298 research outputs found

    Logics and Models for Stochastic Analysis Beyond Markov Chains

    Get PDF

    Fifty years of Hoare's Logic

    Get PDF
    We present a history of Hoare's logic.Comment: 79 pages. To appear in Formal Aspects of Computin

    Modular Logic Programming: Full Compositionality and Conflict Handling for Practical Reasoning

    Get PDF
    With the recent development of a new ubiquitous nature of data and the profusity of available knowledge, there is nowadays the need to reason from multiple sources of often incomplete and uncertain knowledge. Our goal was to provide a way to combine declarative knowledge bases – represented as logic programming modules under the answer set semantics – as well as the individual results one already inferred from them, without having to recalculate the results for their composition and without having to explicitly know the original logic programming encodings that produced such results. This posed us many challenges such as how to deal with fundamental problems of modular frameworks for logic programming, namely how to define a general compositional semantics that allows us to compose unrestricted modules. Building upon existing logic programming approaches, we devised a framework capable of composing generic logic programming modules while preserving the crucial property of compositionality, which informally means that the combination of models of individual modules are the models of the union of modules. We are also still able to reason in the presence of knowledge containing incoherencies, which is informally characterised by a logic program that does not have an answer set due to cyclic dependencies of an atom from its default negation. In this thesis we also discuss how the same approach can be extended to deal with probabilistic knowledge in a modular and compositional way. We depart from the Modular Logic Programming approach in Oikarinen & Janhunen (2008); Janhunen et al. (2009) which achieved a restricted form of compositionality of answer set programming modules. We aim at generalising this framework of modular logic programming and start by lifting restrictive conditions that were originally imposed, and use alternative ways of combining these (so called by us) Generalised Modular Logic Programs. We then deal with conflicts arising in generalised modular logic programming and provide modular justifications and debugging for the generalised modular logic programming setting, where justification models answer the question: Why is a given interpretation indeed an Answer Set? and Debugging models answer the question: Why is a given interpretation not an Answer Set? In summary, our research deals with the problematic of formally devising a generic modular logic programming framework, providing: operators for combining arbitrary modular logic programs together with a compositional semantics; We characterise conflicts that occur when composing access control policies, which are generalisable to our context of generalised modular logic programming, and ways of dealing with them syntactically: provided a unification for justification and debugging of logic programs; and semantically: provide a new semantics capable of dealing with incoherences. We also provide an extension of modular logic programming to a probabilistic setting. These goals are already covered with published work. A prototypical tool implementing the unification of justifications and debugging is available for download from http://cptkirk.sourceforge.net

    Swahili conditional constructions in embodied Frames of Reference: Modeling semantics, pragmatics, and context-sensitivity in UML mental spaces

    Get PDF
    Studies of several languages, including Swahili [swa], suggest that realis (actual, realizable) and irrealis (unlikely, counterfactual) meanings vary along a scale (e.g., 0.0–1.0). T-values (True, False) and P-values (probability) account for this pattern. However, logic cannot describe or explain (a) epistemic stances toward beliefs, (b) deontic and dynamic stances toward states-of-being and actions, and (c) context-sensitivity in conditional interpretations. (a)–(b) are deictic properties (positions, distance) of ‘embodied’ Frames of Reference (FoRs)—space-time loci in which agents perceive and from which they contextually act (Rohrer 2007a, b). I argue that the embodied FoR describes and explains (a)–(c) better than T-values and P-values alone. In this cognitive-functional-descriptive study, I represent these embodied FoRs using Unified Modeling LanguageTM (UML) mental spaces in analyzing Swahili conditional constructions to show how necessary, sufficient, and contributing conditions obtain on the embodied FoR networks level.Swahili, conditional constructions, UML, mental spaces, Frames of Reference, epistemic stance, deontic stance, dynamic stance, context-sensitivity, non-monotonic logi

    Leakage-Free Probabilistic Jasmin Programs

    Get PDF
    We give a semantic characterization of leakage-freeness through timing side-channels for Jasmin programs. Our characterization also covers probabilistic Jasmin programs that are not constant-time. In addition, we provide a characterization in terms of probabilistic relational Hoare logic and prove equivalence of both definitions. We also prove that our new characterizations are compositional. Finally, we relate new definitions to the existing ones from prior work which only apply to deterministic programs. To test our definitions we use Jasmin toolchain to develop a rejection sampling algorithm and prove (in EasyCrypt) that the implementation is leakage-free whilst not being constant-time

    Swahili conditional constructions in embodied Frames of Reference: Modeling semantics, pragmatics, and context-sensitivity in UML mental spaces

    Get PDF
    Studies of several languages, including Swahili [swa], suggest that realis (actual, realizable) and irrealis (unlikely, counterfactual) meanings vary along a scale (e.g., 0.0–1.0). T-values (True, False) and P-values (probability) account for this pattern. However, logic cannot describe or explain (a) epistemic stances toward beliefs, (b) deontic and dynamic stances toward states-of-being and actions, and (c) context-sensitivity in conditional interpretations. (a)–(b) are deictic properties (positions, distance) of ‘embodied’ Frames of Reference (FoRs)—space-time loci in which agents perceive and from which they contextually act (Rohrer 2007a, b). I argue that the embodied FoR describes and explains (a)–(c) better than T-values and P-values alone. In this cognitive-functional-descriptive study, I represent these embodied FoRs using Unified Modeling Language (UML) mental spaces in analyzing Swahili conditional constructions to show how necessary, sufficient, and contributing conditions obtain on the embodied FoR networks level
    • …
    corecore