accepting state for the link primitive urs =1(4,5) with

angle 0= 263 °:

(a) Fuzzify the'angle value 263 *by transforming it into a fuzzy direction .a
1s = (pl/ß 1;

p2\ß) as follows:

1. Set both the left and right bandwidths, ßl and ß2, to 30°.
2. By dividing the range from 0° to 360° to 360° / core = 360° / 30° = 12

angular intervals, we find that the angle 263 ° lies in the angular interval the

centre of which is Oo = 270°. The left peak point is set to p1= 270° - core /

132

2=270" - 30° /2 = 255 °and the right peak point is set to P2 = 270° + core

/2= 270° + 30° /2= 285°. Finally, we get a, s = (255° / 30°; 285° \ 30°).

(b) Create a new state q15 which has the fuzzy direction o, s as its state entrance

qualifier. Two directed arcs, which are labelled with a, s, are added to point from q14

to qls and from q, s to itself, i. e., we set (1(g14,01s) = qls and y1(glsº (1ls) = q15.
(c) Since the link primitive, qrs; is directly followed is by another link primitive, 16, we

go to Step 6.1 11

Step 6. Creation of an accepting state for the link primitive i6 and a sequence

of states which lie between state q15 and the state which accepts 16

The angle of *6 is 6k = 219°, which lies in the angular interval the centre of which is O, =
210°:

(a) Consider the centres 01 = 240° and 02 = 210°, i. e., k=2, of the angular intervals

which he between Oa = 270° and 02 = 210°.

(b) -Create two (since k= 2) new states, q16 and q17, where state q16 has the fuzzy

direction a16 = (Pll/ß,; P12\(32) as its state entrance qualifier, and state Q17 has the

fuzzy direction a17 = (P21/ßl; p22\ß) as its state entrance qualifier, pl, = O1- core

/2=240°-30°/2=225°, p12=01+core /2=240°+30°/2=255°, P21=02

-core /2=210°-30°/2=195°, p22=02+core /2=210°+30°/2=225°, ß,

and ß2 are set to 30°. Thus, we get a16 = (225°/30°; 255°\30°) and a, 7 =
(195°/30°; 225°\30°).

(c) Add directed arcs to point from state q15 to states q, 6 and q17, and from state q16 to

state q17. The arcs entering states q16 and q17 are labelled with the fuzzy direction

state entrance qualifiers a16 and 017, respectively. Thus, we get (1(gls, (716) = q16,
C1(gls, o17) = q17, and (1(g16,017) = qtr

(d) For state q16 add a directed arc, which is labelled with 016i to point from that state
to itself. Similarly a directed arc, which is labelled with 017i is added to point from
state q17 to itself Thus, we get (1(g16, (716) = q16 and (1(g17,017) = q17"

(e) Increment i to 7 and j to and j to 6.

(f) Since *6 is the last primitive go to Step 7.

Step 7. Setup of a terminal state
The last created state, q17, is considered as a terminal state. Thus, for the machine, FM,,

133

T, = (q17). A class, Damma, which is the class to which the underlying stroke belongs,

is embedded in q17 with its fuzzy features, hence, C, = (Damma). The fuzzy features are

calculated as follows:

(a) Explicit relationships between primitives are found as follows, see Section 4.3:

Primitive *2 is vertex that is connected to a loop set primitive, Y' 3. This relationship

is expressed by the two features: f, = 1.0 and f2 = 0.62, which relate the x&y

coordinates of the vertex primitive to the x&y coordinates of centre of gravity of

the loop set primitive. Similarly, another relationship is expressed between the two

primitives l14 and J3 by the two features: f3= = 0.87 and f4 = 0.85. The global

features of the stroke are found and appended to the features of explicit

relationships, see Section 4.4: There are two features of DP type since a stroke

belonging to Damma class has two dominant paths. These two features are fs =

0.13 and f6 = 0.50. There is one feature of height to height-plus-width ratio: f7 =

0.46. For this stroke, the features of heights of right and left ends and the feature of

curvature are not defined since it has vertex or loop set primitives.

(b) The features which are calculated above are fuzziffed by transforming them into s/z-

numbers. Pf and nf are set to 0.2 and 5, respectively. Thus, the following fuzzy

features are obtained: two fuzzy features expressing an explicit relationship between

a vertex primitive connected to a loop set primitive: F, = (0.8 / 0.2; 1.0 \ 0.2) and

F2 = (0.6 / 0.2; 0.8 \ 0.2), two other similar fuzzy features: F3 = (0.8 / 0.2; 1.0 \ 0.2)

and F4 = (0.8 / 0.2; 1.0 \ 0.2), which express another explicit relationship between

another vertex primitive connected to the same loop set primitive, two global fuzzy

features which are of DP type: Fs = (0.0 / 0.2; 0.2 \ 0.2) and F. = (0.4 / 0.2; 0.6 \

0.2), and a global fuzzy feature of height to height-plus-width ratio: F7 = (0.4 / 0.2;

0.6\0.2),.

Finally, a fuzzy sequential machine FMi = (C1, Q1, E 1,
(1, T) is obtained where

(a) C, = {Damma},

(b) Q1=(g11i=0,1,7),
(c) E1=(alni=1,2,..., 7), all=(195°/30°; 225°\30°), 012=*, a13=O(1), a14

= *, als = (255° / 30°; 285° \ 30°), 016 = (225°/30°; 255°\30°), and 017 =

(195°/30°; 225°\30°),

134

(d) Z1 is the next-state mapping function C1 : Q1 x E1 -. Q1, where y1(gto, all) = q11,

(1(g11, Q,,) = q11, C1(g11, Q12) = q12, (1(g12, a13) = q13, (1(g13) 014) = qu, (1(g14,015)
= q15, (1(g15, Qls) = q15, (1(g15, Q16) = q16, (1(g1s, ('17) = q17, C1(g16, (717) = q17, (1(g16,

016) = q16, and (1(g17, (717) = q17,
(e) T1= (q17), where the fuzzy features which are embedded in q17 were explained in

Step 7 of this example.

6.3. MERGING OF FUZZY SEQUENTIAL MACHINES

As shown in Figure 6.1, another necessary step in the learning process is to merge

two fuzzy sequential machines into one machine. Since there can be a large number of

stroke classes, it is impractical to create an independent machine for each stroke with the

fact that these machines may have many common states. Instead, a set of machines can

be merged into one machine with lesser number of states, which saves in recognition time

and memory requirements. This section presents an algorithm to merge two fuzzy

sequential machines.

6.3.1. Definitions

(a) A fuzzy sequential machine, FM = (C, Q, E, Z, T), which recognizes a set of stroke

classes, is said to be nondeterministic if there exists at least one state q; eQ and a

state entrance qualifier aj EE such that «(q;, aj) is multivalued. By a multivalued
Z(qj, aj) it is meant that for the same state-state entrance qualifier combination,
(q; a., there is more than one next state. For example, in the machine of Figure 6.4,

we have ((q1, a) = q2 and ((q1, a) = q3, i. e., for the same state entrance qualifier,

a2, ql has two next states, q2 and q3. Hence, it is said that this machine is

nondeterministic which is one kind of machines that we shall form as a necessary

step in our approach to merge fuzzy sequential machines.
(b) The transition tree is one graphical way to represent a sequential machine [75,77],

which will be used in the merging algorithm as a step toward obtaining a
deterministic machine from a nondeterministic machine. To illustrate how a

transition tree is formed, consider the fuzzy sequential machine of Figure 6.4 and its

transition tree shown in Figure 6.5 (The nodes in Figure 6.5 are referenced by the

135

Q2

Figure 6.4. A nondeterministic fuzzy sequential machine.

Figure 6.5. The transition tree of the fuzzy sequential machine of Figure 6.4.

nearby numbers). First, the root node, node 0, which contains the starting state, q0,
is generated. There is one entrance qualifier, a, which causes a transition from qo

to q,. Thus a new node, node 1, containing q,, is added as a son of node 0. The arc
from node 0 to node 1 is labelled with the state entrance qualifier, o,. The root

node, node 0, constitutes level 0 of the tree. Now, consider node 1, which contains

q,. There are two state entrance qualifiers, a, and a2, which cause transitions from

136

q, to other states. a, causes a transition from q, to itself. Thus, a new node, node

2, which contains q,, is added as a son of node 1. The arc between node 1 and node

2 is labelled with a,. a2 causes a transition from q, to either q2 or q3. Thus, a new

node, node 3, which contains both q2 and q3, is added as a son of node 1. The arc

between node 1 and node 3 is labelled with a2. Now, node 3 contains the set of

states (q2, q3). For these two states, there are two state entrance qualifiers, a2 and

a3, which cause transitions to other states. a2 causes a transition from q2 to itself or

from q3 to itself. Thus, a new node, node 4, containing both q2 and q3, is added as

a son of node 3. The arc between node 3 and node 4 is labelled with a2. a3 causes

a transition from q3 to q4. Thus, a new node, node 5, containing q4, is added as a son

of node 3. The arc between node 3 and node 5 is labelled with a3. Node 5 contains

q4. There is one state entrance qualifier, a3i which causes a transition from q4 to

itself. Thus, a new node, node 6, containing q4, is added as a son of node 5, -which

completes the transition tree. Notice that a state combination does not appear in

more than two levels of the transition tree. I

6.3.2. Algorithm to Merge Two Fuzzy Sequential Machines

The merging algorithm consists of the following three basic steps:

1. Form one nondeterministic machine, see Definition 6.3.1(a), from the two machines

to be merged. The ambiguity in the formed machine, i. e., having a multivalued ý Z(q;,

aj), is removed by the following two more steps.
2. Construct the transition tree, see Definition 6.3.1(b), of the nondeterministic

machine formed in (1).

3. The transition diagram of a deterministic machine is obtained from the transition

tree. The final machine recognizes the strokes of the two original machines. The

detailed algorithm now follows.

Algorithm 6.3

Use: To merge two fuzzy sequential machines

Input: Two deterministic fuzzy sequential machines to be merged: FM1= (Cl, Q1, E 1, .
C1, T) and FM2 = (C2, Q2, E

2)
C2, T2)

137

Output: , Deterministic fuzzy sequential machine FM = (C, Q, E, (, T), which

recognizes the strokes of FM, and FM2

Procedure:

Step 1. Forming of a nondeterministic fuzzy sequential machine

Let Q10 and Q20 be the sets of next states of q10 and q20, respectively. Form a

nondeterministic machine from FM1 and FM2 as follows:

(a) Remove the starting states q10 and q20, and the arcs emitting from them.

(b) Create a common starting state, q0.

(c) For each state q1 e Q10i add a directed arc to point from q0 to that state. This arc is

labelled with the state entrance qualifier of q1i. Similarly, for each state qj 1E Q20, add

a directed arc to point from Q0 to that state. This arc is labelled with the state

entrance qualifier of q2, " The result is that it generally happens that more than one

arc emitting from q0 will have the same input symbol, Q, which makes C(q0, a) a

multivalued function. Accordingly, what is obtained is a nondeterministic fuzzy

sequential machine FM3 = (C3) Q3, E3, Z3, T3), where C3 = C1 U C2, Q3 = {q0} u Q1

u Q2 - {q10i qm}, E3 = E1 U E2, C3 is the next-state mapping function C. : Q3 X E3

-- Q3, and T3 = T1 u T2.

Step 2. Constructing the transition tree for the machine FM3

(a) Generate the root node of the tree which has the state q0.

(b) For each generated node, d, starting from the root node, let S= {q11, q1;, """. qi , g21,

...
} be the set of states that was inserted in node d. For each input Ui E E3, find the

set of next states, Si, of the set S. Insert Si in a new node that is a son of node d.

This step, (b), is repeated for each newly generated node such that any state

combination does not appear in more than two levels of the tree. The link from a

node, dD to another node, dd, is labelled with the state entrance qualifier that causes

the transition from the state combination of the former node to that of the later.

Step 3. Obtain the transition diagram which represents a deterministic machine,
FM, from the transition tree:
(a) Create the starting state q0, of the transition diagram, which corresponds to the root

node of the transition tree.

(b) Scan the transition tree, level by level, starting from level I so that a single state is

138

created for each combination of states that exists in a node, d, as follows:

1. If the node, d, has a state combination for which no state was created, then

create a new state, q;. Otherwise,, a state, q;, that corresponds to the state

combination of d already exists.
2. Add an arc to point from the state that corresponds to the father node of d to

q;. This arc is labelled with the state entrance qualifier which caused the

transition from the father node to the node d.

3. If there is a terminal state qu or q,, in the state combination of the node d then

copy the stroke classes along with their fuzzy features which are embedded in

q, 3 or q, k to the new state q;, in which case q, is identified as a terminal state.
At the end of this step, a transition diagram is obtained which represents a

deterministic fuzzy sequential machine, FM, which is capable of recognizing both sets of

strokes which were recognized by FM, or FM2.

6.3.3. Example

Figure 6.6(a)- shows a graph of Arabic numeral "T". This graph consists of two

primitives: Jr, =1(1,2) and tl'2 = 1(2,3). The machine, FM1, which is shown in Figure

6.3(c), is unable to recognize this stroke since the last level of the acceptance tree is less

than 2, the number of primitives. Thus, to learn this stroke:

"A deterministic machine, FM2 = (C2i Q2, E2, Z2, T2), is created for the stroke, where

C2= {Arabic numeral "c"), Q2={gzii=0,1,2,3,4,5), E2={(12;, i=1,2,3,4,

5), y2 is the next-state mapping function C2: Q2 X E2 Q2, which can be read from

Figure 6.6(b), and T2 = (q25). The state entrance qualifiers are: 021= (195°/30°;

225°\30°), 022 = (225°/30°; 255°\30°), a23 = (255°/30°; 285°\30°), 024 =
(285°/30°; 315°\30°), and 025 = (315°/30°; 345°\30°). In the terminal state, q25,
five fuzzy features are embedded. The first feature is of DP type: F1= (0.8 / 0.2; 1.0

\ 0.2). The fuzzy feature of height to height-plus-width ratio is F2 = (0.4 / 0.2; 0.6

\ 0.2). There are two fuzzy features which relate the heights of the right and left

ends to the total height of the stroke. These fuzzy features are F3 = (0.0 / 0.0; 0.2

\ 0.2) and F4 = (0.8 / 0.2; 1.0 \ 0.2). The last feature is F5 = (0.0 / 0.0; 0.2 \ 0.2)

which is a measure of the stroke's curvature.

139

(a)

(b)

Figure 6.6 (a) A graph of Arabic numeral "T ", and (b) the corresponding fuzzy sequential
machine.

" The machine, FMI, is merged with the machine, FM2, described above. The merging

process is detailed below.

Step 1. Forming of a nondeterministic fuzzy sequential machine
The sets of next states of q10 and q20 are Q10 = (q11) and Q20 = (q21), respectively:

(a) Delete the starting states q10 and q20 and the arcs emitting from them
(b) Create a common starting state, Q0

(c) Since q11 E Q10, an arc, which is labelled with all, is added to point from q0 to q11.

Similarly, another arc, labelled with a21, is added to point from q0 to Q21. Note-that

oll = a21 =a which makes Z(q0, a) a multivalued function. The result is the

transition diagram shown in Figure 6.7 which represents a nondeterministic machine,

FM3.

140

O'2S

Figure 6.7. A nondeterministic machine obtained from the machines of Figures 6.3 (c)

and 6.6(b).

Step 2. Constructing the transition tree for the machine FM3

While reading this step refer to Figure 6.8, which displays the whole transition tree.

The nodes are referenced by the nearby numbers.

(a)

(b)
Generate the root node, node 0, of the tree which has the state q0.
For node 0, which has q0, the state entrance qualifier, all = a21, causes a transition

from qo to the set of next states S= (q11, q21). Thus, a new node, node 1, which is

a son of node 0 with a state combination equal to S is, added. The arc from node 0

to node 1 is labelled with 011= 021. Node 1, in turn, has {q11, q21}, (q22), (q23),

(q24), {q2S}, and (q12} as the sets of next states for the state entrance qualifiers 011

021,02b 023,024,025, and 012, respectively. Thus a new node is created for each

set of states, nodes 2 to 7. The arcs from node 1 to nodes 2,3, ..., 7, are labelled

with 011 = 021,02b Q23,024,025, and 012i respectively. This process is repeated for

newly generated nodes provided that a state combination does not appear in more

than two levels of the tree. The final transition tree is shown in Figure 6.8.

141

q0

Q11=021

q1 i,

q21

V11.
42I

015

q14

als

q1S

R7d \\/ -- , -- %J -- 1
-L

1

10 11 12 13 14 15 16 17
014

21

013

18

19

016 V 017
8

22418 23417

016 017

8F

24

Figure 6.8. The transition tree for the machine of Figure 6.7.

25

23

017

8

26

Step 3. To obtain the transition diagram from the transition tree:

(a) Create the starting state, q0, of the transition diagram which corresponds to the root

node of the transition tree.

(b) Scanning the tree starting from level 1, first we face node 1:

1. Node 1 contains the state combination (q11, q21) for which no state was

created. Thus, a new state, q,, is generated.
2. An arc is added to point from state q0, which corresponds to node 0, the father

node of node 1, to state q1 which corresponds to node 1. This arc is labelled

with o1=011=021.

a11ýaz1'
012

gzz 4 qz3 5
ý0256

azs atz

022
023

a22

025 023

sý"ý,

see O
seO

413

a23

024ýa25
024ý025`4 025

024

142

w 11

Figure 6.9. A deterministic fuzzy sequential machine obtained by merging the
machines of Figures 6.3(c) and 6.6(b).

Next, we face node 2:

1. Node 2 -contains the state combination
{q,,, q21} for which a state, q1, was

created.

2. An arc is added to point from state q1, which corresponds to node 1, the father

node of node 2, to state q, which also corresponds to node 2. This arc is

labelled with a, = a� = 021.
This process is repeated for the other nodes which results in 11 unique states,

excluding q0. Regarding node 6, it contains a terminal state, q2S. Thus, the stroke

class, Arabic numeral "T", and its fuzzy features, which are embedded in q25, are

copied to state, q� of Figure 6.9, which corresponds to node 6. Hence, q� of Figure

6.9 becomes a terminal state. Node 23, which contains the terminal. state q17, is

handled similarly. The completed transition diagram is shown in Figure 6.9 which

represents a deterministic machine FM = (C, Q, E, (, T), where C= {Damma,

Arabic numeral "c"}, Q= (q; i=0,1,
..., 11), E= {a;, i=1,2,

..., 11), (is the

next-state mapping function (: QxE-Q, which can be read from the figure, and
T= (q7, q11). In the terminal state q7, Damma strokes are recognized with the same

set of fuzzy features that were embedded in state q17 of machine FM,. Also, the

143

terminal state q11 recognizes Arabic numeral "s" with those fuzzy features which

were embedded in state q25 of machine FM2. The state entrance qualifiers are as

follows: a1= (195°/30°; 225°\30°), 02 =
*,

a, = O(1), a4 = *, 0s = (255°/30°;

285°\30°), 06 = (225°/30°; 255°\30°), a, = (195°/30°; 225°\30°), as =
(225°/30°; 255°\30°), 09 = (255°/30°; 285°\30°), alo = (285°/30°; 315°\30°),

and all = (315°/30°; 345°\30°).

6.4. MODIFICATION OF A FUZZY SEQUENTIAL MACHINE

If FM1 = (Cl, Q1, E 1, (1, T1) is the machine that was used when recognition was

tried but failed, then there are cases in which an unrecognized stroke can be learned by

incorporating some modifications in FMl so that, it becomes capable of recognizing

strokes belonging to the unknown stroke's class. These cases occur if the last level of the

stroke's acceptance tree equals, in, the number of primitives in the sequence, ̀F, as
follows:

(a) The stroke sequence could terminate at one or more terminal states such that the

remaining credit of the stroke did not fall below THRI, but could not be recognized

due to severe deviation of the stroke's features from the fuzzy features of the classes

embedded in any of these terminal states, i. e., the acceptance degree of the stroke's
features is less than THR2. Thus, in the following algorithm, a possibility will be

investigated to add a new class, with its fuzzy features, in one of these terminal

states.

(b) And / or the stroke sequence terminated in one or more states, NT, which are not
terminal states and such that the remaining credit of the stroke is not less than THRI.

Here, there are two cases:
1. Some states NT, r- NT were reached by considering some primitives to be

spurious.
2. The remaining states NT. = NT - NT, were reached by considering all

primitives to be non-spurious. We prefer the states in NT. on those in NT,,

although in the later the remaining credit of the stroke may exceed that in the

former. The rationale behind this preference is that learning a whole stroke is

safer than considering some primitives spurious and learning just part of it.

144

Thus, in the following algorithm, a possibility can be searched to change one

of the states in NT� into a terminal state, i. e., to append it to the set T, and to

insert in it the class of the stroke with its fuzzy features.

Formal description of the algorithm which learns a stroke by modifying a fuzzy

sequential machine follows.

Algorithm 6.4

Use: To learn a stroke by modifying a fuzzy sequential machine
Input: 1. Sequence of primitives, 'f', of the stroke to be learned

2. Reduced graph of the stroke to be learned

3. Acceptance tree of the stroke which is unrecognized by Algorithm 5.3

4. Fuzzy sequential machine, FMI, of strokes which are already learned

Output: New fuzzy sequential machine, FM, which can recognize the underlying stroke

and previously learned strokes
Procedure:

Step 1. Finding the path, in the acceptance tree, which has the maximum

remaining credit

(a) Retain the set of leaf nodes, D, of level m. For each node, deD, where the node d

contains the remaining credit, w, of the stroke, do:

1. Trace the path from d to its father node in level 1. Extract those primitives

which were counted non-spurious. Let these primitives be represented, from

top to bottom of the tree, by the new sequence 'P', the last primitive of which
is accepted by some state, q.

2. Check if the sequence 'i" is valid. A sequence of primitives is considered valid
if the following two conditions are satisfied:
i. the inherent properties, mentioned in Section 4.2, are satisfied,
ii. if q (r T1, then the sequence length m' must be equal to the original

sequence length, m.
(b) Retain the sequence, 1F', which has the maximum credit, w, and denote it LP

Step 2. Feature extraction of the stroke

(a) Find the explicit relationships between primitives of `F *, see Section 4.3. Find the

145

(b)

global features of the stroke the sequence of which is T*, see Section 4.4, and

append them to the explicit relationships.

Fuzzify every feature, f, found in (a), of the stroke by transforming it into an s/z-

number as follows:

1. Set both the left and right bandwidths to ßf. I

2. The range from 0.0 to 1.0 is divided into n equal intervals. The left and right

peak points, p, and p2, are taken to be equal to the limits of the interval in

which the value f lies.

Suitable values of ßf and n were found to be 0.2 and 5, respectively.
Step 3. State modification

Let q* be the state which accepted the last primitive of T*:

(a) If q* E T,, where T, is the set of terminal states of FM,, then add a new stroke class,

c�, �
in state q* with the fuzzy features computed in Step 2. A new machine, FM =

(C, Q, E, (, T), is obtained where C= {CQ, -�} u C1, Q= Q1, E=E,, (1, and T

= T1.

(b) If q* (' to T,, then add q* to the set of terminal states. Insert a stroke class, cps,,, in

q* with the fuzzy features computed in Step 2. A new machine, FM = (C, Q, E, (;

T), is obtained which is similar to FM1 with the exception that C= (cps) u C, and
T={q*)uT1.

6.4.1. Example

Figure 6.10(a) shows a stroke of Arabic numeral "T", It has two components: ßr1=

1(1,2) and *2 =1(2,3). The machine, FM1, of Figure 6.9 is used to recognize this stroke.

The recognition algorithm produced the acceptance tree of Figure 6.10(b). Nodes 3,4,

and 5 have levels which are equal to 2, the number of primitives. These nodes contain the

states qg, qg, and qlo, respectively. However, none of these states is a terminal one. Thus

the stroke is unknown. Since, the last level of the acceptance tree is 2 which equals the

number of primitives, m, the stroke can be learned by incorporating some modifications

to FM1 as follows:

146

(a)

q8, N, 0.70

q1, N, 1.00

q9, N. 1.00

(b)

Figure 6.10. (a) A graph of Arabic numeral "T", and (b) its acceptance tree.

Step 1. Finding the path, in the acceptance tree, which has the, maximum

remaining credit ..
(a) We retain the set of leaf nodes, D, of level 2. Here D= (node 3, node 4, node 5).

First we trace the path from node 3 to its father node, node 2, in level 1. A sequence

`1'' 1= (*1, *2) is obtained which satisfies the inherent properties of sequences of

primitives and its last primitive, *2, is accepted by qg which is not a terminal state

of the machine under consideration; hence, it is a valid sequence. Similarly, starting

from nodes 4 and 5, two other valid sequences, 'P'2 = (tlr1, ̀ Y 2) and 'P'3 = (Vr1, Y' 2)

are obtained.

(b) The sequence IF'2 has the maximum remaining credit, 1.00; hence, it is retained.

Step 2. Feature extraction of the stroke

(a) Notice that Y' '2 does not have features of explicit relationships between primitives

since it does not contain connected loop and vertex primitives. Five global features

of the sequence IF 12 are found: a DP feature f1= 1.0, a height to height-plus-width

ratio feature f2 = 0.70, features of heights of right and left ends relative to the height

of the stroke f3 = 0.00 and f4 = 1.0, and the feature of curvature fs = 0.46.

(b) The above features are fuzziffied to obtain the following fuzzy features F1= (0.80

/ 0.20; 1.00 \ 0.20), F2 = (0.60 / 0.20; 0.80 \ 0.20), F3 = (0.00 / 0.00; 0.20 \ 0.20),

F4 = (0.80 / 0.20; 1.00 \ 0.20); and Fs = (0.40 / 0.20; 0.60 \ 0.20), where F1 is of a

DP type, F2 is the height to height-plus-width ratio fuzzy feature, F3 and F4 are the

147

fuzzy features of heights of right and left ends relative to the height of the' stroke,

and Fs is the curvature fuzzy feature.

Step 3. State modification
The last primitive, *2, IF '2 is accepted by state q9, which is not a terminal state

in the machine FM,. Thus, q9 is added to the set of terminal states and an Arabic numeral
"r" class is inserted in q9 with the five fuzzy features computed in Step 2, above. Finally,

a new machine FM = (C, Q, E, (, T), is obtained which is similar to FM, with the

exception that C= {Arabic numeral "r"} u Cl and T= {Q9} u T1. Notice that C= Cl since

Cl already contains the class of Arabic numeral "r".

SUMMARY

In this chapter, the learning component of the IACR system was presented. The

learning algorithm determines how to learn an unrecognized stroke depending on the last

level of the acceptance tree of an unrecognized stroke, which is passed by the recognition

algorithm, as follows:

(a) If the last level of the acceptance tree is less than the number of primitives in the

stroke, then a fuzzy sequential machine is generated from the input stroke. This

machine can recognize the input stroke and variants of it. The generated machine

and the old machine, which was used in recognition but failed to recognize the

stroke, are merged into a new single machine. The new machine can recognize the

input stroke and strokes of the old machine and variants of these strokes.

(b) If the last level of the acceptance tree equals the number of primitives in the stroke,
then some modifications are introduced into the machine which was used in

recognition, as this is sufficient to learn the stroke. The output is a modified fuzzy

sequential machine which can recognize the input stroke and strokes of the old

machine and variants of them.

148

Experimentation

OVERVIEW

In this chapter, experimental results of the IACR system are reported An

explanation of how the character set under study was chosen is presented A description

of how the data of the learning and testing stages were acquired is given. The learning

stage is described, For the testing stage, the performance of the system in terms of

recognition, rejection, and error rates, and speed, is presented Causes of rejection and

error are analyzed

7.1. CHOOSING THE CHARACTER SET

The character set under study is shown in Figure 7.1 which is, from right to left:

Arabic numerals "" ", "i", "T", "r", "t", "all, "l", "v", "A", ' and "f", Arabic secondary

strokes and special characters: Hamza, Madda, Shadda, slash, minus sign, plus sign, right

and left parenthesis, comma, and Damma. This character set was selected as specified
below:

(a) The IACR system is designed to recognise single-stroke characters, i. e., each

character consists of a single connected component, which applies to every

character in this set.
(b) Samples of these characters produce a relatively small number of primitives

compared to some other characters. This results in smaller acceptance trees and a

smaller stroke fuzzy sequential machine. Consequently, faster recognition is

149

'1,, 6*"' ()+-/ uP ,j5; °\ fý v ^1 oý 1'j C'
14

Figure 7.1. The set of stroke classes used in the IACR system, from right to left:
Arabic numerals zero to nine, Hamza, Madda, Shadda, slash, minus sign, plus sign, right
parenthesis, left parenthesis, comma, and Damma.

obtained and less memory is needed.
There are other characters for which (a) and (b), above, also hold true. However,

only the shown characters are used since at this stage we are testing the efficiency of this

new approach of character recognition although we recognize that a wider character set

gives a more accurate assessment of the system.

7.2. DATA ACQUISITION

In both the learning and testing stages, the subjects were asked to write one line of

each character of the set under study. There was no restriction on pen type, ink type, or
ink colour. Subjects were asked to avoid generating blobs as possible as they can since the

IACR system was n6t designed to deal with such a phenomenon. More details about how

data were acquired for the learning and testing stages is given below:

(a) Learning: Initially, 6061 unnormalized handwritten strokes written by five subjects

were collected. Each subject was given two A4 size blank sheets each on top of,

another guiding sheet, see Appendix A, Figure A. 1, with twenty black horizontal

lines which work as guidelines when the subject writes the characters to prevent

characters of adjacent lines from touching each other. Reproductions of the images

used in the learning stage are shown in Appendix A, Figures A. 2 to A. 11.

(b) Testing: It is worth mentioning here that a different set of 20 subjects other than

the subjects of the learning stage provided the data set of the testing stage. Initially,

8000 unnormalized handwritten strokes written by these 20 subjects were collected.

Each subject was given one A4 size blank sheet on top of another guiding sheet, see
Appendix B, Figure B. 1, with 20 x 20 empty squares. The reasons for using squares
instead of just horizontal lines are:

1. With a sheet without squares as guidelines, the writing of a subject may

150

deteriorates as he proceeds from one end of the line to the other end since he

knows that the same character is to be written. Thus, he may not mind to

move and re-adjust his wrist as the pen moves. Including such guiding squares

helps to achieve such wrist re-adjustment, hence, produces more natural

writing.

2. In the data set of the learning stage, characters of the same line may touch

each other which raises some kind of a segmentation problem which is not

addressed in the current research. The squares of the guiding sheet, which is

used in the testing stage, eliminate this problem.

3. In the learning stage, the size of the acquired data varies with subjects. If the

same size of data is acquired by every subject then more accurate evaluation

of the system is obtained. This is achieved, in the testing stage, by giving each

subject a blank sheet on top of another sheet with a fixed number of empty
squares per sheet.

4. In the learning stage, the number of samples varies for each character. If the

same number of samples is acquired for each character then more accurate

evaluation of the system is obtained. Again, this is achieved, in the testing

stage, by giving each subject a black sheet on top of another sheet with a fixed

number of empty squares per line.

Reproductions of the images used in the testing stage are shown in Appendix B,

Figures B. 2 to B. 21.

Images of the data sets of the learning and testing stages were captured using an HP

ScanJet scanner. The resolution used was 300 dots per inch in both the horizontal and

vertical directions. The reason for selecting this value of resolution is based on our

observation that under-sampled pictures, e. g., less than 300 dpi, may create disconnected

images for very thin strokes which produces multi-component straight line approximations
for such strokes. This is not accepted by the IACR system since it does not have the

capability to handle disconnected strokes.

151

Table 7.1. Number of collected, discarded, and used handwritten samples for the learning
stage of the IACR system.

No. of No. of Discarded Samples No. of Used Samples
Subject No. Collected

Samples Absolute Percentage Absolute Percentage

1 1194 35 2.9 1159 97.1

2 1127 26 2.3 1101 97.7

3 1035 18 1.7 1017 98.3

4 1295 44 3.4 1251 96.6

5 1410 48 3.4 1362 96.6

Total 6061 171 2.8 5890 97.2

7.3. LEARNING

In the data set of the learning stage, see Figures A. 2 to A. 11, notice that it in the

case of comma and Damma characters samples with lost loops, i. e., blobs, were generated

which, when thinned, may produce distorted straight he approximations. Thus, such

samples and some other garbage samples were discarded, i. e., they were not learned. This

is achieved by watching the image of each character and using human judgement to decide

whether to learn it or not. Table 7.1 shows the total number of characters provided by

each subject and the percentage of discarded and used characters in the learning stage.

According. to this table, the IACR system was trained on 97.2% of the total number of

strokes, i. e., 5890 strokes.

In the learning algorithms, the core and left and right bandwidths of the fuzzy

direction state entrance qualifiers were set to 30°. The thresholds THRI and THR2 were
both set to 0.90. The learning stage produced a fuzzy sequential machine of 20 stroke

classes, as it should be, 2705 states, and 8640 arcs.

7.4. TESTING

In the data set of the testing stage, see Figures B. 2 to B. 21, notice that some

samples are garbage which were discarded, i. e., they were not used in the testing stage.
This is achieved by watching the image of each character and using human judgement to

decide whether to test it or not. Table 7.2 shows the total number of characters provided

152

Table 7.2. Number of collected, discarded, and used handwritten samples for the testing
stage of the IACR system.

No. of No. of Discarded Samples No. of Used Samples _., Subject No. Collected
Samples Absolute Percentage Absolute Percentage

1 400 0 0.00 400 100

2 400 0 0.00 400 100

3 400 0 0.00 400 100

4 400 0 0.00 400 100

5 400 1 0.25 399 99.75

6 400 0 0.00 400 100

7 400 0 0.00 400 100

8 400 7 1.75 393 98.25

9 400 1 0.25 399 99.75

10 400 5 1.25 395 98.75

11 400 3 0.75 397 99.25

12 400 4 1.00 396 99.00

13 400 5 1.25 395 98.75

14 400 1 0.25 399 99.75

15 400 0 0.00 400 100

16 400 1 0.25 399 99.75.

17 400 1 0.25 399 99.75

18 400 8 2.00 392 98.00

19 400 0 0.00 400 100

20 400 0 0.00 400 100

Total 8000 37 0.46 7963 99.54

by each subject and the percentage of discarded and used characters in the testing stage.
According to this table, 99.54% of the total number of strokes, i. e., 7963 strokes, were

used in the testing stage.
The testing stage was performed on a 486DX IBM PC compatible microcomputer,

with 50 MHz clock and 16 MB RAM. The overall recognition, rejection, and error rates

were 95.8%, 1.5%, and 2.7%, respectively. Thus, the system reliability is 95.8 / (100 -

153

Table 7.3.. Performance of the IACR system.
These results were obtained by running the algorithms on a 486DX IBM PC compatible
microcomputer, with 50 MHz clock and 16 MB RAM.

Subject # No. of Strokes Recognitiön
Rate %

Rejection
Rate %

Error
Rate %

Reliability
/o

1 400 97.8 1.2 1.0 99.0

2 400 97.0 1.3 1.7 98.3

3 400 97.3 1.2 1.5 98.5

4 400 97.5 1.0 1.5 98.5

5 399 96.5 1.5 2.0 98.0

6 400 97.5 1.5 1.0 99.0

7 400 95.0 1.8 3.2 96.7

8 393 93.9 1.8 4.3 95.6

9 399 93.7 2.0 4.3 95.6

10 395 95.7 1.3 3.0 97.0

11 397 95.7 1.0 3.3 96.7

12 396 92.9 1.8 5.3 94.6

13 395 93.2 1.8 5.0 94.9

14 399 94.0 1.5 4.5 95.4

15 400 97.5 1.2 1.3 98.7

16 399 95.2 1.5 3.3 96.6

17. 399 97.0 1.0 2.0 98.0

18 392 96.4 1.3 2.3 97.7

19 400 97.5 1.5 1.0 99.0

20 400 95.3 2.0 2.7 97.2

Total 7963 95.8 1.5 2.7 97.3

1.5) x 100 = 97.3%.

Table 7.3 shows the performance rates for the 20 subjects of the testing stage. In

this table it is clear that, irrespective of the subject, the recognition rate always exceeds
90.0%, and the rejection and error rates don't exceed 2.0% and 5.3, respectively.

The performance of the system puts the IACR system in a competing position with

154

other systems, see for example [14,36] the recognition rates of which were 95.9% and
94.5%, respectively. The IACR system's rejection rate which is 1.5% is very low as

compared to the rejection rates of 31.22% and 22.48% of statistical and structural

recognition schemes, respectively, of [78]. Its estimated error rate, which is 2.7%, is

larger than the error rate 2.02% of a template matching recognition technique that uses

normalization and forced decision, applied to a larger set of data (600 samples per class)

reported in [79].

These results are encouraging especially in the recognition of handwritten characters

and offer much potential within the field of automatic off-line character recognition. The

system is highly flexible in dealing with shape and size variations. Also, it will be more
developed and extended, in the next chapters, to deal with cursive handwriting.

Table 7.4 displays the time requirement of the system for the 20 subjects of the

testing stage. Preprocessing time includes smoothing, thinning, straight line

approximation, and enforcement of temporal information. The average time required to

preprocess a stroke is about 0.84 seconds which is very small compared to the average

time of 27.94 seconds required by the recognition algorithm. In other words, the

recognition algorithm hogs 97.1% of the overall recognition time from smoothing to

classification. The reason behind this is that the recognition algorithm depends on building

tree data structures which are associated with time-consuming calculations and path
following processes. However; the recognition time can be reduced by using faster

machines.

7.5. REJECTION AND ERROR ANALYSIS

There is one main reason for rejection which is a new unlearned style of the stroke
is introduced to the system. Table 7.5 details rejection occurrence in the IACR system for

the data set of the testing stage. It is noticed that the "+" stroke is the major source of

rejection. The rejection rate can be simply reduced by learning more styles of handwritten

strokes.
The cases of error occur in similar pairs of characters. Examples of these pairs are:

(a) Flattened ")" similar to "1", Figure 7.2(a),

(b) Flattened "(" similar to "I", Figure 7.2(b),

155

Table 7.4. Speed of the IACR system.
These results were obtained by running the algorithms on a 486DX IBM PC compatible
microcomputer, with 50 MHz clock and 16 MB RAM.

' Time (sec.) / stroke
Subject #

Preprocessing. Recognition Total

1 0.90 28.40 29.30

2 0.85 27.35 28.20

3 0.91 30.07 30.98

4 0.87 29.62 30.49

5 0.84 25.18 26.02

6 0.88 28.43 29.31

7 0.75 26.21 26.96

8 0.82 27.54 28.36

9 0.79 26.83 27.62

10 0.92 30.15 31.07

11 0.72 27.46 28.18

12 0.87' 29.01 29.88

13 0.80 26.66 27.46

14 0.91 28.37 29.28

15 0.82 28.92 29.74

16 0.78 26.59 27.37

17 0.90 29.60 30.50

18 0.86 28.14 29.00

19 0.88 27.93 28.81

20 0.79 26.40 27.19

Average 0.84 27.94 28.78

(c) Gradually curved "c" similar to "(", or excessively bent "(" similar to "c", Figure

7.2(c),

(d) "i" with bent end similar to or with short bent end similar to "A" , Figure

7.2(d), and
(e) Inclined "-" similar to "I", Figure 7.2(e).

156

Table 7.5. Distribution of rejection in the IACR system.

Cause of rejection Percentage

New style of numeral "r" 7.5

New style of numeral "c" 6.8

New style of numeral 1.9

New style of numeral 8.2

New style ofHamza 15.3

New style of Madda 7.4

New style of Shadda 12.6

New style of plus sign 28.2

New style of comma 6.6

New style ofDamma 5.5

Total 100

)(C9
(a) (b) (c) (d) (e)

Figure 7.2. Causes of error: (a) flattened ")" similar to numeral "% ", (b) flattened "("
similar to numeral "% ", (c) gradually curved numeral "T" similar to "(" or excessively bent
"(" similar to numeral "r ", (d) numeral "A" with bent end similar to ", " or "J" with short
bent end similar to numeral "ý", and (e) inclined "-" similar to "/".

Table 7.6 shows the distribution of error among the above sources of error. In these

cases, even the human may confront difficulty in recognizing the character. However, the

number of errors can be reduced by:

(a) Reducing the core and left and right bandwidths of the fuzzy direction state entrance

qualifiers. A more suitable value of these three parameters is 22.5 ° instead of 30 °

which was used in the learning stage. However, reducing the core and bandwidths

157

Table 7.6. Distribution of error in the IACR system.

Cause of error Percentage

Flattened ")" similar to numeral "%" 10.8

Flattened "(" similar to numeral "i " 20.5

Gradually curved numeral "r" similar to "(", or excessively bent "(" similar to numeral "c" 41.5

Numeral ". " with bent end similar to ", ", or ", " with short bent end similar to numeral ". " 19.8

Inclined -" similar to "P 7.4

Total 100

implies more memory requirement and lower speed of the system.
(b) Increasing the thresholds THR, and THR2. Suggested values are 0.95 for both

instead of 0.90 which was used in the learning stage, and
(c) Using context.

SUMMARY

A set of 20 stroke classes was used in learning and testing stages. The system was
trained on 5890 unnormalized handwritten strokes written by five subjects. The learning

stage produced a fuzzy sequential machine of 2705 states and 8640 arcs. A total of 7963

unnormalized handwritten strokes, written by 20 subjects other than the subjects of the
learning stage, was used in the testing stage. The recognition, rejection, and error rates

were 95.8%, 1.5%, and 2.7%, respectively.

158

Part Three
Cursive

Arabic

Script

Recognition

System

(CASR)

OVERVIEW

In this part, a Cursive Arabic Script Recognition System (CASR) is presented
Figure 111.1 shows a data flow diagram, of the system. Our new contribution is

represented by the filled processes / rounded rectangles in the figure, i. e., Straight Line

Approximation, Enforcement of Temporal Information, Stroke Segmentation, Token

Recognition, Token Learning, Learning of Token Strings, Separating Main and
Secondary strokes, Extracting Lines and Ordering Strokes, Common SHape (CSH)

Interpretations of Main Strokes, Character Formation, and Manipulating Redundant

Secondary strokes. Straight Line Approximation and Enforcement of Temporal

Information were introduced in Chapters 2 and 3, respectively. The next six chapters

address the remaining nine processes. The data flow diagram of the CASR system

consists of the following processes:

(a) Image Acquisition: where an off-line binary image of a handwritten page of

cursive Arabic script is captured using a scanner.

(b) Smoothing: The acquired binary image of the page is smoothed A suitable

smoothing algorithm can be found in [57].

(c) Stroke Extraction: Here single component strokes are extracted where each

stroke is represented as a smoothed binary image.

(d) Thinning: The smoothed binary images of the strokes are thinned using the

"Safe Point Thinning Algorithm, " or SPTA [661.

(e) Straight Line Approximation, Chapter 2: which accepts smoothed thinned

binary images of the strokes and produces two representations for each stroke. The

first representation is a direct straight line approximation and the other is called

a reduced graph which is also a straight line approximation with loops represented

as vertices.

(f) Enforcement of Temporal Information, Chapter 3: Here temporal information

of the strokes are extracted from their straight line approximations.
(g) Stroke Segmentation, Chapter 8: A cursive stroke is segmented into small

parts, called tokens. Tokens are logical units which are usually larger and more

suitable for cursive script than the primitives of the IACR system.
(h) Token Recognition, Chapter 9: For every input token, it finds whether it belongs

160

aý ...

U

0

co L- an

0

co
m A

ý ý ý
aý ý ýn

w

161

(1)

GI

(k)

(1)

(m)

to a certain class or it could not be recognized If a token could not be recognized

then its acceptance information, represented as a tree data structure, can be fed to

the Token Learning process

Token Learning, Chapter 10: This process gets as an input the acceptance tree

which is passed by the Token Recognition process, in addition to other inputs. It

outputs a new token fuzzy sequential machine which can recognize the input token

and tokens of the old machine and variants of these tokens.

Learning of Token Strings, Chapter 11: where tokens are recombined into

meaningful sets of tokens; logical token strings. Logical token strings are

associated with possible interpretation and their fuzzyfeatures

Separating Main and Secondary Strokes, Chapter 12: where strokes which can

represent secondary strokes are marked Remaining strokes are main strokes.

Extracting Lines and Ordering Strokes, Chapter 12: where lines are extracted

and their constituent main strokes are ordered from right to left. Secondary stroke

candidates are presented to main strokes.
CSHInterpretations of Main Strokes, Chapter 13: Here, all possible CSH

interpretations of main strokes are enumerated and represented in a tree data

structure. We call this tree Enumeration and Requirement Tree (ERT), in which

information about secondary strokes required to associate CSH's to form

characters is included

(n) Character Formation, Chapter 13: where ERTs are combined with presented

candidate secondary strokes to form characters. Assignment problems are
formulated and solved to for this purpose. The solution which exhibits the minimum

cost is selected This process results in some redundant secondary strokes which

can not be combined with CSH's to form characters.
(o) Manipulating Redundant Secondary Strokes, Chapterl3: Redundant secondary

strokes are manipulated to form some other characters which are inserted in their

proper places within lines. The final result is a list of ordered lines of ordered lists

of words.
A hierarchical structural chart, which corresponds to the data flow diagram of

Figure 111.1, is shown in Figure III. 2. Again, our new contribution is represented by the

162

ýý

ý
ý

C ý
ý
ý

P
ý

L
F-

Ch ý
8
E
(0

ý ic
m M

163

ý

7

/

Ew äi ýý
co m 03 -

EEäg.

ýmö''szzý'. ý
mä w cý ý ýý

rn

c Oý Zööö
cFF F-

-x 121 m ö ö' msE
HJ 2ý fn (n fn 0

....
ýN 17 VN f0 1- W

Cl
r--i '--i
ý--i
ý
ý.
ý

w

LEWF

20

2,8,9,11,12

Line Extraction and Word Formation

2,9,11,12,15

ieparating Main and 1

Secondary Strokes
`ýýýýý: ý:.,.;

...,....,,.... ... ý. \ý

2: Logical token strings
8: Direct straight line approbmations of strokes
9: Reduced graphs of strokes
11: Tokens of strokes
12: Classes of tokens

14: List of secondary strokes

aCSH Interpretations ii
"........... i=e: z

\o! ,
Main Strokes*ý

15: List of main strokes
16: Ordered lines, Ordered main strokes
17: Secondary stroke presentation
18: CSH enumeration and requirement trees
19: Words of characters, Redundant secondary strokes
20: Ordered lines of ordered lists of words

Figure 111.2. Hierarchical structural chart of the CASR system.

filled modules / rectangles. As shown in this chart, the CURSIVE ARABIC SCRIPT

RECOGNITION SYSTEM (CASR) coordinator manages data exchange between the

following modules / sub-coordinators:

(a) Input: which returns to the CASR coordinator the token fuzzy sequential

(b)

machine, learned logical token strings, and binary image of the page to be

recognized or learned Thus, the Input sub-coordinator calls the following two

modules / sub-coordinators:

1. Input Data Bases: It calls the following modules:

L Input Machine: which reads the Token Fuzzy Sequential

Machine, and

ii. Input Data Base: which reads Data Base of Logical Token Strings.

2. Acquire Image: which gets a binary image of a handwritten page of cursive

Arabic script.
Preprocessing: This sub-coordinator receives from the CASK coordinator a

binary image of the page and returns to it, for each stroke in the page, a direct

164

straight line approximation, reduced graph, and segmented tokens. It consists of

two parts:

1. Low Level Preprocessing: It receives from the Preprocessing sub-

coordinator a binary image of the page and returns to it smoothed thinned

binary images of the strokes. It calls three modules:

i. Smoothing: which receives a binary image of the page and returns

a smoothed binary image of the whole page.

ii. Stroke Extraction: which receives a smoothed binary image of the

page and returns smoothed binary images of single components

(strokes) in the page.

iii. Thinning: which receives smoothed binary images of the strokes

and returns their smoothed thinned binary images.

2. High Level Preprocessing: It receives from the Preprocessing sub-

coordinator smoothed thinned binary images of the strokes and returns to it

a direct straight line approximation, reduced graph, and tokens for each

stroke. ' It calls three modules:
i. Straight Line Approximation, Chapter 2: which receives smoothed

thinned binary images of the strokes and returns a direct straight line

approximation and reduced graph for each stroke.
ii. Enforcement of Temporal Information, Chapter 3: which receives

direct straight line `approximations and reduced graphs of the strokes

and returns temporal information of each stroke.

iii. Stroke Segmentation, Chapter 8: which receives reduced graphs

and temporal information of the strokes and returns the segmented

tokens for each stroke.
(c) Recognition: This sub-coordinator receives from the C. ASR coordinator a token

fuzzy sequential machine, learned logical token strings, direct straight line

approximations, reduced graphs, and tokens of the strokes. It returns to the CASR

coordinator classes of tokens, acceptance trees of unrecognized tokens, and

ordered lines of ordered lists of words. The Recognition sub-coordinator consists

of the following:

165

1.
.

Token Recognition, Chapter 9: It receives from the Recognition sub-

coordinator a token fuzzy sequential machine, reduced graphs, and tokens of

the strokes. It returns classes of tokens and acceptance trees of unrecognized

tokens.

2. Line Extraction and Word Formation: It receives from the Recognition

coordinator learned logical token strings, direct straight line approximations,

reduced graphs, tokens of the strokes, and classes of tokens. It returns

ordered lines of ordered lists of words. The Line Extraction and Word

Formation sub-coordinator consists of the following sub-coordinators:

i. Line Extraction and Stroke Ordering, Chapterl2: which receives
learned logical token strings, direct straight line approximations,

reduced graphs, tokens of the strokes, and classes of tokens. It returns

a list of main strokes, ordered lines, ordered main strokes, secondary

stroke presentation, in which secondary strokes are presented to main

strokes. It calls the following modules:

" Separating Main and Secondary Strokes: It receives learned

logical token strings, reduced graphs, tokens of the strokes, and

classes of tokens. It returns list of secondary strokes and list of

main strokes.
" Extracting Lines and Ordering Strokes: It receives direct

straight line approximations of the strokes, list of secondary

strokes, and list of main strokes. It returns ordered lines, ordered

main strokes, and secondary stroke presentation. -
ii. Word Formation, Chapter 13: which receives learned logical token

strings, reduced graphs, tokens of strokes, classes of tokens, list of main

strokes, ordered lines, ordered main strokes, and secondary stroke

presentation. It returns ordered lines of ordered lists of words. It calls

the following modules:

" CSH Interpretations of Main Strokes: It receives learned

logical token strings, reduced graphs, tokens of the strokes,

classes of tokens, and list of main strokes. It -returns CSH

166

(d)

enumerations and requirement trees.

" Character Formation: It receives reduced graphs of strokes,

secondary stroke presentation, and CSH enumeration and

requirement trees. It returns words of characters and redundant

secondary strokes which could be combined with CSH's to form

meaningful characters.

" Manipulating Redundant Secondary Strokes: It receives

ordered lines, ordered main strokes, words of characters, and

redundant secondary strokes. It returns ordered lines of ordered

lists of words.

Learning: This sub-coordinator receives a token fuzzy sequential machine, learned

logical token strings, reduced graphs, tokens of strokes, classes of tokens, and

acceptance trees of unrecognized tokens. It returns a new token fuzzy sequential

machine which can recognize the input tokens and tokens of the old machine and

variants of them, and a new data base of logical token strings. It calls the following

modules:
1. Token Learning, Chapter 10: It receives a token fuzzy sequential machine

which was used in recognition but failed to recognize the tokens, reduced

graphs, tokens of strokes, and acceptance trees of unrecognized tokens. It

returns a new fuzzy sequential machine which can recognize the input tokens

and tokens of the old machine and variants of them.

2. Learning of Token Strings, Chapter 11: It receives learned logical token

strings, reduced graphs, tokens of strokes, and classes of tokens. It returns a

new data base of logical token strings.
(e) Output: which receives ordered lines of ordered lists of words, a new token fuzzy

sequential machine, and new data base of logical token strings. Thus, the Output

sub-coordinator consists of the following:

1. Output Results: It outputs the recognized text of the page in the form of

ordered lines of ordered lists of words.

2. Output Data Bases: It consists of two modules:
i. Output Machine: which outputs the new token fuzzy sequential

167

machine which resulted fröre token learning

iL Output Data Base: which outputs the new data base of logical token

strings.

Experimental results and performance öf the CASR system are reported in Chapter 14.

168

Stroke

Segmentation

OVERVIEW

In this chapter, a cursive stroke is segmented into small parts, called tokens,

Section 8.1. Tokens are logical units usually larger and more suitable for cursive script

than the primitives of the IACR system. Tokens have features which are explained in

Section 8.2. The sggmentation process, which is shown in the data flow diagram of

Figure 8.1, consists of the following two subprocesses:

1. Marking Token Boundaries: ' which accepts as inputs the reduced graphs and

temporal information of strokes. Here, some links are marked and used as
delimiters between tokens.

2. Token Extracting: This subprocess also accepts as inputs the reduced graphs

and temporal information of strokes in' addition to the marking information

produced by the previous subprocess. For each stroke, the output is a sequence of

temporally ordered tokens represented as sequences of vertices.

8.1. ALGORITHM FOR STROKE SEGMENTATION

The cursive nature of Arabic text makes it difficult to segment a subword directly

into characters. Rather, a subword is segmented into small parts, called tokens, which are

usually smaller than characters. A token is usually larger than a primitive. The rationale
behind this is that the strokes in cursive handwriting are longer than the strokes in the case

of isolated characters. Factoring a cursive stroke into primitives yields a big number of

169

\\

-l
\\

i

07,,. 77T,, <:: <::; > ;^.... ý
marxing i oxen tsounoanes

.., ý...........
Boundary
information

;:: Ä\\..: \::::::::: \\\\:: \::;:;::::: :;

Token Extracting.

i

i
i
i
i
r

Tokens of strokes

c

Figure 8.1. Data flow diagram of the Stroke Segmentation process in the CASR
system.

such primitives which raises technical problems in the recognition process. Thus, it

becomes necessary to find out larger building units; these are what we call tokens.

What we will do here is to segment a cursive stroke into a sequence of temporally

ordered tokens which have features.

8.1.1. Definitions

(a) Let p,. be the path between the start vertex v, and the end vertex v, determined by

the solution of the Chinese postman's problem for the reduced graph, G', of the

stroke. Each two consecutive vertices, v; and vj, in µ, c constitute a link (v;, v).
(b) The first occurrence of a link, (v;, v), in p. is called the basic trace of the link. If

there is another occurrence, (vi, v), of the link, then it is called a retrace of the link

(According to Algorithm 3.4, a link can have only one retrace). Figure 8.2(a) shows

the image of one Arabic word which consists of six strokes; one main stroke, the

largest one, and five secondary strokes. Most of the illustrations of this chapter and

the next five chapters are based on this word. A straight line approximation, G, of

the main stroke is shown in Figure 8.2(b) which is obtained using Algorithm 2.2.

170

(a)

(b)

(c)

Figure 8.2. (a) An'Arabic word consisting of one main stroke and five secondary
strokes, (b) a graph, G, of the main stroke, and (c) the reduced graph, G', of the main
stroke and the path µ..

_

The graph, G, contains one loop set consisting of a single loop. The reduced graph,
G', is shown in Figure 8.2(c) with the loop set being represented by vertex 16. The

numbering of the vertices in G' follows the path p. which is obtained using
Algorithm 3.4, where s and e, vertices 1 and 24, are the start and end vertices of
writing, respectively. The path p. is 1-2-3-4-5-4-6-7-8-9-10-11-12-13-12-14-15-

171

16-15-17-18-17-19-20-21-22-23-24. The links (5,4), (13,12), (16,15), and (18,

17) are retraces, while the remaining links are basic traces. According to Definition

4.1(a), all the links are original except link (15,16) and its retrace since vertex 16

represents a loop set.
(c) A token is either: `

1. a single isolated vertex, v,, representing a dot, referred to as Y' = *(vl),
2. a single vertex, v;, representing a loop set, referred to as Y' = o(va, e. g.,

vertex 16 in Figure 8.2(c), or

3. a sequence of consecutive vertices which connect original links such that each

of the start and end vertices of the sequence is either a terminal vertex or an
intersection vertex. If the token consists of the sequence of vertices v,, v2, ..

., v,, then it is represented as ̀I'= (v,, v2,... ,vj or '1'= (fir,, ß(r2, ... , *a_,),

where n is the number of vertices in the token and ir; is the link (v;, v; +,). For

example in Figure 8.2(c), the sequence of vertices 1,2,3,4 represents one

token and the sequence of vertices 5,4,6,7,8,9,10,11,12 represents

another token.

Now, a form
.l

description of the segmentation algorithm follows.

Algorithm 8.1

Use: To segment a cursive stroke into tokens

Input: 1. Reduced graph, G', of the stroke

2. Temporal information of the stroke, i. e., the path, p, a, between the start

vertex, v� and the end vertex, ve
Output: Sequence of tokens TI, `I'Z, ..., `gy'm, where m is the sequence length.

Procedure:

Step 1. Marking token boundaries

(a) Mark the basic traces of links that have retraces.
(b) If there is an artificial link (v;, vj) followed by another artificial link such that they

have a common loop set vertex, then the link (v;, vj) is marked. Marked links are

considered as delimiters between tokens.

172

Step 2. Token extracting

(a) If the path p. consists of a single vertex, v,, then:

If the vertex represents a loop set, then it is represented by a loop set token

LY = o(v,), where v, has the features of a loop set. Otherwise, it is represented

by a vertex token 'I' = *(v,). Stop.

(b) Otherwise, scan the path p,, starting from v,. For every unmarked link (v;, vj) do:

1. If either v; or vj is a vertex, v, that represents a loop set then generate a new

token T= 0(v), where v has the features of a loop sets. Mark the link (v;, vj).

Otherwise,

-2. If no token was generated or the link (v;, vj) is directly preceded by a marked
link, then generate a new token 'I' = (v;, vj). Otherwise, if the link (v;, vj) is

directly preceded by an unmarked link, then add vj to the last generated token.

8.1.2. Example

Algorithm 8.1 is used to segment the stroke shown in Figure 8.2(a), the reduced

graph of which is shown in Figure 8.2(c), as follows:

Step 1. Marking token boundaries

This step results in marking the following links:

(a) (4,5), (12,13), (15,16), and (17,18) since they are basic traces of links that have

retraces, and
(b) the link (15,16) since it is an artificial link followed by another artificial link, (16,

15), with a common loop set vertex, 16. Notice that link (15,16) is already marked

in (a) above, which does not harm. The usefulness of the case of two consecutive

artificial links is made clearer in Figure 8.3. In the reduced graph of Figure 8.3(b),

vertex 3 represents a loop set. The path for this graph is p� = 1,2,3,4,5. None of

the links of this path has a retrace. Thus, Step 1(a) of Algorithm 8.1 does not mark

any link of the path. The artificial link (2,3) is followed by another artificial link (3,

4) with a common loop set vertex, 3. Thus, Step 1(b) results in marking link (2,3).

Step 2. Token extracting

Since the path pw consists of more than one vertex, case (b) of this step applies:

(b) By scanning the path from vertex 1, the first unmarked link, (1,2), is encountered.

173

3

54

(a) (b)

2

Figure 8.3. (a) The graph, G, of a stroke, and (b) its reduced graph G'; vertex 3 is

a loop set.

Since neither vertex 1 nor vertex 2 represents a loop set, Step 2(b)2 is applied. Since

no previous tokens were generated, a new token Y'1= (1,2) is generated. The next

unmarked link is (2,3) which is preceded by an unmarked link, (1,2). Thus, vertex

3 is added to LP1. By the same way LP1 grows to (1,2,3,4). When the unmarked

link (5,4) is reached, a new token is generated since that link is preceded by a

marked link, (4,5). When the unmarked link (16,15) is reached, a new token is

generated which has a loop set vertex, 16, and that link is marked. At the end of the

algorithm, the following tokens are obtained: 'P1= (1,2,3,4), LP2 = (5,4,6,7,8,

9,10,11,12), 'P3 = (13,12,14,15), LP4 = (16), LPs = (15,17), and 'P6 = (18,17,

19,20,21,22,23,24). Figure 8.4 shows the extracted tokens from G'.

8.2. TOKEN FEATURES

Tokens have features which depend on whether they are single vertex or multi-

vertex tokens as follows:

(a) For single vertex tokens there are two cases:
1. If the token represents an isolated dot then it has its x&y coordinates as

features.

2. Otherwise, it representsa loop set with the features: n, � x., yam,,, x,,,;,,, x,,,,,,,

y,,,;,,, y, ��o and c, where n. �
is the number of the loops in the loop set, X. and

y. are the x&y coordinates of the centre of gravity of the loop set, x,,,;,,, x,,,,,,,

y,, ý and y,,,,,, are the limits of the bounding rectangle which surrounds the loop

174

(a)

J
(c)

(b)

0

(d)

J (e) (f)

Figure 8.4. Tokens extracted from the stroke of Figure 8.2(b): (a) TI, (b) Lf'2, (c)
`P3, (d) `f'4, (e)1Fs, and (f) Y'6.

(b)
set, and c is the sum of lengths of links constituting the loop set.

For multi-vertex tokens, two features are used. To describe these features, first we
define the bounding rectangle of a token as the minimum horizontal rectangle which

encloses all the original vertices, in G, which represent the token. Figure 8.5 shows

a token surrounded with its bounding rectangle. The Upper Right Corner (URC) of

the bounding rectangle, and the parameters H, W, d� d., and D are indicated, where
H and W are the height and width of the bounding rectangle, respectively, d, and de

are the distances of the start and end vertices of the token to URC, respectively, and
D is the diameter of the bounding rectangle. Now, . the features of multi-vertex

tokens are as follows:

1. Features of Start and End . Vertices: Some tokens have similar shapes but

only differ in the distance of both ends of the token to the Upper Right Corner

(URC) of the bounding rectangle of the token, as shown in Figure 8.6. Thus,

the following two features are defined:

f, =d, /D (8.1)

and f, =d, /D (8.2)

where d, and de are the distances of the start and end vertices of the token to

175

Figure 8.5. A token, its bounding rectangle, and other relevant parameters.

I

Figure 8.6. Two tokens having similar structures but different features of start and
end vertices.

URC, respectively, and D is the diameter of the bounding rectangle. Dividing

by D normalizes the features so that they do not exceed unity.
2. Feature ofHeight to Height plus-Width Ratio: This feature, is similar to

the feature of height-plus-width ratio which was defined for strokes in Section

4.4. Figure 8.7 shows two different tokens which have similar structures. To

distinguish between these tokens, let H and W be the height and width of the

bounding rectangle of the token, respectively, and define the feature:

f , =H/(H+W) (8.3)

The motivation for setting the dominator to H+W is to keep f,, always less

176

Figure 8.7. Two tokens with similar structures but different height to height-plus-

width ratios.

than or equal to 1.

For example, in Example 8.1.2, the first token, 'P1, has the features f, = 0.02, fe =

0.98, and fffw = 0.64.

SUMMARY

In this chapter, an algorithm was presented to segment a cursive stroke into small

parts, called tokens. Tokens are logical units usually larger and more suitable for cursive

script than the primitives of the IACR system. Tokens were discriminated by adopting

suitable features.

177

Token

Recognition

OVERVIEW

This chapter addresses the token recognition component of the CASR system. Fuzzy

sequential machines are defined to work as recognizers of segmented tokens of strokes.

A data flow diagram of the token recognition process is shown in Figure 9.1, which

consists of one filter and three subprocess:
(a) Isolating Single Vertex Tokens: which accepts the segmented tokens and reduced

graphs of their strokes. Single vertex tokens are separated and output, without any

further processing. Multi-vertex tokens and reduced graphs of their strokes are fed

to the next three subprocesses.

(b) Calculating Link Features: where link features are calculated
(c) Constructing Acceptance Trees: This subprocess accepts as inputs multi-vertex

tokens to be recognized reduced graphs of their strokes, and a token fuzzy

sequential machine which is used in the recognition. The acceptance information

of tokens is stored in tree data structures (one tree for each token), which is output
by this subprocess.

(d) Checks and Decisions: Here, the inputs are multi-vertex tokens to be

recognized reduced graphs of their strokes, a token fuzzy sequential machine, and

the acceptance trees which are output by the previous subprocess. Some

calculations, based on the information in the acceptance trees, are performed to

evaluate some features of the tokens. Recognition results are output indicating

178

C)

r K, ,:.::..... ,, u, . 111Z

strokes
::: i;:;?;? z¬Calcul ati n

Mufti-vertex tokens and

reduced graphs of their

i

Figure 9.1. Data flow diagram of the Token Recognition process.

i
i i
I

whether an unknown token belongs to a certain token class. If a token could not be

recognized, then its acceptance tree is output which can be fed to a subsequent

token learning stage.

9.1. TOKEN FUZZY SEQUENTIAL MACHINE

In Part Two, fuzzy sequential machines were defined and proved to be powerful in

modelling and recognizing isolated handwritten strokes. In this part, we will continue to

use such machines to recognize multi-vertex tokens. The reader can refer to Section 5.1

179

for background material about this new approach.
Since single vertex tokens, i. e., dot and loop set tokens are simple units, they are

recognized directly as soon as they are segmented. Thus, a token fuzzy sequential machine

will recognize only multi-vertex tokens.

Multi-vertex tokens only contain links, i. e., they do not contain intersection or loop

set vertices. Consequently, a state entrance qualifier can be only a fuzzy direction

expressed as an s/z-number (p, /PI; P2 \ß), where p,, ß 1, P2, and 132 are as defined in

Chapter S. The features which are needed for further discrimination between tokens are

of the same type as the features mentioned in Section 8.2, i. e., they are fuzzy features of

start and end vertices and fuzzy features of height to height-plus-width ratio. Fuzzy

features are fuzzy numbers having s/z possibility distributions.

9.1.1. Definition of Token Fuzzy Sequential Machine

A deterministic Euzzy sequential Machine which recognizes a set of multi-vertex
tokens is a system that is characterized by the 5-tuple FM = (C, Q, E, C, T), where
(a) C is the set of multi-vertex token classes that are recognized by this machine,
(b) Q is a finite set of states qo, qj, "" qo being the starting state,
(c) E is a finite nonempty set of state entrance qualifiers al, U2, Each state, q;,

except qo which does not have an entrance qualifier, has one and only one entrance

qualifier, a,. A state entrance qualifier is a fuzzy direction that has an s/z-number

possibility distribution.

(d) C is the next-state mapping function C: QxEQ,

(e) TcQ is a finite nonempty set of terminal states. A terminal state q; eT recognizes

the token classes c;,, c2i ... E C, each of which has n; fuzzy features of the same
type, i. e., more than one token class can be recognized in one terminal state with the

same number and types of fuzzy features. We mean by same types of fuzzy features

that the first fuzzy feature of cl has the same type of the first fuzzy feature of G2i c23,

.... The same applies to the remaining fuzzy features. These fuzzy features are
fuzzy numbers having s/z possibility distributions.

There is a recognition algorithm which explains how a multi-vertex token is handled

by a fuzzy sequential machine to decide whether it belongs to a token class ceC. The

180

05

Us

(a)

(b)

Figure 9.2. (a) A deterministic fuzzy sequential machine, FM, and (b) a multi-vertex
token that can be recognized by this machine.

details of the recognition algorithm are presented in Section 9.2.

9.1.2. Example

Figure 9.2(a), shows a transition diagram of a deterministic fuzzy sequential machine

FM = (C, Q, E, C, T), where
(a) C= {token no. 1),

(b) Q=(q;, i=0,1,6),

(c) E_ {a;, i=1,2,
..., 6), a_ (258.75° / 22.5°; 281.25° \ 22.5°), 02 = (236.25°

/ 22.5 °; 258.75 °\ 22.5 °), a3 = (213.75 °/ 22.5 °; 236.25 °\ 22.5 °), a4 = (236.25 °

/ 22.5°; 258.75° \ 22.5°), as ="(258.75° / 22.5°; 281.25° \ 22.5°), and a6 =

(281.25° /22.5°; 303.75° \22.5°),

(d) (is the next-state mapping function, C: QxE -- Q, which can be easily read from

the figure,

(e) T= {q6), where token class no. 1 is embedded in q.. One token, belonging to this

class is shown in Figure 9.2(b). 'This class is associated with fuzzy features of start

181

and end vertices, F, = (0.0 / 0.0; 0.2 \ 0.2) and F. = (0.8 / 0.2; 1.0 \ 0.2), and the

fuzzy feature of height to height-plus-width ration, FH, = (0.6 / 0.2; 0.8 \ 0.2).

9.2. RECOGNITION ALGORITHM

In this section, the use of FM's to recognize multi-vertex tokens is detailed. The

recognition algorithm differs from Algorithm 5.3, which was designed to recognize whole

strokes, in the following:

(a) In Algorithm 5.3, a primitive was considered for the two situations: spurious and

non-spurious. In one experiment performed on 2085 handwritten Arabic `strokes

written by four subjects, it was found that spurious tails occurred in 2.16% (45 out

of 2085) of the graphs obtained using Algorithm 2.2. In the graphs with tails, there

was 97.8% (44 out of 45) of the graphs with one single tail and 2.2% with two tails.

None of the graphs have two adjacent tails, i. e., tails which have a common vertex.

Spurious single loops were generated in 2 out of 2085 graphs. Based on this useful

statistical experiment, it will be assumed henceforth that the graphs are free of

spurious tails or loops. Thus, in the algorithm of this section, each link will be

assumed non-spurious which reduces the size of the acceptance tree without greatly

(b)
affecting the system performance.
The existence of intersection vertices and loops and letting a primitive to be tested

for the two situations mentioned above imposed conditions, in Step 2(b)2 of
Algorithm 5.3, to test the validity of a sequence of primitives. Since multi-vertex

tokens do not contain intersection vertices nor loops and their links are assumed

non-spurious, these conditions are dropped from the algorithm of this section.

9.2.1. Definitions

(a) The total length, L, of a multi-vertex token is the summation of the lengths of its

individual links.

(b) The acceptance degree of a link, fir, of a token in a state, q, is x(*, q) = 7ta(O),

where it, is the possibility distribution that characterizes the fuzzy direction state

entrance qualifier, a, of the state, q, and 0 is the angle of the link, Jr.
(c) The same as in Algorithm 5.3, the information resulting from machine excitation will

182

be saved in what we call an acceptance tree which has the following properties:

1. The root node of the acceptance tree, which is considered as level 0 of the

tree, contains the 2-tuple (q0,1.0), where qo is the starting state of FM and the

1.0 is the initial credit, w, assigned to the token. This credit is an initial

acceptance degree of the token.

2. The nodes of level i of the acceptance tree, iz1, contain acceptance

information only about link *t of the token. Thus, you expect that the

maximum level of the tree will not exceed the number of links in the token.

3. Each time a link, jr, is accepted by a state, q, the token is punished by

subtracting from its credit, cil, a value, 6 =1r x (1.00 - x(qr, q)), where x(ijr,

q) is determined according to Definition 9.2.1(b), above, Ir is the ratio of the

length of link, fir, to the total length of the token. Notice that, S, is

proportional to the length ratio, lr, of the link, ter, and the degree of
disagreement between * and the state entrance qualifier of q, which is a
logical punishment rule.

4. Any node in the acceptance tree, other than the root node, contains the 2-tuple

(qj, ca), where q; is an accepting state in FM that was entered after being

excited by a link, Qr;, and ca is the remaining credit for the token.

9.2.2. Algorithm Description

The detailed description of the algorithm which is used to recognize tokens now
follows. For multi-vertex tokens, the best k token classes which are candidates to

represent the unknown token are found using this algorithm. This is useful in the case of

cursive handwritten strokes since a stroke usually consists of many tokens and it is not

always true that the first best candidate class of every token of the stroke yields the best

interpretation of the whole stroke.

Algorithm 9.2

Use: To recognize tokens

Input: 1. A token fuzzy sequential machine FM = (C, Q, E, (, T)

2. Tokens to be recognized where each token is represented as a sequence

183

T={*;, i=1,2,..., m- 1) of m-1 links

3. Reduced graph of strokes from which the tokens were segmented

Output: If a token is recognized, the output is the best k classes which can represent

the token, each with the corresponding overall acceptance degree, otherwise,

the token is rejected and its acceptance tree is output to be passed to a

subsequent token learning process.

Procedure:

For each input token, if the token consists of a single vertex, i. e., it represents either a dot

or a loop set, then it is considered as fully recognized with no extra processing, otherwise,

the following steps are performed.

Step 1. Calculating link features

(a) Find the length, to of link, ifri, which equals the Euclidean distance between the two

vertices of the link. Find the total length, L, of the token.
(b) The length ratio, lri =1i / L, and angle, 0i, of each link are found.

Step 2. Constructing the acceptance tree

(a) Create the root node, node 0, which constitutes level 0 of the tree, with the 2-tuple

(q0,1.0),

(b) Create level i of the tree which contains acceptance information of link, qri, i=1,2,

..., m-1 as follows. For every node, dd, that exists in level i-1 and has the state

q and credit w as tuples:
For every next state, ((q, a), of q that can accept fir;, add a new node, dk, that

is a son of node, d,, where dk contains the 2-tuple («(q, a), 8), 8 =1ri x

(1.00 - x(Jri, «(q, a))), such that the remaining credit, w-b, is not less than

a specified threshold, THRI.

Step 3. Checks and decisions

After constructing the acceptance tree, one of the following two cases occurs:
(a) The last level of the tree is less than the number of the links, m-1. This occurs if

there is no state sequence that can accept the link sequence, Yl, provided that the
final credit is not less than THRI, in which case the token is unknown.

(b) The last level of the tree equals m-1. In this case retain the set of leaf nodes, D,

the levels of which are equal to m-1. For each node deD having the 2-tuple (q,

184

w) such that qET, i. e., q is a terminal state, do:

1. Compute the features, f� f., and fHw, of the token, ', see Section 8.2.

2. For each token class, c, in q:

Find the acceptance degree, nF(f), of each feature, fE (f� f,, f� w), of the

token in the corresponding fuzzy feature, F, of the class, c. The overall

acceptance degree, w2i by which a class accepts a token is the

summation of the acceptance degrees of the features of the token in the

corresponding fuzzy features of the class, c, divided by the number of

the features, nf= 3. If w2 is less than a specified threshold, THR2, then

the token is not accepted by class c. Otherwise, a triple of the form (w,,

w2, c) is created.

If it was not possible to obtain at least one triple, (w,, (02, c), then the token is

unknown, otherwise, the token is assigned the k classes of the k triples which have

the maximum w3 = min (w,, co) 2degree. The overall acceptance degree, w3, of each

class, c, of the assigned k classes, is also retained.

9.2.3. Example

The token of Figure 9.3(a) is to be recognized by the token fuzzy sequential

machine, FM, shown in Figure 9.2(a). Since the token is a multi-vertex token, the

following steps are performed:
Step 1. Calculating link features

(a) The lengths of the token's links are: 11=11.2,12 = 19.3,13 = 15.6, and 14 = 20.0. The
4

total length of the token is L=E1; = 66.1.
1ý1

(b) Length ratios are: 1r1= 0.17, lr2 =0 .
29, lr3 = 0.24, and 1r4 = 0.30. Link angles are 01

= 260°, 02 = 201 °, 03 = 230°, and 04 = 270°.

Step 2. Constructing the acceptance tree, see Figure 9.3 (b)

(a) Create the root of the tree, node 0, with the 2-tuple (q0,1.00), i. e., we start from the

starting state, q0, of the machine shown in Figure 9.2(a) with an initial credit w_

1.00.

185

(a)

84,0.67
13

82,0.67

g3.0.82

g5,0.82
14

86,0.67
15

(b)

84,0.64
16

84,0.79

85,0.79
17

86,0.64
18

Figure 9.3. (a) A token to be recognized by the machine, FM, of Figure 9.2(a), and
(b) the acceptance tree obtained from this token and FM.

(b) 1. Create level 1 of the tree which contains acceptance information about the first

link, ßr1. In level 1-1=0, there is one node, 0, which has qo as one tuple.

There is one next state, q1, of qo with a fuzzy direction state entrance qualifier

QI = (258.75°/22.5°; 281.25°\22.5°). Thus, the link, *1i is accepted by state

q1 with an acceptance degree x(*1, q1) = n°1(01= 260°) = 1.00. If a value 6

=Jr, x (1.00 - x(*1, q1)) = 0.0 is discounted from the credit of node 0, then

the remaining credit will be (1.0 - 0.0 = 1.0) > (THRI = 0.6). Thus, a new

186

node, 1, is created with the 2-tuple (q,, 1.00).

2. Create level 2 of the tree which contains acceptance information about the

second link, *2. In level 2- 1= 1, there is one node, 1, which has q, as one

tuple. q, has three next states: q,, q2, and q3. Next state q, has the fuzzy

direction state entrance qualifier Q, = (258.75°/22.5°; 281.25°\22.5°). The

link, ßr2, is accepted by state q, with an acceptance degree x(*2, q,) = 7c°, (02

= 201 °) = 0.00. If a value, S =1r2 x (1.00 - x(4r2, q,)) = 0.29, is discounted

from the credit of node 1, then the remaining credit will be 0.71 > THR,.

Thus, a new node, 2, is created with the 2-tuple (q,, 0.71). In a similar

manner, nodes 3 and 4 are created to correspond to next states q2, and q3-

3. Similarly, levels 3 and 4 of the tree are created. Finally, the tree of Figure

9.3(b) is obtained with the nodes being referenced by the numbers underneath.

Step 3. Checks and decisions

Since the last level of the acceptance tree is 4 which equals the number of the links in the

token, case (b) applies:
(b) Here, we retain only nodes 15 and 18 since they contain a terminal state, q6:

1. The features of the token are: f=0.00, f, = 1.00, and fHw = 0.62.

2. State q6 has one token class, token class no. 1, three fuzzy features, F� F., and

F,
_, a,; refer to Example 9.1.2. The acceptance degrees of the features of the

token in the corresponding fuzzy features are: irF; (t) = 1.00, i=s, e, HW: The

overall acceptance degree of features is (nF, (f,) + nFe(f,) + 7cF, _, w(f,. w)) /3=

1.00 > (THt2 = 0.60). Thus, the token is accepted as belonging to token class

no. 1.

Two triples are obtained, (0.67,1.00, token no. 1) and (0.64,1.00, token no. 1),

corresponding to nodes 15 and 18, respectively. Letting k=1, and since min(0.67,
1.00) > min(0.64,100), the token is assigned token class no. 1 with an overall

acceptance degree w3 = 0.67.

SUMMARY

This chapter addressed the token recognition component of the CASR system.
Fuzzy sequential machines were defined to work as recognizers of segmented tokens of

187

strokes. A formal description of the recognition algorithm was presented. The algorithm

differs from that developed for stroke recognition in Chapter 5 due to reasons which were

mentioned. The use of fuzzy machines to recognize tokens was clarified through an

example.

188

Token

Learning

OVERVIEW

ý
I

*WAAý

In this chapter, the token learning component of the CASR system is presented A

data flow diagram of the token learning process is shown in Figure 10.1, which consists

of two sides, where only one side is active at a time. The learning algorithm determines

which side to activate, depending on the last level of the acceptance tree of an

unrecognized token which is passed by the token recognition process, as follows:

(a) If the last level of the acceptance tree is less than the number of links in the token,

then the right side is activated which consists of the following subprocesses:

(v)

1. Generating a Token Fuzzy Sequential Machine, Section 10.2: wheree

inputs are the sequence of links of the token and reduced graph of the

corresponding stroke. The output is a fuzzy sequential machine which can

recognize the input token and variants of it.

2. Merging Token Fuzzy Sequential Machines, Section 10.3: which accepts

as inputs the machine generated in (1) and the old machine which was used

in recognition but failed to recognize the token. The result is a new machine

which can recognize the input token and tokens of the old machine and

variants of these tokens.

If the last level of the acceptance tree equals the number of links in the token, then

the left side of Figure 10.1 is activated, where some modifications are introduced

189

0

I/
;i- r"INModifying Token, , Fuw \!! RGeneratingioken Fuay

, e: ««cý::::. .. _: o :, ý"::: :; Iýý.::::::,, ^.:. . _::.;:..., ca ýCig`;, «::.:. .,.., ..:..: ý. :.: ".. :.:..; ,::.::, " :. ý:.: e::: , ; '>S uentialýýMachine: ýt: ý. > <: SequentialMachin
, ,.,,; . ::. ".. :.:..; >,. , ": <; .

II

nuchnefortoken's
New token fuzzy i cgss

iýi . _ý�_ý. ý,. ýý,. ýýti ý ý-_ I xy.. ý,., a.. ý. ý.. ý.. ý. o

I

Z MerýinýTo n Fuý4ýý

S: l uential Machines\ 9a

--------- --------

------------------------ - --

W

Token Fuzzy
Sequential Machine

Figure 10.1. Data flow diagram of the Token Learning process in the CASR system.
If the last level of the acceptance tree is less than the number of links in the token, then
the right side is activated. Otherwise, the last level of the acceptance tree equals the
number of links in the token in which case the left side is activated.

into the machine that was used in recognition. These modifications are sufficient

to learn the token, Section 10.4. The inputs in this case are the links of the token,

reduced graph of the corresponding stroke, and the acceptance tree. The output is

a modified fuzzy sequential machine which can recognize the input token and

tokens of the old machine and variants of them.

10.1. LEARNING ALGORITHM

This chapter is concerned with the learning process of unrecognized multi-vertex

tokens. Single vertex tokens are considered fully recognized once they are segmented. If

FM, = (Cl, Q1, E,, {,, T,) is the machine that was used when recognition was tried but

failed, then our goal is to modify or expand FM, so that it becomes capable of recognizing

tokens belonging to the unknown token's class. Of course, the set Q, is initially empty.
FM, possesses new states and classes when more tokens are learned. An algorithm to

190

learn tokens is described below.

Algorithm 10.1

Use: To learn a multi-vertex token

Input: 1. Sequence of links, 'F, of the token to be learned

2. Reduced graph of the stroke from which the token, 'F, was segmented

3. Acceptance tree of the token which is unrecognized by Algorithm 9.2

4. Fuzzy sequential machine, FMI, of multi-vertex tokens which are already

learned

Output: New fuzzy sequential machine, FM, which can recognize the underlying token

and previously learned tokens

Procedure:

Depending on the last level of the acceptance tree of the unrecognized token, one

of the following two cases occurs:
(a) The last level of the acceptance tree is less than the number of links of the token, m

(b)

- 1. This means that it was not possible for the whole sequence of links to terminate

at some state such that the remaining credit of the token Z THRI. In this case,

simple modifications of some states are not adequate. We adopted the following

solution:

1. Obtain a new fuzzy sequential machine, FM2, from the token's sequence of
links, T. This machine can recognize tokens belonging to the underlying

token's class. Section 10.2 explains how to obtain a fuzzy sequential machine
from a given input token.

2. Merge FM1 and FM2 to obtain the machine FM that is capable of recognizing

tokens belonging to the underlying token's class with an overall acceptance
degree equal to 1.00. The new machine still memorizes all previously learned

tokens. Merging of sequential machines is addressed in Section 10.3.

The last level of the acceptance tree equals, m-1, the number of links in the

sequence, T. This case occurs:

1. if the link sequence could terminate at one or more terminal state such that the

remaining credit of the stroke did not fall below THRI, but could not be

191

recognized due to severe deviation of the token's features from the fuzzy

features of the classes embedded in any of these terminal states, i. e., the

acceptance degree of the token's features is less than THR2.

2. and / or the link sequence terminated at one or more states, NT, which are not

terminal states and such that the remaining credit of the token is not less than

THRI.

In this case, there is no need to create a new fuzzy sequential machine as in (a). Only

some modifications to FMI are sufficient, which are:
1. 'Either add a new class, with its fuzzy features, in one terminal state which

already exists and could be reached by the sequence of links, 'F', or

2. Change one of the states in NT into a terminal state, i. e., append it to the set

T, and insert in it the class of the token with its fuzzy features.

These modifications are explained in detail in Section 10.4.

10.2. GENERATION OF FUZZY SEQUENTIAL MACHINES

As shown in Figure 10.1, a necessary step in the learning process is to obtain a fuzzy

sequential machine from an input token. The manual generation of this machine is

cumbersome, since it may contain several states requiring proper state entrance qualifiers,

next state mapping function, and insertion of token classes with their fuzzy features in

suitable states. Thus, it is important to search for somemeans to automate the generation

of fuzzy sequential machines. In the following, an algorithm is described to obtain a fuzzy

sequential machine from a multi-vertex token. The difference between this algorithm and

Algorithm 6.2, which obtains a fuzzy sequential machine from a stroke, is that in the later,

a primitive can be: (1) a vertex representing an isolated vertex or an intersection vertex,
(2) a loop set, or (3) a link. Multi-vertex tokens, which are the input to. the current

algorithm, consist of links; i. e., they have no intersection nor loop set vertices. The current

algorithm is based on the following points:
(a) For a link, a state is generated which has an adjusted fuzzy direction state entrance

qualifier such that the link is 100% accepted by that state.

(b) For each two consecutive links, a sequence of states is generated, each having an

adjusted fuzzy direction state entrance qualifier. Transitions can be made from any

192

of these states to itself in addition to the other states following it in the sequence.

By adopting this, we add flexibility to the generated fuzzy sequential machine since

the change from a given direction of a link to another direction of another link can
be achieved either directly or gradually by passing via many intermediate states. This

allows future variants of the token, which was used to generate the machine, to be

also recognized by the same machine.
(c) In the final generated state, a class of the underlying token is added with fuzzy

features which are obtained from the calculated token's features. A formal

description of the algorithm follows.

Algorithm 10.2

Use: To generate a fuzzy sequential machine from a multi-vertex token

Input: 1. Sequence of links of the token to be learned '{ qrj, j=1,2,3,
...

- 1}

2. Reduced graph of the stroke from which the token, 'F, was segmented
Output: Fuzzy sequential machine FM = (C, Q, E, Z, T) which can recognize tokens

belonging to the class of the input token

Procedure:

Step 1. Initialization

Let i =1 and j=1, where i and j are used as indices for the generated states and the links

of the token, respectively.
Step 2. Creation of the starting state

Create the starting state, q0.

Step 3. Creation of an accepting state for the first link *1
(a) Fuzzify the direction angle, 0, of *1 by transforming it into a fuzzy direction 01=

(p, /ßl; p2\ß) as follows:

1. Set both the left and right bandwidths, ßi and ß2, to suitable values.
2. The range from 0° to 360° is divided into 360° / core angular intervals. The

first angular interval is centred at 0°. If 0 lies in the angular interval the centre

of which is 00, then set the left peak point to p1= GO - core /2 and the right

peak point to p2 = Go + core / 2.

193

(b) Create a new state q1 which has the fuzzy direction, al, as its state entrance

qualifier. Two directed arcs, which are labelled with al, are added to point from qo

to q1 and from q1 to itself and, i. e., we set ((qo, aI) = q1 and ((q1, al) = q1.

(c) If +1 is the only link then go to Step 5.

Step 4. Creation of an accepting state for the link i(rj+1 and a sequence of states which

lie between state qi and the state which accepts *j+1 to allow for gradual change of

direction

Let 0k be the angle of the link, *j+,, which lies in the angular interval the centre of which

is Ok:

(a) Consider the centres 01, O2, ..., 0k, of the angular intervals which lie between 00

and 0b where 0, = 00 flx core, l =1, ..., k. The plus sign is used if 00 < 0k, and

vice versa.
(b) Create k new states q1+,, q; +2, ..., ;; k, where state q; +, has the fuzzy direction al+r =

(pn/ß,; pn\ß2) as its state entrance qualifier, p� = 0, - core / 2, p, 2 = 0, + core / 2,

P, and ß2 are the left and right bandwidths.

(c) Add directed arcs from state q, to states q, +1, q, +21, ..., q; +k, where a=i, i+1,...,

i+k-1. All arcs entering a state q, are labelled with the fuzzy direction state

entrance qualifier a; +,. Thus, we get ((q� ab) = qb, a=i, i+1, ..., i+k-1, and b

= a+ 1, ...,
i+k.

(d) For every state q; +, add a directed arc, which is labelled with o, +,, to point from that

state to itself, i. e., ((h-+n a; +) = q; +,,,
1= 1,2, ...,

k.

(e) Increment i by k and j by 1.

(f) If *Jrj is not the last link then let 00 = 0k and repeat Step 4.

Step 5. Setup of a terminal state
The last created state, q;, is considered as a terminal state. Thus, for the machine, FM, T

= {q;). A class, c,,,,, of the underlying token, with fuzzy features, is embedded in q;, hence,

C= {c�,,,). The fuzzy features are calculated as follows:

(a)

(b)
Find the features of the token, Y', see Section 8.2.

Fuzzify every feature, f, computed in (a), by transforming it into an s/z-number as

follows:

1. Set both the left and right bandwidths to ß f.

194

2.
.

The range from 0.0 to 1.0 is divided into of equal intervals. The left and right

peak points, p, and p2, are taken to be equal to the limits of the interval in

which the value f lies.

Suitable values of ßf and of were found to be 0.2 and 5, respectively.

In Steps 3 and 4 of the above algorithm, the three parameters: core, ß 1i and ß2 were

suitably found to be equal to 22.5°.

10.2.1. Example

Figure 10.2(a) shows one token 1F = (Vr1, ̀Y2, ̀Y3), where irl =1(1,2), *2 = 1(2,3),

and ßr3 =1(3,4). A fuzzy sequential machine, FM1= (Cl, Q1, Z 1, C19 T1), is to be obtained

which can recognize this token. For the sake of easy referencing, in the next sections

where other machines are generated, we use two subscripts to refer to a state in the

machine, FM,, e. g., q; refers to state q; of machine FM,. See Figure 10.2(b) while reading

the following steps.

Step 1. Initialization

Let i =1 and j=1.

Step 2. Creation of the starting state
Create the starting state, q10.

Step 3. Creation of an accepting state for the first link týrl 1(1,2) with angle 6

= 274 °

(a) Fuzzify the angle value 274° by transforming it into a fuzzy direction all = (pl/ßl;

(b)

p2\ß2) as follows:

1. Set both the left and right bandwidths, ßl and ß2, to 22.5°.

2. By dividing the range from 0° to 360° into 360° / 22.5° = 16 angular
intervals, we find that the angle 274° lies in the angular interval the centre of

which is Go = 270°. The left peak point is set to pl = 270° - 22.5° /2=

258.75° and the right peak point is set to p2 = 270° + 22.5° /2= 281.25°.

Finally, we get a11= (258.75° / 22.5°; 281.25° \ 22.5°).

Create a new state q11 which has the fuzzy direction oll as its state entrance

qualifier. Two directed arcs, which are labelled with a11, are added to point from q10

195

(a)

ols

(b)

Figure 10.2. (a) A multi-vertex token, and (b) a deterministic fuzzy sequential
machine, FMI, obtained from this token.

to q11 and from q11 to itself, i. e., we set {1(g10, all) = q11 and `+1(g11, oll) = q11.

(c) Since there are more links we go to Step 4.

Step 4. Creation of an accepting state for the link 12 and a sequence of states

which lie between state qu and the state which accepts ßr2

The angle of Jr2 is 6k = 222.0°, . which lies in the angular interval the centre of which is

Gk 225 °;

(a) Consider the centres Ol = 247. $. ° and 02 = 225.0°, i. e., k=2, of the angular
intervals which He between 00 = 270.0° and 02 = 225.0°.

(b) Create two (since k= 2) new states q12 and q13, where state q12 has the fuzzy

direction 012 = (pll/P1; p12\R2) as its state entrance qualifier, and state q13 has the

fuzzy direction a13 = (p21/P1; p22\P2) as its state entrance qualifier, where p11= 01

-core/2=247.5° -22.5°/2=236.25°, P12=01+core /2=247.5°+22.5°/

2= 258.75 °, P21 = O2 - core /2= 225.0 °- 22.5 °/2= 213.75 °, Pn = 02 + core /

196

2 =, 225.0° + 22.5° /2= 236.25°, ßl and ß2 are set to 22.5°. Thus, we get a12 =
(236.25° / 22.5°; 258.75° \ 22.5°) and a13 = (213.75° / 22.5 0; 236.25° \ 22.5°).

(c) Add directed arcs to point from state q11 to states q12 and q13i and from state q12 to

state q13. The arcs entering states q12 and q13 are labelled with the fuzzy direction

state entrance qualifiers 012 and 013i respectively. Thus, we get (1(g11, o12) = q12,

yl(gll, Q13) - Q13, and yllgl2, (113) - q13"

(d) For state q12 add a directed arc, which is labelled with 012i to point from that state

to itself. Similarly a directed arc, which is labelled with 013, is added to point from

state q13 to itself. Thus, we get (1(g12, (112) = q12 and (1(g13, (713) = q13.

(e) Increment i to 3 and j to 2.

(f) Since *j, j=2, is not the last link we let 00 = 0k = 225.0° and repeat Step 4.

Step 4. Creation of an accepting state for the link *3 and a sequence of states

which he between state q13 and the state which accepts *3

The angle of 1113 is 9k = 285.0°, which lies in the angular interval the centre of which is
Ok 292.5 °:

(a) Consider the centres 01= 247.5 ° and 02 = 270.0 °, 03 = 292.5 °, i. e., k=3, of the

angular intervals which he between 00 = 225.0° and 03 = 292.5°.

(b) Create three (since k= 3) new states q14, q15, and q16, which have the fuzzy

directions 014 = (P11/ßl; P12\ß), 015=0241; pz2\ß2), and 016 = (P31/ß1; p32\ßa) as

their state entrance qualifiers, respectively, where pll = 01 - core /2= 247.5 °-

22.5°/2=236.25°, P12=01+core /2=247.5°+22.5°/2=258.75°, p21=02

-core/ 2=270.0* - 22.5° /2=258.75°, p22=02+core/2=270.0°+22.5° /

2= 281.25 °, P31 = 93 - core /2= 292.5 °- 22.5 °/2= 281.25 °, P32 = 03 + core /

2= 292.5 °+ 22.5 °/2= 303.75 °, ßl and P2 are set to 22.5 °. Thus, we get 014 =

(236.25° / 22.5°; 258.75° \ 22.5°), 015 = (258.75° / 22.5°; 281.25° \ 22.5°), and

016 = (281.25° / 22.5°; 303.75° \ 22.5°).

(c) Add directed arcs to point from state q13 to states q14, q15, and q16, from state q14 to

states q15 and q16, and from state q15 to state q16. The arcs entering states q14, q15, and

q16 are labelled with the fuzzy direction state entrance qualifiers 014,015, and 016,

respectively. Thus, we get C1(g13,014) = q14, (1(813, a, $) = q15, C1(g13,016) = q16,
C1(g14,015) = qls, (1(g14, (116) = q16, (1(g15,016) = q16.

197

(d) For state q14 add a directed arc, which is labelled with a14, to point from that state

to itself. Similar arcs, which are labelled with als and o16i are added for states qls

and q16i respectively. Thus, we get C1(g14, (1 14) = q14, y1(g15,01s) = qls, and (1(g16,

016) = q16.

(e) Increment i to 6 and j to 3.

(f) Since llrj, j=3, is the last link we go to Step 5.

Step 5. Setup of a terminal state
The last created state, q16, is considered as a terminal state. Thus, for the machine, FM1,

T1= {Q16}. A class, token class no. 1, of the underlying token is embedded in q16 with its

fuzzy features, hence, Cl = {token class no. 1). The fuzzy features are calculated as
follows:

(a) The features of the token are: iy = 0.02, f, = 0.98, and flew = 0.64.

(b) The features which are calculated above are fuzziffied by transforming them into s/z-

numbers. Pf and of are set to 0.2 and 5, respectively. Thus, the following fuzzy

features are obtained: F. = (0.0 / 0.0; 0.2 \ 0.2), F. = (0.8 / 0.2; 1.0 \ 0.2), and Fllu,

=(0.6/0.2; 0.8\0.2).

Finally, a fuzzy sequential machine FM1= (C1, Q1, E 1, C1, T) is obtained where
(a) C1= {token class no. 1),
(b) Q1={q1;, i=0,1,..., 6),

(c) E, ={ 01, i =1,2,..., 6), all = (258.75* / 22.5 °; 281.25 °\ 22.5 °), 012 =(23 6.25 °

/ 22.5 °; 258.75 °\ 22.5 0),

013 = (213.75 °/ 22.5 °; 236.25 °\ 22.5 °), 14 =(23 6.25 °

/ 22.5°; 258.75° \ 22.5°), 01s = (258.75° / 22.5°; 281.25° \ 22.5°), and 016 =
(281.25° /22.5°; 303.75° \22.5°),

(d) {1 is the next-state mapping function (l : Ql x E1-. Q1, where C1(glo, 011) = q112
Cl(g11,0/11) = q11, y1(g11, a12) = q12, (1(gll, 013) = q13, (1(g12,

/013)

= q13, C1(g122,012)

q12, (1(g13, o13) = q13, y1(q13, °14) = q14, (1/(113, u1/s) = q15, C1(g13, o16) = q16, (1/(gl4,

o15) = q15, (1(g14,016) = q16, (1(g15,016) = q16, (1(g14, (I 14) = q14, (1(g15, u15) = q15,

and CI(q, 6,016) = ql6,
(e) T1= {q16}, where the fuzzy features which are embedded in q16 were explained in

Step 5 of this example.

198

J
(a)

(b)

Figure 10.3. (a) A multi-vertex token, and (b) a deterministic fuzzy sequential
machine, FM2, obtained from this token.

10.3. 'MERGING OF FUZZY SEQUENTIAL MACHINES

Algorithm 6.3, which was used to merge FMs which recognize strokes, is also used

to merge FM's that recognize multi-vertex tokens. Here, there are some points to

highlight:

(a) Algorithm 6.3 deals with strokes. The current section deals with multi-vertex

tokens.
(b) In Section 6.3, a machine, FM, recognizes reduced graphs which are, in general,

different than the original graphs when dealing with strokes. However, in the current

section, a machine FM, recognizes original graphs of multi-vertex tokens which are

the same as their reduced graphs.

10.3.1. Example

Consider the token, 'P, which is shown in Figure 10.3(a), and the machine, FMI,

whose transition diagram is shown in Figure 10.2(b). FMI could not recognize this token

since the last level of the recognition tree is less than 3, the number of the links in T.

Thus, to learn this token:

(a) A deterministic fuzzy sequential machine, FM2 = (C2, Q2, Ev C2, T2), Figure 10.3(b),

199

(b)

is created for the token, where C2 =(token class no. 2), Q2 = (q2i, i=0,1,
..., 7),

E2 = {°2i, i=1,2,
..., 7), `2 is the next-state mapping function Z2 : Q2 X

E2 -- Q2, which can be read from Figure 10.3(b), and T2 = (q27). The state entrance

qualifiers are: 021 = (258.75°/22.5°; 281.25°\22.5°), 022 = (236.25°/22.5°;

258.75°\22.5°), o23 = (213.75°/22.5°; 236.25°\22.5°), 024 = (191.25°/22.5°;

213.75°\22.5°), 025 = (168.75"/22.5"; 191.25"\22.54% 026 = (146.25"/22.5*;

168.75 °\22.5 °), and 027 = (123.75 °/22.5 °; 146.25 °\22.5 °). In the terminal state,

q27, three fuzzy features are embedded: Fj = (0.0 / 0.0; 0.2 \ 0.2), F. = (0.8 / 0.2; 1.0

\ 0.2), and FHw = (0.2 / 0.2; 0.4 \ 0.2).

The machine FM1 is merged with the machine FM2, described above. The merging

process is detailed below.

Step 1. Forming of a nondeterministic fuzzy sequential machine
The sets of next states of q10 and q20 are Q10 = {q11) and Q20 = (q21), respectively:

(a) Delete the starting states q10 and q20 and the arcs emitting from them.

(b) Create a common starting state, q0.
(c) Since q11 E Q10, an arc, which is labelled with all, is added to point from q. to q11.

Similarly, another arc, labelled with 021, is added to point from qo to q21. Notice that

(111 = (121 =Q which makes ((qo, a) a multivalued function. The result is the

transition diagram shown in Figure 10.4 which represents a nondeterministic

machine, FM3.

Step 2. Constructing the transition tree for the machine FM3

While reading this step refer to Figure 10.5, which displays the whole transition tree.

The nodes are referenced by the nearby numbers.
(a)

(b)

Generate the root node, node 0, of the tree which has the state q0.
For node 0, which has q0, the state entrance qualifier, 011= ail, causes a transition

from qo to the set of next states S= {q11, q21). Thus, a new node, node 1, which is

a son of node 0 with a state combination equal to S, is added. The arc from node

0 to node 1 is labelled with o11= 021. Node 1, in turn, has {q11, q21}, {q12, q22}, {q13,

q23}, and (q24} as the sets of next states for the state entrance qualifiers 011= 021,

012 = 02b 013 = o23, and 024i respectively. Thus a new node is created for each set

of states, nodes 2 to 5. The arcs from node 1 to nodes 2,3,4,5, are labelled with

200

-rs

Figure 10.4. ' A nondeterministic fuzzy sequential machine, FM3, obtained from the
machines of Figures 10.2(b) and 10.3(b).

O
011=021

Q»,
ý

411.
Q2l

011=022

all=021 //i\ 024

Q12=022
013=Q23

q1Z 34
Kq

5l>-t`

Q24 013=023
of 015
014 016

024
O25

qll,
Iý O

4ý
au 10 11

`a+s
12 aie

OO1 ý15
16

VA IA

a13=023

8

014

/ cis
015

415 q18

9

q11

18 19 20

11

au aý
21

12

024

(je

ý 13 14
016 025

\
026

J 425 426

22 23 24

14

25

15 16

027

026

027

a2fi I\ a27

00 26 27 28

Figure 10.5. The transition tree of the machine, FM3, of Figure 10.4.

als 015 / \016 13

17

027

201

a 11 = 021,012 = 022,013 = a23, and 024, respectively. This process is repeated for

newly generated nodes provided that a state combination does not appear in more

than two levels of the tree. The final transition tree is shown in Figure 10.5.

Step 3. Obtain the transition diagram which represents a deterministic machine,

FM, from the transition tree:
(a) Create the starting state, q0, of the transition diagram which corresponds to the root

node of the transition tree.

(b) Scanning the tree starting from level 1, first we face node 1:

1. Node 1 contains the state combination {q11, q21) for which no state was

created. Thus, a new state, q1, is generated.

2. An arc is added to point from state q0, which corresponds to the node 0, the

father node of node 1, to state ql which corresponds to node 1. This arc is

labelled with a1= 011 = 021"

Next, we face node 2:

1. Node 2 contains the state combination
(q1l, q21) for which a state, q1, was

created.
2. An arc is added to point from state q1, which corresponds to the node 1, the

father node of node 2, to state q1 which also corresponds to node 2. This arc

is labelled with a1= =011 021.
This process is repeated for the other nodes which results in 10 unique states,

excluding q0. Regarding node 12, it contains a terminal state, q16. Thus, token class

no. 1 and its fuzzy features, which are embedded in q16, are copied to state, q6 of

Figure 10.6, which corresponds to node 12. Of course, q6 of Figure 10.6 becomes

a terminal state. Node 17, which contains the terminal state q27, is handled similarly.

The completed, transition diagram is shown in Figure 10.6 which represents a

deterministic fuzzy sequential machine FM = (C, Q, E, C, T), where C= {token

class no. 1, token class no. 21, Q= {q, i=0,1,
..., 101, E={ al, i=1,2,

...,
10),

is the next-state mapping function C: QxE -» Q, which can be read from the

figure, and T= (q6, q10). In the terminal state q6, tokens belonging to token class no.
1 are recognized with the same set of fuzzy features that were embedded in state q16

of machine FM1. Also, the terminal state q10 recognizes tokens belonging to token

202

Figure 10.6. A deterministic fuzzy sequential machine, FM, obtained by merging the

machines FM, and FM2 of Figures 10.2 and 10.3, respectively.

class no. 2 with those fuzzy features which were embedded in state q27 of machine
FM2. The state entrance qualifiers are as follows: a1= (258.75°/22.5°;

281.25°\22.5°), a2 = (236.25°/22.5°; 258.75°\22.5°), 03 = (213.75°/22.5°;

236.25°\22.5°), a4 = (236.25°/22.5°; 258.75°\22.5°), as = (258.75°/22.5°;

281.25°\22.5°), a6 = (281.25°/22.5°; 303.75°\22.5°), a7 = (191.25°/22.5°;

213.75°\22.5°), as = (168.75°/22.5°; 191.25°\22.5°), a9 = (146.25°/22.5°;

168.75 °\22.5 0),

and a 10 = (123.75 0/22.5 0; 146.25 °\22.5 0).

10.4. MODIFICATION OF A FUZZY SEQUENTIAL MACHINE

Let FM1= (C1, Q1, Z 1, C1, T) be the machine that was used when recognition was

tried but failed. There are cases in which an unrecognized token can be learned by

incorporating some modifications in FMI so that it becomes capable of recognizing tokens

belonging to the unknown token's class. These cases occur if the last level of the token's

acceptance tree equals m-1, the number of links in the sequence, ', as'follows:
(a) The token's link sequence could terminate at one or more terminal states such that

the remaining credit of the stroke did not fall below THRI, but could not be

203

recognized due to severe deviation of the token's features from the fuzzy features

of the classes embedded in any of these terminal states, i. e., the acceptance degree

of the token's features is less than THR2. Thus, in the following algorithm, a

possibility can be investigated to add a new class, with its fuzzy features, in one of

these terminal states.

(b) And / or the token's link sequence terminated in one or more states, NT, which are

not terminal states and such that the remaining credit of the token is not less than

THRI. In the following algorithm, a possibility can be searched to change one of

such states into a terminal state, i. e., to append it to the set T, and to insert in it the

class of the token with its fuzzy features.

A formal description of the algorithm which learns a token by modifying a token

fuzzy sequential machine follows.

Algorithm 10.4

Use: To learn a token by modifying a token fuzzy sequential machine
Input: 1. Sequence of links, q', of the token to be learned

2. Reduced graph of the stroke from which the token, Y', was segmented
3. Acceptance tree of the token which is unrecognized by Algorithm 9.2

4. Token fuzzy sequential machine, FM,, of tokens which are already
learned

Output: New fuzzy sequential machine, FM, which can recognize the underlying token

and previously learned tokens

Procedure:

Step 1. Calculation and fuzzification of the features of the token

(a) Find the features of the token T, see Section 8.2.

(b) Fuzzify every feature found in (a) by transforming it into an s/z-number as follows:

1. Set both the left and right bandwidths to ßf.

2. The range from 0.0 to 1.0 is divided into n equal intervals. The left and right

peak points, pl and pz, are taken to be equal to the limits of the interval in

which the value of the feature lies.

Suitable values of ßf and n were found to be 0.2 and 5, respectively.

204

q0,1.00
0

X1111) (a)

q1,1.00
1

I q3,1.00
2

(b)

Figure 10.7. (a) A token to be learned by machine, FM, of Figure 10.6, and (b) its

acceptance tree.

Step 2. State modification
Find the leaf node, d, with the 2-tuple (q, w), the level of which equals m-1, and such

that d has the maximum remaining credit, w.
(a) If qe TI, where TI is the set of terminal states of FMI, then add a new token class,

c�,,,,, in state q with the fuzzy features computed in Step 1. A new machine, FM =

(C, Q, E, (, T), is obtained where C= {Cn. �} u C1, Q= Q1, E and T

= TI.

(b) If q TI, then add q to the set of terminal states. Insert a token class, cA..,,, in q

with the fuzzy features computed in Step 1. A new machine, FM = (C, Q, E, C, T),

is obtained which is similar to FMI with the exception that C= {c�.,, } u CI and T=

{q} u Tl.

10.4.1.
,

Example

Figure 10.7(a) shows a token consisting of two links. When trying to recognize this

token using the machine, FM, of Figure 10.6, the acceptance tree of Figure 10.7(b) is

obtained revealing that the token is unrecognized since the link sequence terminated at

node 2 which has q, eT with a remaining credit = 1.0 > (THR1= 0.6). Thus, to learn this

token, modifications are incorporated into machine FM as follows:

205

Step 1. Calculation+and fuzzification 'of the features of the token
(a) The calculated features of the token are: t=0.0, fe = 1.0, and f y, = 0.61.

(b) By taking ßf = 0.2 and n=5, the above features are fuzziffied to obtain the

following fuzzy features: F, = (0.6 / 0.0; 0.2 \ 0.2), F. = (0.8 / 0.2; 1.0 \ 0.0), and

F1, =(0.6/0.2; 0.8\0.2).

Step 2. State modification

Node 2 is the only node the level of which equals 2, the number of token links. This node

contains state q3 which is not a terminal one. Thus, case (b) of this step applies. State q3
is added to the set of terminal states. A new a token class, token class no. 3, is inserted

in q3 with the fuzzy features computed in Step 1. A new machine, FM = (C, Q, E, Z, T),

is obtained which is similar to the original FM with the exception that C= (token class

no. 1, token class no. 2, token class no. 3), and T= {q3, q6, q10}.

SUMMARY

In this chapter, the token learning process of the CASR system was presented.
The learning algorithm determines how to learn an unrecognized multi-vertex token

depending on the last level of its acceptance tree, which is passed by the token recognition

process, as follows:

(a) If the last level of the acceptance tree is less than the number of links in the token,

then a fuzzy sequential machine is generated from the input token. This machine can

recognize the input token and variants of it. The generated machine and the old

machine, which was used in recognition but failed to recognize the token, are

merged into one machine which can recognize the input token and tokens of the old

machine and variants of these tokens.
(b) If the last level of the acceptance tree equals the number of links in the token, then

some modifications are introduced into the machine which was used in-recognition,

which is sufficient to learn the token. The output is a modified fuzzy sequential

machine which can recognize the input token and tokens of the old machine and

variants of them.

206

Learning of.

Token Strings

OVERVIEW

ýý

.ý ý

«ý. %« . ýýý. »

In this chapter, tokens are recombined into meaningful sets of tokens; logical token

strings. An algorithm to learn logical token strings is presented The data flow diagram

of the process of learning of token strings, Figure 11.1, consists of the following

subprocesses:
(a) Manual Token Combining: which accepts as inputs the segmented tokens of

strokes, classes assigned to the tokens using Algorithm 9.2, and reduced graphs of

strokes. Here, the user interactively deals with a program which displays a stroke

on the screen so that he can group tokens into logical token strings.

(b) Appending of New Logical Token Strings: It accepts the inputs of the above

subprocess, logical token strings, and a data base of already learned logical token

strings. Here, logical token strings which do not have similar strings in the data

base are appended to the data base. Appended logical token strings are associated

with possible interpretations and their fuzzyfeatures

11.1. FROM TOKENS TO TOKEN STRINGS

In Chapters 8 and 9, it was shown how to segment a stroke into tokens and

recognize the segmented tokens. Sometimes an individual token, alone, does not

constitute the main body of an integral number of characters. Thus, we re-combine tokens

207

0
Tokens of strokes

Reduced graphs
of strokes

-1

I
1
I

,
'I

Appending ofý New Logical .
.. Tnknn Cf ri nnc

ý..,. ý-, ýr. -,,,. ý,:., ý, >,..

Logical token

strings

: <v.:;:; i :::::::::::.: ým :: ̀ý"ý'`""'.:::. ý. 22ý2R; `\: ý\
vý;

Manual Token Combining`

C_ :___..,. ý ..,... ý ý ., y

New data base of logical token strings
y

Data Base of
Logical Token Strings

Figure 11.1. Data flow diagram of the process of Learning of Token Strings in the
CASR system.

into strings to obtain meaningful token combinations which can represent the main body

of a whole number of characters. This chapter concerns such token combining.

11.1.1. Definitions

(a) An Arabic subword which consists of a single connected component is a main

(b)

stroke. If a subword consists of more than one connected component then the first

written component is a main stroke and the others are secondary strokes. Figure

11.2(a) shows one Arabic word which consists of one subword. This subword

consists of six strokes; the largest one is the main stroke and the others are

secondary strokes.

The set {W1, Y'2,
...,

`FN} refers to the tokens into which the reduced graph of a

stroke is segment using Algorithm 8.1, where N is the number of tokens. A straight

line approximation, G, of the main stroke of the subword, which is shown in Figure

11.2(a), is shown in Figure 11.2(b). The graph, G, contains one loop set consisting

208

ý"
99

(a)

(b)

(c)

Figure 11.2. (a) An Arabic word consisting of one main stroke and five secondary
strokes, (b) a graph, G, of the main stroke, and (c) the reduced graph, G', of the main
stroke and the path µu.

of a single loop. The reduced graph, G', of G is shown in Figure 11.2(c) with the

loop set being represented by vertex 16. The reduced graph is segmented into the

following tokens, see Figure 11.3: 'P1 = (1,2,3,4), T2 = (5,4,6,7,8,9,10,11,

12), 'P3 = (13,12,14,15), 'P4 = (16), 'P5 = (15,17), and '6 = (18,17,19,20,21,

22,23,24).

209

» (a)

(c)

ý

(e)

(b)

0

(d)

(f)

Figure 11.3. Tokens of the main stroke of Figure 11.2: (a), 'F 1, (b)'F2, (c) 'F3, (d)
`1'4, (e)'P5i and (f)'F6.

Figure 11.4. A common shape which can represent a secondary stroke or an isolated
Hamza character.

(c) A Common SHape, (CSH), is a stroke or part of it which can represent:

1. a secondary stroke, or
2. many different characters depending on the type, number, and position of

secondary strokes assigned to it.

Figure 11.4 shows a common shäpe which can represent a secondary stroke or a

character (Hamza) without any additional secondary strokes. Figure 11.5(a) shows

a common shape which can represent six different characters depending on the type,

number and position of assigned secondary strokes. These characters are: Ba, Ta,

Tha, Noon, Ya, Hamza, see Figure 11.5(b - g).

Sometimes, a single isolated token does not represent any common shape, . e. g., 'F 1

210

ý

(a)

.s ý S. ýý LJ LJ 8a.

(b) (c) (d) (e) (f) (9)

Figure 11.5. (a) A common chape which can represent six different characters
depending on assigned secondary strokes, (b) Ba character, (c) Ta character, (d) Tha

character, (e) Noon character, (0 Ya character, and (g) Hamza character.

Figure 11.6. A stroke which can be segmented into three tokens representing one
common shape.

of Figure 11.3(a). The same token can represent a whole common shape if combined

with another token, e. g., if '1 is combined with 'I'2, then Y' 1 represents a common

shape. A common shape can be just a part of a token, e. g., in token tI'2i the links

between vertices 5 and 7, see Figure 11.2(c), represent a whole common shape.

More than one token may combine to form a single common shape, e. g., the graph

of Figure 11.6, if segmented, will produce three tokens, where the three, all

together, represent a single common shape.

(d) A common shape can appear
1. isolated,

2. at the start, middle, or end of a stroke, or
3. any combination of the above cases, e. g., it can appear isolated in one stroke,

at the start of a second stroke, and at the end of a third stroke. This does not

mean that every common shape can appear in any position of a stroke.

For example, Figure 11.7(a) shows a graph which can be segmented into three

tokens. The three combined tokens form one common shape (Ayn) which can

211

(a)

UL

Figure 11.7. (a) A three-token stroke representing one common shape which can
appear in the middle of a stroke, and (b) an example stroke in which the common shape
of (a) appears in the middle of a stroke.

ý

(b)

ýý
(a) (b) (c) (d)

Figure 11.8. (a) A stroke representing one common shape which can appear isolated,
(b) the common shape of (a) at the start, (c) the common shape of (a) in the middle, and
(d) the common shape of (a) at the end of a stroke.

appear in the middle of a stroke, as shown in Figure 11.7(b). Figure 11.8(a) shows

another graph consisting of one token which can represent one common shape. This

common shape can appear isolated, at the start, in the middle, or at the end of a

stroke as shown in Figures 11.8(a - d).

(e) A secondary stroke is an isolated common shape. For example, each of the two dots

(f)

(g)

in Figure 11.2(a) produces a single isolated vertex graph, i. e., a single vertex token,

which represents an isolated common shape that can be a dot secondary stroke. This

does not mean that every isolated common shape is a secondary stroke.
A set of secondary strokes assigned to a common shape is called a secondary stroke

combination, ssc. Figure 11.9 shows common Arabic secondary strokes. Figure

11.10 shows some valid Arabic secondary stroke combinations with examples.
Two tokens'Pi and Tj are adjacent if they have a common vertex, e. g., Y' 1 and'P2,

212

ýiy/v
Figure 11.9. Common Arabic secondary strokes, from left to right: Dot, Two
Connected Dots, Three Connected Dots, Vertical Bar, Hamza, and Madda.

Name Symbol Example

Dot U
a

Two Isolated Dots ..

Three Isolated Dots

Two Connected Dots

Three Dots: one isolated
and two connected

Three Connected Dots

Vertical Bar

Vertical Bar and Dot

Hamza

Madda

Damma

.

6

i

.
U.

v

a

A
L J

I
_-X3

I. I
y yÜ
/V

N
I

J
Figure 11.10. Some valid Arabic secondary stroke combinations.

213

Figure 11.11. A token string, ts: the links between vertices 1 to 4 constitute CSHI, the
links between vertices 5 to 7 constitute CSH2, and the links between vertices 7 to 12

constitute CSH3.

Figure 11.3(a, b), are adjacent since vertex 4, see Figure 11.2(c), is common
between them.

(h) A token string, ts, is a set of tokens such that they constitute a graph consisting of

one component.

(i) A logical token string is a token string, ts, such that:

1. is may have only one token which represents a loop set,
2. whether, alone or combined with secondary strokes, the string can represent

at least one set of CSH's. Let P= {p,, p2, ...
}o represent these sets, and

3. For every possible set of CSH's p; E P, the string, ts, can not be divided into

two strings, ts, and ts2 with sets of CSH's, p; l and pi2i respectively, such that

G)

Pil U Pu = Pi.
For example, in Figure 11.3, the set of tokens is = {T1, 'F2} constitute a single

component graph since the tokens 'F1 and 'F2 are adjacent, i. e., they have a common

vertex, vertex 4, hence, is is a token string. None of the tokens 1F 1 or 'F2 is a loop

set. The string is represents one set, pll, of three CSH's denoted by CSHI, CSH2,

and CSH3, which are shown, in Figure 11.11 where the links between vertices 1 to

4 constitute CSHI, the links between vertices 5 to 7 constitute CSH2, and the links

between vertices 7 to 12 constitute CSH3. Also, is can not be divided into two

= strings with pl and p2 being their corresponding sets of CSH's such that pl u P2

pll. Thus, is is a logical token string.

The length of a dot token is zero and the length of a loop set token is equal to the

sum of lengths of the links constituting the loop set.

214

---9 ý", ep
(a) (b)

Figure 11.12. Strokes consisting of the same set of tokens and different characters: (a)
Waw character, and (b) Meem character.

(k) The length of a token string is the sum of the lengths of the individual tokens

constituting the string.

11.1.2. Features of Token Strings

A string of tokens has its own features to distinguish it from other strings of tokens.

In the CASR system, the following features are used:
(a) Token Codes: These are the identification codes of the classes of the tokens which

constitute the string. Some token strings have the same list of token codes, however

they differ in other features.

(b) Token /String Length Ratios, y,, i =1,2, ..., n, where yi is the ratio of the length

of token Y'i to the total length of the string.
(c) Intersection Vertices: This feature applies to token strings which have more

than one token and a token representing a loop set. In this case, every intersection

vertex that is a connection point between the loop set and another token in the string
is described by two features:

xf = (x - x,,,;,) / (xn,.
x - x, w�) (11.1)

and Yf = (Y - Y. J / (Y. - Yom) (11.2)

where x and y are the x&y coordinates of the intersection vertex and x;,;;,,, x,,,,,,, y, n, � ,
and y, are the boundary coordinates of the rectangle which encloses the loop set.

This is important for strings which have loop sets and have the same token codes.

For example, both graphs of Figure 11.12(a, b) represents a single token string

consisting of the same set of tokens: a loop set token and a multi-vertex token. They

only differ in the position of the intersection point relative to the loop set. The

215

feature of intersection vertices is used to distinguish between such token strings.

11.2. LEARNING OF TOKEN STRINGS

An important component in the CASR system is to extract feasible combinations of

token strings, i. e., logical strings. To know whether a token string is logical there should

be some kind of a data base in which logical token strings along with their meaning stored.

The underlying token string is compared with stored logical strings to find whether there

is a match. Such a data base must be generated first, which is the process that we call

learning of token strings. An algorithm for this purpose follows.

Algorithm 11.2

Use: To learn logical token strings in a stroke

Input: 1. For every input stroke:
i. The set, {'i' 1, IF2i ..., `FN}, of segmented tokens of the stroke

ii. Token codes, i. e., classes assigned to the tokens {'I'1, `F2, """,
TO using Algorithm 9.2

iii. Reduced graph of the stroke

2. Data base, TS, of already learned logical token strings

Output: New data base of learned logical token strings

Procedure:

Step 1. Manual token combining

The tokens of the stroke are combined into logical token strings. This is a manual process

since the humanjudgement is indispensable to decide whether a token string can represent

a whole number of CSITs. To facilitate this task, an interactive program was developed

to display a stroke on the screen and allow the user to group tokens into logical strings.

Step 2. Appending of new logical token strings

In this step, we have to mention first that the features of token / string ratios and
intersection vertices are stored in the data base, TS, as fuzzy numbers as it will be clear
in Step 2(b) of this algorithm.
For every possible logical token string, ts, generated in Step 1:

(a) A test is performed to make sure that it is new, i. e., it does not exist in the data base,

216

TS, as follows:

1. Find the features of ts, see Section 11.1.2.

2. Verify that there is no token string ts* E TS such that

i. is and ts* have the same list of token codes,

ii. The overall acceptance degree, a,, of the features of token / string ratios
is not less than a specified threshold THR,, where

a, =
1 Ezr(Yt), i=1,2,..., n (11.3)
n

where n is the number of tokens in is and r1,
ß
(ys) is the acceptance

degree of the deterministic feature yj of is in the corresponding fuzzy

feature ri of ts*.

iii.
,

The overall acceptance degree, a., y� of the features of intersection

vertices is not less than THR, ()� where

ate, -
1E (ax (xfl)+n7 (vl,)), i-1,2,..., nx, (11.4)

2Xnx,

(b)

where n, Y is the number of intersection vertices, which exist in the loop

set, if any, in is and nx(xj1), and a1, (yf,) are the acceptance degrees of

the features xi and y1 of is in the corresponding fuzzy features Xi and
Yj of is*... .

If there is no token string, ts* e TS, which fulfils the above conditions, then

is is new.
If is is new then:

1. Transform the features of token / string ratios and features of intersection

vertices, which exist in a loop,. set, of is to fuzzy features, i. e., s/z. numbers, as
follows:

i. Both the left and right bandwidths are set to ßa.

ii. The range from 0.0 to 1.0 is divided into n� equal intervals. The left and

right peak points are taken to be equal to the limits of the interval in

which the value of the feature lies.

In general, the features of token / string length ratios have values of P. and n�

217

which differ from those of features of intersection vertices.

2. Associate with is a set of possible interpretations where each interpretation is

a set of CSITs. For each common shape, the following information is stored:

i. The positions in which the common shape can appear, i. e., start, middle,

end, isolated, or any combination of these,

ii. The secondary strokes it can represent, if any, and

iii. The characters it can represent, where for each character the following

information is stored:

" the character class, and

" the type and position of the secondary stroke combination that is

required to be assigned to the common shape to form the

character.
3. Append is with its fuzzy features and interpretations to the data base TS.

11.3. EXAMPLE

The logical token strings of the stroke of Figure 11.2(b), the tokens of which are

shown in Figure 11.3, are learned by Algorithm 11.2 as follows:

Step 1. Manual token combining
Following Definition 11.1.1(1), an Arabic reader can deduce eight logical token strings as

shown in Figure
(11.13,

where ts, = ('I'1, ýP2)9 ts2 = (''2), ts3 = {'P3}, ts4 = {'I'4}, tss =
{'P4i'P5}, tS6 = {'P5}, tS7 = {'P4, 'P3,6}, and t$g = {'F6}.

Step 2. Appending of new logical token strings
Each of the eight logical token strings which were formed in Step 1 is tested to see

whether it is new. If it is new then it is appended to the data base, TS. For the first string,

ts,, this step is applied as follows:

(a) Perform a test to find whether ts, is new:
1. The features of token / string ratios of ts, are y, = 0.28, y2 = 0.72. There is

no features of intersection vertices since ts1 does not contain a loop set token

connected to a multi-vertex token.

2. If it is assumed that the set of learned logical token strings, TS, is initially

empty, then ts, is considered new.

218

(b)
(a)

J
(c)

,
(e)

(9)

2
(d)

(0

(n)

Figure 11.13. Logical token strings of the stroke of Figure 11.2(b): (a) tsl: the links
between vertices 1 to 4 constitute CSHI, the links between vertices 5 to 7 constitute
CSH2, and the links between vertices 7 to 12 constitute CSH3, (b) ts2: the links between
vertices 5 to 7 constitute CSHI, and the links between vertices 7 to 12 constitute CSH3,
(c) ts3: CSHI or CSH4, (d) ts4: CSH5, (e) tss: CSH6 or CSH7, (0 ts6: CSH8, (g) ts,: CSH9i
and (h) ts8: CSHIO.

(b) Since tsl is new it is added to TS äs follows:

1. The features of token / string ratios are fuzzifl'ied by transforming them to s/z-
numbers as follows:

I. The left and right bandwidths are set to ß,, = 0.25.
ii. The range from 0.0 to 1.0 is divided into n. =4 equal intervals, i. e. the

interval length is 0.25.

219

Finally, we obtain the fuzzy features I'1= (0.25 / 0.25; 0.50 \ 0.25) and r2 =

(0.50 / 0.25; 0.75 \ 0.25) which correspond to yl = 0.28 and y2 = 0.72,

respectively.

2. The set of possible interpretations of ts, has only one interpretation, p,,, where

p,, consists of three CSITs denoted by CSH1, CSH2, and CSH3, which are

shown, in Figure 11.13(a). The links between vertices 1 to 4 constitute CSH1,

the links between vertices 5 to 7 constitute CSH2, and the links between

vertices 7 to 12 constitute CSH3. String ts, can not be divided into two strings

with p, and p2 being their corresponding sets of CSITs such that p, U P2 = Pil"

For the right-most common shape, CSH1, the following information is stored:

i. CSH1 can appear at the start or in the middle of a stroke.

ii. CSHI can not represent any secondary stroke.
iii., CSHI can be read as different characters depending on the number and

position of assigned secondary strokes as follows:

" If there is a single dot below, then it represents Ba.

" If there are two isolated dots or a horizontal dash above, then it

represents Ta.

" If there is a set of three isolated dots, a single dot which is located

above a horizontal dash, or three connected dots (similar to caret)
located above, then it represents Tha character.

" If there is a single dot above, then it represents Noon.

" If there are two isolated dots or a horizontal dash below, then it

represents Ya character.

" If there is Hamza above, then it represents Hamza.

For the second common shape, CSH2, the following information is stored:
i. CSH2 can appear only-in the middle of a stroke.
ii. CSH2 can not represent any secondary stroke.
iii. CSH2 has one reading, Meem character, without any secondary stroke.
For the last common shape, CSH3i the following information is stored:
i. CSH3 can appear at the start or in the middle of a stroke.
ii. CSH3 can not represent any secondary stroke.

220

iii. CSH3 has different readings as follows:

" If it is not associated with any secondary stroke, then it is Ha.

" If it has one dot above, then it represents Kha character.

" If it has one dot below, then it represents Jeem character.
3. Append ts1 with its fuzzy features and interpretations to the data base TS.

The other seven logical token strings, ts2 to tsg, are manipulated similarly. Finally,

we get the data base, TS, with eight strings:
1, ts1 (IF 1, IF 2}, which was described above in detail,

2. ts2 = {II'2} having one interpretation p21 = {CSHI, CSH3}, where CSHI and CSH3

are as before,

3. ts3 = {`I'3} having two interpretations: p31= {CSH4} and P32 = {CSHI}, where CSHI

is as before. For CSH4,

L It appears either isolated or at the end of a stroke.
H. It does not represent any secondary stroke.
iii. It can be read as follows:

" If it is without secondary strokes, then it is Ra character.
" If it has one dot above, then it is Zain character.

4. ts4 = {74} having one interpretation P41'- {CSH5}. For CSH5,

i. It appears isolated.

H. It can represent a secondary stroke, Sokoon.

iii. It can be read as follows:

" If it is without any secondary stroke, then it is either an isolated Arabic

character Ha or Arabic numeral "o". Whether it is Ha or Arabic numeral

is a contextual problem which is out of scope of this research.

" If it has two dots or a horizontal dash above, then it is closed Ta.

5. tss =
('P44 'P5) having two interpretations psl = {CSH6} and P52 = (CSH7). For

CSH6,

i. It appears at the start or in the middle of a stroke.
ii. It does not represent any secondary stroke.

iii. It can be read as follows:

" If it has one dot above, then it is Pha character.

221

If it has two dots or ä horizontal dash above, then it is Qäf character.

For CSH7,

i.. It appears isolated, at the start, in the middle, or at the end of a stroke.

ii. It does not represent any secondary stroke.
iii. It can be read as follows:

" If it has one vertical bar above, then it is TTa character.
" If it has one vertical bar above and one dot to the right of the bar, then

it is Za character.

6. ts6 = {Y's} having one interpretation p61= {CSHg}. For where CSHg,

i. It appears isolated,

ii. It can represent Fatha, Kasra, or Two Connected Dots secondary stroke.

iii. It can be read as a minus sign character without any secondary stroke.

7. ts7 = {T4, `I's, Y'6} having one interpretation p71 = {CSH9}. For CSH9i

i. It appears isolated or at the end of a stroke.

ii. It can not represent any secondary stroke.

iii. It can be read as different characters:

" If it is without secondary strokes, then it is Sad.

" If it has a dot above, then it is Dad.

8. ts8 = {T6} having one interpretation p81= {CSHIO}. For CSHIO,

i. It appears isolated or at the end of a stroke.
ii. It can not represent any secondary stroke.

iii. It can be read as Noon character provided that there is a dot above.

SUMMARY

In this chapter, tokens were recombined into meaningful sets of tokens; logical token

strings. An algorithm to learn logical token strings was presented. It consists of two steps.

First, the user interactively deals with a program which displays a stroke on the screen so

that he can group tokens into logical token strings. Second, formed logical token strings

which do not have similar strings in' the data base of learned logical token strings are

appended to the data base. Appended logical token strings are associated with possible
interpretations and their fuzzy features.

222

Line Extraction

and Stroke

Ordering

OVERVIEW

VM;
0

a

I

*WdWý

In this chapter, a method will be developed to extract lines from binary images of

pages of handwritten Arabic text and order their constituent strokes. A data flow diagram

of the process is shown in Figure 12.1, which consists of the following subprocesses:
(a) Separating Main and Secondary Strokes: where strokes which can represent

secondary strokes are marked Remaining strokes are main strokes.
(b) Constructing a k-Connected Graph with Artificial Vertices: Here main strokes

represent the vertices of a k-connected graph in addition to additional auxiliary

artificial vertices.
(c) Finding the Shortest Spanning Tree of the k-Connected Graph: which results

in the vertices representing main strokes of each line to be connected by one path.
The paths corresponding to adjacent lines are connected by links between artificial

vertices.

(d) Removing Artificial Vertices: which produces a multi-component graph where

each component corresponds to one line.

(e) Extracting Lines and Ordering Main Strokes: where the uppermost path

corresponds to the first line, the next lower path to the second line, and son on. The

vertices of each path are arranged from right to left according to their order of

appearance in the path. The right-most vertex corresponds to the first main stroke

223

C) C)
Data Base of
Logical Token

Strings

-------- -
............:...:...:.: - r..,,... _. _....... ,. , ýý Constructing a k-Connected
Graph with Artificial Vertices&',. ý

k-connected graph

Finding Shortest SannincýTre
the k Connected Graph;,

LINE AND
STROKE
ORDERING

Classes of tokens II Tokens of strokes

List of

Separating Main anc`
econdar` Strokes

List of main strokes

U
Reduced graphs of strokes

secondary strokes

Shortest spanning tree

Removing Artificial Verticý`esý
.,. ý::::;. «": «, \. ý«; <. . ý<. ý. ý :' "s

Multi-component graph

: Extracting Lines and : <>? > .
Main Strokes.:.
TOrdered

lines and

W ordered main strokes

r.. '(Prt--, entina Secondary Strokes. > ý
' ý>:.,,.... >s3o Main StrokesN
'¢ : tiý;:: oaejtt; p.: ý::.:: ...,...;,..

ý
i Direct straight

line approximations
of strokes

ýý
L

ý----------

Figure 12.1. Data flow diagram of the Line Extraction and Stroke Ordering process.

in the line, and son on.
(f) Presenting Secondary Strokes to Main Strokes: where every secondary stroke is

presented to the nearest main stroke.

12.1. BACKGROUND

Part of off-line text recognition is to extract lines and to arrange the words in the

same order as they were written. In printed text, for each line a horizontal baseline can be

224

calculated and used to extract lines. Then, words are extracted by raster-scanning the

extracted lines. Although the process may be trivial in the case of printed text, the

situation does not hold true in handwriting. In handwriting, a very high variability is

expected in all respect. The causes could be the writing habit, style, education, mood,
health and other conditions of the writer. These factors make it difficult to calculate a
horizontal baseline for each line of text and to use the standard projection methods to

extract lines [6,8,9]. In mixed text / graphics images, Hough transform is used to detect

sets of connected components that lie along a given straight line [80,81]. However,

severe difficulties are encountered in applying Hough transform since many parameters

have to be computed in advance. The determination of these parameters assumes available

knowledge about the string characteristics in the image which is difficult to obtain since

the text strings themselves are unknown. Moreover, Hough transform assumes that the

centroids of characters constituting a text string are collinear to a certain degree of

accuracy. This can not be fulfilled even in printed text since printed characters vary in their

size, height, etc.

In this chapter, a method will be developed to extract lines from binary images of
handwritten Arabic text and order their constituent strokes. The method depends on
identifying main and secondary strokes, which is the subject of the next section.

12.2. SEPARATING MAIN AND SECONDARY STROKES

In Arabic handwriting, the main strokes of any given line are aligned to some line

whether straight or curved. Secondary strokes are written above or below this line. Main

strokes are considered as the basic building blocks of a line on which secondary strokes

are hooked. Thus, extraction of lines depends on first separating main strokes from

secondary strokes, which is the purpose of the algorithm of this section.

12.2.1. Definitions

(a) The set (Y'1, Tb
..., TO refers to unknown tokens which are segmented from an

unknown stroke using Algorithm 8.1, where N is the number of tokens. This is the

same as Definition 11.1.1(b) which is repeated here for the reader convenience.
(b) codes` is the set of token codes (classes) each of which is a candidate to represent

225

a token'Pi, i=1,2,
..., N. These codes are found using Algorithm 9.2.

(c) CODES is the set of all possible vectors code�.. = (code,, code2, ..., codes), codes

E codes;.

For example, for a stroke consisting of three tokens, we may find codes, = (2,4),

codes2 = (1,2,31, and codes; = (5). The set, CODES, contains 2x3X1=6 vectors as
follows: (2,1,5), (4,1,5), (2,2,5), (4,2,5), (2,3,5), and (4,3,5).

An algorithm to separate main strokes from secondary stroke candidates now
follows.

Algorithm 12.2

Use: To find main strokes and secondary stroke candidates
Input: 1. For each stroke:

i. The set, {W1, T2i ...,
T.), of segmented tokens of the stroke

ii. Token codes, i. e., classes assigned to the tokens {Y's, 'P21
...

'EN} using Algorithm 9.2

iii. Reduced graph of the stroke
2. Data base, TS, of already learned logical token strings

Output: Either the stroke is marked as a secondary stroke candidate or it is left

unmarked, i. e., it is a main stroke. If it is a secondary stroke candidate, then

the sets SS and CHAR contain the secondary strokes and characters which the

stroke can represent, respectively.

Procedure:

Step 1. Recognizing the whole stroke as a single token string
Create the set CODES, see Definitions 12.2.1. Consider the whole stroke as a single

unknown token string, is = (W1, '2, ..., `1'N). For every vector code E CODES, use
the token codes which exist in vector code and correspond to the tokens of is to find

the token string ts* E TS which accepts is with the maximum possible degree, az THR�

as follows:

(a)

(b)
Find the features of ts, see Section 11.1.2.

Find that token string, ts* E TS, such that

1. is and ts* have the same list of token codes,

226

2. The acceptance degree a= min(ar, ate,) of is is the maximum value that can be

obtained, where

a, = N-E ar ft), t=1,2,..., W (12.1)

is the overall acceptance degree of the features of token / string ratios, N is the

number of tokens in is and, (y1) is the acceptance degree of the

deterministic feature yt of is in the corresponding fuzzy feature T of ts*, and

2xný, aý. -
1E (ax (x1,)+7tT (Y. ý)ý=1,2,..., ný, (12.2)

is the overall acceptance degree of the features of intersection vertices, n,, is

the number of intersection vertices, which exist in the loop set, if any, in is and

ax, (x) and ai (y, fl are the acceptance degrees of the features x4. and A. of

is in the corresponding fuzzy features N. and Yi of ts*.

Step 2. Creating list of main strokes and list of secondary stroke candidates
If no token string; ts*, could be found in Step 1, then the stroke is a main stroke.
Otherwise, consider every interpretation, p, of ts*. If p consists only of one common

shape, CSH, which can be isolated and can work, alone, as a secondary stroke, then

(a) Add the stroke to the list of secondary stroke candidates.
(b) Add the secondary stroke which CSH can represent to the set SS, where SS is the

set of all secondary strokes which the stroke can represent.
(c) Add the characters, if any, which CSH can represent to the set CHAR which is the

set of all characters which the stroke can represent. The set, CHAR, is used in the

next chapter.
Otherwise, add the stroke to the list of main strokes.

12.2.2. Example

The largest stroke of Figure 11.2(a) is segmented to produce the set of tokens (T,,

i =1,2,..., 6), which are shown in Figures 11.3. Using Algorithm 9.2, the sets of token

codes are codes1= (1), codes2 = {2}, codes; = (3), codes4 {4}, codes, = (5), and codes6

227

_ (6). The set CODES consists of one vector element code�,, = (1,2,3,4,5,6).

Algorithm 12.2 is applied to this stroke as follows.

Step 1. Recognizing the whole stroke as a single token string

For the token string is = (Ti, i=1,2, ..., 6) and the vector code�. = (1,2,3,4,5,6),

there is no token string, ts* E TS, which fulfils the conditions which are listed in Step 1

of Algorithm 12.2.

Step 2. ° Creating list of main strokes and list of secondary stroke candidates

Since no token string, ts*, could be found in Step 1, the stroke is a main stroke.

Algorithm 12.2 is also applied to the other five strokes of Figure 11.2(a). The result

is that these five strokes are counted as secondary strokes candidates with their sets of

secondary strokes being as follows: SS1= SS2 = (Dot), SS3 = SS4 = (Damma), and SSs

_ (Two connected dots). The set of characters which these secondary stroke candidates

represent are as follows: CHAR1= CHAR2 = NULL, CHAR3 = CHAR4 = (Waw), and

CHARS = {Minus sign).

12.3. LINE EXTRACTION AND STROKE ORDERING

Figure 12.2 shows one page of handwritten Arabic text paragraph after being

smoothed. In this figure, the lines are not exactly horizontal which is different than the

situation in printed text. Figure 12.3 is the horizontal projection of the image of Figure

12.2. It is clear that the maxima of the projection are difficult to be found which

complicates the process of extracting the exact-number of lines and the line contents.

Thus, the standard projection methods can not be used to extract lines.

Usually, a page of cursive text (e. g., Arabic, English, ..., etc.) consists of lines with

a minimum distance between lines, DL. A line consists of words written from one end to

its other end (from right to left in Arabic and from left to right in English). A word

consists of one or more subwords (main strokes). A subword may have secondary strokes

which are written close to the subword. In this section, it is assumed that a secondary

stroke is one of those shown in Figure 11.9. There can be a maximum interstroke distance

between strokes belonging to one line which is equal to Ds. Almost, the distance DL is

larger than DS. One may assume that for each line there can be a minimum distance path

that extends from one end to the other end of the line and spans all the main strokes that

228

ý i'
J

Ad1I-" L5 !'
Dº

-

º C-rtr ro
ý ý_ " ,V J/ 1

wi . cilli fiv /,

ý , Srj.
ý1 ý

4

ýýýýi O' ý

a

ý ý .ý

(tý ý' s. ý' ý-ýl

v'$ ýý

Figure 12.2 Smoothed image of handwritten Arabic text paragraph.

belong to that line. Such a path of each line has no intersections with those of the

neighbouring lines. In fact, this kind of path is a shortest spanning tree that spans the main

strokes of the underlying line. A minimum spanning tree that spans the main strokes in the

whole page consists mainly of several paths; one for each line. These paths are connected
by interline links that have minimum distance.

It is assumed that strokes are represented by direct straight line approximations,

obtained using Algorithm 2.2. The main strokes of a graph will be viewed as vertices of

a k-connected graph, r. The degree of the graph r depends on the main stroke density in

a line and the line density in the page, i. e., the number of main strokes per. line and the

number of lines per page. Each vertex in r is connected to the nearest k vertices. To find

the cost matrix of r, the minimum and maximum x&y coordinates, xmin, xmax, ymin,

and ymax, of the direct straight line approximation of each main stroke are found. Two

distances are defined between any two direct straight line approximations, G; and G,,

representing two main strokes. These are the x and y distances. The x distance, d,, is

calculated as follows: a horizontal line is artificially drawn between the minimum and

ý
ý1

I- -^ý_ 1e'.
vV L.

o ... s.
9,

FJP

s La_'rw

229

Figure 12.3 Horizontal projection of the image of Figure 12.2.

maximum x coordinates of the first direct straight line approximation. A similar horizontal

line is artificially drawn for the second direct straight line approximation. If these lines

overlap then d,, = 0, otherwise if the line of G; lies to the right of that of G;, then d,, = xmirr;

- xmax.. If the line of G; lies to the left of Gj then d. = xmirn - xmax,.. The y distance,

is calculated similarly with the artificial lines being vertical. The Euclidean distance

between G; and Gj is

d= (d2 + dy2)o. s (12.3)

After calculating the distance between every pair of vertices / direct straight line

approximations, a vertex is only connected to the nearest k vertices thus forming the k-

connected graph, r. This results in reducing the time needed to compute the shortest

spanning tree.

Figure 12.4 shows the main and secondary strokes of Figure 12.2 represented as
large and small squares, respectively. The figure shows also the shortest spanning tree

(SST), calculated using the algorithm of Prim [74], considering only the main strokes and

taking the graph degree k=8. The main strokes of each of the first three lines are spanned

230

.. ' ý_
_i

m
 i

0

m

a a 0
/ -ý

m
ti

.

a

a

E

-0

0
 -1'IL,

0
/. .

ý: ýý

a

a

m

s
wm

0

m

a
m

a

0

Figure 12.4. Shortest spanning tree using Equation 12.3.

by a path that does not intersect with the paths of the neighbouring lines. These paths are

connected by minimum distance links. For the forth line, it was not possible to obtain a

path that does not intersect with that of the third line. The reason is that, as it is clear from

the figure, there are two consecutive main strokes in the fourth line whose distance in

larger than the distance between the right-most one of these strokes and another stroke

belonging to the third line. However, this can be remedied by forcing the links to be

horizontal as possible as we can. This can be achieved by letting the distance between any

two direct straight line approximations be proportional to the angle of that link. The more

vertical the link is the more the cost. One way to fulfill this requirement is to calculate a

factor, f, where

f=1.0+y xtan-'(d, /dJ/(n/2) (12.4)

where d, and d,, are the y and x distances between the two direct straight line

approximations, respectively, and calculated as before. The constant, y, is selected such

that the distance between any two consecutive main strokes belonging to one line becomes

smaller than the distance between any of these strokes and any other stroke belonging to

another line. In practice, a value of y= 10 worked properly in almost all the cases. Then,

231

Figure 12.5. Shortest spanning tree using Equation 12.5.

the distance becomes:

d=fx(dx2+d2)o. s (12.5)

According to this new formula for distance calculation, horizontal links are not changed

while right-angled links get the maximum punishment. Figure 12.5 shows the new

spanning tree calculated using the new distance formula. One non-intersecting path is

obtained for each line. Every pair of two adjacent paths are connected by a minimum

distance link which tends be horizontal and looks illogical. However, remember that

vertical distances are punished which makes them tend to be horizontal; hence longer in

appearance.

In Figure 12.5, the links connecting the paths may be located any where; the only

restriction is that they must have the minimum distance. If the degree of both ends of an

interpath link is three then it is easily located and removed. However, this is not

guaranteed since an interpath link may connect the two ends of two paths which makes

these ends have a degree of two which is equal to the degrees of other vertices of the

paths. If this happens, a difficulty is confronted in removing such links. Thus, we would

like these links to be formed in positions which are known to us in order to be able to

232

Figure 12.6. Shortest spanning tree after the addition of artificial vertices.

remove them. One way to achieve this is to add to the graph, r, a set, S, of n artificial

vertices. The vertices in S are eqi-spaced and lie on a vertical line which is located to the

right-most edge of the page. The number, n, of such vertices is selected to be larger than

the maximum number of lines that can be accommodated in one page. For example, if the

page is of A4 size, then n may be set to 100. In this way, the right-most main stroke of

every line is guaranteed to have a horizontal link connecting it to one of the artificial

vertices. The distance between the artificial vertices is not punished and is calculated using

Equation 12.3. This results in the paths being connected via links between artificial

vertices. This idea is shown incorporated in Figure 12.6. The set S has 20 eqi-spaced

artificial vertices. The paths connecting main strokes are connected via links that connect

artificial vertices which are removed from the shortest spanning tree to obtain a multi-

component graph F'. Each component corresponds to one line. Lines are extracted by

finding end vertices of the graph I", i. e., vertices with degree equal to one. If a vertex v,

has a degree equal to one then a path is followed starting from v, until some other end

vertex, v2, is reached. The vertices of the path from v, to v2 constitute the main strokes

of one line. The line starts at the right-most vertex of {v,, v2} and the order of writing of

233

Figure 12.7. The paths after the removal of artificial vertices and assignment of
secondary strokes to main strokes.

main strokes is the same as they appear in the path from the start vertex to the end vertex.

The uppermost path corresponds to the uppermost line in the page then the next lower

one and so forth.

What remains is to present the secondary strokes to main strokes. It is well known

that secondary strokes are written close to main strokes. Thus, a secondary stroke is

presented to the nearest main stroke. If the strokes are represented by direct straight line

approximations, then the distance between a secondary stroke s and a main stroke m is

defined to be the distance between the pair of vertices, v, and vm where vg and vm are

vertices in the direct straight line approximations of the secondary and main strokes,

respectively, such that this distance is minimum.

Figure 12.7 shows the extracted lines after the removal of artificial vertices and

presenting of secondary strokes to main strokes. A comparison between this figure and

that of Figure 12.2 shows that the lines, order of main strokes in the lines, and secondary

to main stroke presentation could be correctly found. Figure 12.8 shows each main stroke

surrounded with the presented secondary strokes by rectangles. The contents of each

234

Figure 12.8 Sets of main-secondary strokes surrounded by rectangles.

rectangle can be the input to subsequent recognition algorithms. Whether a secondary

stroke truly belongs to a main stroke or not is determined by algorithms of the next

chapter. In most of the cases the presentation of this preprocessing stage is correct, The

resultant algorithm to extract lines and order strokes of a page is formulated below.

Algorithm 12.3

Use: To extract lines, order main strokes, and present secondary stroke candidates

to main strokes
Input: 1. Direct straight line approximations of strokes of one page'

2. List of main strokes
3. List of secondary strokes

Output:, 1.. Ordered lines

2. Ordered main strokes
3. Secondary stroke presentation

235

Procedure:

Step 1. Construct a k-connected graph, r, as follows:

(a) The main strokes are represented as vertices in r.

(b) Add to ra set, S, of n artificial vertices. The vertices in S are eqi-spaced and lie on

a vertical line which is located to the right-most edge of the page. The number, n,

of such vertices is selected to be larger than the maximum number of lines that can
be accommodated in one page.

(c) The cost matrix of the graph, r, is calculated as follows:

i. For each two vertices, v1 and vj, if at least one vertex is not artificial, then the

distance is d=fx (dx2 + dY2)O. s.

ii. The distance between the artificial vertices are calculated using the original
formula d= (dx2 + dy2)° 5.

(d) Each vertex in r is connected to the nearest k vertices based on the cost matrix.
Step 2. Find the shortest spanning tree (SST) for the graph, r.

Step 3. Remove the links which connect artificial vertices from SST to obtain a multi-

component graph, r, where each component corresponds to one line.

Step 4. Lines are extracted by finding end vertices of the graph r, i. e., vertices with
degree equal to one. If a vertex vl has a degree equal to one then a path is followed

starting from vl until some other end vertex, v2, is reached. The vertices of the path from

vl to v2 constitute the main strokes of one line. The line starts at the right-most vertex of
{v1, v2} and the order of writing of main strokes is the same as they appear in the path
from the start vertex to the end vertex. The uppermost path corresponds to the uppermost
line in the page then the next lower one and so forth.

Step 5. Every secondary stroke is presented to the nearest main stroke.

The algorithm assumes that text lines are approximately justified at the right hand

margin. If one line were indented, it could form a link to the line above or below. For

example, in Figure 12.9(a), G, is way to the left of G2, where GI and G2 represent the

right-most main strokes of two consecutive lines. According to Equation 12.5, a link

between G, and G3 is formed since the distance between them is shorter than the distance

between G, and any of the artificial vertices at the right margin. Similarly, if the right hand

236

(a)

(b)

Figure 12.9. Cases where Algorithm 12.3 could fail: (a) indented line, and (b) skewed
right hand margin.

margin were skewed, as it would be if the paper was not` straight in the scanner, the

method could fail for the same reason, see Figure 12.9(b).

SUMMARY

In this chapter, a method was developed to extract lines from binary images of pages

of handwritten Arabic text. It depends on first identifying main and secondary strokes.
Then, lines are extracted and main strokes of extracted lines are arranged in the same

order as they were written. Finally, the secondary strokes are presented to main strokes.
At the end, an ordered list of main' strokes each with the corresponding number of

presented secondary strokes is obtained.

.
237

Word Formation

OVERVIEW

This chapter is concerned with the last component, word formation, of the

recognition process in the CASR system, where strokes are interpreted as sets of

characters. A data flow diagram of this process is shown in Figure 13.1, which consists

of the following stages:
 CSHINTERPRETATIONS OFMAINSTROKES, Section 13.1: where all

possible CSH interpretations of main strokes are enumerated and represented in

a tree data structure. This stage consists of the following subprocesses:

(a) Finding CSHEnumeration Sets: where the best sets of logical token

strings, with their corresponding CSH sets, which represent the main strokes

are found

(b) Generating Enumeration and Requirement Trees: The logical token

strings and CSH sets which are output by the previous subprocess are

combined to form what we call Enumeration and Requirement Trees (ERTs),

in which information about secondary strokes required to associate CSH's is

included

 CHARACTER FORMATION, Section 13.2: where ER Ts are combined with

candidate secondary strokes to form characters. It consists of the following

subprocesses:

(a) Solving ofAssignment Problems: where assignment problems are

238

0
Tokens of strokes

Data Base of
Logical Token

Strings

------------ --7
L

Classes of tokens

y ýý yl
.:. . -. : «. ýýýýsý

iing CSH Enumeration Sets

CSH

enumeration sets

CSH
INTERPRETATIONS
OF MAIN STROKES

Best logical
token strings

Generating Enumeration and:::
>Ranuirement Trees:

_...... -., -... -:..:....... ý....... __........
I --- -----------

0
--------------- Secondary stroke

presentation

assignment problems
SEEM2-EIKE

, Selecting Minimum Cost Solution;: '

ýSecondary Strokes:: <;:::. <: < ::
., a.

0

CSH enumeration and
requirement trees

List of
main strokes

U Reduced graphs
of strokes

: ýýý"; ýý:;; ti{: a. ',:
Ný\ ýäa%: v 'x2 i? saiv ý: bit tCýiv\ý>E:; ý:;.; »ý

,, "Solving of Assignment Problemsýy
a \w:? ý. ý1ýx;: ýýýýýýý?::; ý;, ýýýýtýýrýýý: \ti ýý. ý. a .:........... ý... ý....,............................., . \ý. vwti:; J

1

Figure 13.1. Data flow diagram of the Word Formation process of the CASR system.

formulated and solved to assign secondary strokes to form characters.
(b) Selecting the Minimum Cost Solution: Of the solutions obtained in (a),

the solution which exhibits the minimum cost is selected The words which

correspond to this solution are output in addition to some redundant

secondary strokes which could not he assigned to (SH's.

 MANIPULATING REDUNDANT SECONDARY STROKES, Section 13.3:

Redundant secondary strokes are manipulated to form some other characters which

\
1
ý

-T

Solutions of all possible

Ordered lines of oredred
lists of words

239

are. inserted in their proper places within lines. The final result is a list of ordered
lines where a line is an ordered list of words.

13.1. CSH INTERPRETATIONS OF MAIN STROKES

After learning of logical token strings, it becomes possible to extract the sets of

common shapes, where each set is a valid interpretation of the whole main stroke. In this

section, an algorithm will be developed to achieve this goal.

13.1.1. Definitions

(a) The set {ti'1, T2,
..., TO refers to unknown tokens which are segmented from an

unknown stroke using Algorithm 8.1, where N is the number of tokens. This is the

same as Definition 11.1.1(b) which is repeated here for the reader convenience.
(b) codes; is the set of token identification codes each of which is a candidate to

represent a token Ti, i=1,2, ..., N. These codes are found using Algorithm 9.2.

(c) CODES is the set of all possible vectors code = (code,, code2, ..., codes), code;

e codes;.
(d) CUTS represents the set of combinations of unknown token strings cuts = (uts,,

uts2) ..., utsq) such that uts; n uts, = o, i*j, u uts; = (LF,) `1'2, """. `1'N). For

example, for a stroke consisting of three tokens, the set CUTS contains the
following combinations:
1. cuts, = (uts,, uts2; uts3), where uts, = ('F,), uts2 = (Y'2), and uts3 = {f3},

2. cuts2 = (uts,, uts), where uts, _
('F,, 'F2), and uts2 = ('F3),

3. cuts3 = (uts,, uts), where uts, = {'F,), and uts2 = (T2, T3), and

4. cuts4 = (uts), where uts, =
{'F,, IF2, ''3).

Now, a formal description of an algorithm to find CSH interpretations of main

strokes is presented.

Algorithm 13.1

Use: To enumerate all possible CSH interpretations of every input main stroke
Input: 1. Tokens of strokes, i. e., the set, 171,7 2).. ...,

''N}, of segmented tokens

for each stroke

240

2. Classes of token, i. e., classes assigned to the tokens {'F1, `F2,
""". TO

using Algorithm 9.2

3. Reduced graphs of strokes

4. List of main strokes

S. Data base, TS, of already learned logical token strings
Output: All possible CSH interpretations (Enumeration and Requirement Trees,

ERT's) of every main stroke

Procedure

For every input main stroke, the following steps are performed:
Step 1. Finding CSH enumeration sets

Prepare the sets CODES and CUTS for the input stroke.
For every vector code.. a CODES do

For every cuts = (uts,, uts2, ..., utsq) e CUTS do

(a) For every utsi = ('j, Y'j+,, ..., `P), i=1,2,
..., q, do

Use the token codes which exist in vector code� and correspond

to the tokens of utsi to find the token string is *E TS which

accepts utsi with the maximum possible degree, ai Z THR,:

1. Find the features of utsi, see Section 11.1.2.

2. Find that token string, tsi* E TS, such that

i. uts; and ts; * have the same list of token codes,
ii. The acceptance degree a, = min(a,, a,,,) of utsi is the

maximum degree that can be obtained, where

1
ar= (13.1)

is the overall acceptance degree of the features of
token / string ratios, N is the number of tökens in uts;

and rr,
I
(y1) is the acceptance degree of the

deterministic feature yj of uts; in the corresponding
fuzzy feature r, of ts; *, and

ay 2xn
E l7Cx I lxljl+nTVlýlýaýa1r2ý..., ný,

sY

241

(b)

is the overall acceptance degree of the features of
intersection vertices, n,,,, is the number of intersection

vertices, which exist in the loop set, if any, in utsj and xx (xf)

are the acceptance degrees of the features and A (vf

xc and y of utsj in the corresponding fuzzy features Xj

and Yj of ts; *.

The acceptance degree, a, of cuts equals to the minimum of the a,
degrees, i=1,2,

..., q.

If aZ TRH, then, depending on the number of token strings, q, in cuts,

there are two cases:
1. q =1, i. e., cuts = (uts). Consider every interpretation, p, of ts, *:

i. If p consists only of one CSH which can be isolated, then

retain p as a valid interpretation of uts,.
ii. Otherwise, if p consists of n common shapes CSH1, CSH2,

..., CSH., such that CSHI can appear at the start of a

stroke, all the common shapes CSH2 to CSHn_1 can appear

in the middle of a stroke, and CSH. can appear at end of a

stroke, then retain p as a valid interpretation of uts1.

2. q> 1.

i. Consider every interpretation, p, of tsI*. If p consists of n

common shapes CSHI, CSH2i ..., CSHn, such that CSHI

can appear at the start of a stroke and all the common shapes

CSH2 to CSHI can appear in the middle of a stroke, then

retain p as a valid interpretation of uts1.

ii. Consider every interpretation, p, of ts; *, i=2,3,
..., q-1.

If p consists of n common shapes CSHI, CSH2, ...,
CSH,,

such that all the common shapes CSHI to CSH, can appear
in the middle of a stroke, then retain p as a valid
interpretation of uts;.

iii. Consider every interpretation, p, of tsq*. If p consists of n

242

common shapes CSHI, CSH2, ..., CSH,,, such that all the

common shapes CSHI to CSH.
_I can appear in the middle of

a stroke and CSI. can appear at the end of a stroke, then

retain p as ä valid interpretation of utsq.
(c) Retain the set of sets of interpretations SP = {PI, P2, ..., Pq}, where Pi

= (pil, pa, ...
} * o, is the set of valid interpretations of uts,, and p. _

(CSHI, CSH2, ...
) * o, is a set of common shapes.

The k combinations, cuts, *, cuts2*, ..., cutsk*, and their corresponding sets SPI, SP22 .

.., SPI, respectively, which have the maximum k acceptance degrees are retained. If at
least one set, SP = (PI, P2, ..., Pj, could not be found, such that none of the sets Pi ,i

1,2,
..., q, is empty, then the input main stroke is unknown.

Step 2. Generating a CSH Enumeration and Requirement Tree (ERT) for every

set, SP,

The sets, SPi s, which are generated in Step 1, contain data about the possible
interpretations of a main stroke. Other important data is added to these sets which specify
for every interpretation what additional information is required to accompany that
interpretation to produce one complete set of characters representing the main stroke.
This additional data includes the characters which a CSH can represent, the required type

and position of the secondary stroke combination. This expansion of interpretations is

stored in what we call an Enumeration and Requirement Tree (ERT). The rationale behind

selecting a tree data structure is that saving such detailed information requires huge

amount of memory. These interpretations have many common information. Using a tree

is one way to reduce information duplication, hence, reduce the memory requirements.
The information which reside in the nodes of every path from a leaf node to the root node

of the tree represents a complete interpretation, with its requirements, of the main stroke.
To generate an ERT of an SP, first we need to define the following two recursive
functions:

ERT Expand_l(current node, j) {

For every possible interpretation pe Pj, k=1,2, ..., of token string uts,, call the
function ERT Expand 2(current node, j, k, 1).

243

ERT Expand 2(current node, j, k, 1) {

For every possible character, char, which CSH, ap can represent do {
(a) Add a son to the node, current node, which contains the following

information:

(b)

}

1. the character class, char,

2. a secondary stroke combination that is required to accompany
CSH, to form that character,

3. The required position of the secondary stroke combination relative

to CSH,, and

4. The token string number, j.

If 1 is less than the number of CSH's in pk, then call the function

ERT Expand 2(son of current node, j, k, 1 + 1).

Otherwise, if j is less than the number of token strings in SPn then call

the function ERT Expand_1(son of current node, j+ 1)

}
To generate an ERT for an SP;:

(a) Create the root node of the ERT. The root node does not contain any special
information; it is just a root.

(b) Call the function ERT Expand_1(root node of ERT, 1).

13.1.2. Example

The main stroke of Figure 13.2(b) is segmented to produce the set of tokens (Ti,

i =1,2,..., 6), which were shown in Figure 11.3. Using Algorithm 9.2, the sets of token
identification codes are codes, = (1), codes2 = (2), codes, =(3), codes4 {4), codess =
(5), and codes6 = (6). To enumerate all possible sets of CSH's, with their requirements,

of this main stroke, Algorithm 13.1 is applied as follows:

Stepl. Finding CSH enumeration sets
The set CODES consists of one vector element code = (1,2,3,4,5,6). The set CUTS

has many combinations of unknown token strings one of which is cuts = (uts,, uts2, uts,)

where uts, = ('F,, 'F2), utS2 = {Y',), and uts3 = ('F4,1Fs, 'f'6).

244

."
99

. (a)

(b)

(c)

Figure 13.2. (a) An Arabic word consisting of one main stroke and five secondary
strokes, (b) a graph, G, of the main stroke, and (c) the reduced graph, G', of the main
stroke and the path pfe. .

For the vector code,,. = (1,2,3,4,5,6) and the set cuts = (uts1, uts2, uts3):

(a) The codes of uts; i =1,2,3, are extracted from code�.. Based on the logical token

strings which were learned in Example 11.3, these token strings are recognized as

uts1= tS1, uts2 = ts3, and uts3 = ts7, each of which has an acceptance degree a, = 1.0

> (THR = 0.6), i=1,2,3, where ts1, ts3, ts, e TS, see Figure 13.3.

245

(a)

J
(b)

(c)

Figure 13.3. Logical token strings of the main stroke of Figure 13.2(b): (a) ts,: the
links between vertices 1 to 4 constitute CSH1, the links between vertices 5 to 7 constitute
CSH2, and the links between vertices 7 to 12 constitute CSH3, (b) ts3: CSH1, and (c) ts7:
CSH9.

(b) The acceptance degree of cuts is a= min(al, a2, a3) = 1.0 > THR, = 0.6. Since cuts

consists of more than one token string:

uts1= tsl has one interpretation p11 = {CSHI, CSH2, CSH3}, where CSHI can

appear at the start of a stroke, and both CSH2 and CSH3 can appear in the

middle of a stroke.
2. uts2 = ts3 has one interpretation p31= {CSHI} where CSHI can appear in the

middle of a stroke.
3. uts3 = ts7 has an interpretation P71 = {CSH9}, where CSH9 can appear at the

end of a stroke.
The interpretations p1j, P31, and p71 are retained as valid interpretations of uts1, uts2,

and uts3, respectively.
(c) The set of sets of interpretations is SP = {P1, P2, P3}, where P1= (plj, P2 = (P31},

246

f
S,

. B, 2

F-#
ý

Figure 13.4. An Enumeration and Requirement Tree (ERT) for Example 13.1.2.

and P3 = {Pn}.

Many combinations of token strings can be extracted from the stroke. For simplicity,
it is assumed that there is only one set, cuts, which has an acceptance degree a=1.0 >

(THR, =0.6).
Step 2. Generating a CSH Enumeration and Requirement Tree (ERT) for SP

By applying this step to SP, an ERT is obtained, part of which is shown in Figure

13.4. Each node of the ERT has four tuples, except the root node. The first tuple is the

character class which is abbreviated by one character. The abbreviations of character

classes which are used in this example are shown in Table 13.1. The next tuple is the

required secondary stroke combination. The symbols shown in Table 13.2 are used to

denote these combinations. The third tuple is the required position of the secondary stroke

combination relative to the CSH, where A and B refer to "above" and "below",

respectively. The last tuple is the token string number to which the CSH belongs.

247

Table 13.1. Abbreviations of character classes used in Example 13.1.2.

Character Class Abbreviation

Ba B

Ha H

Hamza Z

Meem m

Sad s

Ta T

Ya y

Table 13.2. Symbols of secondary stroke combinations.

Secondazy Stroke Combination Symbol

Null I

Sin le Dot

Two Isolated Dots

Horizontal Dash

Hamza z

Damma

13.2. CHARACTER FORMATION

The process of combining the secondary strokes, which are presented to a main

stroke using Algorithm 12.3, with the CSITs of that main stroke to form characters is a

sophisticated problem which we will try to solve in this section.
Figure 13.5, shows one Arabic word, the same word of Figure 13.2(a), which

consists of one main stroke and five secondary strokes. Although not all the secondary

strokes are positioned accurately with respect to their corresponding CSITs, an Arabic

human reader can easily divide the main stroke into five CSITs, shown numbered in the

figure, and correctly spell the word to the characters, from right to left, Ta, Meem, Ha,

Ya, and Sad. In this spelling, the first CSH is assigned the two-dots secondary strokes to

yield the Ta character, the second and the third CSITs do not need any secondary stroke

248

Figure 13.5. The word of Figure 13.2(a), enlarged; the numbers refer to CSITs.

yielding Meem and Ha characters, respectively, the forth CSH is assigned the horizontal

dash (two connected dots) secondary stroke to yield Ya character, and the fifth CSH does

not need any secondary stroke yielding Sad character, however, it is assigned the two

Damma secondary strokes (similar to comma), which are used as diacritics. This

assignment is based on the following rules, which work together:

L Proximity Rule: A secondary stroke most probably belongs to the nearest
CSH.

2. Position Rule: The same combination of secondary strokes can be located in

different positions relative to a CSH yielding different characters. Therefore, the

position of a secondary stroke combination plays an important rule in determining

the exact intended character.
3. Semantics Rule: A set of secondary strokes, which He in certain positions

relative to a CSH, are assigned to that CSH such that they form a valid Arabic

character.

The above three rules are applied by a human in parallel to read handwriting; there

may exist other rules, also. From Figure 13.5, it is clear that we can not only depend on

a single rule neglecting the other rules. If only Rule 1 is applied, then the third CSH is

assigned the dash secondary stroke, since the later lies completely below the former,

yielding an undefined Arabic character. This kind of problem can be resolved by applying
Rule 3 in which case the horizontal dash is assigned to the fourth CSH yielding the

249

meaningful character, Ya. If Rule 2 is neglected, then the two dots and the first CSH will
have two readings: Ta and Ya-, an ambiguous situation.

In this section, an algorithm will be developed to automate the process of combining

secondary strokes with CSH's to form characters. The above three rules will be used in

this process.

13.2.1. Definitions

(a) A nondirected graph G= (V, L) is a set of vertices V= (v,, v2, ...
), and a set of

links L= (11, Ib
...

) having no orientation and joining all or some of these vertices.

(b) A nondirected graph G= (V, L) is said to be bipartite, if the set V can be partitioned
into two subsets V' and Vb so that all links have one terminal vertex in r and the

other in V.
(c) A bipartite graph G= (V' u Vb, L) is said to be complete if for every two vertices

v; E V' and v, e Vb there exists a link in G. If IV* I, the number of vertices in set V',

is r and I VII is s, then the complete nondirected bipartite graph G= (V' u Vb, L) is

denoted by K.

(d) A perfect matching in G is a matching where every vertex is matched to some other

vertex.
For example, Figure 13.6(a) shows a nondirected graph, G, with the set of vertices

V= (1,2,3,4,5,6,7,81 and 15 links. The set V is partitioned into two subsets r= (1,

2,3) and VI = (4,5,6,7,8). Every link in the graph has one terminal vertex in V' and

the other in V. Hence, the graph is bipartite. Since for every two vertices v; E V' and vv

E Vb there exists a link in G, the bipartite graph, G, is complete. In G, I V' I=3 and I Vb I

= 5; hence, G is denoted by K355. There is no perfect matching in G since it is not possible

to match every vertex to some other vertex. A complete bipartite graph, K3,3, which has

a perfect matching is shown in Figure 13.6(b).

13.2.2. Problem Formulation

In Step 2 of Algorithm 13.1, an ERT was generated for every SPi of a main stroke.
Consider the set, SS = {SS1, SS2, ..., SSJ, where SS, is the set of secondary strokes

which a secondary stroke candidate, Gp may represent, and s is the number of secondary

250

1

V
a

Vb

23

(a)

(b)

Figure 13.6. Graph definitions: (a) a complete bipartite graph, K3.5, and (b) a complete
bipartite graph, K3,3, which has a perfect matching.

stroke candidates presented to a main stroke. Secondary stroke candidates are found using

Algorithm 12.2 and are presented to main strokes using Algorithm 12.3. The set SSV is

the set of all possible combinations of vectors ssv = (ss,, ss2, ..., ss,), such that ss; E SS;.

For example, ifs = 3, and SS1 = {Dot}, SS2 = (Two connected dots, Fatha), SS3 =

{Damma), then the set SSV contains the vectors (Dot, Two connected dots, Damma) and

(Dot, Fatha, Damma). For every path from a leaf node of the ERT to the node just before

the root node:

(a) Let current node point to that leaf node. Initialize the index variables k=0, and I

= 0.

(b) While current node : root node of ERT do {

Increment 1.

Let n be equal to the number of secondary strokes which exist in the

secondary stroke combination which is required to form the character, char,

that is stored in current node.

Let the n sets of coordinates (xmink,,, xmaxk+,, ymink,,, ymaxk+,), (xmink+2,

xmaxk, 2, ymink, 2, ymaxk, 2), ...,
be equal to the boundary coordinates of the

rectangle that encloses the vertices of the token string whose index, j, in stored

251

in current node.
Let chart*1, chart+i, ..., chart, be equal to character class, char, which is

stored in current node.

Let sec types+l, sec types+2...., sec typet+, be equal to the classes of the

secondary strokes which comprise the required secondary stroke combination.

For example, if the secondary stroke combination consists of the two

secondary strokes: Dot and Two connected dots, i. e., n=2, then we have

sec types+1= Dot and sec types+2 = Two connected dots.

Let postl, post+ , ..., post, be equal to the position of the secondary stroke

combination which is required by char and is stored in current node.

Let indexk+1, indexk*2, ..., indext+, be equal to 1.

Increment k by n.
Move current node to point to the father of current node.

(c) Let chart+l, chark+2, ..., chart� be equal to the NULL character, A. The

corresponding CSH of a NULL character is called a NULL CSH.

(d) Every ssv = (ss,, ss2, ..., ss) E SSV is extended to obtain another vector ssve =
(ss,, ssb ..., ss, ss,, ..., ss�k), where ss, +l is equal to the NULL secondary stroke,
i=1,2,.

. .,
k. The set of extended vectors is SSVE.

Let char,, chars, ..., chark� be represented by the set of vertices V' = (v, ', v2, ..
v'k�), where vi corresponds to char;. Also, let the elements of the vector ssve = (ss,, ss2,

..., ss� ss,,,, ..., ssk) be represented by the set of vertices Vb = (v, b, v2b, ...,
vý

where vib corresponds to ssi. Consider the complete graph Kk.,, k+$ =G= (V' v Vb, L),

where V' and Vb are independent sets of vertices and links lU = (vi', vjb) EL have vi' E V',

vjb E Vb and cost cq.

The new idea of finding the best way of combining secondary strokes with CSH's

to form characters depends on finding a perfect matching of G with minimum cost. This

is well knoºm in the literature as the Assignment Problem (AP) and is often discussed in

connection with complete bipartite graphs. The algorithm of [74], referred as the
Hungarian Method will be used to solve this assignment problem.

The details of the Hungarian Method are not important for the development of a

252

solution to our problem. Interested readers may refer to [74]. There are two key points
in using the Hungarian Method to solve our AP:

(a) The first point lies in finding the cost matrix C which is an (k + s)x(k + s) matrix

whose rows correspond to the vertices of V' and whose columns correspond to the

vertices of V. The initial entries, co, are the costs of links (v;, vj), vi e V', vj e Vb,

which are found as follows:

1. If v; represents a NULL character, then c equals a large number, Nom, which
is selected to guarantee that

i. the secondary strokes are not easily assigned to NULL characters to

give other characters the chance to hook suitable secondary strokes, and

ii. a NULL secondary stroke is not easily assigned to a NULL character.

This assures that there will be an adequate number of NULL secondary

strokes to be assigned to CSITs that do not require secondary strokes,

i. e., require NULL secondary strokes.

2. Else, if sec types does not represent a NULL secondary stroke and vj

represents a NULL secondary stroke, then cd equals NN�g0. In this way, the

CSIfs which require secondary strokes, which can not be properly provided,

are assigned NULL secondary strokes, i. e., they are left without gaining the

required secondary strokes. The cost of this unavailability of a proper

secondary stroke is to let cö = NL w.
3. Else, if sec type; is not of the same type as the secondary stroke which is

represented by vj, then cq is set to infinity. This is clear since a CSH can not
be assigned a secondary stroke which is not required by that CSH.

4. Else, if both sec type,; and the secondary stroke which is represented by vj are

NULL secondary strokes, then co is set to zero. This allows characters which
do not require secondary strokes to be formed without any cost.

5. Else, depending on the position, pos;, of the required secondary stroke, the

type, sec type� of the required secondary stroke, the coordinates (xmin.,

xmax;, ymin,, ymax), and the x&y coordinates of the mean point of the

secondary stroke which is represented by v,, cd equals either some finite value

« Nom, which is a function of the earlier coordinates, or equals infinity if v,

253

(b)
.

does not lie in the required position, pos;.
Second, the elements of the cost matrix which are added to find the cost of an

assignment are:

1. The elements which correspond to non-NULL secondary strokes that are

assigned to non-NULL CSH's,

2.
_

The elements which correspond to NULL secondary strokes that are assigned

to non-NULL CSH's, i. e., the elements which correspond to non-NULL

CSH's requiring some secondary strokes but could not hook them,

3. The elements which correspond to non-NULL secondary strokes that are

assigned to NULL CSH's. This is necessary since an existing spurious

secondary stroke must add to the cost of the minimum matching. .
Now, a formal description of the algorithm to form characters follows.

Algorithm 13.2

Use: To combine CSH's with secondary strokes to form characters

Input:
,

1. Reduced graphs of strokes

2. Secondary stroke presentation

3. CSH enumeration and requirement trees

Output: 1. Words of characters,

2. Redundant secondary strokes, i. e., strokes which were presented to main

strokes using Algorithm 12.3 but could not share in interpreting main

strokes
Procedure:

Step 1. Solving of all possible assignment problems

For every ERT of a main stroke
For every leaf node in the ERT

(a) Prepare the set SSVE.

(b) For every ssve e SSVE

1. formulate the corresponding AP problem.
2. Use the Hungarian Method to solve this assignment problem.

254

Step 2. Selecting the minimum cost solution
(a) Of all the assignment problems, generated and solved in Step 1, retain the variables,

V', V', char;, index,, i= 1,2, ..., k, and the cost matrix of the AP which yields the

minimum cost. The recognized characters of the stroke are extracted from the char

and index arrays as follows: Every set char;, chars+l, ..., char; +j, such that index; =
indexi+, = ...

index;, corresponds to one recognized character, chars, in the main

stroke. Since char, corresponds to the left-most character of the main stroke, the

recognized characters are reversed in order.

(b) Secondary strokes which are assigned to NULL characters in the minimum solution

are redundant secondary strokes which could not contribute in interpreting main

strokes. These strokes are freed again, i. e., they are drawn off from the main strokes

to which they were presented. Such secondary strokes require special manipulation

to obtain their proper interpretations, which is the subject of Section 13.3.

13.2.3. Example

In Example 12.2.2, five strokes of the word which is shown in Figure 13.2(a) were

marked as secondary stroke candidates with their sets of secondary strokes being as
follows: SS1= SS2 = {Dot), SS3 = SS4 = {Damma), and SS5 = {Two connected dots,

Fatha, Kasra). The sixth unmarked stroke, whose graph is shown in Figure 13.2(b), is

a main stroke. Algorithm 13.2 is used to combine secondary strokes with CSH's as
follows:

Step 1. Solving of all possible assignment problems
For simplicity, we consider only one ERT which was obtained in Example 13.1.2 and part

of which is shown in Figure 13.4. Also, we will consider only the leaf node of the ERT

which has a double-line rectangle:
(a) Prepare the set SSVE

.
It is assumed that the five secondary stroke candidates are presented to the main

stroke using Algorithm 12.3. One possible combination of secondary stroke

candidates is ssv = (Dot, Dot, Damma, Damma, Two connected dots). Consider the

path of the ERT tree, shown in Figure 13.4, whose nodes are double-line rectangles.

255

(b)

From the leaf node of the path, the following information is established:
1. The set of coordinates (xmin,, xmax,, ymin,, ymax) is set equal to the

boundary coordinates of token string uts3.

2. char, is set equal to character class, Sad.

3. sec type, is set equal to A since no secondary stroke is required.

4. pos, is left blank since Sad does not require any secondary stroke.

5. index, is set equal to 1.

Similarly, from the next node, we set the following variables: (xmin2, xmax2, ymin2,

ymax2) = boundary coordinates of token string uts2, chart = Ya, sec type2 = Two

connected dots, pose = Below, and index2 = 2. From the third node: (xmin3, xmax3,

ymin3, ymax3) = boundary coordinates of token string uts,, char3 = Ha, sec type3 =

A, pos3 = Blank, and index3 = 3. From the forth node: (xmin4, xmax4, ymin4, ymax4)

= boundary coordinates of token string uts,, char4 =Meem, sec type4 = A, pos4 =

Blank, and index4 = 4. Finally, from the fifth node: (xmin,, xmax,, ymin,, ymax,) =

(xmin6, xmax6, ymin6, ymax6) = boundary coordinates of token string uts,, char, =

char6 = Ta, sec type, = sec type6 = Dot, pos, = posh = Above, and index, = index6

= 5. In this example, the final value of k and the value of s are 6 and 5, respectively.

Now, set char, = chars = ... = char6+S = A; the NULL character. The vector ssv is

extended to ssve = (Dot, Dot, Damma, Damma, Two connected dots, A, A, A, A,

A, A).

For the vector ssv
1. Formulate the corresponding AP problem:

The set (char; i =1,2,11) is represented by the set of vertices V' = {v, ',

i=1,2,
..., 11 }. The elements of the vector ssve are represented by the set

of vertices Vb = {vi', i=1,2, ..., 11). A complete graph, K,,,,, =G= (V' u
Vb, L), is formed, where links-1q = (v;, vjb) EL have v1' E V', vjb e Vb. The cost

matrix is constructed as described in Section 13.2.2 and is shown in Figure

13.7. The rows and columns of the matrix correspond to the elements of the

arrays char and ssve, respectively. Characters and secondary strokes are

referred to by the abbreviations of Table 13.1 and symbols of Table 13.2,

respectively,

256

ssve

, , - A A A A A A

1 2 3 4

"
5 6 7 8 9 10 11

T 7 7 7 7 T J T T L
' ' Y 2

w
Qa

Z Z Z Z Z Z

H 3 w w 0
LI1

0 0 0 0

M 4 ý W W W - 0 0
Q0

0 0 0

T 5
Qb

c Z Z Z Z Z ,Z

c T 6 b
a

Z Z Z Z Z Z
h
a A .7 Z Z

QZ
Z Z Z Z Z Z Z Z

r
- -

A 8 Z Z Z
[

Z
]

Z Z Z Z Z Z Z

A 9 Z Z Z Z Z Z Z Z
ELI

Z Z

A 10 Z Z Z Z Z Z Z Z Z
IZI

Z

A 11 Z Z Z Z Z Z Z Z Z Z
ý

Figure 13.7.. Cost matrix of the assignment problem of Example 13.2.3.

2. Use the Hungarian Method to solve this assignment problem:

This assignment problem is solved using the Hungarian Method which yields

the solution shown in Figure 13.7. The total cost of the optimal solution, the

elements of which are surrounded with double squares, is
.

Copt=C"2S+C51+C62+C16+C37+C48+C73+C84

=a+b+c+O+O+O+Z+Z

a+b+c+2xZ (13.3)

where Z is a very large number compared to a, b, and c.

Step 2. Selecting the minimum cost solution
(a) For illustration purposes, it is assumed that the assignment problem which 'was

solved in' Step 1 is the one which yields the minimum cost. The recognized

characters of the stroke are extracted from the char and index arrays as follows:

1. The first character is chart = Sad, where index1= 1.

257

(b)

2. The second character is chart = Ya, where index2 = 2.

3. The third character is char3 = Ha, where index; = 3.
4. The forth character is char4 =Meem, where index4 = 4.

5. The last character is chars = char6 = Ta, where indexs = index6 = 5.

Since char, is the left-most character, the'extracted characters are reversed in order

to obtain the characters: Ta, Meem, Ha, Ya, and Sad. A human Arabic reader can

easily find that these are the true characters which comprise the Arabic word shown
in Figure 13.2(a).

The third and forth secondary strokes are redundant since they are assigned to

NULL CSH's. Thus, they are drawn off the main stroke for further interpretation.

13.3. MANIPULATION OF REDUNDANT SECONDARY STROKES

In this section, redundant secondary strokes are classified and put in the proper
location of the line in which they exist. Let G, be a redundant secondary stroke which is

to be classified and SS is the set of possible interpretations of G,. Let 1 be the line number

of the main stroke to which G. was presented.

13.3.1. Manipulation of Vertical Bar Secondary Stroke

If one of the interpretations of G� in SS, is a vertical bar, then G, can be classified

as many characters depending on the closest secondary stroke, Gb, to G,:

(a) If there is no other secondary stroke, Gb, close to G, then G. is classified as Alf and
is added to the list of main strokes of line 1.

(b) Else, if Gb is redundant, then

1. If one of the interpretations of Gb is Hamza, then: if Gb is above G. then a
Hamza above Alif character is added to the list of main strokes of line 1. If

Gb lies below G. then a Hamza below Alif character is added to the list of

main strokes of line 1. Otherwise, two new main strokes representing the

characters Ali fand Hamza, respectively, are added to the list of main strokes

of line 1. Gb is removed from the set of redundant strokes.
2. Else, if one of the interpretations of Gb is Madda, then: If Gb lies above G.

then a Madda above Alif character is added to the list of main strokes of line

258

1. Otherwise, two new main strokes representing the characters Al?! and an
isolated Noon (Madder and isolated Noon have the same shape) are added to

the list of main strokes of line 1. G. is removed from the set of redundant

strokes.

3. If neither of the interpretations of Gb is Hamza nor it is Madda, then an Alif

character is added to the list of main strokes of line 1.

(c) If Gb is assigned, i. e., it is not redundant, then an Alf character is added to the list

of main strokes of line 1.

In all the three cases above, (a, b, c), G. is removed from the set of redundant

strokes.

13.3.2. Extraction of Isolated Ra and Isolated Zain Characters

Ra and the main stroke of Zain (a Dot above Ra) may be initially classified as

secondary strokes due to the similarities between them and some secondary strokes like

slash and Fatha. Thus, a redundant secondary stroke, G� whose one of its interpretations

char e CHAR is Ra, where the set CHAR is determined by Algorithm 12.2, is classified

as follows:

(a) If G. has no close secondary stroke neighbours or the closest secondary stroke

neighbour is assigned, then a Ra character is added to the list of main strokes of line

1.

(b) If G. has a closest redundant secondary stroke neighbour, Gb, then
1. If Gb is a Dot then: if Gb is above G. then a Zain character is added to the list

of main strokes of line 1, else, two new main strokes representing the

characters Ra and isolated Dot are added to the list of main strokes of line 1.

Gb is removed from the set of redundant strokes.
2. If Gb is not a Dot, then a Ra character is added to the list of main strokes of

line 1.

In the two cases above, (a, b), G. is removed from the set of redundant strokes.

259

13.3.3. Extraction of Miscellaneous Characters

A remaining redundant secondary stroke, G� is classified as follows. A character is

added to the list of main strokes of line 1, if there is one interpretation, p, of G. such that

pis
(a) a Dot, in which case a Dot character is added,
(b) Two Connected Dots, in which case a minus sign character is added,
(c) Three Connected Dots, in which case Arabic numeral "A" is added,
(d) a Madda, in which case an isolated Noon character is added,
(e) a Hamza, in which case a Hamza character is added,
(f) an inclined slash, in which case a division sign character is added,
(g) a minus sign, in which case a minus sign character is added, or
(h) a Damma, where there are three cases:

1. If the Damma lies above the stroke to which it was presented, then it is true

Damma in which case it is neglected since it is only used to change a character

accent.
2. If the Damma lies to the right or left of the stroke, then a Waw character is

added.
3. If the Damma lies below the stroke, then it is neglected since, most probably,

it belongs to another stroke in a following line.

In the cases (a - h), above, G. is removed from the set of redundant strokes. Any

remaining redundant secondary stroke is assumed not to carry important information; thus
it is neglected and no output is produced to represent that stroke. However, these

algorithms can be further developed to deal with such redundant secondary strokes.
After the above miscellaneous secondary strokes are added to their proper lines, the

main strokes of each line are arranged on a right-to-left flow basis such that the right-most

main stroke appears first.

In Example 13.2.3, the third and forth secondary strokes were two Damma's which

were redundant. Since these secondary strokes lie above the main stroke, they are
interpreted as true Dammds.

260

SUMMARY

This chapter addressed the last component of the recognition process of the CASR

system, where strokes are interpreted as sets of characters. This component consists of

three stages. First, all possible CSH interpretations of main strokes are enumerated and

represented in tree data structures, called Enumeration and Requirement Trees (ERTs).

Second, ERT's are combined with secondary stroke candidates to form characters by

solving assignment problems. Finally, redundant secondary strokes, which are filtered by

the second stage, are manipulated to form some other characters which are inserted in

their proper places within lines. The final result is a list of ordered lines where each line

is an ordered list of words.

261

Experimentation

OVERVIEW

In this chapter, experimental results of the CASR system are reported A description

of how the data of the learning and testing stages were acquired is given. The learning

stage is described For the testing stage, the performance of the system in terms of

recognition, rejection, and error rates, and speed, is reported Causes of rejection and

error are analyzed

14.1. DATA ACQUISITION

The data sets which were used in the learning and testing stages of the CASR system

were not restricted to a limited list of words, i. e., an unlimited vocabulary was used. There

was no restriction on the content, i. e., a subject can pick any book, story, journal, etc., and

select the parts he wishes to write. Also, there was no restriction on pen type, ink type,

or ink colour. In both the learning and testing stages, the subjects were asked to fill an A4

size blank sheet of undiacriticized handwriting. Subjects were asked to use a common type

of chirography of Arabic handwriting which is called Arreka chirography. Subjects who
don't master Arreka chirography were asked to simply follow the rule: write every

subword as single piece without ling the pen except for secondary strokes (dots, dashes,

etc.). They were asked to avoid generating blobs as possible as they can since the CASR

system was not designed to deal with such a phenomenon. Unfortunately, most of the

subjects were not conforming to these instructions. Mostly, a mixture of Arreka

262

chirography and another common chirography in Arabic handwriting called Annaskh were

used. In Annaskh chirography, the pen can be lifted more than once to write the main

stroke of a subword. The whole data provided by the subjects of the learning and testing

stages were used without discarding any proportion whether the subject follows Arreka

chirography or not. More details about how data were acquired for the learning and

testing stages is given below:

(a) Learning: Here, there was no restriction neither on the number of lines per page

nor on the number of words per line. Thirteen unnormalized handwritten A4 size
pages written by 13 subjects, one page per subject, were collected and used in the

learning stage. Reproductions of the images of the learning stage are shown in

Appendix C, Figures C. 1 to C. 13.

(b) Testing: Another set of subjects other than the subjects of learning stage was used

in the testing stage. It was noticed that in the data set of the learning stage some

subjects may write very nearby lines which may result in line overlap. This raises a

problem in the he segmentation algorithm, Algorithm 12.3, which cannot deal with

such a phenomenon. Thus, in the testing stage the subjects were asked to write from

10 to 15 lines per page which span the entire length of the A4 size sheet. Twenty

unnormalized handwritten A4 size pages written by 20 subjects were collected and

used in the testing stage. Reproductions of the images used in the testing stage are

shown in Appendix D, Figures D. 1 to D. 20.

Images of the data sets of the learning and testing stages were captured using an HP

ScanJet scanner. The resolution used was 300 dots per inch in both the horizontal and

vertical directions.. The reason for selecting this value of resolution is based on our

observation than under-sampled pictures, e. g., less than 300 dpi., may create disconnected

images for very thin strokes which produces multi-component straight line approximations
for such strokes. This is not accepted by the CASR system since it does not have the

capability to handle disconnected strokes.

14.2. LEARNING

Samples of cursive handwriting of 13 subjects were used in the learning stage, see
Appendix C, Figures C. 1 to C. 13. In the algorithms of token learning, the core and left

263

and right bandwidths of the fuzzy direction state entrance qualifiers were set to 22.5 °, A

total of 11,083 tokens were segmented and learned with the thresholds THRI and THR2

both being set to 0.90. A token fuzzy sequential machine was obtained which is capable

of recognizing the segmented tokens. 2,922 logical token strings were learned with the

thresholds THRY and THR, ry
both being set to 0.90. Eighty two CSH's shared in

formulating token strings' interpretations.

14.3. TESTING
ý

Samples of cursive handwriting of 20 subjects were used in the testing stage, see
Appendix D, Figures D. 1 to D. 20. The testing stage was performed on a 486DX IBM PC

compatible microcomputer, with 50 MHz clock and 16 MB RAM. Here, we define the

following measures to evaluate the performance of the CASR system:

(a) Subword based measures: where four parameters are defined:

1. Subword recognition rate: It is the percentage of subwords which were fully

recognized,
2. Subword rejection rate: It is the percentage of subwords which were

rejected,
3. Subword error rate: It is the percentage of subwords which have at least one

erroneous character, and
4. Subword reliability rate: which equals subword recognition rate / (100 -

subword rejection rate) x 100.

(b) Character based measures: where four parameters are defined:

1. Character recognition rate: It is the percentage of characters which were

correctly recognized,
2. Character rejection rate: It is the percentage of characters which were

rejected due to rejection of their corresponding subwords,

3. Character error rate: It is the percentage of characters which were

substituted by some other erroneous characters, and
4. Character reliability rate: which equals character recognition rate / (100 -

character rejection rate) x 100.

The subword and character reliability rates are important factors in evaluating the

264

performance of the system. The higher these factors are the more reliable is the system.

A system which rejects suspectable characters is more reliable than a system which,

anyhow, assigns labels to such characters. Thus, a higher reliability means a lower error

rate.

Based on the above measures, the overall system performance is as follows:

subword recognition, rejection, error, reliability = 55.4%,. 17.6%, 27.0%, 67.2%,

respectively, and character recognition, rejection, error, reliability = 51.1%, 29.3%,

19.6%, 72.3%, respectively. Table 14.1 shows detailed performance rates for the 20

subjects. From this table, it is clear that these rates reflect the level of quality of

handwriting for each subject and the degree to which a subject was conforming to the

mentioned instructions. For example, subjects no. 1,11,17, and 19 provided neat

handwriting and almost followed the given instructions which results in relatively high

subword and character recognition rates.

It is noticed, in Table 14.1, that the subword recognition rate is higher than the

character recognition rate. This may seem surprising since it is not normally the case is

text recognition systems as each character error also causes an error in the word in which

it occurs. However; we try to remove this surprise by explaining how the figures of Table

14.1 were obtained. Detailed analysis data about one typical line consisting of 21

subwords and taken from a page used in the testing stage, is shown Table 14.2. Tables

14.1 and 14.2 are obtained according to the previously-defined performance measures.

From Table 14.2 we notice the following:

1. Rejection and error usually occur in subwords which consist of more than one

character.
2. A rejected subword, consisting of n characters, adds only one to the total number

of rejected subwords. However, it adds n characters to the total number of rejected

characters.
The above factors interact to yield the figures of Table 14.1.

Table 14.3 displays the time requirement of the system for the 20 subjects.

Preprocessing time includes smoothing, stroke extraction, thinning, straight line

approximation, enforcement of temporal information, and stroke segmentation.

Recognition time includes token recognition, separating main and secondary strokes,

265

Table 14.1. Performance of the CASR system.
These results were obtained by running the algorithms on a 486DX IBM PC compatible
microcomputer, with 50 MHz clock and 16 MB RAM. Sub: subject #, NL: number of
lines, NSW: number of subwords, NC: number of characters, Rec: recognition rate, Rej:
rejection rate, Err: error rate, Rel: reliability.

Subword Character

Sub NL NSW NC Rec Rej Err Rel Rec Rej Err Rel

1 11 200 400 62.0 16.0 22.0 73.8 56.2 24.3 19.5 74.2

2 12 220 461 55.0 18.2 26.8 67.2 50.1 29.5 20.4 71.1

3 10 187 381 57.2 16.0 26.8 68.1 53.0 27.6 19.4 73.2

4 10 231 434 57.1 18.6 24.3 70.1 53.5 27.9 18.6 74.2

5 10 195 420 52.3 17.9 29.8 63.7 47.6 31.9 20.5 69.9

6 10 203 420 53.2 17.7 29.1 64.6 50.0 31.0 19.0 72.5

7 13 264 531 54.9 16.7 28.4 65.9 50.8 29.6 19.6 72.2

8 12 166 343 56.0 15.7 28.3 66.4 53.1 27.7 19.2 73.4

9 11 228 454 52.2 19.7 28.1 65.0 48.0 32.2 19.8 70.8

10 11 221 447 54.3 19.0 26.7 67.0 51.0 28.6 20.4 71.4

11 11 210 449 65.2 11.9 22.9 74.0 61.0 22.3 16.7 78.5

12 12 213 457 50.7 19.7 29.6 63.1 46.8 32.0 21.2 68.8

13 12 217 450 49.3 21.2 29.5 62.6 44.9 32.0 23.1 66.0

14 13 203 411 50.7 18.7 30.6 62.4 45.0 33.8 21.2 68.0

15 11 196 419 53.1 19.9 27.0 66.3 50.1 30.3 19.6 71.9

-16 12 222 465 52.3 19.8 27.9 65.2 47.7 31.0 21.3 69.1

17 12 239 494 64.8 13.0 22.2 74.5 60.1 23.1 16.8 78.2

18 12 238 522 51.3 18.5 30.2 62.9 46.9 32.8 20.3 69.8

19 13 253 503 67.2 13.0 19.8 77.2 63.8 23.5 12.7 83.4

20 14 267 559 48.0 21.3 30.7 61.0 44.0 33.6 22.4 66.3

Total 232 4373 902 55.4 17.6 27.0 67.2 51.1 29.3 19.6 72.3

266

Table 14,2. Detailed performance data of a typical line of Arabic text.

Subword Characters

Subword
No.

No. of
characters

fully
recognized rejected with error recognized rejected erroneous

1 1 � 1 0 0

2 3 � 3 0 0

3 1 � 1 0 0

4 1 � 1 0 0

5 2 � 0 2 0

6 4 � 2 0 2

7 1 � 1 0 0

8 3 � 2 0 1

9 2 � 1 0 1

10 1 � 1 0 0

11 1 � 1 0 0

12 3 � 0 3 0

13 3 � 3 0 0

14 2 � 2 0 0

15 2 � 0 2 0

16 5 � 0 5 0.

17 1 � 1 0 0

18 1 � 1 0 0

19 3 � 1 0 2

20 1 � 1 0 0

21 1 � 1 0 0

Total 42 13 4. 4 24 12 6

Percentage, % 62 19 19 57.1 28.6 14.3

Reliability, % 76.5 80

267

Table 143. Speed of the CASR system.
These results were obtained by running the algorithms on a 486DX IBM PC compatible
microcomputer, with 50 MHz clock and 16 MB RAM. Prep: preprocessing time, Recog:
recognition time, A: average time.

Time (min.) / page Time (min.) / subword Time (min.) / character

Subject Prep Recog Total Prep Recog Total Prep Recog Total

1 11.25 335.33 346.58 0.05 1.68 1.73 0.03 0.84 0.87

2 11.50 556.48 567.98 0.05 2.53 2.58 0.02 1.21 1.23

3 9.34 522.60 531.94 0.05 2.79 2.84 0.02 1.37 1.39

4 11.56 715.10 726.66 0.05 3.10 3.15 0.03 1.64 1.67

5 11.71 905.80 917.51 0.06 4.65 4.71 0.03 2.15 2.18

6 12.78 886.11 898.89 0.06 4.37 4.43 0.03 2.11 2.14

7 14.84 925.64 940.48 0.05 3.51 3.56 0.03 1.74 1.77

8 10.16 809.08 819.24 0.06 4.87 4.93 0.03 2.36 2.39

9 13.88 871.96 885.84 0.06 3.82 3.88 0.03 1.92 1.95

10 13.46 685.52 698.98 0.06 3.10 3.16 0.03 1.53 1.56

11 12.69 624.80 637.49 0.06 2.98 3.04 0.03 1.39 1.42

12 10.75 607.92 618.67 0.05 2.85 2.90 0.02 1.33 1.35

13 12.99 633.81 646.80 0.06 2.92 2.98 0.03 1.41 1.44

14 12.38 638.45 650.83 0.06 3.15 3.21 0.03 1.55 1.58

15 11.96 673.24 685.20 0.06 3.43 3.49 0.03 1.61 1.64

16 13.02 967.62 980.64 0.06' 4.36 4.42 0.03 2.08 2.11

17 14.53 915.27 929.80 0.06 3.83 3.89 0.03 1.85 1.88

18 14.20 648.36 662.56 0.06 2.72 2.78 0.03 1.24 1.27

19 15.06 924.45 939.51 0.06 3.65 3.71 0.03 1.84 1.87

20 13.45 763.12 776.57 0.05 2.86 2.91 0.02 1.37 1.39

A 12.58 730.53 743.11 0.06 3.34 3.40 0.03 1.62 1.65

extracting lines and ordering strokes, CSH interpretations of main strokes, character
formation, and manipulating redundant secondary strokes. The average times required to

preprocess a page, subword, and character are 12.58 min., 0.06 min., and 0.03 min.,

respectively. These times are very small compared to the average times required by the

268

recognition stage, which are 730.53 min. / page, 3.34 min. / subword, and 1.62 min. /

character. In other words, the recognition algorithms occupied more than 98% of the

overall page, subword, or character processing time from smoothing to final classification.

The reason behind this is that the recognition algorithms are based on a combinatorial

approach requiring long computations. However, the recognition time can be reduced by

using faster machines.

14.4. REJECTION ANALYSIS

The high rejection rate was expected since a very high variability exists in

handwriting, even in the handwriting of a single subject. The rejection rate can be reduced

by learning more styles of handwriting. The reasons for rejection are:

(a) In 96.1% of the rejection cases, all the tokens of the stroke are recognized.

(b)

However, the stroke contains an unknown token string which is a result of the

following reasons:
1. An unknown combination of token identification codes is obtained.
2. The overall acceptance degree, ay, of the features of token / string ratios is less

than the specified threshold, THRy.

3. The overall acceptance degree, ate,, of the features of intersection vertices is

less than the specified threshold, THRX .
In 3.9% of the rejection cases, at least one token in the stroke is unknown. These

strokes are rejected by the CASR system.

14.5. ERROR ANALYSIS

The main reasons for error cases are:
(a) A token string can have more than one valid interpretation of characters. This

happens in 26.6% of the erroneously recognized characters. For example, the

subword in Figure 14.1, has two interpretations. Although, a human reader can

interpret it as Lam, Ta, and Ra characters, the CASR system may recognize it as a

single Noon character considering the dash as a redundant secondary stroke. This

kind of error is difficult to control in handwriting.

(b) The tokens of a single character can be erroneously divided into strings representing

269

Figure 14.1. A subword which has two interpretations: Lam, Ta, and Ra, or Noon and
redundant secondary stroke.

6
Figure 14.2. One shape of the main stroke of Seen and Sheen which consists of three
tokens extending between points 1&2,3 & 4, and 5&6, respectively.

more than one CSH which happens in 26.0% of the error cases. This error
frequently happens with the Seen and Sheen characters, the main stroke of which

consists of three tokens as shown in Figure 14.2. The CASR system may interpret

each token, combined with suitable secondary strokes in its neighbourhood, as Ba,

Ta, Tha, Noon, or Ya. This is due to insufficient number of samples, introduced to

the system in the learning stage with a main stroke as in Figure 14.2, of Seen and
Sheen. Thus, more learning is needed. Also, any of the three tokens of the stroke of
Figure 14.2 can be interpreted as Lam if its height starts to be larger than its width.
This can be greatly reduced by introducing height / width relations between the

individual tokens constituting a token string and the token string itself which is

absent in the current version of the CASR system.
Sometimes, a shape, like that of Figure 14.3, which really consists of a single Pha

character, can be interpreted as two characters: Pha and Alif if the left vertical
termination, between points 1 and 2, is relatively long. Although, this kind of error
is very difficult to control in handwriting, it may be reduced by using context.

(c) The CSHTs of some different characters look similar which comprises 20.9% of the

270

2

Figure 14.3. A main stroke of Pha character.

ýý Jý
3))

Figure 14.4. Examples of pairs of similar CSH's, the vertical pairs correspond to the
CSH's of Ba & Lam, Ba & Ha, Ra & Dal, Dal & right parenthesis, Hamza & Kaf, and Meem & Ha, where the first CSH of each pair is the upper one.

error cases. Examples of pairs of similar CSI's are: Ba and Lam, Ba and Ha, Ra and
Dal, Dal and right parenthesis, Hamza and Kaf, and Meem and Ha, see Figure 14.4.

This kind of error can be reduced by using context.
(d) In 14.0% of error cases, there can be more than one valid assignment of secondary

strokes to CSIfs when the characters are formed. This is clear from the subword of

Figure 14.5 which has two valid readings depending on the assignment of secondary

strokes. The main stroke of this subword consists of two CSH's: the part between

points 1 and 2 and the part between points 2 and 3 constitute the first and the

second CSH's, respectively. If the two dots are assigned to the first CSH, then the

subword consists of Ta and Ra. If the right-most dot is assigned to the first CSH

and the other dot is assigned to the second CSH, then the subword consists of Noon

and Zain. An error of this kind can be alleviated by using context which selects the

interpretation that gives a meaning. However, sometimes more than one

interpretation may have a meaning which shows that this is a hard problem in

automatic recognition systems.

(e) Inaccurate placement of secondary strokes yields wrong characters in 4.8% of the

error cases. Figure 14.6 shows one word consisting of one main stroke and four

271

ýý

}2

3

I

Figure 14.5. A subword the main stroke of which consists of two CSH's between
points 1&2 and 2&3, respectively.

0 04

Figure 14.6. A word the main stroke of which consists of three CSH's which extend
between points 1&2,2 & 3, and 3&4, respectively.

(f)

(S)

secondary strokes; Dots. Although the dots are inaccurately positioned, an Arabic

human reader can easily read the word as consisting of the characters: Noon, Qaf,

and Pha. However, the CASR system reads this word as: Ta, Pha, and PM. This

is the result of assigning the right-most two dots to the right-most CSH yielding Ta,

the next dot to the second CSH yielding Pha, and the left-most dot to the left-most

CSH yielding Pha. Inaccurate positioning of secondary strokes relative to CSH's

happens frequently in handwriting and is difficult to control. One means to partially

solve this problem is to use context.
In 6.2% of the error cases, characters with lost loops due to blotting were

misrecognized which is the result of loss of temporal information, see Section 3.4.5.

Unfortunately, the CASR system was not designed to deal with such a phenomenon,
i. e., lost loops due to blotting. However, this kind of error may be reduced by

working directly on the bitmap image of the stroke without being thinned.

A very short secondary stroke representing two connected dots can be reduced to

272

Figure 14.7 A character with a short dash representing two dots. The dash may be
reduced to a single dot by the straight line approximation algorithm.

a single dot by the straight line approximation algorithm, Algorithm 2.2. This results

in a different character. For example, the character shown in Figure 14.7, which is

Ta, is interpreted as Noon if the short dash is reduced to a single dot. This happens

in 1.5% of the error cases which we consider a minor cause of error that may be

reduced by controlling the threshold of the length of a single dot and using context.

It is clear that context should play a significant role in reducing the error rate. The

automation of such use of context is another point of research that deserves study, but it

is out of scope of this research.

SUMMARY

The system was trained on cursive handwritings of 13 subjects comprising 11,083

tokens and 2,922 logical token strings. The handwriting of 20 subjects other than the

subjects of the learning stage were used in the testing stage. Subword and character

recognition rates were 55.4% and 51.1%, respectively. Although these rates are modest,

the system performance can be enhanced by learning more styles, including more useful
features, and using context.

The author has presented a new theoretical basis and concepts to design handwritten

cursive script recognition systems which he considers as a broad foundation on which

other similar studies can be established.

273

Conclusions. Ir

ý ý

404"&Rw

OVERVIEW

In this chapter, the three parts of the work are summarized Quantitative summary

of the results is presented Critical evaluation and concluding remarks are provided An

assessment of haw the work has contributed to the field of off-line recognition of

handwritten cursive. text is presented Finally, some points where further work can be

done are highlighted

15.1. PREPROCESSING

In Part One, novel algorithms were presented for processing of Arabic text prior to

recognition. Algorithms were described to convert a thinned image of a stroke to a

straight line approximation. These algorithms incorporate heuristics which ensure a unique

centre for each intersection vertex, and to reduce the likelihood of spurious tails.

Algorithm 2.2 can identify spurious bifurcation points which are unavoidable when

thinning algorithms are used, remove them, and recover the original ones. Unlike existing

approaches to the same problem, this new method can deal with complex junctions where

more than two lines cross, and does not resort to geometrical properties which are prone

to distortion by scanning and quantization noise. The obtained straight line approximations

preserve the structural information of the original pattern ensuring a natural representation

of it.

Novel heuristic algorithms and novel theorems, Theorems 1 and 2, were presented

274

to restrict, and determine start and end vertices of an off-line image of a stroke. A straight

line approximation of an off-line stroke is converted to a one-dimensional representation

by a novel algorithm which aims to recover the original sequence of writing. Options were

used to generate three different methods to enforce temporal information. The algorithm

was tested against one data set of isolated handwritten characters and another data set of

cursive handwriting, each provided by 20 subjects, see Appendices B and D. The results

of Method 3, in which the determination of the start and end vertices is based on

Theorems 1 and 2, were superior. This method has been 91.9% and 91.8% successful for

the ,e two data sets, respectively. The resulting ordering of the stroke segments was a

suitlble preprocessed representation for subsequent handwriting recognition algorithms

as it helped to segment the stroke.

The earlier algorithms can deal with many of the situations that may arise in Arabic

handwriting, however, they can be developed more so that almost all possible conditions

are dealt with.
Critique

In the algorithms of Part One, thinning was a necessary preprocessing step.

However, there were cases in which these algorithms failed due to spurious artifacts
introduced to the straight line approximations by the thinning process. These artifacts do

not correspond to true segments in the original image and result in complex

representations of strokes. Another drawback of thinning can be identified by the stroke

of Figure 15.1. Figure 15.1(a) shows one handwritten Arabic subword which contains

three loops; all appearing as blobs. This image was thinned to obtain that of Figure

15.1(b). For a human, these blobs can be easily recognized as loops from the context.

However, they are difficult to deal with and cause problems in automatic recognition

systems which accept thinned images. For example, a recognition system that accepts

thinned images encounters difficulty in recognizing the thinned image of Figure 15.1(b).

Thus, thinning results in the loss of very informative pieces of the image. For these

reasons, we believe that researchers in the field of automatic text recognition must be

aware of the consequences of drawbacks of the thinning process.

Also, in Algorithm 3.4, temporal information was lost when thinning a 'small loop

that has become a blob due to blotting. As mentioned in Section 3.4.5, one trial was

275

 ...

......... "

......................
.....

..... '

.......

.......

.......

.......

....
......

...........
............... " "

..

BEEN U....
....... "
_..... '

... on.
......

.............
...........

........

............
........... I

(a)

.

:":
... as .i

: '. :
.

:
'.

.ý.. !
Cý !
iU a

2

mass mass '. soon was 'i
. sm.. a.......
 a

a

'_
.' U

(b)

Figure 15.1. (a) A binary image of a handwritten Arabic stroke with three loops
appearing as blobs, and (b) its skeleton.

performed by the author to restore such lost loops. However, the generation of new

spurious loops was the main problem which could not be eliminated. Spurious loops may
degrade the performance of a recognition system. Thus, it is concluded that there should
be no preprocessing stage to recover lost loops due to blotting.

wann@ IuI"

276'

15.2. IACR SYSTEM

In Part Two, an entirely novel fuzzy set-sequential machine character recognition

system was presented. A stroke representation was developed which proved to be useful

for the development of subsequent algorithms. Fuzzy sequential machines were defined

to work as recognizers of handwritten strokes. An algorithm to obtain a deterministic

fuzzy sequential machine from a stroke representation, that is capable of recognizing that

stroke and its variants, was presented. An algorithm was developed to merge two fuzzy

machines into one machine. The learning algorithm was a combination of many described

algorithms.

A set of 20 stroke classes was used in the learning and testing stages. The system

was trained on 5890 unnormalized handwritten strokes written by five subjects, see

Appendix A. The learning stage produced a fuzzy sequential machine of 2705 states and

8640 arcs. A total of 7963 unnormalized handwritten strokes, written by 20 subjects other

than the subjects of the learning stage, see Appendix B, was used in the testing stage. The

recognition, rejection, and error rates were 95.8%, 1.5%, and 2.7%, respectively. These

results are encouraging and offer much potential within the field of automatic off-line

character recognition. The system is highly flexible in dealing with shape and size

variations.

Critique

Although a 95.8% recognition rate could be achieved, the IACR system is still

lagging other recent systems which use traditional techniques. Smith et al. [11], in 1994,

showed that systems built on a simple statistical technique and a large training database

can be automatically optimized to produce classification accuracies of 99% in the domain

of handwritten digits. The error rate is cut by more than half for every tenfold increase in

the size of the training set from 10 to 100,000 examples. Three distance metrics for the

standard Nearest Neighbour classification system were investigated: a simple Hamming

distance metric, a pixel distance metric, and a metric based on the extraction of penstroke
features.

Thus we suggest that researchers might better spend their time to use such well-

matured approaches in isolated Arabic character recognition systems instead of spending

a lot of time seeking for new methods the performance of which remains unknown until

277

they are tried. The use of methods such as statistical ones eliminates the need for

regeneration of time information.

15.3. CASR SYSTEM

In Part Three, an entirely novel text recognition system, capable of recognizing off-

line handwritten Arabic cursive text having a high variability was presented. This system

was an extension of the IACR system. Tokens were extracted from a one-dimensional

representation of a stroke. Fuzzy sequential machines were defined to work as recognizers

of tokens. It was shown how to obtain a deterministic fuzzy sequential machine from a

token representation that is capable of recognizing that token and its variants. An

algorithm for token learning was presented. The tokens of a stroke were re-combined to

meaningful strings of tokens. Algorithms to recognize and learn token strings were

described. The recognition stage used algorithms of the learning stage. The process of

extracting the best set of basic shapes which represent the best set of token strings that

constitute an unknown stroke was described. A method was developed to extract lines

from pages of handwritten text, arrange main strokes of extracted lines in the same order

as they were written, and present secondary strokes to main strokes. Presented secondary

strokes are combined with basic shapes to obtain the final characters by formulating and

solving assignment problems for this purpose. Some secondary strokes which remain

unassigned are individually manipulated.

Samples of cursive handwriting of 13 subjects, see Appendix C, were used in the

learning stage. A total of 11,083 tokens were extracted and learned. A fuzzy sequential

machine was obtained which is capable of recognizing the extracted tokens. A total of

2,922 token strings were learned. By inspecting these token strings, 82 raw characters

were obtained.

The system was tested against the handwritings of 20 subjects other than the

subjects of learning stage, see Appendix D, yielding overall subword and character

recognition rates of 55.4% and 51.1, respectively. The system performance can be

enhanced by learning more styles, including more useful features, and making use of the

context. Although these rates of the CASR system are modest and do not take the system
to the level of commercial practicability, the author could present new theoretical basis

278

and concepts to design handwritten cursive script recognition systems which he considers

as a broad foundation on which other similar studies can be established. Some other

general concluding remarks are listed below:

(a) The strong cursive nature of handwritten Arabic text lends itself better to a

structural or hybrid approach. The high variability in handwriting makes it difficult

to apply decision theoretic approaches because often real-life data do not hold

assumptions of decision theoretic approaches. For these reasons, the author

considers that his fuzzy set-sequential and graph theoretic approach is a big step in

the right way in addressing this hard problem.

(b) The problem of off-line handwritten cursive Arabic script recognition remains an

open problem for the researchers to devise solutions. It requires advanced

segmentation techniques, involving the interaction of segmentation and recognition.

For efficiency, it is desirable for the recognizer to be free of constraints on primitive

number. The ultimate goal is to obtain recognition systems with performance

comparable with that of human. The performance of a recognition system remains

unknown until it is complete and tested against real data, which is also a good

reason for researchers to develop and test new methods in this domain.

(c) Off-line recognition of handwritten Arabic text is a great challenge. It is not a direct

implementation of the recognition techniques used for other handwriting systems.
The reason is simply it has different characteristics. Some impeding characteristics

are listed below:

1. Arabic script is cursive which makes it difficult to segment a subword directly

into characters.
2. Some Arabic characters have the same shape; however, they are distinguished

from each other by the addition of secondary strokes, e. g., dots, in different

positions relative to the main stroke. Sometimes, the ambiguity of the position

of these secondary strokes in handwriting brings out many different readings
for one word.

3. An Arabic character can have different shapes depending on its position in the

word (beginning, middle, end, or isolated). This increases the number, of
fundamental shapes to more than twice the number of characters which

279

complicates the recognition of Arabic text.

4. Arabic characters vary in size, particularly in width, even within the same

writing style.

5. ' Certain Arabic characters may overlap with neighbouring ones. The degree of

overlap varies according to the handwriting style. The overlap adds to the

difficulty in segmenting characters.
(d) In general, off-line recognition of unconstrained handwriting is a very hard especially

on whole language vocabulary, because the segmentation of words into letters or

small basic units induces many possible combinations.

15.4. HOW THIS WORK CONTRIBUTED TO THE FIELD

The author presented new contributions to the field of off-line recognition of

handwritten cursive text in the following components:
(a) Representation: New methods were developed to obtain the following

representations:

1. Straight Line Approximation of Strokes: This is an intermediate

representation used in both systems: the Isolated Arabic Character

Recognition system and the Cursive Arabic Script Recognition system. In this

representation, the likelihood of spurious tails is reduced and, spurious

bifurcation points, which are unavoidable when thinning algorithms are used,

are removed, and the actual bifurcation points are recovered. The obtained

straight line approximations preserve the structural information of the original

patterns. The suggested method does not resort to distortable geometrical

properties.

2. Temporal Information: Recognizing the benefits of the availability of
dynamic information of handwriting and due to drawbacks of some previous

methods [67 - 69], the author presented novel theorems and algorithms to

recover the original sequence of off-line Arabic handwriting. This was used to

aid in segmenting strokes in both systems.
3. Stroke Segmentation: Here methods were introduced to accept a

straight line approximation and temporal information of a stroke and produce

280

small basic units constituting the stroke as the final representation. These basic

units are temporally ordered which is a new contribution by itself.

(b) Classification: As mentioned above, strokes were segmented into small basic units

in both systems. In the CASR system, these basic units were combined into strings

of basic units. These strings were hypothesized into characters to obtain the target

word. Also, we adopted a novel method for line segmentation which tolerates large

variations in handwriting. Our novel approach, in both the IACR and CASR

systems, is constructed using concepts from sequential machine, fuzzy set, and

graph theories.

The methods used by researchers to segment lines, words and characters were

primarily developed for printed text in which a horizontal baseline usually exists.

This enabled them to use simple horizontal and vertical projections or Hough

transform methods in segmentation. This means that, in case of printed text,

segmentation can be usually performed as an independent process before

classification. The situation is different in handwritten cursive text due to the

following reasons:

1. A horizontal baseline does not exist in unconstrained handwriting.

2. There is a change in the slant even in a single line of handwritten text.

3. Secondary strokes (e. g., dots and dashes) are not carefully plotted, in

handwriting, with respect to main strokes (main bodies of characters or

words).
The author's new contribution here is that he viewed line and character segmentation

processes as part of the classification process and presented other general methods

for initial segmentation. Initial segmentation is already mentioned in (a)3, above.

(c) Learning: The learning and classification methods were developed to form one

couple. The important thing here is that, as you notice in the data flow diagram of

Figure 1.2, the learning stage comes after the classification stage! Actually this

arrangement is preferred to us because our philosophy lies in: "What is this �s? If

you know then you earn, otherwise come to learn. " This means that trying to

recognize comes first. If the system fails then it is taught.

281

15.5. SUGGESTIONS FOR FURTHER WORK

The following are points where further work can be done:

(a) Use of Contextual Information: Factors like letter sequences, word dependencies,

sentence structure, style and subject matter, as well as comprehension, knowledge,

inference, guessing, prediction, and imagination all take place very naturally during

the process of human reading. These processes take place extremely effectively and

efficiently in the human brain because they are the results of many years of trial,

learning, and correction [82].

Many investigations on the process of human reading and comprehension, and the

effects of contextual information have been made by linguists and psychologists [83

- 85]. Since there are thousands of writing styles in the world, it may not be feasible

to build a vision system which is capable of recognizing all of them by shapes alone.

The best solution seems to be making machines more intelligent which is a major

step towards successful artificial intelligence in the area of natural language

understanding and processing [82]. In order to do so, the use of contextual
information is indispensable. Indeed, text processing, combined with techniques

dealing with automatic correction of deletion, and substitution, is a subject of great
interest [82,86 - 93]. The effective and efficient use of contextual information in

handwriting recognition systems remains an open area that deserves further

research.
(b) Page Layout Analysis: There are two analyses necessary for reading

documents: one is character recognition (OCR), and the other is page layout

analysis. Although text is an important part of a document, it is also essential to

know where the text resides in a page. Page format establishes meaning to regions

of text. For instance, when searching for a paper by author name, only the author

block of the title page needs to be examined. Names in the body of the text and in

the references have different connotations. Therefore, determining the location of

text by page layout analysis is an essential complement to OCR. Hence, studies for

handwritten documents similar to those of references [94,95], which concern

printed documents, are needed.
(c) Segmentation of Mixed Text l Graphics Images: A digitized image consisting of

282

(d)

a mixture of text and graphics should be segmented in order to represent more

efficiently both areas of text and graphics. The segmentation must be independent

of changes in text writing style and size, and of string orientation. Although some

works have been published in this'field [69,80], more general algorithms are still

needed.
In spite of our support and encouragement for researchers especially in Arabic

cursive handwritten script recognition to go on, we also present an advice, as we
believe, for them. The advice is to concentrate on recognition of printed script

instead of handwritten script. Reasons for this are:

1. Many of the problems which exist in handwriting are absent in the case of

printed script. Some of these problems are:
i. Handwritten script has a very high variability even for the same writer.
ii. It is very difficult for a writer to stick to a single style of writing even in

a single page. Thus, a handwritten page is often a mixture of more than

one writing style.
iii. Direction of flow of writing often changes from line to line and even in

the same line.

iv. Secondary strokes are rarely positioned in the exact position relative to

main strokes. This leads to ambiguities in automatic recognition systems.

v. Usually blotting occurs in handwriting especially at instances when the

pen touches the paper and in loops which is an additional noise source.

vi. It is difficult to maintain a constant pen pressure on the writing surface.
This often leads to some fading (lightly written) or broken parts of

strokes' images.

2. Most of Arabic knowledge is typeprinted but not handwritten, e. g. books,

journals, periodicals. A method, e. g., an automatic text recognition system, is

needed to transform this knowledge to an electronic format.

3. Even the problem of printed Arabic script still is not completely solved.
4. There is no known efficient method to solve the hard problem of segmenting

a subword into characters. Thus, researchers are encouraged to double their

efforts to solve this problem.

283

5. Vital data, such as n-gram statistical data, is missing to researchers in Arabic

text recognition. Generating this data is a project by itself. Also, an Arabic

document image database helps very much in building document analysis and

recognition systems. It can also serve as a benchmark for evaluating the

performance of recognition systems for printed Arabic text.

284

References
[1], M. Ghuwar and W. Skarbek, "Detection of baseline for Arabic text lines using

Hough type transforms", 7th Portuguese Conference on Pattern Recognition,
Aveiro, Portugal, pp. 531-533, March 1995.

[2] I. S. I. Abuhaiba, S. A. Mahmoud, and R. J. Green, "Recognition of Handwritten
Cursive Arabic Characters", IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), Vol. 16, No. 6, pp. 664-672,1994.

[3] I. S. I. Abuhaiba, Use of Fuzzy Set Theory in Pattern Recognition with Application
to Arabic Characters, MPhil Thesis, University of Bradford, 1991.

[4] A. Nouh, A. Sultan, and R. Tolba, "An approach for Arabic characters recognition",
J. Eng. Sci., Univ. Riyadh, Vol. 6 (2) pp. 185-191,1980.

[5] A. Zahour, B. Taconet, and A. Faure, "Machine recognition of Arabic cursive
writing", in From Pixels to Features III: Frontiers in Handwriting Recognition, S.
Impedovo and J. C. Simon (eds.), Amsterdam, Elsevier Science Publishers B. V.,
1992, pp. 289-296.

[6] R. Ramsis, S. S. El-Dabi, and A. Kamel, "Arabic character recognition system, " IBM
Kuwait Scientific Centre, report No. KSC027, Jan. 1988.

[7] H. Almuallim, and S. Yamaguchi, "A method for recognition of Arabic cursive
handwriting", IEEE Trans. Pattern Anal. Mach. Intell., Vol. PAMI-9 No. 5, pp.
715-722, Sep. 1987.

[8] B. Parhami and M. Taraghi, "Automatic recognition of printed Farsi texts", Pattern
Recognition, Vol. 14, Nos 1-6, pp. 395-403,1981.

[9] Adnan Amin and J. F. Mari, "Machine recognition and Correction of Printed Text, "
IEEE Transactions on Systems, Man, and Cybernetics, Vol. 19, No. 5, pp. 1300-
1306,1989.

[10] Mou-Yen Chen, A. Kundu, and J. Zhou, "Off-line handwritten word recognition
using a hidden Markov model type stochastic network", IEEE Trans. Pattern. Anal.
Mach. Intell., Vol. PAMI-16, No. 5, pp. 481-496,1994.

[11] S. J. Smith, M. O. Bourgoin, K. Sims, and L. Voorhees, "Handwritten Character
Classification Using Nearest Neighbor in Large Databases", IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), Vol. 16, No. 9, pp. 915-919,
1994.

[12] T. Wakahara, "Shape Matching Using LAT and its Application to Handwritten
Numeral Recognition", IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), Vol. 16, No. 6, pp. 618-629,1994.

[13] J. Rocha and T. Pavlidis, "A Shape Analysis Model with Applications to a Character
Recognition System", IEEE Transactions on Pattern Analysis and Machine

285

Intelligence (PAMI), Vol. 16, No. 4, pp. 393-404,1994.

[14] H. Nishida and S. Mori, "An Algebraic Approach to Automatic Construction of
Structural Models", IEEE Transactions on Pattern Analysis ý and Machine
Intelligence (PAMI), Vol. 15, No. 12, pp. 1298-1311,1993.

[15] G. Wolberg, "A syntactic omni-font character recognition system, " Proc. IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, Miami
Beach, Fla., USA, pp. 168-173, May 1986.

[16] W. J. M. Kickert and H. Koppelaar, "Application of fuzzy set theory to syntactic
pattern recognition of handwritten capitals, " IEEE Trans. Syst. Man Cybernet.,
SMC-6, No. 2, pp. 148-151, Feb. 1976.

[17] P. Siy and C. S. Chen, "Fuzzy logic for handwritten numeral character recognition, "
IEEE Trans. Syst. Man Cybernet., Vol. 4, No. 6, pp. 570-575, Nov. 1974.

[18] Y. LeCun, L. D. Jackel, B. Boser, J. S. Denker, H. P. Graf, I. Guyon, D. Henderson,
R. E. Howard, and W. Hubbard, "Handwritten digit recognition: Applications of
neural network chips and automatic learning", IEEE Communications Magazine,
Vol. 27, No. 11, pp. 41-46, Nov. 1989.

[19] A. Rajavelu, M. T. Musavi, and M. V. Shirvaikar, "A neural network approach to
character recognition", Neural Networks, Vol. 2, pp. 387-393,1989.

[20] RM. K. Sinha, B. Prasada, G. F. Houle, and M. Sabourin, "Hybrid Contextual Text
Recognition with String Matching", IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), Vol. 15, No. 9, pp. 915-925,1993.

[21] L. Xu, A. Krzyzak, and C. Y. Suen, "Methods of Combining Multiple Classifiers and
Their Applications to Handwriting Recognition", IEEE Trans. Syst. Man Cybernet.,
SMC-22, No. 3, pp. 418-435,1992.

[22] F. Ali and T. Pavlidis, "Syntactic Recognition of Handwritten Numerals, " IEEE
Trans. Syst. Man Cybern., Vol. SMC-7, pp. 537-541,1977.

[23] M. Shridhar and A. Badreldin, "A High Accuracy Syntactic Recognition Algorithm
for Handwritten Numerals, " IEEE Trans. Syst. Man Cybern., Vol. SMC-15, pp.
152-158,1982.

[24] B. Duerr, et al, "A combination of Statistical and Syntactical Pattern Recognition
Applied to Classification of Unconstrained Handwritten Numerals, " Pattern
Recognition, Vol. 12, pp. 189-199,1980.

[25] RM. Bozinovic and S. N. Srihari, "Off-line cursive script word recognition", IEEE
Trans. Pattern. Anal. Mach. Intell., Vol. PAMI-1 1, No. 1, pp. 68-83,1989.

[26] B. Taconet, A. Zahour, and A. Faure, "A new global off-line recognition method for
handwritten words", in From Pixels to Features III: Frontiers in Handwriting
Recognition, S. Impedovo and J. C. Simon (eds.), Amsterdam, Elsevier Science
Publishers B. V., 1992, pp. 327-338.

[27] J. J. Hull, T. K. Ho, J. Favata, V. Govindaraju, and S. N. Srihari, "Combination of
segmentation-based and wholistic handwritten word recognition algorithms", in

286

From Pixels to Features III: Frontiers in Handwriting Recognition, S. Impedovo and
J. C. Simon (eds.), Amsterdam, Elsevier Science Publishers B. V., 1992, pp. 261-272.

[28] J. Camillerapp, G. Lorette, G. Menier, H. Oulhadj, and J. C. Pettier, "Off-line and
on-line methods for cursive handwriting recognition", in From Pixels to Features III:
Frontiers in Handwriting Recognition, S. Impedovo and J. C. Simon (eds.),
Amsterdam, Elsevier Science Publishers B. V., 1992, pp. 273-287.

[29] C. C. Tappert, "Cursive Script Recognition by Elastic Matching", IBM J. Res.
Develop., Vol. 26, No. 6, pp. 765-771,1982.

[30] M. K. Brown, Cursive word recognition, PH. D. dissertation, The university of
Michigan, Ann Arbor, MI, University Microfilms International, 1981.

[31] Y. Fujimoto, S. Kadota, S. Hayashi, M. Yamamoto, S. Yajima and M. Yasuda,
"Recognition of Handprinted characters by nonlinear elastic-matching", Proc. 3rd
Int. Joint Conf. Pattern Recognition, pp. 113-118, Nov. 1976.

[32] E. Persoon and King-Sun Fu, "Shape Discrimination Using Fourier Descriptors",
IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-7, No. 3, pp. 170-
179,1977.,

[33] M. T. Y. Lai and C. Y. Suen, "Automatic Recognition of Characters by Fourier
Descriptors and Boundary Line Encodings", Pattern Recognition, Vol. 14, Nos. 1-6,

pp. 383-393,1981.

[34] L. G. Shapiro, " A Structural Model of Shape", IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. PAMI-2, No. 2, pp. 111-126,1980.

[35] A. B. Wang, K. C. Fan, and J. S. Huang, "Recognition of handwritten Chinese

characters by modified relaxation methods", Image and Vision Computing, Vol. 12,
No. 8, pp. 509-522,1994.

[36] F. H. Cheng, W. H. Hsu, and M. Y. Chen, "Recognition of handwritten Chinese

characters by modified Hough transform techniques", IEEE Trans. Pattern Anal.
Machine Intell., Vol. 11, No. 4, pp. 429-439, April 1989.

[37] C. H. Leung, Y. S. Cheung, and Y. L. Wong, "A knowledge-based stroke-matching
method for Chinese character recognition", IEEE Trans. Syst. Man Cybernet.,
SMC-17, No. 6, pp. 993-1003,1987.

[38] M. S. El-Wakil and A. Shoukry, "On-Line Recognition of Handwritten Isolated
Arabic Characters", Pattern Recognition, Vol. 22, No. 2, pp. 97-105,1989.

[39] S. Al-Emami and M. Usher, "On-Line Recognition of Handwritten Arabic
Characters", IEEE Trans. Pattern Anal. Mach. Intell., Vol. 12, No. 7, pp. 704-7 10,
1990.

[40] C. C. Tappert, C. Y. Suen, and T. Wakahara, "The State of the Art in On-Line
Handwriting Recognition", IEEE Trans. Pattern Anal. Mach. Intell., Vol. 12, No.
8, pp. 787-808,1990.

[41] E. Mandler, R Oed and W. Doster, "Experiments in on-line script recognition", in
Proc. 4th Scandinavian Conf. Image Anal., pp. 75-86, June 1985.

287

[42] S. Impedovo, B. Marangelli, and M. Fanelli, "A Fourier Descriptor Set for
Recognizing Nonstylized Numerals", IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-8, No. 8, pp. 640-645,1978.

[43] F. Schantz, The History of OCR Optical Character Recognition, Recognition
Technologies Users Association (RTUA), USA, 1982.

[44] I. S. I. Abuhaiba and P. Ahmed, "Restoration of Temporal Information in Off-Line
Arabic Handwriting", Pattern Recognition, Vol. 26, No. 7, pp. 1009-1017,1993.

[45] I. S. I. Abuhaiba, S. A. Mahmoud, and R. J. Green, "Cluster Number Estimation and
Skeleton Refining Algorithms for Arabic Characters", The Arabian Journal for
Science and Engineering (AJSE), Vol. 16, No. 4B, pp. 519-530,1991.

[46] S. A. Mahmoud, I. S. I. Abuhaiba, and R. J. Green, "Skeletonization of Arabic
Characters using Clustering Based Skeletonization Algorithm (CBSA)", Pattern
Recognition, Vol. 24, No. 5, pp. 453-464,1991.

[47] T. Pavlidis, "Algorithms for graphics and image processing", Rockville MD:
Computer Science Press, pp. 195-214,1982.

[48] L. Lam, S: W. Lee, and C. Y. Suen, "Thinning Methodologies -A Comprehensive
Survey, " IEEE, PAMI, Vol. 14, No. 9, pp. 869-885,1992.

[49] B. K. Jang and R. T. Chin, "Analysis of Thinning Algorithms Using Mathematical
Morphology, " IEEE, PAMI, Vol. 12, No. 6, pp. 541-551,1990.

[50] E. R. Davies and A. P. N. Plummer, "Thinning algorithms: a critique and a new
methodology", Pattern Recognition, Vol. 14, Nos. 1-6, pp. 53-63 1981.

[51] R. W. Smith, "Computer processing of line images: a survey, " Pattern Recognition,
Vol. 20, No. 1, pp. 7-15,1987.

[52] E. S. Deutsh, "Thinning algorithms on rectangular, hexagonal and triangular arrays",
Communs. Ass. Comput. Mach., Vol. 15, No. 9, pp. 827-837,1972.

[53] R. Stefanelli and A. Rosenfeld, "Some parallel thinning algorithms for digital
pictures", J. Ass. Comput. Mach., Vol. 18, No. 2, pp. 255-264, Apr. 1971.

[54] H. Tamura, "A comparison of line thinning algorithms from digital geometry
viewpoint", Poc. 4th Int. A. Conf. on Pattern Recognition, Kyoto, Japan, pp.
715-719, IEEE 1978.

[55] D. Kalles and D. T. Morris, "A novel fast and reliable thinning algorithm", Image and
Vision Computing, Vol. 11, No. 9, pp. 588-603,1993.

[56] A. Rosenfeld and J. Pfaltz, "Sequential operations in digital picture processing, " J.
Ass. Comput. Mach., Vol. 13, pp. 471-494,1966.

[57] L. O'Gorman, "Image and document processing techniques for the RightPages
electronic library system", in Proc. 11th Int. Conf. Patt. Recogn. (ICPR), The
Hague, The Netherlands, pp. 260-263, Aug. 1992.

[58] Y. M. Sharaiha and N. Christofides, "An Optimal Algorithm for the Straight
Segment Approximation of Digital Arcs", CVGIP: Graphical Models and Image

288

Processing, Vol. 55, No. 5, pp. 397-407,1993.

[59] E. Saund, "Identifying Salient Circular Arcs on Curves", CVGIP: Image
Understanding, Vol. 58, No. 3, pp. 327-337,1993.

[60] W. M. Tsang, P. C. Yuen, and F. K. Lam, "Detection of dominant points on an object
boundary: a discontinuity approach", Image and Vision Computing, Vol. 12, No. 9,
pp. 547-557,1994.

[61] L. Wang and T. Pavlidis, "Detection of Curved and Straight Segments from Gray
Scale Topography", CVGIP: Image Understanding, Vol. 58, No. 3, pp. 352-365,
1993.

[62] W-Y. Wu and M-J. J. Wang, "Detecting the Dominant Points by the Curvature-
Based Polygonal Approximation", CVGIP: Graphical Models and Image Processing,
Vol. 55, No. 2, pp. 79-88,1993.

[63] C. -H. Teh and R. T. Chin, "On the Detection of Dominant Points on Digital Curves, "
IEEE, PAMI, Vol. 11, No. 8, pp. 859-872,1989.

[64] C. -S. Fahn, J. -F. Wang, and J. -Y. Lee, "An Adaptive Reduction Procedure for the
Piecewise Linear Approximation of Digitized Curves, " IEEE, PAMI, Vol. 11, No.
9, pp. 967-973,1989.

[65] U. Montanans, "A note on the minimal length polygonal approximation to a digitized
contour", Communs. Ass. Comput. Mach., Vol. 13, No. 1, pp. 41-47,1970.

[66] N. J. Naccache and R. Shinghal, "SPTA: A proposed algorithm for thinning binary
patterns, " IEEE Trans. Syst. Man Cybernet., SMC-14, No. 3, pp. 409-418, May/Jun
1984.

[67] S. Lee and J. C. Pan, "Offline Tracing and Representation of Signatures, " IEEE
Trans. Syst. Man Cybernet., SMC-22, No. 4, pp. 755-771,1992.

[68] D. S. Doermann and A. Rosenfeld, "Temporal Clues in Handwriting", Proc. 11th
International Conference on Pattern Recognition, Vol. II, pp. 317-320,1992.

[69] V. Govindaraju and S. N. Srihari, "Separating Handwritten Text from Interfering
Strokes", in From Pixels to Features III: Frontiers in Handwriting Recognition, S.
Impedovo and J. C. Simon, eds., Elsevier Science Publishers B. V., pp. 17-28,1992.

[70] A. Rosenfeld and E. Johnston, "Angle Detection on Digital Curves, " IEEE Trans.
Computers, pp. 875-878,1973.

[71] S. A. Guberman and V. V. Rozentsveig, "Algorithm for the recognition of
handwritten text", Avtomatika i Telemekanika, Vol. 5, pp. 122-129, May 1976.

[72] S. Mori, C. Y. Suen, and K. Yamamoto, "Historical Review of OCR Research and
Development", Proceedings of the IEEE, Vol. 80, No. 7, pp. 1029-1058,1992.

[73] G. Borgefors, "Distance Transformations in Digital Images, " Computer Vision,
Graphics, and Image Processing, 34, pp. 344-371,1986.

[74] N. Christofides, Graph Theory: An Algorithmic Approach, Academic Press Inc.,
1977.

289

[75] Samuel C. Lee, Modem Switching Theory and Digital Design, New Jersey,
Prentice-Hall, 1978.

[76] A. Kandel, Fuzzy mathematical techniques with applications, Addison-Wesley,
1986.

[77] Zvi Kohavi, Switching and Finite Automata Theory, New York, McGraw-Hill,
1978.

[78] P. Ahmed and C. Y. Suen, "Computer Recognition of Totally Unconstrained
Handwritten Zip Codes, " International Journal of Pattern Recognition and Artificial
Intelligence, Vol. 1 (1), pp. 1-15,1987.

[79] P. Gader et. al., "Recognition of Handwritten Digits Using Template and Model
Matching, " Pattern Recognition, Vol. 24 (5), pp. 421-431,1991.

[80] L. A. Fletcher and R. Kasturi, "A Robust Algorithm for Text String Separation from
Mixed Text/Graphics Images, " IEEE, PAMI, Vol. 10, No. 6, pp. 910-918,1988.

[81] R. Kasturi, S. T. Bow, W. El-Masri, J. Shah, J. R. Gattiker, and U. B. Mokate, "A
System for Interpretation of Line Drawings, " IEEE, PAM, Vol. 12, No. 10, pp.
978-992,1990.

[82] C. Y. Suen, "n-Gram Statistics for Natural Language Understanding and Text
Processing", IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAM[), Vol. 1, No. 2, pp. 164-172,1979.

[83] R. Attar, Y. Choueka, N. Dershowitz, and A. S. Fraenkel, "KEDMA-Linguistic
tools for retrieval systems", J. Ass. Comput. Mach., Vol. 25, pp. 52-66,1978.

[84] L. Baker and J. L. Santa, "Context, integration, and retrieval", Memory and
Cognition, Vol. 5, pp. 308-314,1977.

[85] C. Conrad, "Context effects in sentence comprehension: A study of the subjective
lexicon", Memory and Cognition, Vol. 2, pp. 130-138,1974.

[86] L. J. Evett, C. J. Wells, F. G. Keenan, T. Rose, and R. J. Whitrow, "Using linguistic
information to aid handwriting recognition", in From Pixels to Features III: Frontiers
in Handwriting Recognition, S. Impedovo and J. C. Simon (eds.), Amsterdam,
Elsevier Science Publishers B. V., 1992, pp. 339-348.

[87] G. T. Toussaint, "The Use of Context in Pattern Recognition", Pattern Recognition,
Vol. 10, pp. 189-204,1978.

[88] A. R. Hanson, E. M. Riseman, and E. Fisher, "Context in Word Recognition", Pattern
Recognition, Vol. 8, pp. 34-45,1976.

[89] M. Shimura, "Recognizing Machines with Parametric and Nonparametric Learning
Methods Using Contextual Information", Pattern Recognition, Vol. 5, pp. 149-168,
1973.

[90] R. Bozinovic and S. Srihari, "A String Correction Algorithm for Cursive Script
Recognition", IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), Vol. 4, No. 6, pp. 655-663,1982.

290

[91] J. J. Hull and S. Srihari, "Experiments in Text Recognition with Binary n-Gram and
Viterbi Algorithms", IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), Vol. 4, No. 5, pp. 520-530,1982.

[92] R. Shinghal and G. T. Toussaint, "Experiments in Text Recognition with the
Modified Viterbi Algorithm", IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), Vol. 1, No. 2, pp. 184-193,1979.

[93] R. Shinghal, D. Rosenberg, and G. T. Toussaint, "A Simplified Heuristic Version of
a Recursive Bayes Algorithm for Using Context in Text Recognition", IEEE Trans.
Syst. Man Cybernet., SMC-8, No. 5, pp. 412-414,1978.

[94] L. O'Gorman, "The Document Spectrum for Page Layout Analysis", IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), Vol. 15, No.
11, pp. 1162-1173,1993.

[95] M. Krishnamoorthy, G. Nagy, S. Seth, and M. Viswanathan, "Syntactic
Segmentation and Labelling of Digitized Pages from Technical Journals", IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), Vol. 15, No.
7, pp. 737-747,1993.

291

Publications
from the Thesis

[1] I. S. I. Abuhaiba, M. J. J. Holt, and S. Datta, "Processing of Off-Line Handwritten
Text: Polygonal Approximation and Enforcement of Temporal Information",
CVGIP: Graphical Models and Image Processing, Vol. 56, No. 4, pp. 324-335,
1994.

[2] I. S. I. Abuhaiba, M. J. J. Holt, and S. Datta, "Straight line approximation and 1D
representation of off-line handwritten text", Image and Vision Computing, Vol. 12,
No. 10, pp. 649-659,1994.

[3] I. S. I. Abuhaiba, M. J. J. Holt, and S. Datta, "Restoration of Temporal Information
from Static Images of Handwritten Arabic Script", IEEE SICSPCS '95: IEEE
Singapore International Conference on Signal Processing, Circuits and Systems '95,
pp. 304-307, July 1995, Singapore.

[4] I. S. I. Abuhaiba, S. Datta, and M. J. J. Holt, "Line Extraction and Stroke Ordering
of Text Pages", ICDAR'95: Third International Conference on Document Analysis
and Recognition, pp. 390-393, August 1995, Montreal, Canada.

[s] I. S. I. Abuhaiba, S. Datta, and M. J. J. Holt, "Processing of Text Documents:
Straight Line Approximation and Lost Loop Recovery", ICDAR'95: Third
International Conference on Document Analysis and Recognition, pp. 1157-1160,
August 1995, Montreal, Canada.

[6] I. S. I. Abuhaiba, S. Datta, and M. J. J. Holt, "Fuzzy State Machines to Recognize
Totally Unconstrained Handwritten Strokes", Image and Vision Computing, Vol.
13, No. 10, pp. 755-769,1995.

[7] I. S. I. Abuhaiba, M. J. J. Holt, and S. Datta, "Processing of Binary Images of
Handwritten Text Documents", Pattern Recognition, Vol. 29, No. 7,1996.

292

Appendix A

Learning Data Set
of the IACR System

Figure A. 1. Guiding sheet used to collect learning data set of the IACR system. Strokes

are handwritten on another blank sheet which is attached on top of this sheet.

294

""""\""""""\""\"1\"\"111\\1111"1"\SI1//1\111"

1111 III II11111111II11111111% 111l 111\1 11 \1 111

cýýccccccccccccccccccccccýcc c

4 CL ý
000 000000000000000000o

"\-ý111111 '111-1`1 11 'ý 1 `ý 11 1111 1Z1 '1

'I -, j NJ v Jv J%tJvJV\l vvv v\IV VVVv "1 vV v

nnnnn AnnnnnnnnnnnAAA AAA AAA A
°\ °\°\ °\ °\ C\ \ Cl `\ °\ °\ g 01 ýý 01 0ý Pý 1 °\ 4, g 0ý

55S 57 yy ssy 9 ss 5s Cl C' Cl ss5 Cl 9 s. sss
ý 'ý ýNý

/ý
ýýi. / ý. / /ý/ n. / n/ ý. / ^/ r/ .. / ý. / ý/ , -.. ý ,. ý

u'WwwVºui vi ", vi L. ºwui%. P wwQý V, td c. I wv) Lo

////// // (
"" _----- --- -- - -- -- . -.... _ ----

-t- -fi--r -+- -i- t+ -r--y- -i- -r- t+ -ý- + -+- . t- ++ -t- ++ý

))))))))))))))))))))))>)>>))
CC((((CCCC(CCCCCC(((((ý((((C((CCC
GG `6 66 6G `llG G6G lý 6c G6G GG c< <

JJ>J>>>J» lllll 'J»! >l A J! J >l> JJ- >J >

Figure A. 2. Page No. 1 of learning data which were provided by Subject No. 1 and
used- in the learning stage of the IACR system.

295

111.1 1 "- 1/1111111111\111 11 114%1 1/ 11111111111111444100

1111111111111111111111111 111111111111111111111 m1

cccýcc ccc ccýcccc cIQ ccccccc cccc c

5. ýý ý: ý. IL. L iL ILI ý. 4. ý cL w0_'Li
O 9 00 0op0p000 c0 000 00 p0 00000 fz 0

1-\11 111 -\ '\ 1-\ -\ -\ -\ -\ -\ -\ -\ -\ --\ 1 -\ 11
ý1vJýv V"'1 v VV"J VvJv. t vvV v VV Vv Vy V

ýnn nnn nnA nnAn nnnn nnnA n AAA nn
°r °\°\°\°\ ý °\ °ý 0\ -\, \ °l°ý °k okoý g `i °ý, °ý IN °\ °\ `i `\ `t °\
9s yyss yyss yyss ysy y yysss. sst ssss sº

ýN r/ ^/ .ýý. / ý ý� ýN N/`ý ý i� /ý N /ý ý . -ý ý ý/ N .. ý ý

W VýW wWwwwWUyWva W Wt� Vi wvd wW I_� w v/

r

-{- -r- +++tt -t- -ý- -r +t t- -t- -+- + -t- + -ý- -1- t t- t- -t- -t- -! -
)))))))))))))))))))))))))))))))ý)))

(CC(C CC(CCCc(((CC(C(CC(CCC(C ý(cCCC C CCC C
G66GýGýtGGt<<GýGl6 6L 6666666<< <

J! f/J>IýJJfI>JJl/ll-0 lilJl/l/J/» >

Figure A. 3. ' Page No. 2 of learning data which were provided by Subject No. I and
used in the learning stage of the IACR system.

296

...... 0....

ýccc cc cýc cccccccc c ccc ccc cý
rýr'r'rt"rrv r r'v rýýrrrrýrrrý'

E iLIL ELL ý ýCL
DDoOOOC)OOoOOOOOOdDoöO

11l lý"1 ý lllýllllýllýlýýý111
vvv v %J -4 %J NJ N3 vv vý1 vvvv VV
AA AAnAAAA AA AA AA AAAAAA/1i\A ti A

giq99i °1 ̀ i a Cý C\ Cý `i
SS sSS S SS SssssssltssssssssS

ýr
-"'* --0 rr 'r. r- . -- ^/ ý .. ý rr . -ý /� ý" /"0 ..

wWw tr W l� WwWl. + l� ld too U.. ' WWl, i W C� Uv uj

ý/// /ý/ýýýýýýýV 'ýý/ý/ ýýýýýý ýý

t-

t++ -ý f- y- -}- -t- t `I' -1-- -+- f- -ý'

J)>,))ýJ.))»ýý) ,)ý)J)ýýý)ý. ý.)» .)ý>>>JýJ))
((C CcctCICCC (C(C (CCC((CCCCCCCCCCCCCCCCCCCCCCýC
ht. C(, G6 LC. GGI. ("I. GG(. 1, G661.6 C l9 Gc9 ý

>>7». »»»> » . 9ý. ý 9ý .»>>>>» .> >>

Figure A. 4. . Page No. 1 of learning data which were provided by Subject No. 2 and
used in the learning stage of the IACR system.

297

. "... ...

... I"

\\ \\\ \\\ \\ \ \1 \\ \\ 1 1\ \\\\\\\1

ýCCCCCýCCCczCý CCC<<C<<

vC'ýýý rý iJ
i '5L cL 5L iii eL L

ovua pvoo tl o0000O at) OoO00b 00

11lll l-\ 1-1 11 11 l"ý '1 111111111.1

Jyvvvuvýlvvvýlýyýlv y vv vý1 v"! v

nlýnlýnlýýýýA A AP, IýýIýýýýnn ýnb nn
ýgq Cý qýý ck C\ "\ Ck Cl\ C\ C\ IN C\ 5 0, ýýýý 40\

ssssS SSSSSSSSSsSSsssSSSSSSy

rr rr rr ý .�rýr . -ý r . -ý .ý .ý . -- ý r'' N

c� C� w lr ý. r ýWWWwWvw uý Li

ý//ý//
- ----" ----- --- ý_

+" ý ^. -

+--6ry- r t- t- -t- -r -+- + t-+- -r- -ý- A- +- -ý. + . ý- +- -+- -}- -ý--1-

))>>>>)»ý)ýýý))ý)»)ý)))ý)»)>>)ý)> >)> > .))
ý)

C. CC(ýCCCCCCC. ýCýCC(ýCCC. cCC((Cý(C(cCcc((ccCC<CCC
GGGGGCLýGGGýI LILý <IýLGlIýIbGý

%JJ»ý>, »>>>>>J
--p ». i-». 3

,9 -J .>>,
i

Figure A. 5. Page No. 2 of learning data which were provided by Subject No. 2 and
used in the learning stage of the IACR system.

298

%N\ \\\ \\\\\\\ II II1\ \-\ \\ \\\\ýý\I

CCCCCCCCCCCC-CC<<<<c'c c< c ccý ý

ýEýEý EEL j
OOo00OO00ooOOOvooooo0000 00

VV VýI ý1 'V ýJvV V'V 'V 'VJVV v'`l '1 ýi Vý1 N ýf v

AAA I\nnnnn& nnn n11A nn nAn ý An ^
`\ `1 otý

ssss sss s ssss ssS 5 ss ss ss5s
ý�ýº/i�ý� /ýIi,. i ,r ,� �/ý, /i� . ý. -ýý�ý� /� /� /� . -ý .. i ý/ . -i

C� Cd Ld C� y c� t� wwwwwr, v `� w WOW wwC, � ý

i///////////////i////////////i/ i
---_- -. _-- ----.... -. __. _ - -

Z

ý--+ t+ +t t- t- fi -}- + -ý- -}- 3-- -t- ý- i- -t- + -t- t- + -t- -t- -! ý

)))))ý))ý)))>>))ý)))>)))>)
CC((C(CCC CCCCCCCC(CCC(C(CC(

»»»>»»»»»>»»»>>»i> >

Figure A. 6. Page No. I of learning data which were provided by Subject No. 3 and
used in the learning stage of the IACR system.

299

0% %1X\\\\1111%%1%N%%\11%\\1

cýcr. cC. cc llý ccý1ý cccccCccCCCC
v Vý r vý

0000006Dpat) 00 OOOaý

Vy"VvyV yý'VV yVVVVVVVýv VyV v
/\nn nnnn/\Annnn/\A AA nn AN A An n

4ýN`
`1`\`11`

SSSSsSSSSSSSSsSS ss ss SS SSSý y
i-'i� ýi�i� - .�N r� . 0-.. .v .� ol . -i .. i -. -i N -- r i� -i

ý� C� (y W G' w! � ui (y !. v W fii W Gv ww c� G� c� tW ul W

///// //////////////////////// //
- . __.. ^.... - _... _- - ---- -- - .. - .-

+ -t- +tt t- f fi ++
))))))))ý)>>)) ý) >))))ý) ý

(CCC(tCC(CC((CCC (((((((((CCC

iii>ýý»ý»ý>» >ýý ý'ý>>ý>-> >

Figure A. 7. Page No. 2 of learning data which were provided by Subject No. 3 and
used in the learning stage of the IACR system.

300

.IJ"010II *00. "00""000 ,0&0 00 00

1ý\11111\1ý11111111ý1111ý1ý11\\1\ý1ý\\ý1ý1111111
CCCCýCC««c« <<ýcccccccýcccc c«cCC

ýNýY\ 0\1c1\1 ýýýýIle\

e,. CL

or oD p pDOo 0 000 00000 0 00 C)OODOO
O

1ZZ1ýýZ1 -1 1Z-1`l'1'1Z-\ 1111-VN ', 1,

"VVVV vv vVNjVVv

nnnnn nn Nýnnnnn nýnnnnnnnnný A

%ý'V\ N ̀ \
ssssSSSSSSSSSSSsssssSSSSSSS S- y

^, ý'',. ý , "ý ,., iv N r-j nV vN O"V N o%J NNN /d IN /v -y

Go 4. c. Cr Gr c. i w 4w ca c,. G� to C+ t. + c. º C, - C� C/ C. i !. r Www

ý

W

/7/ //7///////////////////1////////// // / // /
ý

»»»>»>», >>>»>>»>ý>>)))ý)>>))ý ý

(CCCýC«c cCC CCýCCCýCCCCC (ýCý<<ccýcýc(<< C

Cl! `«<<<<< <«ý«<`c<<ý<'<<G ý cý ý<ý ý
ftjL-1>j». >> »»>»»»>>. >!. >» >. > J >J> > .91

Figure A. 8. Page No. 1 of learning data which were provided by Subject No. 4 and
used in the learning stage of the IACR system.

301

............ 0

11111,111111111111I1I 1\1111 II 1111 11 1ý\ 11
«ýCCCCCCýC««<CCCCC<<C«CCC CýC CCC

f ýtý-f- iýýýý ýý ýýý ýýý ýýýýýýýýýj li
00000000DOO QOO OOOOCOOOOOOOOoOt300 O0

VVVV VVVVVVýºVýJVV'Vý1NI \J%/ýlVV1JVVV\JVv V

nnnnnnnnnnA AN nnnnnnnnnnnnnn n

fsssssssysysssysyysyy yyysyyy yý
NNN N', ' _j ^' -0 NNN No-I N I-A /'ý ýV NýV -V N~ e%d

C� ÜJ (� ý/ t! ý
v L. / G� L� G� 4/ ýw G/ w ý"" G� C. 0 cr W V" L. t. i w

///i/
ýý. ýý. ý w

-f-t t `1- -t- fi t fi t-i- fi tt -t -t- + -t- ++

>>>»» ý ». >> >» >>>J >»>)ý»»» >, ý))
«cýcýcýýcýýcc c ccc cc cc tCýC c«ýýCC C
Gýlc G<<'G GýGG<«G<cGG G'G <<C c6 c4c s c1

»ý>»>»»>ý >»»»»»ýv»»»> ý> »> >

Figure A. 9. Page No. 2 of learning data which were provided by Subject No. 4 and
used in the learning stage of the IACR system.

302

1 11 11111111º 11 1 111 11111 º1i11 1I

C'ccccccccccCC ccccc cccccC

ti. ý
OQoooODOOQOOOOOOOoooOOO co ec oQ O

VVVVVVVV'VVVVVVV"JVVVVVVVVVVV V\IVv v

nnnnnnnnnAnAnnn-nA nnnn nnn n nI\n n nn A
°ý °1 °ý°ý°ý `ýý °ý°ý ̀1 ý `1 °ý`1 ýý °ý °ý°ý °ý ýq °ý ý °ý 9ý °ý ý ýº °ý

ýLSLý. zstzLssS; s X, syss ss sý s4 ssss
NN n/ n/ iv NN ýN Ný NNNN ý/ . -ý i. I Niv "v NN Ndt/ Oº+

411ýG1 WW wW W CJ W ý, ý1 (rtJ c�4/ Uw wti�W wW wwW L41 WW Wý

-- ----- ------- -- _ý

-ý- . a-. *- -r -1-+. -4- -r- i- -«- -i- ýr-
++ -ý. ++ . %. -4- .r.,. ., {.

)))))») ý))ýýý»))))ý)))ý)))»))))))ý))ýý ý
<<llýl(CCtIC(lýC(CCC ýCCýC(CCCýCCCcCCCcCCC C

<'ý<««<&I «<<««<<<«61, e<<<" #'Ile «6
, »»»ý>. »ý1>>»ýý»>»> »»»»»» >>

Figure A. 10. Page No. 1 of learning data which were provided by Subject No. 5 and
used in the learning stage of the IACR system.

303

PAGE
MISSING

IN
ORIGINAL

Appendix B

Testing Data Set
of the IACR System

Figure B. 1. Guiding sheet used to collect testing data set of the IACR system. Strokes
are handwritten on another blank sheet which is attached on top of this sheet.

306

""1"""""""1"""""

1 1. \ 1ý\111111111I111

cccccccccccccccccc cý

eL eL eL eL CL
0000000000000000O0p0

-1-11 1 -11 1`1 1 1-1 111111111

vVJVv. V _ýv, v vVVyvý! Vv

nnnnlllýnnnn AAAAAAAAAA nn

nJ nJ .. / ý/ A. ' n/ i`/ n! ý. / N ei n/ ^. J n/ n/ n/ .. / n/ r� .. /

vý vý V) W uJ u! to t%1 uJ %i) uJ v1 W v1 W u! W uJ cy

/////////i//////////
-- -- -- ----- ...

cCCCCCCCCCC cý ccCCctc
ý6 6ý 6ý 666666 6ý ý66666
%q -9 9i iý 9 9ý 9 9ý > 9> 9ý 9ý

Figure B. 2. Testing data which were provided by Subject No. 1 and used in the testing
stage of the IACR system.

307

1I1"""I 00 41 000

ýI111111ýýýý1ýý111ýý

cccccccccccccc cý cccc
%Alýýý>ý>ýý>ýýý

00000000000000000000

`1 ý11111111 -1 1ý11l -1 -1 -i 1
VvvvvVVVVVVVVVVVvvv

AAA AAA AAAAAAAAA
g9999 9941 999`i9ck `i at `199
scys. s s" sýýý yýý sG sý sý s

N e, J N ti/--i nJ �., J N i,. J nj NNý nJ N ti/ /%, * ti

ýwww vý ww ui w" UJ W vi, vl ý! "1 Wwu. J WWW

--

4- 4- -}- -{- --F- -+- -i- -F- -}- --}- 'i- + -}. -+- ++

CCCcCCccCCCCCcCCCýCC

999999 9> 9 9,9 99999959

Figure B. 3. Testing data which were provided by Subject No. 2 and used in the testing
stage of the IACR system.

308

....................

11II1i11111II1I11I11

cýcccýcccccccccccccc
rr rrrrý rrrrr�rr"rrr

00000000000000000000

11 -l ý1 "1 'ý "i 11 '1 't 1 `1 11 "1 1 "1 '1 '1

vvvvvvvvvvVvvvvvvvv
nAnllnn/lAnnnAnnA nnn nn

`igI g11g9g9 Cigggq 1ý
ysyy s- s C. yPyysss t9 y sr ss

N n/ NNNN IV ov IV /V IV N IV ýy N IýI

www ww ww ww wwwwwwwwwww

ý- ý

-4- +++ -i- t -+- -t- -t- -t-

----- 0- 00

-t- + -t- ++ -t- +++ . }-

)))))))))))))))))>)>
C((((((((C (C C(CCCCCC
G66ý666 öý6 666666666G6
J>> >9999 9> 999! 9ý 9999

Figure B. 4. Testing data which were provided by Subject No. 3 and used in the testing
stage of the IACR system.

309

....... "...........

ýIIIIIIIIIIIIi1IIIII

CCCCCCCCCCCCCCCCCC Cý

vo vo

C. ýc IL i
0000000 01 000060c00000

i `1 `1 111 `1 `1 `1 '1 `1 '1 `1 '1 `1 1 "1 111

vvvYvvvvvvvvvvvVVVVv

AAAAAAAA
ý°ý °ýý ýý°t 199999 99 9919
s- stttststf sý ss- s- ýsssý.

P� NNNrN /ý NNNNNNNN

WWWWf. ýI lU tU U) W. WWWU. S W tU W

//

NNN /-0

wwu! w

i if if iiiiiiiifiifI
rr--.. ý .. ý r" .. ý-----...

)) ý)ý)))))))))>))ý))
cC c(cc c(cccccc cý Cc Cý
66G66t6666GGGCCCC66G
%%>>9 19 999 19 99999 .9999 1ý

Figure B. 5. Testing data which were provided by Subject No. 4 and used in the testing
stage of the IACR system.

310

""""ý""""1""""""ý"""

ItiiIIIItlIIýI

< <<< ccccýccccccccccc
ýr vrr rýrrvirýrrr rrýr ý
0OOOGO0p0pb00OG 42,0 o0p

VVVVVVVVVVVVVVVVVVYV

ný ýýný nýý n n^ n^nnn ný n

`1 °" °\ �2\ :N =ý

yys sy sysfssss9yy9-9sy
.v iv N iV N^-, N^/ N A/ IV NN .vNNN N/N/

vý W V. W WWWWW la . lý, J wwWwý,,, wWwW uJ

1/ ////////// // /// ///
-- --- --

} -ý * -}- * -4- -t -t- +t -t- -1- -f- -t -t- t -i- -1- #-t-

ý

ý cý<< c<<<< cccccc c< cc
G666 ý Gý GGGGý666666 6C

ý9999ý999 9' 9999 7ý ý' ýy

Figure B. 6. Testing data which were provided by Subject No. 5 and used in the testing
stage of the IACR system.

311

............
".. ".

t\1 1\ \ý1ý11t1ýýttý

ccc << Ccccccccccccccc

ýýýýv(, v 'C ýýC `C `C 'C C `C `C V V,
ý. itýýýýtýtýZi. iýýii%
00000000000000000000

ý111 -1 111111 '\ ý1 "ý "ý 'ý 1 `ý

vv výf VVVVvvv %l vvv ýJ vYV

nnnnnn ný n^ nnnnnAnnn

aý9 9 g9
ys yy ýyy yý ýýy ys sýýýýý
r`ý NNNNNNNNNr N/" /ý NN N/ý NN

0-4) w w. j .y.,) Ww cJ C. + ". "i c, ". w wwwc,, c.. i wwc.,

////////////////////
-- -- Iý--. - .rý... .º ._ ... r. --

((((C ((((ý(C(C (((((ý
6(ý66ý6666ýý6 60

Figure B. 7. Testing data which were provided by Subject No. 6 and used in the testing

stage of the IACR system.

312

-"......,........,..

ý1ý. 11111ýI1ý11111 1ý 1
ýccrz- C-c C, C,

Ir iýýi v ii
ýýý. ý. LL I- t 1L ýtf.

00000 000060600600000

.` -\ -L -, -1 -\ -t -\ .,.. \. Z '\ n. -\ -L "\ -L .` 't 1

VVvvvvvvVvVVvVVvVvv

Aý A. n^n^ il n

Cý, cl\ 9, qýýR, cý *A, 0ý, 0. ý ý", 0\ 0. \, l\

yyy yýss-s ssf yýý y sýs ýý
N i� n-/ '-, r/ �s i� �ý N� w-/ -/ NN e- oý N n/ N /.. I

Gi (ý C� G. C.. " G, !, ý (, v t. ý c�ý L, r t, i w ý� wý

-- ý - ý ýý

-ý- -ý -r + -t +++ -r -f- -tý -t -c -+ -t- -t- -t -t- t- -ý-
)))))>))))))>))ii)))
CC cý cCcCCCCCcCcCCCCC
6ýýý 66 6ý 6 6ýý 66 ý' 6"6 66 ý
ýý9999999999 99 y99999

Figure B. S. Testing data which were provided by Subject No. 7 and used in the testing
stage of the IACR system.

313

.ýý. a. a". "ýý..... "ý

EtI11111IItItýlI111

CCCCCCccc<<cc cý ccccý

vj r
a C' DOOOOOOOOOOOO00OOO

,1., ýý", ý, ýý11ý111711ý

VVVVV V\% VVVVVVV

NANAAAAAAAA n nn
ck Cý aq 9 Cl g qCk 0% qýCNý, C\ ggqg
ys- ysssyyys ssysys syy
N1V CJ NN IV NrV NNNWNNN /V NNNN

uJ WW Ui 4,3,; WW vJ '. rJ "'. yJ U, WW vw w vJ -- .iW : r!

.//////////////////
/1

- -- -- r ý

ý -ý- ++ -ý -ý ý- ý- -ý -t- t- ++ -t- + -i- + ý- +" +
>>>>))>>)))))ý))>>)ý
<< CCCCCCt Cý CC Cý CCCCC
66666G666666666 6ý 666

99999 P99 9 9s

Figure B. 9. Testing data which were provided by Subject No. 8 and used in the testing
stage of the IACR system.

314

ý11111.1 1111111111111
Ccc cýcý Z, cccccr, ccccccc
rrrrr rY rY t� Cr tr r rY, r rr yi
ý. - 1ýZ. ýýýýýýýýý1ýýý1% Ilý
0000000000 Q0O0 43 po

Z' Zý1lý 'ý Zý Z1Z 1ý "ý ZZ1 1'1

VvVVVvvYVVVVYV

ý gý a g`ý q qý g9 cý 9ý9g99 9ý
yyy t- sryFy9yyy

OOO

yyyfyys
-4- rv- rr-, r .. r rY' n^ M ^I" ", r nr N '', *o �lý .v .v .v "v Ov

Gr t. V w (. v i. d w cr !. º w- w i,, f,.. G� 4, � c. # w u+ ur c. + L4/

//i//// /'. ////////////

-------- -
+++ fi i- +++ -t- + -t- + -{- -h + ±*+ ++
)))))))) ")))))) "))))))
C C(CCCCCcccc CC CCC C'(c
C 6c 666 6(Cý 6ö6äý6 6ý 6ä6
599 9�9 9,9 9939 9999 99

Figure B. 10. Testing data which were provided by Subject No. 9 and used in the testing
stage of the IACR system.

315

.. "a, "frý. N""" 0 0 0

ýI1IIIIIIII1IIIIII II
c C', c Cc (ý cccýccccc c< ccc

rc-
0ýO60OopOoOao0000000

ýý-1 1 ZI Z Z-\ `\ ZZZ Zý -ý -ý -\ -\ -l
"l -4 N '1/ V NJ 'i ý1 yvv N4 v IN VVvv

nn nnA AnA AA ^nnn
4 \ °\ tý `\ 41ýý

ys ssýs fs sss A -A ýp -a AA4fy
/LJ N/-ý /`/ ^. o /v ýf ýý - ýI NN iv N /d NN iv NN

C0 CAJ ;, dCU C41 W CJ LJ CJ. 4J GJ G! 4J GJ c. J Ql t, J t, c1 4! cJ

- -- ýý-- --- - . 0- --

'i' t fi tt -4- ttt -t tt i- +t -h

CCC(CCýC<<(CC(CCCCCý
6G6 6666 666ý G6G66
9i `999999 999999 99 99 9

Figure B. 11. Testing data which were provided by Subject No. 10 and used in the
testing stage of the IACR system.

316

.. "... "...
\\ \\1\\\\ \\

CCCCcCcCC, C C, << <<<

N /V NN
ýý ^/

C

*<

eL
DGab000G000

... \ .. l 't _` '1 .. ̀ _\ _\ _\

NNn f 't' f\/\f%. /\ An
ýýýýý\ cý ýý, eý

SSsSf5sss
N /� // n/ /-. / /N i� /�

wWwc. w c. "i w w (, a

ýý

sy

\\11lIIII

0C40OG. OQ0

J-J J. i Jvv

nnnnnnnnn

sssss s-S sý
N --/ n/ N

G� " l. r Gi

^. o N

W C... (. j

CCC

c. i CGJ wwww

///// /1/, ////////

ý ý -- -- ý ý

/ý//

... ý

-ý -ý' -i' -t' -f' -{- -f- -r -t -F- -I- -r -j- -+- + -4- -i- -F- . fi -'t-
>)))))>>>>))>>>))>>>
C. C_C. C LL ýýý CC CC C, C CC (ý (
ý 6ý ý6666 6ýý 66 6ý6 6666ý
999999 9f J 9f ,4>>99 >j ,i

Figure B. 12. Testing data which were provided by Subject No. 11 and used in the
testing stage of the IACR system.

317

.ý"...... ". """"". """

ýý1ýl111ý11ý11týý1i1

G< << GcCG. C. C. 0GGCýGýGýý,

ý rýrýrýr rwý rtýrý rýrýý r rý
ý eL
Qo00000

1 -\ .1 -1 1 "l -1

ýuvvvvv
n ný nnnn

IN
sssssss

r

O co DO C) oooCOo

1 1ý ýý11 1ý 1ý 11

ývvvvvvvvvvvv
nnnn ný nnnnn t\ n

CN,
sSsssssSsSsss

r ,- .� . -., 0 -, .orrN . -0 N i- r" oý . %, . -0, r' r
dw Co., c/ c/ � td v W- tr v�vu � t� b� a. r G, i. r

i // /////////////////
ºººº^

-t- -ý -ý -t- -ý -r + -t- ý- -t-

.)))i))>>)>
(C CCCCCCCC
ýý GG G' ý66G6

i 9� �9P. 9 i; 9

1-1

))

G '.

ý9

ýiýýii-

))))i) "))
(c CCcC (C
66G 66 16 6

99 9�v 9p9 9

Figure B. 13. Testing data which were provided by Subject No. 12 and used in the
testing stage of the IACR system.

318

....................

\\1\\\\1\\\\\\\111\\
ýcýccCcccc C- c<< LCCCcc

rrVr ý' r V' rýrrrVVr
ýýý4L ý- i ýý-ý. tiCl- IL I. L i
0000ovo000000000vGo0

vvvvvvvvvvv vv vvvvvvv
ýý ýý ný ný nnn n^ nnnnýn

°% 0c
4ff S- f- ysyy $- 4 s- 1- i- SyS, s. ss

/, N /l+ ^, r N /r NNNNNNNNN n/ ti p

&. + b. / W ui wvv t� w. W t., vww W4 40 WW 4r

// / i/ //// / // i /i i // 1/
"' "' --------- ý ý^ ý -- --

++++ttt -t- -t- t . I- -i- 4- + -4- -t- + r-t- ý

i)))))>>))))))))))))
C. (CCCCC(C C(l(C Cý C(((
ý6ýcClG6 öý 6 6' 6 6C 66666
ý9999 9ý y999 9ý ý99 �� �

Figure B. 14. Testing data which were provided by Subject No. 13 and used in the
testing stage of the IACR system.

319

.... 0 .ý... ".....

\\1111I1I\1I\II1111I

C<<< ýcýcc Cý cCýCCCC CC

t"
121L

0oDO0000000000000000
11111 1ý 11 111 1ý 111111
vVVVVVVVVVVVVývvVVVV

ýýnýnnnn ný ý 1ý nýnn^ný
ý ýýýýýý C\ 0ý C\ C\ C\ C\ (ý Cý

ysy s- s- ý- s- y s- s- ss s- s- s- s- ýyy
r rý N ,., r+ NN f' /i , -º r^' /' P rl NN n+

v' ýý v' ý ý, ' v' v' J' .ý . }ý ..., ý ."w.,.. ý WW .ý

i/// ///////////////f
-- --- --- -- ------- , ý..

-ý-
>>))ý1))>>))))>)>>>)
ccccCcCCcccC CCCCCCCf
666666b 6ý bG66666L666
%9i 9ý 999999999999999

Figure B. 15. Testing data which were provided by Subject No. 14 and used in the
testing stage of the IACR system.

320

.

\\\\ \\ \\ \\ \\\\\\\\\1

CCCc4ýcC. c< <
V -V rýývV, r t4 tv r t. tq r vo

iit00000000000000occao0

-1 -1 -1 1 -1 11111 '1 1 '1 1
VvvvvVVvvvvVvvvvvvvV
^nn

9 `1 °ý

Sss
r .. r ,,,

^ An n^

°ý °ý °ý °ý °ý

yyyyý

^^ n AA AAA A AAA

yyyyyyyyyyyy
.,.. o ^/ NNN Iv/ N ti NN I"0 NNNNvN

wwwwww : +1J W W. (, r ww Cu wwwwc,,, ww

///// // /////////////
--- --- ----- . -.. / I-

CCCCCCCCCCC Cý CCCC c(t
dc! C lý 9ýC 6/ !cC9K!

ý>9>ýýý>ýýý9ý>>>>919

Figure B. 16. Testing data which were provided by Subject No. 1S and used in the
testing stage of the IACR system.

321

0/0. .-00... ". I

\\\\11ý111ýiiý11ýt1i

C' CCC("CCcCc c<< ccc cIz c
ý ý' irrrýi rrrý rýrý r~ ý rw

DDO000a00oDo0dOOpc, o0
11 -1 7 1ý1 '1 ý'1 '-l `L 1111 -1 1 1'1 '1
VVvvvVVVVVvvVVVVV Vý V

nnnnn /\ nnnn AAAA /ý

`\ 9 `l 9 Cý r! a5 CA Cl `t °l a Cý I
yysysys yý yyyyy s-

N NN /V -, v /j /N

r- yyys

^/ /v N /V NNN ^/ . 00-* /1I ti .v ti

W u' k1 ul +, J tiJ w' Q LO .W w' Wwwu! KJ cJ WWw

--r- .ra

4- 4- ++ 4- -I- + 4- +- -{- 4- 4- -}- 4-
ýi)>ýi>>)>)))ý)ý)>>>
ý. CCcCCCCCC<< cC CCC CC' C

z b666666bb66666ý cf 66
9999 99 999 ,g .ý9999y99 9ý

Figure B. 17. Testing data which were provided by Subject No. 16 and used in the
testing stage of the IACR system.

322

.... 00

Ill1111I1111I1

r <. r cý rrrrrrrrr

r' rr'
ýý

0OOOOý00000000

-1 -l 1 -1 11 -1 "t

VuVVVVVv

"1

V

n AAA AAAAA

'1

YVV

/1 /AA

a9 a9qqaqq999
ý ys . <, :54s54 ss
N nv N-., N/-., N r" ý 01. VI MN

VV

An

Cl Cl

5s
NN

WWWWWWWWWWwwW

// // /// /"i //i
w- r- --- - r. .-

w-,

&0 0 0

ýrrr cc-
r' r r' r~ r rý

oco0oc

ii -1 '1 "l '1

vyVVVV
AAnnAA

cý cl q cq cq q

sssss sý
w

W lIJ

NNNN

WW 41 WW

///////

- ... - r - .ý --

+ ý.
\\' -t- ý

CCC(C Cý CCCCCCC. C CC CCC
666666 6' 666666 6' 666666

%i 9%9 ý9ý99 9999ý, 9>99 9

Figure B. 18. Testing data which were provided by Subject No. 17 and used in the
testing stage of the IACR system.

323

ºiiIº rºº º. i rºrriI
ccc 'r, c 4z- ccccccccC. cccccc
Ir Cýýýýýýýýýýýýýý

eI_ iý i e. i- i. j- -j 4 iL CL 5- 4ýý !ý
ý0cOOo°oG0O00000000

ý" -1 '1 11 'ý `1 "ý -1 "ý 1 "ý 1 `\ -ý '\ ý11

VýuvvVVvVVVV V\ 4\ 1\ 4VVYV

nnA. A /\ n 1\ nnnnnnnn

°\ °\ q °\ °\ °\ °\ °ý Cý °\ °\ Cl C\

fy sý- ys yss yy yy syss sý y
NNNN ý/ NNNNNN N/ý/ /V NNN

LA uº U) %j) Www u1 w. ww ui %u wwwWwWW

////////////////////
---- ý- ýr .ý

+

>>ýýý))>>>>>>>>)ý)ý)
Ic ýý Cý c c<<< C C< CCccýCc

ýd!! ý<! <dG[
9ý ý 9ý 99 9>> ý>99 g

Figure B. 19. Testing data which were provided by Subject No. 18 and used in the
testing stage of the IACR system.

324

.. 0006000

I1111II1%1111111 11

cccccccccccccccccccc

0000000 00 00000000000

vVVYvYVVVVVYVYYVYVYv

AnnAAAAAAAAAýAAA

c. ýc4 Fý yý Fý ysGý vý Gý G Pl
wNN i� d N r/ 0� N P. / ^I N /� 0� ^/ /-1 I� ^/ i� Ir. 0

4.1 vi t� .i vi . "i .J uJ vJ . uJ %w bw ti vi wwww uJ %., 3

/ // // //// ///////// //
ý .ýýý... 0ý ..

+++++t+t+±. t++ t- + y-

))))))))))))))))>)))
(CCC(ClC(CCCC(((((((
6C6666666666CCC66666

9>>>, 9ý9>>>>9>>>>>>>

Figure B. 20. Testing data which were provided by Subject No. 19 and used in the
testing stage of the IACR system.

325

". """"""""""""""""""

CC Cý CCCCCCCCC. ccccCCý

*, C

Z.
-

f- t- f- t- t- C. f- f- f- '- ýL f- L i.. t- 4. LL

O0bOýD, 0, p0000O0OOCO6O

vYýývUv ti VyvVVýYVvv Y" V

A ýºý nhn n^ n /1 nnnKnn, nA

°, -\ Cý 0. cý qý, °\ "ý

ýs yyyss-ys-sýfýyyys-ys- yy
N N N/d ^/ -/ N 1/

NNVNNN ^/ ,... N-M --

Www w-w www w" www1.., w Uý+

ý

WwwwW

///l////////i // / /// /
-- -- ...

-}-
ý

C
6' 66 6` 666Lý6G6d ýý ýý 66 ,ý
99 9ý 99 9% 999999ý ýý)>>

Figure B. 21. Testing data which were provided by Subject No. 20 and used in the
testing stage of the IACR system.

326

Appendix C

Learning Data Set
of the CASR System

ýý
ýý'ý.

ý "ýi ýP ýý% 1 ý'ý 1 Jc) ji- I> 1 J---
.

Jj

°ý' ý .ý %ý-ý ý . ýý, ý-- ý> ýuý -vJ1 J"ý. ý ý

ý .ý LS
ö. . J. ý ºjf

_i.
"- J%

/v 7 ov fvj

ýýwý ;f(ý' ý ýýý''ý'ýº. > 0.

-- cti, ý. _J ýý .- ,
iý `ýý -

rwý- ýº . ý, ý-t

19 Uýq, ýº
ýs`, ý Li4 psLOO

GJý

. -" .ý_.

Aý;,; ý
,,

9 üý>, ýý AA, ,

.,. p (. ýý iý Lof Ls-
(Vu ^A

ýý cs cl. iý/
^ ýý ý(? ý%ý ýý

.
ý,

ý, J-� >1

.ý ýý ;I -ý (ýiý`" 1 ,,,,. s . ý. sv cýýl
ýý ý" ýýI

Cl

cý,! ' gJ ly "V

- I--I^0^"6

> "ý e,. - ý-', ; -ý ý°-> ' /: VVLOf f

. C_ý-s, f gy i cý,...... J -ýý I

Figure C. 1. Learning data which were provided by Subject No. 1 and used in the learning stage of the CASR system.

328

ý cý'v ý cý ý. ý ý
ryý ý. ý. "--ý c: ý,

ýG-L. ý eýýý

, ý _- -ýý týz �ý 0,:
ý jý ýýý:. ýý;,

_ ý. ý-ý", > c ýL,. ý ý.. G_ýJ .-J,;:,, ý

c"r_ý, l cý% ý. ý ýý ýý-y
ýý

týýý y"l rJý
.
ý%

"zý'ý° -ý 'ý--ý t ý-ý t
. r, ý -ý

1
ý-"ýý° ý'. ri'ý' ý, ý''-ý j

ý ... 1, ý l : ý..: - ý . ý,. ýj c ý-y yý cý,:. '°"`ý ý" -Jý ý. '

. ýýyýý ý",
ýcý ý1ýý-,

ýt'- ýýý cýý
ý+. ýG _ `" ='

ý
Lý

!
)-ýJ--G

tý `"

ý J'
`ý-/

"
"=

ý°ý:
'° -

Z. ýc 1

" ýý ý

aýý ý" ý-ý ý° s=ýý .ýý` ý---ý., ý ý'' J'ý

"1 ý-. ý ý\
c--=- \ ý: _ý \Iý: s ýe 1-=;. = \ c-ýtP C. L. -ý : ýý"

.. 19

.)ýs .% , yyo r" "ý: 1->P c4
\-? C -ýý -%, ý

" 1= Cc= c1ý
ý: ='ý-p ý1 "ý \

".. ý. _ýy=' ýP C:
:. ý ýý ýý yý ý-+ .ý '`> ý . ýrv ý1 cýý.

to

V -v Cs-u

Figure C. 2. Learning data which were provided by Subject No. 2 and used in the
learning stage of the CASR system.

329

." c1-e-ý1 1
SG

. --, --»- l:.) 1 c; y ,\ ýý : ý1 ý1

(p j? J 1 0.; %£> (ý.. UJ)

N
"'

ý IV ""

liº, °>
""I

"1J
tr-e &

,J
"

oý.! &J 1�
."

vý>> yý ý-^'ý 1co,. j, >ýty 1 ý, ! rý

6:, 41ý;

cý ý. ý

.
{ýy ý>' uo> C) '% O

.
Ju

,.
ý" I

ýI AY% I
fL9

G'ýý9ý
1ý, `/.

") "ý %

cs° ý} :ý G-ýý ý''. irºý-

ýA ý ýý Lý)

-/10

a-

G7 C-
). y , ý

.6

ýJ,,.. eJ ý

ýý ý Gý v; &' cIý ý° ý" ýs f--J

(J(3 l
ýJ lý>"; ' (o2

. ..
ýý ý

0-9
ýý. -_-.

Gv Lý % u° kr< c=-ý c"'v c! L.: j t(ý"-
yi to

/

ý", JI ! ! V

iýý "C.
7ý

Figure C. 3. Learning data which were provided by Subject No. 3 and used in the learning stage of the CASR system.

330

c, ý ýLL

ý OC)

I... _ _, .__ý,., Ss

°. ý ... 91
ý ,. _

ý,. ý

ý ýýýýý ýý ý ,ý_ý ý-

ýr-
c; J i_�_;

ý-
.

l Lý c_
-ý,

- � ýý -ý ý
- L ýJ t Lr' c. sý

ý r4 (JU. \ ý-ySA, e

ýý Lý " ýJ

ýý , ý- i. ' I
I-

J,. La
-A-% _9

Figure C. 4. Learning data which were provided by Subject No. 4 and used in the learning stage of the CASR system.

331

yý ý\ 'ýAýM ý-? ý cý ý. ý ýý.. ý, .ý c3 ý. ý "-. * `. _. P
aýs Z^=ý k.:

-,
Ij,

Jý a9 'J 1ý t`--rºý cs. ý-; ý (ýýJ 1 ý} -ýý: J 1 Cýs ý, 1ý ý. si t. s ýl m`. ý . ilý
.ý

\ct) s-.
y-. r ý1 ýq ý".. _y- . cti ý -: ý g11ý. l3 ,oý

.ý
ý-

.. c,., c1 s aý L ! '" ý� L-, o 1 .ýý\ Cß lslý
f\ `G .

ý: }
I>-

uk1. Tssa, ý. C" ýaý cý\ rý ("%j .
ia\ol

ý, -ýi-ý .. v.. ý ,. - ý-+ -. ý. --" - .:

.ý_ý
L>-=- ..

ý. ý \ z3... rýý --0 .
ýý . ýo CSý t L, ' 1 ..

G;, ý L
ý y ý $ J\ '--3L: W c2Y :ý.. .ýý_, __,,;;, ti I-

ýLxö: ý.. ý. C, 3 `-`Gý'ý ý. r ý. ý Lýý-:,. ý. ýý\ Zsýý.. \
"ýý,,,,

ý ý, N
s..

ý'. stiy I Ry U\C.? C-ý ýý.. ý L-P

J `-ý"u

,, ý ýý <i ý-ý ..
ý, ý ý cý . ý. ºý ýsý\ý üý-i: ý,

üý.
ý Jc L,,,. a .1

fý-313 ý. ý. ý 1, ý,. ýýý ý., ýº., G1 `, U ýL:,
o.

ý
ýý

ý, rý.,..,,, ý
. ý-ý* ýý -ý ý. ý

. ýý.: " . 1'`-'ý''ý ý' ,
ý, ý ý

, -"
\ _.,,, _o_ c\, .ý\.

`. ýw\ 6rý. \ ,"
'ý s. Lyº Qý. ý-: ý ý

Figure C. S. Learning data which were provided by Subject No. 5 and used in the
learning stage of the CASR system.

" \P;, k, .ýJ .I -�
! U.. "'1.

332

"tv^"^y`

1>/ýy, ý1 ýý- ýtL I

ý

, "_ lý. bt / __J , 1

"r.. " ý

c. JL5 . 9-di

ýiýIö, lb I
, A-c. Lý ". 5 W, -,) -j-Apý ý

ýý', ý,, ý ý ýý ý , /ý ýýýý
"~., ý ...

v ý. '

. llýl,,,, JJJAJ Jl
cý is t.. ý 1 .. ý° ý

Jýý ý-L"ýýJ ý ,ý ft. ý. ý. lp,!, ý

cý-- ý-- Jý J-° lsý ý.. s-m "I ,ýi c_ý, lý 1.. 9

""ý L ej jýýi
LqJ ý Cý ýý1

Figure C. 6. Learning data which were provided by Subject No. 6 and used in the
learning stage of the CASR system.

333

ýýýýý cy
a

.. -1-- .\.. . I- M.

ý-ý-=ý tL ý-- s La--J ý-ý. ."-ý ý\ I
w/J ý

' ýJ 19 d"
ýý ..

.. "1(..
ý

...
cJ° .,.

ýý
"ýýý1ýb.

ý

'_" CJ u`"e yýý "cý1ý ý
. ý. ý ,ýp

ý's ._-"`

""N ý_` - ýý.
ýý1-Q° \

F,

.. Uý--p
ýý "-:,. %I _1

ý. .

oý

-s "A ný1L_/ º

ýi

".
ý1

ý.

vl. d ,' ý1 1., ýý1ý
.ý ý.

aý
ý

a ;; �'ý lý5i ý. _N, \\q o-)

,. ýý1

.
ý°

ý' 'ý ýý ýý' /ý
"ºI . .. ý.

"o ý-- _ l: ý ý" csJ ý Sý ýs"ýiý... ý ý.... 1-d

Figure C. 7. Learning data which were provided by Subject No. 7 and used in the
learning stage of the CASR system.

ýý` "J ý4. ý`ý`" ,

."
ýý..

334

-S _I ý, ý -- ,ý-

\ -- , 4ý ý
6LY

1iA ý. ASý
"<<"\" ýºý " ýº,

AL
ý ..

c)"o "L ýý
.ý`

C5 A

Gzaý fý
._ --" _. ýý c f-ýpý 'ýý.. ný ý9\ ý9ý ýn" o aA_-

Scn., ý C.. ýý Cs : ý. 1\
ýý 1

°ý-ý I. ý .. A. ; Pj
a4s. _ai

1 ; ýý 1yDýý(_sý 4ý. s ̀ eý ý ýiJii 1

oc, \

C. J --' 9"' \ C'. ̂ --ý -91
c (; ýTýý \cj LS' (3: 1.3 (3\. ý ý% \

ý. ý ý (; ýý ý cJý ý 4s.
" J____.

ý, ý c ý-oý ý l3 C sý V-Aj

výc; ý ý"`. ý. ýý__. _. ý- ýýý `., U, ýv ýýsý
" `ýý c:)o

Figure C. 8. Learning data which were provided by Subject No. 8 and used in the learning stage of the CASR system.

335

Crý ºýI ýºý ý ý.

I. i Cv ý,. ý ý1 CS'2,4-, c-53
.,, I"_ 41 1, -

(J l2; J1 &O? D
�1 ls ý ý" ýc

I --, '-'
..

..
I' .jý, ln, Ou UV L-----? V .: r .

�"'
-, JIt ný

cý_.. 0 .tý(fJr Iý -

,, -4ý, ýý 1 Cr° c.
-.,

' 1ý. 1 \ c-)'ý wýý1
1 ý% ý '' wy

--Q-J-J-L-ý
ý ýýý

.ý -- .

SýS.. `_ Dy lýý "1l,,

,V (. 5 ýýý' lS "
J°

.t1, i: L -S J)ýb1ý

iý J-ý

-' ýýý ý> `., M., ý ý.; ý1 ý
9ý-ý'

,,,.
1,, ý, p lýS ýyý `ý. ýý fJ 1
n 4. n

ýýLS \" " ý. -ýL ýý_1ý.
--� . ". "I11ý

%, ",, %-, c. N) N -r"'-' ý-
.\. C. tl: 7 '. --ý)

, 1

. .
-e-ýP9

Cs u-k
C. ý.. ý

ý^ýý.
eýýf ºý

S (S' v .: - .ý
\ 6Jý ý"I.... "_ ,. ýý iý \lt \ _... _ ý

. _s
' -W l. 5

>ý ý""ý, ý1 \
," ýý t; L; 2J \9)jJ \r- ý.

_ "ý" ý, .ýa. 1 \ �-6
ý

.. "" \ Cý°
ý1 Jý U r'"

..............

r.... -o ,_
QyAl.

/ .,

ý Gl. o
ý`

,"/ Cýý ý V-_' Cýj >.,

_L

Figure C. 9. Learning data which were provided by Subject No. 9 and used in the
learning stage of the CASR system.

336

öý c3 ýý L 1,5 ý öýý,.... ýý csý º
ý ?)-'\' 9-\

y' Öý "�\\ \ C) uý-ý v Y, ý9L? ' 69

C--t3 'vý` cý, 9--9 \-ýI « -ý, .; -; ý4)c 9ýý ý35 ý\-° %ýs, f. JZ3 º.
J`,,.

p y,, ""e ,9

tyýý ý" ý+', 0 ý-6 ýs ý_,, "-ý ý cis is \-. & ý.: ia)\

c-. -r ',
ý I. <.. ý, ý} ý1ý,.: ý ýý ý3 º. ý' ; -w-)3 ý'ý"ý ý ¼, '-L))o 1 v-A

I "" .-.
l

ýwýýý L

. ý�ýýiý,,,, J\ J9, o ý týý ý, o ý. ". ý

"ý !\t. X J

.
c, /ý, ý,,,,, ".

ý \ ýý-ý, cýt,...,: ýj L ýýýo
ý1

ýe v-

c.. ý A. ý f'-. g

L3
ý,

) . ýýJl. J.

V,
-. "

ýy
-9 0j `. ý c- u- ,JWZ ýii v; _1, -,

' ýý , t7 ý tiA c.! -u .; J

V-'S3 cý ý L9ý1 c.. -: 3 ýý
" ö�91__' ý, ý

L, -ýý - c.. ̀,:, ýý \ \; \-�c ý�o
i

-Li L?
ý--i

ýw
Jc:)

--J' 1

cý" _, 1

" Mý cwý v ý.;, ý., ý
ýý' . /ýýý v ý>>...

ý \i ý1\ S9 ýrPý ýý,, ý\ý\, D
ýý"

rr
..

ýjý. -ý, y ý
ýy

ýý\ ýs- " ýf. s ý ýý ý fvV ýa. c ý, ýc ý
ý>ý ýý Jýý

ý. 94

3w Lý ivb'ýu Jylýý ý c. sýý

Figure C. 10. Learning data which were provided by Subject No. 10 and used in the
learning stage of the CASK system.

ý

I

337

u :Jtw Ls iý
ýý ý' ý, J L-

.

.

U., J

'... ý"ýs º, rý-ý' ý JLeg 6", j
. WO

r ý. ý 121

UL, rt. ýj l9

t jý

Ulu sL: "

slaj

ý G-t'ý'2'' Jý'
-V i'sý-ý 10 . %-m c. 3 ýj rý Wý ýýsL-º

cs'ý I

°r U-90

9ý51 cý ý1
rr

.-
.ýJ. _C\ _"ý.

"ý

i
ý%: ' f%L, Gto ýý -i 9cZ°' `o -&L> 1-5

i- wa -

rS M

. ýýý o. ý l. 3 ý ; -: ºýýr'ý.
ý ý ýg-' i

Figure C. 11. Learning data which were provided by Subject No. 11 and used in the learning stage of the CASR system.

338

�t9j\\
ý\ c3 c

&AL L'
ý-

öjs9ý. \-
ý

.. .
tx L. n-n1\c ýi

öý L=? -. y
i

--i 3i Cy ,
s�. _,. ý: ºý1 \ 1. _ ý 1LY ý

cys,

VU " ýý ýjaý, ý 6. s. 3L-'JkA

ý,

�.

Cý Js ýý1 ý"ý " Cýy},: ný ýý, 1ý ý cý U.. ý ý vlý

cs9
.ý-
"ý (ý' ý ý°-ý 1 ý. ý cj

cý tyL=, 1ý' ýý Uü 0o\ Cýýý"9

ý st-ý"k. a5ý 6 jýý'
c. s''

LS ,p cS" 1-1ý"-\..
ýJ\

C' cs7s)1 vý-])1 äý ýsv-L-oý c. S'Sýi . 11 91 ý-ý

(ED c, t'°9
ý" l-o cs° 6, >. 99 crs

'ý öýs L--cJ1 c. i&a. S

Figure C. 12. Learning data which were provided by Subject No. 12 and used in the learning stage of the CASR system.

339

tai
_)7X

Lý \ u5 à;):
v3j -15-11

J ý3 9D

Figure C. 13. Learning data which were provided by Subject No. 13 and used in the learning stage of the CASR system.

c
340

Appendix D

Testing Data Set
of the CASR System

ý ,. ý .s
ý)

cj 9ý 1j) ý,

ýýý ýý ý
Uýý ýý N%"'ý ýý ý'

-J
ýýýýýý

ýý ý, t1

. ýU5J V +ýý 1ý -- +, ý t 1-i-ý ýs 0-1 1

.
SI

nJanr-p utýº
^"ý

-2: ve-- 1 �-, -0
ýý"

-^ "'
,^ý

-s
ºý 1j (-S, 5 ý' ._

(JLý
I vj'J ILwI

,_.
D'

_5 _ýIA,
)-, J. ý, s=ý I ä? ý i

-, q e

. /V_' L--, 4 1 c. ý ý'c1"' gý, ' ý111

Figure D. 1. Testing data which were provided by Subject No. 1 and used in the testing
stage of the CASR system.

342

cs :Ji eý ý3 t ... -ý ý ý. s-ý ýºqý1a;
-ý'

ý. ý". ý

U70
u.. e lý_. ý lI: 3 lý1, / "- =: --ý'

LC-,, yf ti! r= y1 13 ̀. f t Cý 3ý c%'A° t, 1 I
.. p ýý (

--j ^'

LA. /`s, ý ý ý. > ell, 1... 2, -. 9

v

r C7 L4 ýýD

_, ct.; tý J 'ý 1 cu tý t-e"ý
..., -ý i. s. ý

ýý ý ö -_�- I cr Lº 'J-ý. ý. 1 , V.. r
ýýý�ýoý 'cý "1

ý

c-I l.. f , eJ 31 Lý 1 . ý. -i . 4...) J

ýWýNW

ý

"IýI

Figure D. 2. Testing data which were provided by Subject No. 2 and used in the testing stage of the CASK system.

.I

343

cy-I aý. f L° Cý U'' \:, 31 \ ý,
w I

a
6 ýg-.

ý.. 1J
_ .c'-,
ý, ý Lsý'ý "aýpý?

Cv. ý -ý
ý: ý-' i `-"ý

ý=-ý ý ^'ý-`O. rJ

-;
vV1s

ýi

ý1..
RsLeJ Ji

c. r. S
\

1LRi\ ,ý iýy.. . sý, ýIJ"

!, -% ý "v1, ALP

1! '°

JS
AJ -

ý

ý)
d.

ý"1
�sý o, J ý-ý. 1

ýý
-, NJ I c_s°9

n

r

�'1

U, ý
s G"

:

.ýt. ý. ý-.. w ýýý vý ý_° ý"ý '`ý'
ý

ýr ý
,
)'I

Figure D. 3.
,
Testing data which were provided by Subject No. 3 and used in the testing

stage of the CASR system.

.1

344

ct___
1--.

-=)

ý1ýs
V °J [JýJ JJ ý

c.
ý

sý. c. -ýJ
(S'ý

L, ý ý.. " , qý,.,, ýý,
ýýjý

_ý

-ýý

ý' ýý ýJ toý cýi
ýºc:

ºý. tý- ýý--1
.$ (1-ýi v1 1 ý-; ^

C

0 .. -13 .. ý..,. II
-- -tt_l.

...
--. o LL tvý ý

lbJ L cý.. rý ýý cýý_ý11 ýi ý

,
E11 ý lý I.. 9-%ý.. Ls L" öý i

ýJ) Go ý
ý ý. > /

.ý ý _, 1. _ ýý. ýfs. ý C.. ý
\ýý üý

ýj
ýJ

%ý , oJ-p C. J--ýý

i
CJ ý.

jýjýý Cý Ljýýý ýý J'-'ý-'ý- _/ý-ýýG
ý LC

-CsC. c

Figure D. 4. Testing data which were provided by Subject No. 4 and used in the testing stage of the CASR system.

345

�A. b (.;. o j

o--:, f
ýý

LJ%
(Jý

tý
ýY

cý'
ýý ý-. 's-J`9 c., Sý ý. ý C_. sýý ýS

.ý
c_. s to V,, j t LL

N ý ý. > "/ýý Uýý
ýJ

1"ýýý. ý

ýA

ls'' ý_ ý ýý
Lj 1 ý. sZ19 ý 4Jý, 1 4_, "

Ui

'

'ý'ý'' ýC J'`: 'ý'ý', ý -'

4) -J
ti

ý

Figure D. S. Testing data which were provided by Subject No. 5 and used in the testing stage of the CASR system.

346

ý,., _. _.
ýýý ý-ý-ýý ýý ý_

_ý C}ý ý; j19 ý

S
Y.:. ý

ýý
CJ-{, --Eý7

ý
}---y,

ýý

�ý

/
_3 ý ý'Js

i

j9 1Z JL. L-)' .-
(3 6Dq

---ýs, Jýý, ý 1
cýs c5ýýý'ý11 0ýý9ý1 ýý Cýý-- 'ý

\1 JL ýý
ý 911 (. 9: d 9. ss1 t vlýýýl

AL

ýs U1 G-ý1 (-)-m - r., ol ý.:
ý

ý1 -ýJ6zý-

c_ ý1

(3cJ3 I l}-A

Figure D. 6. Testing data which were provided by Subject No. 6 and used in the testing
stage of the CASR system.

347

IL

^"O1 1 JI rý /> .P nrPÄ 1 6., c, i re
_a-:.

i 1

ä £.. pj 1 ý. �ý ý1- IÄ; J 1 cý
ýý1>ý,,,;

P, ß1 I

Zýv , o-

ýý Ný"" r'o/ý
ýi ýý

Nýö. � ý=ý
J

ýII

ý' c. �J CSý
ýäJ.

rý. r° cýý
b

-- .ý r-

5,5ýi 4=-ýý ý

I

'. ý', L. i

I-,

. -r a. "_----"tt. ý 5.. ý, ý9, ý ýý)ý is ýýý ný ý .ý

cr ý, Jý L-1-5- Cýl

" . 9ý'"
ýýc.. ý-ý. s c,: s ý

c: j L# L ;%1, J i

-;
Ný ý cs cSýJU I`ýc, -?

ýý cJ
ý J, 1

ý}' _

ýI Jý,.. ýJ
)

ý
ý

cJ \; --eJ J, N tý ö> Ls 5. . \. J 19 , J, -J1
�-'

"vJ lý 1 o, ýc, v..
-s 10 t; J ý ý--ý'

Figure D. 7. Testing data which were provided by Subject No. 7 and used in the testing stage of the CASR system.

348

vý

ý r--' ýýý I L}(rýý.; j ,i
LO .. ý

ý rý . ý'

ýýjý .ý.. ý .. 1ý Cý

(%ý ý/_ ý`.. G1f "ý
ýý

.. ýý .ý
CJ- ý

0

.., _/,

may-
ýýý vl ýI

ý

ý -ýs
ý-, LA

ýý
.1ý ýýý ýý ý

- cý ý. _Pý

ý°

.

csý: ýý ý.
1

'-1... ý. ý-
,

Figure D. 8. Testing data which were provided by Subject No. 8 and used in the testing
stage of the CASR system.

-`'-ji' ý
31 'ý ýJýý' ý.. ý

ýýý ýýýý
ý ý,

349

ý. ý' ýýý-ý ý''S ý 'ýºc1ý-ý1. ý ý vý üý. SJlo.

r
ýý ý ý.

Y r

L9J-J
Ji

vs
ý

üiý 1 s%
jc J

-s'v
ý

.ý

.

.u
(» ý'ý'

r

ýýýýýýý1:

IJý 1ý ýs Iý LýD. J

>>! \JP \ Lfr'L5

as°
6

iv9i

ý(-0.) ýý,
sl. ýq

,
UJ1, ý

`ý ýý ý_. r1 ý, ý 1LI"J vý ,
ý1

oym ýý
ý.. ý Cýý ý. i ,,, ,,

ýJ ý ýý i
_,

ý

Figure D. 9. Testing data which were provided by Subject No. 9 and used in the testing
stage of the CASR system.

_ ýýýýýýýf ý_ .

350

ýýý ýý ý ýýýýý ýýýýý ýý ýýý ý
. ý. ý

_.
L'

ýý
". I..

- . _� .s-

ýý.,: ý y ýýý ý ýý ý

O) 1a1 ýL ýP.) ý

.ý. cýy, "..: ý
,

ýý. ýý ' s.
-_, 1

o -ý
Cvpc))U1 y\ ý) ýýÜýý \

_)

&\ ýjL-»\ C? ý CSi \
r

ýý, ''ý;
ýý -

J ..
j, ý

> .. ýý
ý-9

-.
ýý

C-7f. J LZÄ \
ý, G v-ii

, -ýgD
ýý, u--,

Figure D. 10. Testing data, which were provided by Subject No. 10 and used in the
testing stage of the CASR system.

351

ýý ý-rý' ý ý1`-J' ýý-ý ýý cý' ýýýý

ý>.. csj ý

ý

ý ll ý cs 10 (: 9-

ý.. ýý1 4
ýJ_ý

r''ý ý,, ar ýý> ý c. l9 (. e, Ji ý,,.., /"

ý,
.ý 1j 1I ýJ) ý oj

-

Ijl
r--cýy. e

., _ý

ý. ý. ýi o. ý-ý ýL2, --, i" ý-.
. c.., \ý Ui c.?

i
cc1 ý cJJJ 1

. ý- n.
CS C?

C; P ý-ý'ý cý tý ý ý., ý'ýý-=> "'"
" ýI ý.

"'

ý ý- i t, '&v U. ̀., ý ýs'

r Li I

'. _. ý It n,
Figure D. 11. Testing data, which were provided by Subject No. 11 and used in the
testing stage of the CASR system.

" S.

352

c)-e-

1

I

EJýý
ýýý

J,,, s. ýý ýi

/ý?, � `ý,
.ýý""ý

ý lS (ý
ý1 ý

cit

ý, rý `ý

* 1ý ; ýý

L%

ýýeJ

G,
ý

,výýY i
S.

JLl. S Ls U. -o
-I

2 ý,,. ýJ f7r ý'

I

ýý ý--ý ý'

I

.ýýý,,. ý ý-- ý' ý

I> -4- Gý-s'

``'ýý f, -

ý Lý J; -.. -k3
ý ýs1ý 9

ýý !ý ý` LL

.L.,
A)I .j -ý.) *. 191-- s

tý ý. n/
/ý

ý 1ý

(U) c; ýýý cIfC

ýýý; 'UU-
ýn I

ý J'

Figure D. 12. Testing data which were provided by Subject No. 12 and used in the
testing stage of the CASR system.

353

yj >"y_ . w- -9 .

-P

ý. ý ýý` c. ý 1ýý1,.. ý, ý, ý J., j ý, ýý ýý ,,. ýý ý_ý., ý i

l: J l

ý ý- ý. .ýý. -, ý
VVý

1q yu--o

J_ j) ;ý ýý=).

S
ýe-

ýý
/ `'

r

iý ýý" ýl I

ýýýý ýý ýý ý°

s ýº
Jr

ý S

(y1 . ý. r
ý

i i ýs

ý,,,, ý yJ1 csýý______ý. ý ý; " ý. 1' C. 7

-ý'

ý -" AL
_"4

'

C_Jýf"tý. '
`

ý1ý ý

R. ýtý ý.. , "ýý

o, " ý- ya

ý°-"..
ý ý °ý ý

0ý

/ý, S

S

ýýýýý

ýý \" -, ýý!
'ý' ý (L-> ,ý

Figure D. 13. Testing data which were provided by Subject No. 13 and used in the
testing stage of the CASR system.

ýlv
ý

ý

354

ý"
ýý vý ýý ýý ýý

t
/

J., ý, ý,
. ý. .-. 1I -l - L-J-- v- J-

r. \:, ý WI
-t

1-4 9-ý 'J

f"rr

ýýý cý ý%"-P ý%ý° ýý ý ý' %ýVý.
ý

I-. 1.. "ý_ý /1"_i11 9L Vr-ý'' V
Wýi

ý-

Cý
' ýy: ý Vl" v `ý-J

s". ý-ý

. �v-- ---
I

ýr° ý

s
ýýý ý

ýýv ý' ý ýý

ý, yýWi ý>
Lf

1

ý'1 .. ý

)'
ýý

sý ̀v'om Cýp
,/ __j\

0 Lýý

'' Uýý ýý

t ; p--f I

P, ' L> ýý

L

-ý

N^ I

nl c. ßý'
ý lo ý

Gtý/ %i
sI

ýý ýý'

ý

ý. ý i
. =: L" >L

J

ý cýý ý .ýýI ýý ýý.
ý

"ýý'I Jý'- L

, ýý ýýZý

Figure D. 14. Testing data which were provided by Subject No. 14 and used in the
testing stage of the CASR system.

355

Cýý 4j 1 L3 ý

- -v

ý'ý. ̀ ý° ý ýý ý w,,. #ý ý, -ý =ý ý96 ýý ý ýý ýý

ýý-rI2ý N

n
ý ý9

ýý -ýý &

6 ýý' \

ýý ývý ýý, y 9

t-#-L 9" p ra

._ý
Y1

t
ýJ. 5j 1 `ý ý9ý

. brp L. t
LS. rS9

13,41) ýz6 n -A. L 9 "JU wJ

A
ý"ý.. 'ý (r

s5) "-s-AJ, 3 l 4,1, p CL_
.
Az

.1 'ý`
"`

)-l- us-
`r

ý;

ý

. iz,, li\ 3 oslý .9tu.:.
y\

. ýaý \ &S vs , _ ýý3ýy\

ýuý " ý. 9^P 9ý
ýý

-ýý, ýZj 4j
_ýý "v. 1 5 1ý

ý

__\ ý-ý? '

3 Zi

, ýýx ys^P9 ý, - v\
1"

ý
kS-a

L4 ý

ýý c)\
Figure D. 15. Testing data which were provided by Subject No. 15 and used in the
testing stage of the CASR system.

356

iý - 1ýLj

6"°

A^y

ý ýý -1ý;
, ýý-ýý ýý^" ý''

^_ (\ yýý,, ýiýsý

Lo

lA- yý (ý-° ý/iýl.. CJ
_ý

, _. 91'sý ýý ýdý
ý

v ýýýý ý
iý: ' 11

ý. 9
It.

-äý! JI

n 00
ý'º, "1\ ýºy

1ý`-'

ýtý'ý JL-! °
-. -II.

cj, 5u41j'ýy -"/In'. l. sI I'
1.)1 ýý "`ý

ý/ ý'
", ý ýyý 9 L-9 '--I/'

ýsý9 °ý ý`1 "f/ý ý1

, ýý' " ý`-°ý, ý-" ý-ý-ý Jýý,
ý ;, 'ýý

Figure D. 16. Testing data which were provided by Subject No. 16 and used in the
testing stage of the CASR system.

357

ý

%^
S

ý

Lg

" Jý ý_. ý.: 9 CS. ý ý v, ý I. "ý ! .ý .ýý ý' J ý

üL ., s,. ti Iý (, 1-9' ýý1:. ý j .
J'`f. C3
_

wI -cý Llr--. e 1) !ý CL14/1

.. ý ý. 1J ý CýS-Lý "°ý
ýý I9 SI ýI v La-ý

__ý

ý"ý. ýy),
ý

"ý
ý"fýýr

Cci' ý

ý"ý

-°-
ý`'" -- di°j.)) 1ý CS -)

ý l. I ýýýý cý ýýý.; ý. ý: ý- ý; ý " R14t ý lJý

r"'ý""'II:

rý

j
c}ý , C-j .x9 tsJ i ä9 ý1ý.

-rýi º
.
ö,

9.
ý ,ö

-A--
Figure D. 17. Testing data which were provided by Subject No. 17 and used in the
testing stage of the CASR system.

358

ý.
_J'

LJ
-� ý -- J'

t'N. f. ý; p t,; , ý,

ý- ý
ý. ý. ý. ý 1 _tý-jýJ

1ýýý 1_ý. ýjý ý

ý'ýý-ý 3' ý-J :')-s
r

1ý
w

ýi
^

;ý1 ý' 1, ý' " r--')ý J-;

ý>ý " ý ýJ)ýý
-'

''1 ý' ýný... " L. 1

ý ý) I2ýi ý5
. ýs-%) 'a: L. ý ý ýýýý ýý ý,

,9.

) `s 1 iC CLi 1 rL--p» ý 'ýI >

ý t:. ý (Jýý 1, cr. ý ýýC: *, l. s.
.

ý° .
Figure D. 18. Testing data which were provided by Subject No. 18 and used in the
testing stage of the CASK system.

359

.. _iýý

. >'ýJ Wýýýýýoý `` n r_
, ýJý.

ý-fýJ

ý^

"s

, V�o

."

Ss äý. oýý _G2 ý' ý

^ý°jr- 2ýý iý .ý v-o

csý ý . ý. ýt 19 ýyl ýý.
f.

ý"ý

ý ýI r 1d`' r4'

äls. L.,
o

+
ý'

ý'

00 "-Is

ýý ýoj. ý D>ý 1ý 6" ýýJ ý Cý ý.
rQ-ý. 9 sý ý

Figure D. 19. Testing data which were provided by Subject No. 19 and used in the
testing stage of the CASR system.

°360

ý. º
9ý

°u%ý ý5-=-' ý .ý I"____ ýý
--'ý- __

. öX, o1

ý
ý=S"°

;, 6 ýý ý-i.. ___
ý1ý,?

,J .
iJý i

,ý
., /'

L

ý_
ý`` U`s

) 'I ýs :.) ý ýý G ýr Jýý) i

L
>.

ý' 1
G

` ß,
º. ý

ýý G1i Y'> tJ
ýý ` (ý

`'.
AS. _P

ý
'

S ýý

(Jý
ýJ&)'

96

ýýý
-r

.5
-'

6 -" '`

ýý- -ý CV \:; i t -: j
ý- v'. 9

-ýý., ý11 ,ý ý'
ý1

.
ý. 4-- ý; ,-f i

-71 -,.,
0 ý

ý
6 CP ý

., /`s. ý

ý.. ý,, ýý..
ý% ý C_.. w. ý lpy

ý cvý c7
I--

ý., ' Z, L', 13 yý-v ý-°ý ý ý. __.
e> \- s`, ý""' 1

Figure D. 20. Testing data which were provided by Subject No. 20 and used in the testing stage of the CASR system.

361

