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Abstract

With the recent development of a new ubiquitous nature of data and the profusity
of available knowledge, there is nowadays the need to reason from multiple sources
of often incomplete and uncertain knowledge. Our goal was to provide a way to
combine declarative knowledge bases – represented as logic programming modules
under the answer set semantics – as well as the individual results one already inferred
from them, without having to recalculate the results for their composition and without
having to explicitly know the original logic programming encodings that produced
such results. This posed us many challenges such as how to deal with fundamental
problems of modular frameworks for logic programming, namely how to define a
general compositional semantics that allows us to compose unrestricted modules.

Building upon existing logic programming approaches, we devised a framework
capable of composing generic logic programming modules while preserving the
crucial property of compositionality, which informally means that the combination of
models of individual modules are the models of the union of modules. We are also
still able to reason in the presence of knowledge containing incoherencies, which is
informally characterised by a logic program that does not have an answer set due
to cyclic dependencies of an atom from its default negation. In this thesis we also
discuss how the same approach can be extended to deal with probabilistic knowledge
in a modular and compositional way.

We depart from the Modular Logic Programming approach in Oikarinen &
Janhunen (2008); Janhunen et al. (2009) which achieved a restricted form of com-
positionality of answer set programming modules. We aim at generalising this
framework of modular logic programming and start by lifting restrictive conditions
that were originally imposed, and use alternative ways of combining these (so called
by us) Generalised Modular Logic Programs. We then deal with conflicts arising
in generalised modular logic programming and provide modular justifications and
debugging for the generalised modular logic programming setting, where justification
models answer the question: Why is a given interpretation indeed an Answer Set?
and Debugging models answer the question: Why is a given interpretation not an
Answer Set?

In summary, our research deals with the problematic of formally devising a
generic modular logic programming framework, providing: operators for combin-
ing arbitrary modular logic programs together with a compositional semantics; We
characterise conflicts that occur when composing access control policies, which are
generalisable to our context of generalised modular logic programming, and ways of
dealing with them syntactically: provided a unification for justification and debugging
of logic programs; and semantically: provide a new semantics capable of dealing
with incoherences. We also provide an extension of modular logic programming
to a probabilistic setting. These goals are already covered with published work.
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A prototypical tool implementing the unification of justifications and debugging is
available for download from http://cptkirk.sourceforge.net.

Keywords: Logic Programming, Answer Set Programming, Paracoherence,
Paraconsistency, Modular Logic Programming, Probabilistic Logic Programming,
Bayesian Networks, Access Control Policies.
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Sumário

A natureza ubı́qua que os dados têm hoje em dia, bem como a quantidade de
conhecimento disponı́vel, obrigam-nos a desenvolver formas de raciocinar a partir de
múltiplas fontes de conhecimento muitas vezes incompletas e incertas. Utilizamos
bases de conhecimento declarativas, representadas na forma de programas em lógica
modulares utilizando a semântica de programação por conjuntos de respostas.

O nosso objetivo nesta tese é fornecer uma maneira de combinar estas bases de
conhecimento assim como as computações individuais previamente derivadas delas
na forma de modelos lógicos, sem que seja necessário recalcular esses resultados
para proceder à composição dos módulos e sem ter que saber explicitamente as
regras dos módulos originais que produziram tais resultados. Isso colocou-nos muitos
desafios, tais como perceber qual a forma de lidar com os problemas fundamentais
das abordagem de Programação em Lógica Modular existentes na literatura, ou seja,
como definir uma semântica composicional geral que nos permita compor módulos
sem restrições.

Partindo de abordagens existentes no contexto de LP, desenvolvemos uma
framework nova capaz de lidar com composição de módulos genéricos em LP, pre-
servando a propriedade crucial de composicionalidade que, informalmente, significa
que a combinação dos modelos dos módulos individuais são os modelos da união
dos módulos. Queremos ainda ser capazes de raciocinar na presença de conheci-
mento contendo incoerências: Dizemos que um programa em lógica que não tem
um conjunto de resposta devido a dependências cı́clicas que um átomo tem da sua
negação por omissão (default negation) é incoerente. Nesta tese discutimos também a
forma como esta mesma abordagem pode ser estendida para lidar com conhecimento
probabilı́stico.

Partimos da abordagem de Programação em Lógica Modular (MLP) por Oikari-
nen & Janhunen (2008); Janhunen et al. (2009) que disponibiliza uma forma restrita
de composicionalidade para estes módulos. Outro objetivo nosso foi o de genera-
lizar esta abordagem e começámos por resolver os problemas que lhe detectámos.
Lidamos de seguida com os conflitos que surgem em GMLP e fornecemos modelos
para justificações e modelos para debugging para GMLP. Modelos de justificação são
respostas à pergunta: Por que é que uma determinada interpretação é de facto um
conjunto de resposta? E modelos de debugging são respostas à pergunta: Por que é
que uma determinada interpretação não é um conjunto de resposta?

Em resumo, a nossa investigação aborda a problemática da elaboração formal
de uma framework genérica de programação em lógica modular. Fornecemos: ope-
radores para combinar programas em lógica modular arbitrários juntamente com
uma semântica composicional; Caracterizamos os conflitos que ocorrem durante a
composição de polı́ticas de controlo de acesso, que são generalizáveis a GMLP e
maneiras de lidar com estes conflitos de forma sintáctica: contribuı́mos com uma
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unificação de duas abordagens existentes na literatura para justificação e debugging de
programas em lógica; e de forma semântica: contribuı́mos com uma nova semântica
capaz de lidar com incoerências. Também fornecemos uma extensão da abordagem
de programação em lógica modular para uma contexto probabilistico. Estas metas
foram todas atingidas e correspondem a trabalho publicado. Um protótipo que imple-
menta a unificação das abordagens de justificações e debugging para programas em
lógica está disponı́vel para download em http://cptkirk.sourceforge.net.

Palavras Chave: Programação em Lógica, Programação por conjuntos de resposta,
Paracoerência, Paraconsistencia, Modularidade de Programas em Lógica, Redes
Bayesianas, Polı́ticas de Controlo de Acesso.
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Chapter 1

Introduction

1.1 Introduction

With the recent development of a new ubiquitous nature of data and the profusity of
available knowledge, there is nowadays the need to reason from multiple sources of
often incomplete and uncertain knowledge. Our goal was to provide a way to com-
bine declarative knowledge bases – represented as logic programming (LP) modules
under the answer set semantics – as well as the individual results one already inferred
from them, without having to recalculate the results for their composition and without
having to explicitly know the original logic programming encodings that produced
such results. The semantics of logic programming is given by sets of models known
as Answer Sets. This posed us many challenges such as how to deal with fundamen-
tal problems of Modular Logic Programming (MLP), namely how to define a fully
generic compositional semantics that would allows us to compose unrestricted mod-
ules.

Building upon existing logic programming approaches, we devised a novel frame-
work capable of composing generic logic programming modules while preserving the
crucial property of compositionality.

Compositionality (informally): The combination of models of individual modules
are the models of the union of modules.

However, due to non-monotonicity, programs may be incoherent i.e., lack a
model. Nonetheless, there are many cases when this is not intended and one might
want to draw conclusions also from an incoherent program, e.g., for debugging
purposes, or in order to keep a system (partially) responsive in exceptional situations;
in particular, if the contradiction or instability is not affecting the parts of a system
that intuitively matter for a reasoning problem.

Incoherence (informally): A logic program that does not have an answer set due to
cyclic dependencies of an atom from its default negation is said to be incoher-
ent.

5



In this thesis we also discuss how this modular approach can be extended to deal with
probabilistic knowledge in a modular and compositional way.

We depart from the Modular Logic Programming (MLP) approach in Oikarinen &
Janhunen (2008); Janhunen et al. (2009) which achieved a restricted form of compo-
sitionality of answer set programming modules. We aim at generalising MLP and start
by lifting restrictive conditions that were originally imposed, and use alternative ways
of combining these Generalised Modular Logic Programs (GMLP). We then deal with
conflicts arising in GMLP and provide modular justifications and debugging for the
GMLP setting,

Justification models (informally): Answer the question: Why is a given interpreta-
tion indeed an Answer Set?

Debugging models (informally): Answer the question: Why is a given interpretation
not an Answer Set?

The research questions we posed basically motivated the two parts of our re-
search and were, namely, for the first part and second parts:

”Do Modular Logic Programming frameworks have the sufficient expressiveness to
serve as a basis to develop a fully compositional and modular knowledge

representation framework? Are more general knowledge representation frameworks
well suited to achieving full compositionality?”

”What are the general ways in which one can deal with the conflict that occur when
combining knowledge from multiple sources?”

Because of these questions, the aim of this research was twofold.

1. We aimed at devising a general modular knowledge representation framework,
attaining a full form of compositionality that was missing in the current state-
of-the-art although several modular knowledge representation and reasoning
frameworks exist, some of them having partial compositionality properties.

2. Given a full compositional knowledge representation framework – in the form
of generalised modular logic programs – we aimed at studying and dealing with
the conflicts that occur when composing knowledge originating from multiple
knowledge bases.

There are, in general, two ways to identify and deal with said problems: Syntac-
tically, by detecting the syntactical causes for why some unintended (respectively,
intended) interpretation is (respectively, is not) a model; Semantically, by using
semantics to avoid certain categories of conflicts. Such semantics have specific
properties such that allow them to deal with inconsistencies and incoherencies, giving
models to programs that suffer from these problems.
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Shortcomings have been identified in the literature of Modular Logic Program-
ming, namely the impossibility to compose modules with common output atoms and
modules that are mutually dependent through positive cycles. When these restrictions
are lifted, inconsistencies and conflicts arise when composing modules and, instead
of accepting the explosive approach in the presence of contradiction, one might be in-
terested in having different degrees of certainty associated to knowledge stored within
each module and also in ways to attain paracoherency 1 with respect to knowledge.
We believe that in the future, the broad acceptance of logic programming as a whole
will greatly benefit from efforts on the integration of developments in these directions.

As a field of application for this framework, we bring these notions to access con-
trol policies, where such policies can be easily encoded in modular logic program-
ming. We need to characterise the conflicts that arise when combining these policies,
which can in turn be ported to the generalised setting of modular answer set pro-
gramming, identifying and characterising its basic conflict types which can be studied
according to several dimensions. Other notions can also be ported to this application
field: e.g., giving a probability or degree of certainty to knowledge stored within a
module (policy).

1.2 Motivation

The theoretical framework we developed potentially allows us to efficiently represent
and process logic programs not as monolithic entities but rather as sets of modules. In
this thesis, we resort to a compositional semantics allowing models from individual
modules to be retained and composed. This is critical in any real world scenario, as
the amount of information is too big for one to afford having to, whenever adding new
information, recalculate results of modules that potentially have already been calcu-
lated. Furthermore there are some scenarios where the logic programming encoding’s
owner might not wish to divulge its contents but only part of its results. We are also
able to provide justifications for why a wanted interpretation is not an answer set (AS)
and for why an interpretation that is not desired to be a model, is indeed an answer
set.

Most real world databases contain data which is not certain and in order to be able
to reason from such data, there is the need to capture this knowledge by means of sys-
tems that are formally well defined. This can be achieved by using e.g., probabilistic
knowledge bases.

Again, in a real world application, one often faces the need to validate our logic
programs as well as to identify and then deal with conflicts. The Logic Programming
community is nowadays very well aware of this need Eiter et al. (2010a); Gebser
et al. (2008); Shchekotykhin (2014); Pemmasani et al. (2004); Pontelli et al. (2009)

1We use the term paracoherent reasoning to distinguish between paraconsistent reasoning and rea-
soning from incoherent programs.
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and a way of theoretically characterising such problems and conflicts has also been
one of our focus.

Why Answer Set Programming? Answer Set Programming (ASP) is a prime for-
malism for non-monotonic knowledge representation and reasoning, mainly because
of the existence of efficient solvers and well established relationships to common
non-monotonic logics. It is a declarative logic programming paradigm with a model
theoretic semantics, where problems are encoded into a logic program using rules, and
its models, called answer sets (or stable models) due to Gelfond & Lifschitz (1988),
encode solutions. Over the last two decades, the paradigm of answer set programming
has been receiving ever increasing attention from the logic programming communi-
ties Eiter et al. (2001); Baral (2003); Lifschitz (2002); Marek & Truszczynski (1999);
Niemelä (1998). A good overview is provided in Brewka et al. (2011);

Real World Scenario: The Problem of Access Control Policies The emergence of
technologies such as service-oriented architectures and cloud computing has allowed
us to perform information services more efficiently and effectively. Access control
is an important mechanism for achieving security requirements in such information
systems, which are described by means of access control policies (ACPs).

However, these security requirements cannot be guaranteed when conflicts occur
in these ACPs. Furthermore, the design and management of imperative access control
policies is often error-prone due not only to the lack of a logical and formal foundation
but also to the lack of automated conflict detection and resolution.

Identifying their basic conflict types and characterising them formally, would al-
low the automatic identification of such conflicts among other reasoning tasks. This
need for characterising conflicts comes not only from the non-monotonic nature of ac-
cess control but also from the fact that some policies are distributed and as such they
can derive conflicting conclusions. Answer set programming, together with these
characterisations, has the potential to vastly improve the ease of designing and main-
taining complex systems of access control policies.

Motivating Use-Case: Hospital Access Control Policy We take and adapt a well-
known use case of a set of modular access control policies for a hospital Bonatti et al.
(2002). We split the original example into three sub-examples for ease of presentation:

Example 1.2.1 Consider a hospital composed of three departments, namely Radi-
ology, Surgery, and Medicine. Each of the departments is responsible for granting
access to data under their (possibly overlapping) authority domains. The statements
made by the departments are unioned, meaning the hospital considers an access as
authorised if any of the department policies states so.

For privacy regulations, however, the hospital will not allow any access (even if
authorised by the departments) to lab tests data unless there is patient consent for

8



that, stated by policy Pconsents. However, the patient should only be asked for consent
to divulge documents which can indeed be allowed for access by the hospital.

Accordingly, lab tests data will be released only if both the hospital authorizes the
release and the interested patient consents to it.

The departments are also responsible for discharging their patients. 4

As an example of policy modules, we zoom in on Pconsents and Pmedicine.

Example 1.2.2 Pconsents reports accesses to laboratory tests for which there is patient
consent. Authorisations in Pconsents are collected by the hospital administration by
means of forms that patients fill in when admitted. Patients’ consents can refer to sin-
gle individuals (e.g., John Doe can individually point out that his daughter Jane Doe
can access his tests) as well as to subject classes (e.g., research labs and hospitals),
and can refer to single documents or to classes of them.

Authorisations specified for subject/object classes are propagated to individual
users and documents by classical hierarchy-based derivation rules. 4

Example 1.2.3 Policy Pmedicine of the medical department is composed of the policies
of its two divisions, Cardiology and Oncology, and of a policy Padministration speci-
fied by the central administration of the department. The Oncology division can re-
voke authorisations in Padministration, regarding data related to clinic trials, by issuing
negative-administration-allows predicates in Poncology.

In addition, each of the divisions can specify further authorisations (policies Ponc

and Pcardiology), whose scope is restricted to objects in their respective domains. 4

Note that some policies refer to the same subjects, e.g., discharged in Poncology
and Pcardiology, and that 1.2.1 has mutual dependencies in the conditions for allow
and consents. Both issues are problematic with current modular logic programming
technologies.

1.3 Thesis Results Summary

In short, the output of this PhD thesis is a logic framework generalising modular
logic programming results and providing: operators for combining arbitrary LP mod-
ules, compositional semantics for GMLP, characterisation of conflicts that occur when
composing modules and ways of dealing with them semantical (paracoherent seman-
tics) and syntactically by unifying justifications and debugging LP modules.

• As a possible real world application, we aimed at identifying and formalising
possible causes of conflict in access control policies, as well as presenting rea-
sonable ways of detecting and fixing them either by:

– Using paracoherent semantics (e.g., our SEQ-model semantics Eiter et al.
(2010b); Amendola et al. (2015)), or,
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– By providing means for applying syntactic changes to faulty programs by
finding justifications and debugging models Damásio et al. (2015).

• Using generalised modular logic programming (GMLP) Damásio & Moura
(2014, 2015) for this purpose yields different types of basic conflicts in access
control programs.

– We characterised them in terms of the notions of strong equivalence of
logic programs, as well as that of default logic, in Moura (2012).

• These characterisations enable the detection of conflicts and allow this to be
done automatically. They are, overall, flexible enough to be extended to detect-
ing which types of conflicts are generated, as well as to trace them back to the
source, potentially identifying leaks in ACPs.

– A prototypical tool implementing the unification of justifications and de-
bugging is available for download at http://cptkirk.sourceforge.net.

• Furthermore, one can use probability distributions for detecting errors or con-
flicts that are more probable. Causal probability tables must be calculated for
this purpose and then encode these into our modular P-Log framework Damásio
& Moura (2011).
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Chapter 2

Preliminaries: Logic programs
and Modular Frameworks

In this Chapter 2, we introduce relevant formal background, namely, in the following
two sections where we start by presenting in Section 2.1.1 an overview of relevant
work and introduce necessary fundamental concepts and formalisms in the context of
logic programming and answer set programming, and then in Section 2.2 we introduce
their modular aspects.

2.1 Logic Programming Formalisms

We consider programs in a function-free first-order language (including at least one
constant). As for terms, strings starting with uppercase (respectively, lowercase) let-
ters denote variables (respectively, constants). An atom is an expression of the form
p(t1, . . . , tn), where p is a predicate symbol and each ti is a term. A literal is either
an atom a or an expression of the form −a, where − denotes strong negation (also
interchangeably denoted by ¬).

2.1.1 Answer set programming paradigm

Normal Logic Programs in the answer set programming paradigm are formed by
finite sets of rules r having the following syntax:

L1← L2, . . . ,Lm,not Lm+1, . . . ,not Ln. (n≥ m≥ 0) (2.1)

Where each Li is a literal. A disjunctive rule r is of the form:

L1∨ . . .∨Ll ← Ll+1, . . . ,Lm,not Lm+1, . . . ,not Ln. (n≥ m≥ l ≥ 0) (2.2)

where each Li is a literal1 without the occurrence of function symbols – arguments are
either variables or constants of the logical alphabet.

1A statement letter or a negation of a statement letter Mendelson (1987).
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Literals (respectively, rules, programs) are ground if they are variable-free. Non-
ground literals (respectively, rules, programs) amount to their ground instantiations,
i.e., all instances obtained by substituting variables with constants from the (implicit)
language. The ground instantiation of a program P is denoted by Gr(P). By At(P) we
denote the set of all (ground) atoms occurring in Gr(P).

Definition 2.1.1 (Choice Rules) The syntax of logic programs has been extended
with other constructs, namely weighted and choice rules Niemelä (1998). In particu-
lar, choice rules have the following form:

{A1, . . . ,An}← B1, . . .Bk, not C1, . . . , not Cm. (n≥ 0) (2.3)

where A1, . . . ,An, B1, . . .Bk, C1, . . . , Cm are atoms. N

As observed by Oikarinen & Janhunen (2008), the atoms in the consequents of
choice rules possessing multiple atoms can be freely split without affecting their se-
mantics. When splitting such rules into n different rules

{Ai}← B1, . . .Bk,not C1, . . . ,not Cm. where 1≤ i≤ n

the only concern is the creation of n copies of the implicants B1, . . .Bk, not C1, . . . ,not Cm.
However, new atoms can be introduced to circumvent this. There is a translation
of these choice rules to normal logic programs Ferraris & Lifschitz (2005), which
we assume is performed throughout this thesis but that is omitted for readability.
We, furthermore, deal only with ground programs and use variables as syntactic
placeholders.

Intuitively, a Normal Logic Program is a logic program where negation is allowed
in the bodies of rules and no disjunction is allowed (in the heads of rules).

Disjunctive Logic Programs (DLPs) are finite sets of disjunctive rules (over lan-
guage Σ). A program P is called normal (respectively, positive) if each r ∈ P is normal
(respectively, positive); P is constraint-free, if P contains no constraints.

Example 2.1.1 (Disjunctive Logic Program) Consider the following disjunc-
tive logic program P = {assistant ∨ student ← not pro f essor. discount ←
student,not assistant.}. It intuitively captures that some department members
who are not known to be professors are assistants or students, and a student who is
not known to be assistant gets a discount for coffee.

4

Rule Notation Considering a rule r of the forms (2.1) or (2.2), let:

Head(r) = L1

be the literal in the head of a non-disjunctive rule and:

Head(r)D = {L1, . . . ,Ll},
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be the set with all literals in the head of a disjunctive rule. Let:

Body+(r) = {L2, . . . ,Lm}

(or Body+(r)D = {Ll+1, . . . ,Lm} for the disjunctive case)

be the set with all positive literals in the body, let:

Body−(r) = {Lm+1, . . . ,Ln}

be the set containing all negative literals in the body, and let:

Body(r) = {L2, . . . ,Ln}

be the set containing all literals in the body.
If a program is positive we will omit the superscript in Body+(r). When the

context is clear we will simply use Head(r) as a set of atoms for disjunctive rules or
as a single atom for non-disjunctive rules and the same for the corresponding literal
indexes in the bodies of non-disjunctive and disjunctive rules.

Next we define different rule types, namely facts, constraints as well as normal
and positive rules, in terms of their heads and bodies:

Definition 2.1.2 (Rule Types) A rule r of forms (2.1) or (2.2) is called:

(i) a fact, if Body(r) = /0 (in which case the symbol← is usually omitted),

(ii) an integrity constraint (IC), if Head(r) = /0,

(iii) normal, if |Head(r)| ≤ 1, and

(iv) positive, if Body−(r) = /0.

N

Let us denote an interpretation I by the set of atoms satisfied by I. Note here
that given a program P and an interpretation I, if an integrity constraint c ∈ Gr(P) is
applicable with respect to I, the fact that Head(c) = /0 implies I 6|= c, and thus I cannot
be an answer set of P.

Definition 2.1.3 (Herbrand Base, Interpretations and Least Models) Given a set
of literals J let its default negation be not J = {a | not a ∈ J}∪{not a | a ∈ J∧∀b a 6=
not b}. The Herbrand Base At(P) (frequently denoted as HP) of a program P is
formed by the set of atoms occurring in it.

A two-valued interpretation I corresponds to the partial interpretation
I∪not (HP \ I).

The least model LM(P) of a definite program P is the least fixed point of operator

TP(I) = {Head(r) | r ∈ P∧Body(r)⊆ I},

where I is a two-valued interpretation which is a subset of HP specifying the true
atoms, and a partial interpretation is a subset of HP ∪ not HP (absent literals are
undefined). N
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Definition 2.1.4 (Applicable and Blocked Rules) Given a program P and an inter-
pretation I for P, whenever Body+(r)⊆ I and Body−(r)∩ I = /0, for a rule r ∈Gr(P),
we say that r is applicable with respect to I, and blocked with respect to I otherwise.
N

Definition 2.1.5 (Support) For a program P, an interpretation I for P, and G ⊆
At(P), we call a rule r ∈ Gr(P) a support for G with respect to I if r is applicable
with respect to I, Head(r)∩G 6= /0, and Head(r)∩ I ⊆ G.

We call G supported by P with respect to I if there is some support r ∈ Gr(P) for
G with respect to I.

Furthermore, G is unsupported by P with respect to I if G is not supported by P
with respect to I. N

Next we define three semantics for logic programs which we will use thoroughly
in this thesis, namely the well-founded model semantics, the answer set semantics and
the partial stable model semantics.

Gelfond-Lifshitz Reduct: Answer Set Semantics The stable model semantics of
is defined via the reduct operation Gelfond & Lifschitz (1988, 1990). Given an inter-
pretation M (a set of ground atoms), the reduct PM of a program P with respect to M
is the program:

PM = {Head(r)← Body+(r) | r ∈ P,Body−(r)∩M = /0} (2.4)

The interpretation M is a stable model of P iff M = LM(PM), where LM(PM) is
the least model of reduct PM. The new terminology of answer set appeared later
in Lifschitz (1999) and it is now generally used for describing the variant based on 3-
valued Herbrand Models ( consistent sets of ground literals M ⊆HP∪not HP ), with
incomplete information of the world. The term stable models is nowadays usually
reserved for programs without strong negation (“−”), and viewed as 2-valued models
with complete information of the world.

Well-Founded Model Semantics (van Gelder et al. (1991)) The Well-Founded
Model of P is T ∪not F where T and F are interpretations such that T ∩F = /0, T is
the least fixed point T = Γ(Γ(T )) = Γ2(T ) and F =HP \Γ(T ).

The well-founded model semantics is the most prominent approximation of the
answer set semantics but, unlike it, a well-founded model is defined for every normal
logic program.

Partial Stable Models Note that every answer set is a fixed point of Γ2 (but not the
other way around) and that fixed points of Γ2 are the partial stable models (PSMs)
of Przymusinski (1990, 1991b). Compared to answer sets, partial stable models con-
servatively extend the class of programs for which an acceptable model exists; in
particular, every non-disjunctive program has some partial stable model, while it may
lack an answer set.
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2.1.2 Equilibrium Logic

Intuitionistic logic is a system of symbolic logic that differs from classical logic inas-
much as it replaces the traditional concept of truth with the concept of constructive
provability. For example, in classical logic, propositional formulae are always as-
signed a truth value from the two element set of trivial propositions {>,⊥} (true and
f alse respectively) regardless of whether we have direct evidence for either case. This
is referred to as the ’law of excluded middle’, because it excludes the possibility of any
truth value besides ’true’ or ’false’. In contrast, propositional formulae in intuitionis-
tic logic are not assigned any definite truth value at all and instead are only considered
true when one has direct evidence for them, hence proof. Operations in intuitionistic
logic therefore preserve justification, with respect to evidence and provability, rather
than classical truth-valuation.

The definition of answer set in Section 2.1.1 uses the GL-reduct, and thus in a
sense has an operational flavour. This raised the question whether a characterisation
of answer sets in terms of a suitable logic is possible; and as constructibility of answer
sets by rules is crucial, whether in particular (a variant of) intuitionistic logic, could
serve this purpose. David Pearce showed that the answer is positive and presented
equilibrium logic Pearce (2006a); Pearce & Valverde (2008), which is a natural non-
monotonic extension of Heyting’s logic of here-and-there (HT Logic) Heyting (1930).
The latter is an intermediate logic between (full) intuitionistic and classical logic, and
it coincides with 3-valued Gödel logic. As it turned out, HT-logic serves as a valuable
basis for characterising semantic properties of answer set semantics and equilibrium
logic can be regarded as a logical reconstruction of answer set semantics that has
many attractive features.

As such, HT-logic considers a full language L± of formulas built over a proposi-
tional signature Σ with the connectives ¬, ∧, ∨,→, and ⊥. We restrict our attention
here to formulas of the form:

b1∧ . . .∧bm∧¬bm+1∧ . . .∧¬bn → a1∨·· ·∨al, (2.5)

which correspond in a natural way to rules of form (2.2) where for l = 0, the formula
a1 ∨ ·· · ∨ al is ⊥; every program P corresponds then similarly to a theory (set of
formulas) ΓP.

Example 2.1.2 For example, program P1:

P1 = {a← b; b← not c; c← not a}

corresponds to the theory:

ΓP1 = {b→ a; ¬c→ b; ¬a→ c}

while program P2 next:

P2 = {b∨ c← not a; d← c,not b}
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corresponds to the following theory:

ΓP2 = {¬a→ b∨ c; ¬b∧ c→ d}

4

In the rest of this thesis, we tacitly use this correspondence.
As a restricted intuitionistic logic, HT can be semantically characterised by Kripke

models, in particular using just two worlds, namely “here” and “there” (assuming that
the here world is ordered before the there world).

An HT-interpretation is a pair (X ,Y ) of interpretations X ,Y ⊆ Σ such that X ⊆Y ;
it is total, if X = Y . Intuitively, atoms in X (the here part) are considered to be true,
atoms not in Y (the there part) to be false, while the remaining atoms (from Y \X) are
undefined.

Assuming that X |= φ denotes satisfaction of a formula φ by an interpretation X in
classical logic, satisfaction of φ in HT-logic (thus, an HT-model), denoted (X ,Y ) |= φ ,
is defined recursively as follows:

1. (X ,Y ) |= a if a ∈ X , for any atom a,

2. (X ,Y ) 6|=⊥,

3. (X ,Y ) |= ¬φ if Y 6|= φ (that is, Y satisfies ¬φ classically),

4. (X ,Y ) |= φ ∧ψ if (X ,Y ) |= φ and (X ,Y ) |= ψ ,

5. (X ,Y ) |= φ ∨ψ if (X ,Y ) |= φ or (X ,Y ) |= ψ ,

6. (X ,Y ) |= φ → ψ if (i) (X ,Y ) 6|= φ or (X ,Y ) |= ψ , and (ii) Y |= φ → ψ .

Note that the condition in item 3 is equivalent to (X ,Y ) |= φ → ⊥, thus we can
view this intuitionistic form of negation ¬φ as implication φ → ⊥. Then, an HT-
interpretation (X ,Y ) is a model of a theory Γ, denoted (X ,Y ) |= Γ, if (X ,Y ) |= φ for
every formula φ ∈ Γ.

As regards negative literals and rules: given a HT-interpretation (X ,Y ), for an
atom a it holds that (X ,Y ) |= ¬a iff a /∈Y , and (X ,Y ) |= r for a rule r of form (2.2) iff
either Head(r)∩X 6= /0 or Body+(r) 6⊆ Y , or Body−(r)∩Y 6= /0.

Definition 2.1.6 (Brave and Cautious Reasoning) A formula ϕ is a brave conse-
quence of a theory T , symbolically T |∼b ϕ , if and only if some equilibrium model
of T satisfies ϕ . Dually, ϕ is a skeptical consequence of T , symbolically T |∼s ϕ , if
and only if all equilibrium models of T satisfy ϕ . The basic reasoning tasks in the
context of equilibrium logic are the following decision problems:

• Decide whether a given theory T possesses some equilibrium model.

• Given a theory T and a formula ϕ , decide whether T |∼b ϕ holds.
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• Given a theory T and a formula ϕ , decide whether T |∼s ϕ holds.

The first task is called the consistency problem; the second and third tasks are respec-
tively called brave reasoning and skeptical reasoning. N

Brave reasoning – to decide whether there is an answer set containing a specific
atom – is know to be in complexity class NP, whereas cautious reasoning – decid-
ing whether a specific atom is in all the answer sets – is in co-NP. We recall that
NP is the set of decision problems solvable in polynomial time by a theoretical non-
deterministic Turing machine and, conversely, co-NP is the set of decision problems
where the ”no” instances can be accepted in polynomial time by a theoretical non-
deterministic Turing machine.

SE-Model In terms of the GL-reduct, we have (X ,Y ) |= P for a program P iff Y |= P
and X |= PY Turner (2003a).

Definition 2.1.7 (Equilibrium Models) A total HT-interpretation (Y,Y ) is an
equilibrium model (EQ-model) of a theory Γ, if (Y,Y ) |= Γ and for every HT-
interpretation (X ,Y ), such that X ⊂ Y , it holds that (X ,Y ) 6|= Γ; the set of all
EQ-models of Γ is denoted by EQ(Γ). N

The equilibrium models of a program P are then those of ΓP, i.e., EQ(P) =
EQ(ΓP). For further details and background see, e.g., Pearce & Valverde (2008).

Example 2.1.3 For program P:

P = {b∨ c← not a; d← c,not b},

the sets2 ( /0,a), (a,a), (b,b), ( /0,ab), (a,ab), (b,bc), (c,bc), (cd,cd) are all HT-
models (X ,Y ) of the corresponding theory ΓP.

The equilibrium models of P resp. ΓP are (b,b) and (cd,cd), i.e., EQ(P) =
EQ(ΓP) = {(b,b),(cd,cd)}. 4

In the previous example, the program P has the answer sets I1 = {b} and I2 =
{c,d}, which amount to the equilibrium models (b,b) and (cd,cd), respectively. In
fact, the answer sets and equilibrium models of a program always coincide.

Proposition 1 (Pearce (2006a)) For every program P and M ⊆ At(P), it holds that
M ∈ AS(P) iff (M,M) is an EQ-model of ΓP. ◦

In particular, as AS(P) = MM(P) for any positive program P, we have EQ(P) =
{(M,M) |M ∈MM(P)} in this case.

As stated before, we call a logic program incoherent, if it lacks answer sets due
to cyclic dependency of atoms between each other by rules through negation; that is,
no answer set (equivalently, no equilibrium model) exists even if all constraints are
dismissed from the program.

2We write (as common) sets {a1,a2, . . . ,an} as juxtaposition a1a2 · · ·an of their elements.
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Example 2.1.4 Consider the barber paradox, which can be regarded as an alterna-
tive form of Russell’s famous paradox in naive set theory3: In some town, the barber
is a man who shaves all men in town, and only those, who do not shave themselves.
The paradox arises when we ask “Who shaves the barber?”. Assuming that Joe is the
barber, the knowledge about who is shaving him is captured by the logic program

P = {a← not a},

where a stands for shaves(joe, joe).
The HT-models of this program are ( /0,a) and (a,a); the single total HT-model is

(a,a), which however is not an equilibrium model. Similarly, the program

P = {a← b; b← not a}

has the HT-models ( /0,a), ( /0,ab), (a,a), (a,ab), and (ab,ab); likewise, the total HT-
models (a,a) and (ab,ab) are not equilibrium models. 4

2.1.3 Paraconsistent and Paracoherent reasoning

As we have seen before, because of non-monotonicity, answer set programs may be
incoherent, i.e., lack an answer set due to cyclic dependencies of an atom from its de-
fault negation. Nevertheless, there are many cases where this is not intended and one
might want to draw conclusions also from an incoherent program, e.g., for debugging
purposes, or in order to keep a system (partially) responsive in exceptional situations.
This is akin to the principle of paraconsistency, where non-trivial consequences shall
be derivable from an inconsistent theory. As so-called extended logic programs also
may be inconsistent in the classical sense, i.e., they may have the inconsistent answer
set as their unique answer set, we use the term paracoherent reasoning to distinguish
between paraconsistent reasoning and reasoning from incoherent programs.

Both types of reasoning from answer set programs have been studied in the course
of the development of the answer set semantics; for approaches on paraconsistent cf.,
e.g., Sakama & Inoue (1995a), Alcântara et al. (2005), Odintsov & Pearce (2005).

Numerous semantics for logic programs with non-monotonic negation can be con-
sidered as being paracoherent semantics. Ideally, such a semantics satisfies the fol-
lowing properties (desiderata):

(D1) Answer set coverage Every (consistent) answer set of a program corresponds
to a model.

(D2) Congruence If a (consistent) answer set exists for a program, then all models
correspond to an answer set.

(D3) Classical coherence If a program has a classical model, then it has a model.

3Namely, that the set of all sets that are not members of themselves can not exist.

18



Widely-known semantics, such as 3-valued stable models (Przymusinski
(1991b)), L-stable models (Eiter et al. (1997a)), revised stable models (Pereira
& Pinto (2005)), regular models (You & Yuan (1994)), and pstable models (Osorio
et al. (2008)), satisfy only part of these requirements. Semi-stable models (Sakama
& Inoue (1995a)) however, satisfy all three properties and thus are the prevailing
paracoherent semantics.

Despite the model-theoretic nature of ASP, semi-stable models have been defined
by means of a program transformation, called epistemic transformation and a semantic
characterisation in the style of equilibrium models for answer sets Pearce & Valverde
(2008) was still missing in the literature until recently. Such characterisation was de-
sired because working with program transforms becomes cumbersome, if properties
of semi-stable models should be assessed; and moreover, while the program transfor-
mation is declarative and the intuition behind it is clear, the interaction of the rules
does not make it easy to understand or see how the semantics works in particular
cases.

Example 2.1.5 (Semi-Stable Models) Consider the following logic program P1:

P1 = {a← not a},

its epistemic transformation Pk
1 (presented in depth in Chapter 7), has the single an-

swer set M = {Ka}; hence, {Ka} is the single semi-stable model of P, in which a is
believed true. For program

P2 = {b← not a},

its epistemic transformation Pk
2 has the answers sets M1 = {Ka} and M2 = {λ1,b};

as4 gap(M1) = {a} and gap(M2) = /0, among them M2 is maximal canonical5, and
hence M2 ∩ΣK = {b} is the single semi-stable model of P2. This is in fact also the
unique answer set of P2. Note that atoms marked with λ are auxiliary.

Finally, the epistemic transformation of

P3 = {b∨ c← not a; d← c,not b}

has answer sets M1 = {λr1,1,b}, M2 = {λr1,2,c, λr2,1,d}, M3 = {λr1,2,c,Kb}, and
M4 = {Ka}, as may be checked using a solver.

Among them, as gap(M1) = gap(M2) = /0 while M3 and M4 have nonempty gap,
M1 and M2 are maximal canonical and hence the semi-stable models of P3; they cor-
respond with the answer sets of P3, {b} and {c,d}, as expected. 4

For a study of the semi-stable model semantics, we refer to Sakama & Inoue
(1995b); notably,

4Considering gap to be the gap between believed and (derivably) true atoms.
5Meaning that there is no other model having a larger gap between believed and (derivably) true

atoms, cardinality wise.
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Proposition 2 ( Sakama & Inoue (1995b)) The SST -models semantics, given by
SST (P) for arbitrary programs P, satisfies properties (D1)-(D3). ◦

Semi-stable models is the only semantics in the literature that satisfies these three
properties.

2.2 Modular Frameworks: Overview and Formalisms

2.2.1 Multi Context Systems

A Multi Context System (MCS) Brewka & Eiter (2007b) is a collection of contexts
that are linked using bridge rules. Each context has its own way of representing
knowledge, including its its own syntax and semantics, i.e., a rather abstract and gen-
eral notion of module. Bridge rules define how knowledge can be transferred between
contexts. In MCSs, a model has the form of a collection of belief sets (called a belief
state).

The semantics of MCSs that are of interest to us are as follows.

1. Equilibrium semantics (ES) defines intended models as exactly those belief
states that, if viewed operationally, remain unchanged after first applying bridge
rules and then applying contexts, hence the name of an equilibrium.

2. Minimal equilibrium semantics (MES) defines intended models as those equi-
libriums that are also minimal.

3. Grounded equilibrium semantics (GES) Brewka & Eiter (2007b) defines in-
tended models as minimal equilibriums of a positive MCS obtained by reducing
the original MCS. Reducing MCSs is similar (methodically and intent-wise) to
the Gelfond/Lifschitz reduct Gelfond & Lifschitz (1988) used to define stable
models.

The above semantics are motivated by everyday reasoning about a collection of
contexts or agents. In MCSs, some knowledge is shared between different knowledge
bases, while some knowledge is kept private/confidential. Note that justifications and,
in particular, avoiding self-justifications was the main motivation behind the introduc-
tion of grounded equilibrium semantics for MCSs Brewka & Eiter (2007b). However,
grounded equilibrium semantics (GES) is defined over MCSs in which all contexts
are reducible. Thus, even one non-reducible context is enough to render GES non-
applicable. Tasharrofi & Ternovska (2014) solved this by proposing an intermediate
semantics capturing the robustness of ES, thus making it applicable to every MSC
while, like GES does, dealing with the problem of self justified loops.

MCSs can not be said to be compositional in general though, as they take general
contexts for which their combination might not be intuitive and need some operational
mapping in the form of bridge rules. For instance, interpretations having underlying
multi-valued logics might be hard to combine. We define this formally in Section 5.3.
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2.2.2 Modular Logic Programming

The modular aspects of answer set programming have been clarified over the last
years for normal logic programming Oikarinen & Janhunen (2008); Dao-Tran et al.
(2009); Järvisalo et al. (2009); Damásio & Moura (2014); Babb & Lee (2012), for

probabilistic logic programming Damásio & Moura (2011) and for disjunctive logic
programs (DLP) Janhunen et al. (2009), describing how and when two program parts
(modules) can be combined. In this section, we overview Oikarinen and Janhunen’s
logic program modules defined in analogy to Gaifman & Shapiro (1989), that will be
the basis of our work.

2.2.2.1 Formal Preliminaries

Modules, in the sense of Oikarinen & Janhunen (2008), are essentially sets of rules
with an input and output interface: A logic programming module P is a tuple
〈R, I,O,H〉 where: R is a finite set of rules; I, O, and H are pairwise disjoint sets
of input, output, and hidden atoms; At(R)⊆ At(P) defined by At(P) = I∪O∪H; and
∀r ∈ R : Head(r) 6∈ I or, alternatively, Head(R)∩ I = /0.

Definition 2.2.1 (Program Module) A logic program moduleP is a tuple 〈R, I,O,H〉
where:

1. R is a finite set of rules;

2. I, O, and H are pairwise disjoint sets of input, output, and hidden atoms;

3. At(R)⊆ At(P) defined by At(P) = I∪O∪H; and

4. Head(R)∩ I = /0.

N

Output Atoms

Input Atoms

Rules:

Figure 2.1: Schematic Representation of Module in MLP

The set of atoms in Atv(P) = I∪O are considered to be visible and hence accessi-
ble to other modules composed with P either to produce input for P or to make use of
the output of P . We use Atin(P) = I and Atout(P) = O to represent the input and out-
put signatures of P , respectively. The hidden atoms in Ath(P) = At(P)\Atv(P) = H
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are used to formalize some auxiliary concepts of P which may not be sensible for
other modules but may save space substantially. The condition Head(R) 6∈ I ensures
that a module may not interfere with its own input by defining input atoms of I in
terms of its rules. Thus, input atoms are only allowed to appear as conditions in rule
bodies.

Use case We present next a use case that shows the need for using a modular frame-
work for logic programming, which we depict in Figure 2.2 and will use extensively
throughout the rest of the thesis.

Example 2.2.1 Alice wants to buy a car, wanting it to be safe and not expensive;
she preselected three cars, namely c1, c2 and c3. Her friend Bob says that car c2 is
expensive, while Charlie says that car c3 is expensive. Meanwhile, she consulted two
car magazines reviewing all three cars. The first considered c1 safe and the second
considered c1 to be safe while saying that c3 may be safe. Alice is very picky regarding
safety, and so she seeks some kind of agreement between the reviews.

The described situation can be captured with five modules, one for Alice, other
two for her friends, and two more, one for each magazine. Alice should conclude that
c1 is safe since both magazines agree on this. Therefore, one would expect Alice to
opt for car c1 since it is not expensive, and it is reviewed as being safe. However,
some meta-programming techniques can be applied since they share common output
atoms. �

buy(c1...c3)

safe(c1...c3),exp(c1...c3)

exp(c2), exp(c3) 

% BOB

exp(c2).

exp(c1...c3) 

% CHARLIE
exp(c3).

safe(c1...c3)

% Magazine B
safe(X):-car(X), airbag(X). 
car(c1...c3). 
airbag(c1). 
{airbag(c3)}.

% ALICE:
buy(X):- car(X), safe(X), not exp(X). 

safe(c1...c3)

% Magazine A
safe(c1).

Figure 2.2: Alice Example in MLP’s schematic representation.

The use case in Example 2.2.1 and Figure 2.2 is encoded into the five modules
shown next in Example 2.2.2:
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Example 2.2.2

PA =

〈 R =

{
buy(X)← car(X),sa f e(X),not exp(X).
car(c1). car(c2). car(c3).

}
I =

{
sa f e(c1),sa f e(c2),sa f e(c3),
exp(c1),exp(c2),exp(c3)

}
O =

{
buy(c1),buy(c2),buy(c3)

}
H =

{
car(c1),car(c2),car(c3)

}
〉

PB =

〈 R = { exp(c2).},
I = { },
O = { exp(c2),exp(c3)},
H = { }

〉

PC =

〈 R = { exp(c3).},
I = { },
O = { exp(c1),exp(c2),exp(c3)},
H = { }

〉

Pmg1 =

〈 R = { sa f e(c1).},
I = { },
O = { sa f e(c1),sa f e(c2),sa f e(c3)},
H = { }

〉

Pmg2 =

〈 R =


sa f e(X)← car(X),airbag(X).
car(c1). car(c2). car(c3).
airbag(c1).{airbag(c3)}.

 ,

I = { },
O = { sa f e(c1),sa f e(c2),sa f e(c3) },

H =

{
airbag(c1),airbag(c2),airbag(c3),
car(c1),car(c2),car(c3)

}〉
In this Example 2.2.2, module PA encodes the rule used by Alice to decide if a car

should be bought. The safe and expensive atoms are its inputs, and the buy/1 atoms
its outputs; it uses hidden atoms car/1 to represent the domain of variables. Modules
PB, PC and Pmg1 capture the factual information in Example 2.2.1.

They have no input and no hidden atoms, but Bob has only analyzed the price of
cars c2 and c3. The ASP program module for the second magazine is more interest-
ing6, and expresses the rule used to determine if a car is safe, namely that a car is safe
if it has an airbag; it is known that car c1 has an airbag, c2 does not, and the choice
rule states that car c3 may or may not have an airbag. 4

6car belongs to both hidden signatures of PA and Pmg2 which is not allowed when composing these
modules, but for clarity we omit a renaming of the car/1 predicate.
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Semantics of Modular Logic Programs Next, the answer set semantics is gen-
eralised to cover modules by introducing a generalisation of the Gelfond-Lifschitz’s
fixed point definition. In addition to weekly default literals (i.e., not ), also literals
involving input atoms are used in the stability condition. In Oikarinen & Janhunen
(2008), the answer sets of a module are defined as follows:

Definition 2.2.2 (Answer Sets of Modules) An interpretation M ⊆ At(P) is an an-
swer set of an ASP program module P = 〈R, I,O,H〉, if and only if:

M = LM
(
RM ∪{a. | a ∈M∩ I}

)
.

The answer sets of P are denoted by AS(P). N

Intuitively, the answer sets of a module are obtained from the answer sets of the
rules part, for each possible combination of the input atoms.

Example 2.2.3 Program modules PB, PC, and Pmg1 have each a single answer set:

AS(PB) = {{exp(c2)}}

AS(PC) = {{exp(c3)}}

and:
AS(Pmg1) = {{sa f e(c1)}}

Module Pmg2 has two answer sets, namely:

{sa f e(c1),car(c1),car(c2),car(c3),airbag(c1)}

and:

{sa f e(c1),sa f e(c3),car(c1),car(c2),car(c3),airbag(c1),airbag(c3)}

Alice’s ASP program module has 26 = 64 models, each corresponding to an input
combination of safe and expensive atoms. Some of these models are:

{ buy(c1),car(c1),car(c2),car(c3),sa f e(c1) }
{ buy(c1),buy(c3),car(c1),car(c2),car(c3),

sa f e(c1),sa f e(c3) }
{ buy(c1),car(c1),car(c2),car(c3),exp(c3),

sa f e(c1),sa f e(c3) }

�
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Composing programs from modules The composition of modules is obtained
from the union of program rules and by constructing the composed output set as the
union of the output sets of the modules, thus removing from the input all the specified
output atoms. Oikarinen & Janhunen (2008) define their first composition operator as
follows:

Definition 2.2.3 Given two modules P1 = 〈R1, I1,O1,H1〉 and P2 = 〈R2, I2,O2,H2〉,
their composition P1⊕P2 is defined when their output signatures are disjoint, that
is, O1∩O2 = /0, and they respect each others hidden atoms, i.e., H1∩At(P2) = /0 and
H2∩At(P1) = /0. Then their composition is

P1⊕P2 = 〈R1∪R2,(I1\O2)∪ (I2\O1),O1∪O2,H1∪H2〉.

N

However, the conditions given for ⊕ are not enough to guarantee compositionality in
the case of answer sets and as such they define a restricted form:

Definition 2.2.4 (Module Union Operator t) Given modules P1,P2, their union is
P1tP2 = P1⊕P2 whenever:

(i) P1⊕P2 is defined and
(ii) P1 and P2 are mutually independent 7. N

Natural join (./) on visible atoms is used in Oikarinen & Janhunen (2008) to
combine answer sets of modules as follows:

Definition 2.2.5 (Join) Given modules P1 and P2 and sets of interpretations A1 ⊆
2At(P1) and A2 ⊆ 2At(P2), the natural join of A1 and A2 is:

A1 ./ A2 =

{
M1∪M2 |M1 ∈ A1,M2 ∈ A2 and
M1∩Atv(P2) = M2∩Atv(P1)

}
.

N

This leads to their main result:

Theorem 2.2.1 (Module Theorem in Oikarinen & Janhunen (2008)) IfP1,P2 are
modules such that P1tP2 is defined, then

AS(P1tP2) = AS(P1) ./ AS(P2).

◦

Still according to Oikarinen & Janhunen (2008), their module theorem also
straightforwardly generalises for a collection of modules because the module union
operator t is commutative, associative, and has the identity element < /0, /0, /0, /0 >.

7There are no positive cyclic dependencies among rules in different modules, defined as loops
through input and output signatures.
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Example 2.2.4 Consider the composition Q= (PAtPmg1)tPB. First, we have

PAtPmg1 =

〈 {buy(X)← car(X),sa f e(X),exp(X).
car(c1). car(c2). car(c3). sa f e(c1).},
{exp(c1),exp(c2),exp(c3)},
{buy(c1),buy(c2),buy(c3),
sa f e(c1), sa f e(c2), sa f e(c3)},
{car(c1),car(c2),car(c3)}

〉

It is immediate to see that the module theorem holds in this case. The visible
atoms of PA are sa f e/1, exp/1 and buy/1, and the visible atoms for Pmg1 are
{sa f e(c1),sa f e(c2)}. The only model for Pmg1 = {sa f e(c1)} when naturally joined
with the models of PA, results in eight possible models where sa f e(c1), not sa f e(c2),
and not sa f e(c3) hold, and the exp/1 atoms vary. The final ASP program module Q
is

〈 { buy(X)← car(X),sa f e(X),not exp(X).
car(c1). car(c2). car(c3). exp(c2). sa f e(c1).},

{ exp(c1)},
{ buy(c1),buy(c2),buy(c3),exp(c2),exp(c3),sa f e(c1),sa f e(c2),sa f e(c3)},
{ car(c1),car(c2),car(c3)}

〉

The answer sets of Q are thus:

{sa f e(c1),exp(c1),exp(c2),car(c1),car(c2),car(c3)}
{buy(c1),sa f e(c1),exp(c2),car(c1),car(c2),car(c3)}

�

2.2.2.2 Visible and Modular Equivalence

The notion of visible equivalence has been introduced in order to neglect hidden atoms
when logic programs are compared on the basis of their models. The compositionality
property from the module theorem enabled the authors to port this idea to the level of
program modules — giving rise to modular equivalence of logic programs.

Definition 2.2.6 (Visible and Modular Equivalence) Given two logic program
modules P and Q, they are:

Visibly equivalent: P ≡vQ iff Atv(P) =Atv(Q) and there is a bijection f : AS(P)→
AS(Q) such that for all M ∈ AS(P), M∩Atv(P) = f (M)∩Atv(Q).

Modularly equivalent: P ≡m Q iff Atin(P) = Atin(Q) and P ≡v Q.

N

So, two modules are visibly equivalent if there is a bijection among their answer
sets, and they coincide in their visible parts. If additionally, the two program modules
have the same input and output atoms, then they are modularly equivalent.
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2.2.2.3 Shortcomings of Modular Logic Programming

The conditions imposed in these definitions bring about some shortcomings such as
the fact that the output signatures of two modules must be disjoint which disallows
many practical applications.

Alice wanting to buy a car can be captured with five modules, three for Alice and
her friends, and two more for magazines A and B. Alice should conclude that car 1
is safe since both magazines agree on this. Therefore, one would expect Alice to opt
for car 1 since it is not expensive, and it is reviewed as being safe. However, the
current state-of-the-art does not provide any way of combining these modules since
they share common output atoms.

Example 2.2.5 In Figure 2.2, one is not able to combine the results of program mod-
ules for magazines A and B (PMagA and PMagB), and thus it is impossible to obtain
the combination of the five modules. Also because of this, the module union operator
t is not reflexive in general. By trivially waiving this condition, we immediately get
problems with conflicting modules. 4

Example 2.2.6 (Common Outputs) Given modules PB and PC(for Bob and Char-
lie respectively), which respectively have AS(PB) = {{exp(c2)}} and AS(PC) =
{{exp(c3)}}, we have that AS(PBtPC) = {{exp(c2),exp(c3)}}. However,

AS(PB) ./ AS(PC) = /0

invalidating the module theorem. �

The compatibility criterion for the operator ./ rules out the compositionality of
mutually dependent modules while allowing positive loops inside individual modules
and negative loops in general. Consider now the following example:

Example 2.2.7 (Cyclic Dependencies) Given the following programs:

P1 = 〈{airbag← sa f e.},{sa f e},{airbag}, /0〉

P2 = 〈{sa f e← airbag.},{airbag},{sa f e}, /0〉

which respectively have the following answer sets: AS(P1) = {{},{airbag,sa f e}}
and AS(P2) = {{},{airbag, sa f e}} while AS(P1⊕P2) = {{}}.

Therefore,

AS(P1⊕P2) 6= AS(P1) ./ AS(P2) = {{},{airbag,sa f e}}

and the module theorem is not applicable in this setting. �
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2.3 Conclusions

In this chapter we have overviewed the most important formalisms related to logic
programming and modular logic programming, namely the syntax and semantics of
answer set programs, an overview of the logic of here-and-there and of equilibrium
logic and introduced the notions of paraconsistent and paracoherent reasoning.

We leave, however, particular details that are only locally relevant to be intro-
duced in chapters ahead. As an example of such details, the background and relevant
formalisms in the context of probabilistic logic programming are introduced in Chap-
ter 6, Multi Context Systems are discussed in depth in Chapter 5, while details re-
lated to provenance propositional formulas for logic programs Viegas Damásio et al.
(2013) are introduced in Chapter 8. Also, default logic and the concepts of strong and
relativised equivalence of logic programs are formally introduced in Chapter 9.
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Chapter 3

Outline of the Thesis

This thesis manuscript is split into four parts: two technical ones plus the current
part (Part I) for providing context and introduction, and the last part (Part IV) for
conclusions. The current chapter serves as a summary of the thesis and can be read
alone if necessary. Those interested in modularity should read the second part (Part II)
while those interested in Conflicts in Logic Programming should read the third part
(Part III) after optionally reading the first two chapters of the second part. In addition,
this thesis is written in a way such that each chapter can be read individually in as
much as they are self-contained regarding the discussion of results and suggestions
for future work albeit we introduce most of the concepts and formalisms in the first
part and in each chapter we then introduce only the concepts whose use is limited in
scope to that respective chapter. Of course understanding the discussions we include
about the way in which different chapters are related will only be possible by reading
all relevant chapters.

3.1 Part II: How can we generalise and extend Modular in
Logic Programming?

In summary, the fundamental results of Oikarinen & Janhunen (2008) require a syn-
tactic operation to combine modules (basically the union of programs), and a semantic
operation joining the models of the modules. The module theorem states that the mod-
els of the combined modules can be obtained by applying the semantic join operation
to the original models of the modules. The semantics is compositional but, as said
before, suffers from two problems in terms of applicability.

3.1.1 Chapter 4: Allowing Common Outputs

Example 2.2.6 shows that allowing common outputs destroys the property of compo-
sitionality. We pursued two alternatives: the first is to keep the original syntactic op-
eration which implies using the union of programs to syntactically combine modules,
plus adding some bookkeeping of the interface. In this case the semantic operation
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on models has to be changed; the second alternative is to keep the original semantic
join operation for models, and because of that a new syntactic operation is required to
guarantee compositionality.

Damásio & Moura (2014) showed that keeping the syntactic operation (the first
solution) is impossible and in this chapter we present a solution to this problem based
on a renaming transformation that introduces the required extra information. The
second solution is possible, and builds on the previous modular transformation.

3.1.2 Chapter 5: Allowing Cyclic Dependencies Between Modules

Example 2.2.7 shows that positive loops between modules also destroy the property
of compositionality. This chapter extends and improves preliminary work in Damásio
& Moura (2015) which discussed a solution towards solving this problem.

We present in this chapter a model join operation that requires one to look at every
model of two modules being composed in order to check for minimality of models
that are comparable on account of their inputs. This operation is able to distinguish
between atoms that are self-supported through positive loops and atoms with proper
support, allowing one to lift the condition disallowing positive dependencies between
modules. However, this approach is not local as it requires comparing all models and,
as it is not general because it does not allow combining modules with default negation,
it is of limited applicability.

Because of the lack of generality of the former approach, we present an alternative
solution requiring the introduction of extra information in the models for one to be
able to detect dependencies. We use models annotated with the way they depend on
the atoms in the input signature of their module. We then define their semantics in
terms of a fixed point operator. The original composition operators are applicable to
annotated modules if positive dependencies for atoms are added to their respective
models. This approach turns out to be local, in the sense that we need only look at
two models being joined and unlike the first alternative we presented, it works well
with normal logic programs.

3.1.3 Chapter 6: A Modular Extension of Probabilistic Logic Program-
ming

The P-log language Baral et al. (2004) has emerged as one of the most flexible frame-
works for combining probabilistic reasoning with logical reasoning, in particular by
distinguishing acting (doing) from observations and allowing non-trivial condition-
ing forms Baral et al. (2004); Baral & Hunsaker (2007). The P-log language is
a non-monotonic probabilistic logic language supported on two major formalisms,
namely Gelfond & Lifschitz (1988) for declarative knowledge representation and
Causal Bayesian Networks Pearl (1988, 2000) (CBNs) as its probabilistic foundation.

For answering probabilistic logic programming queries we pursued a method that
does not imply calculating all answer sets (and neither computing complete ones) for
a given program. and in Damásio & Moura (2011) provided a semantics that enables
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this modularisation for P-Log. Furthermore the calculations of answer sets that are
subsumed by others already made for a given query can be reused and thus, the prop-
erty of compositionality is maintained. It is the first approach in the literature that
modularises P-log programs and is able to make their composition incrementally by
combining compatible possible worlds and multiplying corresponding unnormalised
conditional probability measures. We do so by resorting to MLP Oikarinen & Jan-
hunen (2008) and by eliminating variables in modules which reduces the space and
time necessary to make inference, whereas previous algorithms require enumeration
of all possible worlds (exponential on the number of random variables) and repeat cal-
culations. We optimised the case of single connected Bayesian Networks (polytrees),
in which there is only one path between any two node, and perform reasoning in poly-
nomial time but as expected, the general case of exact inference is intractable. One
must still consider methods for approximate inference (e.g., by extending sampling
algorithms) which are outside the scope of this thesis though.

We fully describe the inference algorithm obtained from the compositional seman-
tics of P-log modules and related it formally with the variable elimination algorithm.
We are also able to handle probabilistic conditioning (observations) and actions.

3.2 Part III: How Can We Deal With Conflicts in Logic Pro-
gramming?

When combining LPs from different origins, conflicts may occur. There are, in
general, two ways to solve them, again: (1) Semantically, by using paraconsis-
tent/paracoherent semantics; (2) Syntactically, fixing those problems by suggesting
changes to the program modules, by means justifications and debugging models.

3.2.1 Chapter 7: Paracoherent Reasoning

Our work in Eiter et al. (2010b); Amendola et al. (2015) focused on contributing to
a more logical foundation of paracoherent answer set programming, which gains in-
creasing importance in inconsistency management. Some interesting and motivating
topics involve e.g., using paracoherent semantics in diagnosis (exploit assumptions to
generate diagnoses) or extensions to modular logic programs, where module interac-
tion may lead to incoherence.

We studied the problem of reasoning from incoherent answer set programs, i.e.,
from logic programs that do not have an answer set due to cyclic dependencies of
an atom from its default negation. As a starting point we considered so-called semi-
stable models which have been developed for this purpose building on a program
transformation, called epistemic transformation. We then provided a model-theoretic
characterisation of this semantics, considering pairs of two-valued interpretations
(similar to here-and-there models) of the original program, rather than resorting to
its epistemic transformation. This allowed us to show some anomalies of semi-stable
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semantics with respect to basic epistemic properties and lead us to propose an alter-
native semantics satisfying these properties. In addition to a model-theoretic and a
transformational characterisation of the alternative semantics, we have proven precise
complexity results for major reasoning tasks under both semantics.

In summary, we have addressed the problematic of reasoning from incoherent
knowledge bases and make the following main contributions.

• We characterise semi-stable models by pairs of 2-valued interpretations of the
original program, similar to so-called here-and-there (HT) models in equilib-
rium logic Pearce (2006b); Pearce & Valverde (2008). In the course of this,
we point out some anomalies of the semi-stable semantics with respect to basic
rationality properties in modal logics (K and N) which essentially prohibit a
1-to-1 characterisation1 in terms of HT-models. Roughly speaking, the epis-
temic transformation misses some links between atoms encoding truth values
of atoms, which may lead in some cases to unintuitive results.

• The anomalies lead us to propose an alternative paracoherent semantics, called
semi-equilibrium (SEQ) model semantics, which remedies the anomalies of the
semi-stable model semantics. It satisfies the properties (D1)-(D3) presented in
Section 2.1.3 and is fully characterised using HT-models. Informally, semi-
equilibrium models are 3-valued interpretations in which atoms can be true,
false or believed true; the gap between believed and (derivably) true atoms is
globally minimised. Note that the semantic distinction between believed true
and true atoms in models is important. Other approaches, e.g. CR-Prolog Bal-
duccini & Gelfond (2003), make a syntactic distinction at the rule level which
does not semantically discriminate believed atoms; this may lead to more mod-
els. Notably, SEQ-models can be obtained by an extension of the epistemic
transformation that adds further rules.

3.2.2 Chapter 8: Unifying Justifications and Debugging for Answer Set
Programming

Most of the work in the literature has been concerned with the problem of debugging,
neglecting that a notion of provenance could provide better explanations for the prob-
lems found. The approaches to debugging of answer sets either use complex graph
constructs Pontelli et al. (2009), or resort to meta-programming approaches Gebser
et al. (2008). The use of meta-programming approaches to perform debugging is not
novel (see for instance Pereira et al. (1993a)), but current techniques of Gebser et al.
(2008) are more informative. However, determining provenance models has been con-
jectured as a viable complementary technique for debugging Viegas Damásio et al.
(2013).

1By 1-to-1 we mean a one to one and onto (i.e., bijective) correspondence.
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Our program transformation in Viegas Damásio et al. (2013) allows the compu-
tation of why-not provenance models under the well-founded and stable model se-
mantics. We do this in a modular way trying to keep compatibility with the previous
work of Viegas Damásio et al. (2013). This enables the computation of provenance
answer sets in an easy way by using answer set solvers. Having this, we align prove-
nance answer sets with the ones from debugging in a single unified transformation and
show that in fact the provenance approach in some sense generalises the debugging
approach, since any error has a counterpart provenance but not the other way around.

Since the proposed method is based on meta-programming, it is possible to use
existing state-of-the-art ASP solvers that support well-founded and answer set seman-
tics, which allowed us to develop a new prototypical tool2 by extending the one that
exists related to the debugging approach we followed: spock Gebser et al. (2007b).
We explore this in Damásio et al. (2015), which unifies provenance and debugging
under a common framework and term these explanations ’justifications’.

3.2.2.1 Debugging

Debugging of logic programs and in particular ASP has received important contribu-
tions over the last years. For instance Eiter et al. (2010a) provided two approaches for
explaining inconsistency, both of which characterise inconsistency in terms of bridge
rules, but in different ways: by pointing out rules which need to be altered for restor-
ing consistency, and by finding combinations of rules which cause inconsistency.

We are mostly interested in the approach by Gebser et al. (2008) though, where a
meta-programming technique for debugging ASP is presented. Debugging queries are
expressed by answer set programs, which allows for restricting debugging information
to relevant parts. The basic question addressed is why interpretations expected to be
answer sets are not answer sets of a given program, thus it finds semantic errors in
programs. The explanations provided are based on a scheme of errors that relies on
loop-formulae, an alternative characterisation of the answer set semantics Lee (2005);
Ferraris et al. (2007), and encompasses four different causes, namely: Unsatisfied
rules, Violated integrity constraints, Unsupported atoms and Unfounded loops.
A meta-program is constructed from a given program Π and an interpretation I that
is capable to detect the above four errors via occurrences of the special atoms in its
answer sets reflecting the errors. The predicates of these meta-atoms are called error-
indicating predicates.

In recent practical work on this subject, Shchekotykhin (2014) presented an in-
teractive query-based ASP debugging method that finds an explanation by means of
observations inputed by some user that reflect what he/she believes to be a preferred
explanation. The system queries a programmer whether a set of ground atoms must be
true in all (cautious reasoning) or some (brave reasoning) answer sets of the program.

However, these approaches do not answer the question of why a given interpreta-
tion is indeed an answer set and hence do not provide justifications for answer sets.

2Available for download at https://sourceforge.net/projects/cptkirk/
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3.2.3 Chapter 9: Real World Application Field: Access Control Policies

For a long time now, logic programming and rule-based reasoning have been proposed
as a strong basis for policy specification languages. However, the term “policy” has
never been given a unique meaning. In fact, it is used in the literature in an ambigu-
ous and broad sense that encompasses at least the following notions: Access Control
Policies (ACP) are policies that pose constraints on the behaviour of a system. They
are typically used to control permissions of users/groups accessing resources and ser-
vices;

In Kolovski (2007); Bonatti et al. (2009), one can find good introductory surveys
to logic-based ACPs. Kolovski (2007) is limited to the presentation of a not formally
characterised DL-based formalism to represent policies, while Bonatti et al. (2009)
considers a general overview.

3.2.3.1 Hospital Access Control Policy in Modular Logic Programming

Recall now the hospital example we used earlier which is captured and encoded into
a framework presented in Bonatti et al. (2002). However, this framework is not com-
positional in the sense we are interested in: one cannot simply take the models of
individual modules and combine them by using some join operator in order to ob-
tain the models of the composed modules but rather has to union the modules and
then calculate the union’s models. We now take Examples 1.2.1, 1.2.2, and 1.2.3 and
present an adapted translation into MLP. Consider that every module has predicates
patient(P) and documents(D) in its input signature. We omit policies for the radiol-
ogy department as well as policies Preg and Ptrial .
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allowsCard(Pat,Docs). 
discharged(Patient).

consents(Patient, Access, Documents).

allow(Patient, Access, Documents).

% Consents
consents(Pat,Acc,Docs):- pForms(P,A,D),allow(P,A,D).
pForms(‘John Doe’,’Jane Doe’, tests).
pForms(‘John Doe’,’Oncology’, oncologyTests).
%Consent Hierarchy Rules 
consents(Patient, oncologyTests):- consents(Patient, tests).

allow(Patient, Access, Documents). 
dischargeHospital(Patient). 

% Hospital

allow(Pat,Acc,Docs):- consents(Pat,Acc,Docs),
medAllows(Patient,Docs).

dischargeHospital(Patient):-
dischargePatient(Patient)

% Cardiology
allowsCard(Pat,Docs):- 
reasonsAllow(Pat,Docs).

medAllows(Pat,Docs). consents(Pat,Acc,Docs).
dischargePatient(Patient)

adminAllows(Patient,Documents).

-adminAllows(Pat,Docs). allowsOnc(Pat,Docs).
discharged(Patient).

% Oncology (revokes central admin)
-adminAllows(Pat,tests):- reasonForDisallowing(Pat,tests), 
    adminAllows(Pat,tests).

allowsCard(Patient,Documents). allowsOnc(Patient,Documents). adminAllows(Patient,
Documents). -adminAllows(P,D). discharged(Patient).

medAllows(Patient,Documents). dischargePatient(Patient).

% Medicine
medAllows(Pat, tests):- not -adminAllows(Pat,docs), adminAllows(Pat,Docs),
     allowsCard(Pat,Docs), allowsOnc(Pat, Docs).
dischargePatient(Patient):- discharged(Patient), medicinedischarges.

adminAllows(Pat,Docs)

% Central Admin
adminAllows(Pat,Docs):- 
reasonsAllow(Pat,Docs).

Figure 3.1: Hospital Policy

In Moura (2012) we formally characterised conflicts in ACPs in terms of a meta-
model by Barker (2009), as:

Modality Conflicts are inconsistencies in the policy specification that may arise
when two or more policies with opposite modalities refer to the same authori-
sation subjects, actions and objects – e.g., in ASP having both allow and deny
predicates in the same model in presence of an integrity constraint disallowing
so.

Redundancy Conflicts: An ACP is redundant if a permission or a prohibition can be
derived from another set of applicable ACPs. Though redundancy conflict have
no influence in the enforcement of ACPs, they should be identified and dealt
with because a redundant policy often reflects an error that was made while
describing security requirements.

Potential Conflicts: Potential conflicts between two policies having overlaps in the
expression of their conditions exist if it is the case that there are no modality or
redundancy conflicts between the rules in two polices, but when the conditions
of such rules are simultaneously met, the two policies can result in modality or
redundancy conflicts. According to the definition, when some policies have the
same condition literals, we can infer the existence of potential conflicts among
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these policies. Consequently, potential conflicts are highly pervasive in access
control systems.

3.2.4 Chapter 10: Conclusions and Future Work

In the final chapter of this thesis we present overall conclusions, identify gaps and
point directions for future work.

3.3 Conclusions

In this Part I we summarised our work and set the goals of this thesis, namely, to
provide the theoretical foundations for a generalised modular answer set program-
ming framework. This framework generalises the Modular Logic Programming re-
sults by Oikarinen & Janhunen (2008), providing additional operators for combining
arbitrary logic programming modules while preserving the compositional nature of
MLP. We provide characterisations of conflicts that occur when composing these gen-
eralised modules and we are able to, by unifying provenance and debugging for LP
modules, effectively give why and why-not justifications for answer sets. We comple-
ment our work with computational complexity results (for the work in Chapter 7) and
and provide a prototypical tool (for the work in Chapter 8).

We cover all of these results with published work and motivate a future link of
these theoretical contributions and make use of a prototypical tool implementing parts
of this framework, in the context of access control policies, as a practical real-world
scenario.

We are also aware of current gaps in our work and identify interesting directions
for future work throughout this Thesis and particularly in the last chapter (Chapter 10).
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Part II

Generalising Modular Logic
Programming
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Part Overview:

We depart from the Modular Logic Programming (MLP) approach in Gaifman &
Shapiro (1989); Oikarinen & Janhunen (2008) which achieved a restricted form of
compositionality of ASP modules. Our goal is to generalise MLP and we start by lift-
ing the restrictive conditions that were originally imposed, namely disallowing com-
mon outputs and positive cyclic dependencies, presenting alternative ways for com-
bining these modules and thus develop a fully compositional framework: Generalised
Modular Logic Programming (GMLP).

In Chapter 4 we redefine the necessary operators in order to relax the conditions
for combining modules with common atoms in their output signatures. Two alterna-
tive solutions are presented, both allowing us to retain compositionality while dealing
with a more general setting than before.

In Chapter 5 we lift the restriction that disallows composing modules with cyclic
dependencies in the framework of Modular Logic Programming Oikarinen & Jan-
hunen (2008). We also present two alternatives solutions for this: a model join opera-
tion that requires one to look at every model of two modules being composed in order
to check for minimality of models that are comparable on account of their inputs; an
alternative solution requiring the introduction of extra information in the models for
one to be able to detect dependencies. In this approach we use models annotated with
the way they depend on the atoms in their module’s input signature and show that
this is local in the sense that we only need to look at the two models being joined
and unlike the first alternative we presented, it works well with integrity constraints.
We provide a comparison between MLP and MCS in terms of their suitability for
compositionality in the sense of MLP’s module theorem and our definition of compo-
sitionality.

In Chapter 6 we present the first approach in the literature to modularise P-log pro-
grams and to make their composition incrementally by combining compatible possi-
ble worlds and multiplying corresponding unnormalised conditional probability mea-
sures. As expected, it turns out that the general case of exact inference is intractable
but for the case of Bayesian Networks with a polytree structure represented in P-log,
we can do reasoning with P-log in polynomial time.





Chapter 4

Allowing Common Outputs
Between Modules

Even though modularity has been studied extensively in conventional logic program-
ming, there are few approaches on how to incorporate modularity into Answer Set
Programming. A major approach is Oikarinen and Janhunen’s Gaifman-Shapiro-style
architecture of program modules Gaifman & Shapiro (1989); Oikarinen & Janhunen
(2008), which provides the composition of program modules. Their module theo-
rem properly strengthens Lifschitz and Turner’s splitting set theorem for normal logic
programs Lifschitz & Turner (1994). However, this approach is limited by module
conditions that are imposed in order to ensure the compatibility of their module sys-
tem with the answer set semantics, namely forcing output signatures of composing
modules to be disjoint and disallowing positive cyclic dependencies between different
modules. These conditions turn out to be too restrictive in practice and in this chapter
we discuss alternative ways of effectively lifting the first restriction, while leaving the
second restriction to be dealt with in the next chapter, widening the applicability of
this framework and the scope of the module theorem.

4.1 Introduction

Over the last few years, answer set programming (ASP) Eiter et al. (2001); Baral
(2003); Lifschitz (2002); Marek & Truszczynski (1999); Niemelä (1998) emerged
as one of the most important methods for declarative knowledge representation and
reasoning. Despite its declarative nature, developing ASP programs resembles con-
ventional programming: one often writes a series of gradually improving programs
for solving a particular problem, e.g., optimising execution time and space. Until
recently, ASP programs were considered as integral entities, which becomes prob-
lematic as programs become more complex, and their instances grow.

Even though modularity is extensively studied in logic programming Gaifman
& Shapiro (1989), there are only a few approaches on how to incorporate it into
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ASP Oikarinen & Janhunen (2008); Dao-Tran et al. (2009); Babb & Lee (2012) or
other module-based constraint modeling frameworks Järvisalo et al. (2009); Tashar-
rofi & Ternovska (2011). The research on modular systems of logic programming has
followed two main-streams Bugliesi et al. (1994). One is programming in-the-large
where compositional operators are defined in order to combine different modules,
e.g., Mancarella & Pedreschi (1988); Gaifman & Shapiro (1989); O’Keefe (1985).
These operators allow combining programs algebraically, which does not require an
extension of the theory of logic programs. The other direction is programming-in-
the-small, e.g., Giordano & Martelli (1994); Miller (1986), aiming at enhancing logic
programming with scoping and abstraction mechanisms available in other program-
ming paradigms. This approach requires the introduction of new logical connectives
in an extended logical language. The two mainstreams are thus quite divergent.

The approach of Oikarinen & Janhunen (2008) defines modules as structures spec-
ified by a program (knowledge rules) and by an interface defined by input and output
atoms which for a single module are, naturally, disjoint. The authors also provide a
module theorem capturing the compositionality of their module composition operator
but impose the two aforementioned conditions. The techniques used in Dao-Tran et al.
(2009) for handling positive cycles among modules are shown not to be adaptable for
the setting of Oikarinen & Janhunen (2008).

In this chapter we discuss two alternative solutions to the common outputs prob-
lem, generalising the module theorem by allowing common output atoms in the inter-
faces of the modules being composed.

In summary, the fundamental results of Oikarinen & Janhunen (2008) require a
syntactic operation to combine modules – basically corresponding to the union of pro-
grams –, and a compositional semantic operation joining the models of the modules.
The module theorem states that the models of the combined modules can be obtained
by applying the semantics of the natural join operation to the original models of the
modules – which is compositional according to our informal definition, which we
recall next:

Compositionality (informally): The combination of models of individual modules
are the models of the union of modules.

The authors show however that allowing common outputs destroys this property.
There are two alternatives to pursue:

(1) Keep the syntactic operation: use the union of programs to syntactically
combine modules, plus some bookkeeping of the interface, and thus the semantic
operation on models has to be changed;

(2) Keep the semantic operation: the semantic operation is the natural join of
models, and thus a new syntactic operation is required to guarantee compositionality.

Both will be explored in this chapter as they correspond to different and sensible
ways of combining two sources of information, already identified in Example 2.2.1:
the first alternative is necessary for Alice to determine if a car is expensive; the second
alternative captures the way Alice determines whether a car is safe or not. Keeping
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the syntactic operation is shown to be impossible since models do not convey enough
information to obtain compositionality. We present a solution to this problem based on
a transformation that introduces the required extra information. The second solution
is possible, and builds on the previous module transformation.

This chapter relies on the overview of the modular logic programming paradigm
presented in Section 2.2.2 and we recall next in Section 4.2 its shortcomings. In Sec-
tion 4.3 introduce two new forms of composing modules allowing common outputs,
one keeping the original syntactic union operator and the other keeping the original
semantic model join operator. We finish with conclusions and a general discussion.

4.2 Modularity in Answer Set Programming

Modular aspects of Answer Set Programming have been clarified in recent years,
with authors describing how and when two program parts (modules) can be com-
posed Oikarinen & Janhunen (2008); Dao-Tran et al. (2009); Järvisalo et al. (2009)
under the answer set semantics. In this chapter, we make use of Oikarinen and Jan-
hunen’s logic program modules defined in analogy to Gaifman & Shapiro (1989)
which we extensively reviewed in Section 2.2.2.

4.2.1 Shortcomings

The conditions imposed in these definitions bring about some shortcomings such as
the fact that the output signatures of two modules must be disjoint which disallows
many practical applications e.g., we are not able to combine the results of program
module Q with any of PC or Pmg2 from Example 2.2.2, and thus it is impossible to
obtain the combination of the five modules. Also because of this, the module union
operator t is not reflexive. By trivially waiving this condition, we immediately get
problems with conflicting modules as shown in Example 4.2.1.

Example 4.2.1 (Common Outputs) Given modules PB and PC from Example 2.2.2,
which respectively have the following answer sets:

AS(PB) = {{exp(c2)}} and AS(PC) = {{exp(c3)}}

The single answer set of their union AS(PBtPC) is:

{exp(c2),exp(c3)}

However, the join of their answer sets is

AS(PB) ./ AS(PC) = /0

invalidating the module theorem. �

The compatibility criterion for the operator ./ also rules out the compositionality
of mutually dependent modules, but allows positive loops inside modules or negative
loops in general. We will deal with that problem in Chapter 5 and focus next on
allowing common output atoms in the signatures of modules under composition.
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4.3 Generalising Modularity in ASP by Allowing Common
Outputs

After having identified the shortcomings in the literature, we proceed now to seeing
how compositionality can be maintained while allowing modules to have common
output atoms. In this section we present two versions of compositions:

1. A relaxed composition operator (]), aiming at maximising information in the
answer sets of modules. Unfortunately, we show that this operation is not com-
positional.

2. A conservative composition operator (⊗), aiming at maximising compatibil-
ity of atoms in the answer sets of modules. This version implies redefining
the composition operator by resorting to a program transformation but uses the
original join operator.

First, one requires fundamental operations for renaming atoms in the output sig-
natures of modules with fresh ones:

Definition 4.3.1 (Output renaming) Let P be the program module P = 〈R, I,O,H〉,
o ∈ O and o′ 6∈ At(P). The renamed output program module is:

ρo′←o (P) = 〈R′∪{⊥← o′,not o.}, I∪{o},{o′}∪ (O\{o}),H〉 (4.1)

The program part R′ is constructed by substituting the head of each rule o← Body in
R by o′← Body. The heads of other rules remain unchanged, as well as the bodies of
all rules. N

Mark that, by making o an input atom, the renaming operation can introduce
extra answer sets. However, the original answer sets can be recovered by select-
ing the models where o′ has exactly the same truth-value as o. The constraint
throws away models where o′ holds but not o. We will abuse notation and denote
ρo′1←o1

(
. . .
(
ρo′n←on(P)

)
. . .
)

by ρ{o′1,...,o′n}←{o1,...,on} (P). Strictly speaking one should
use (o′1, . . . ,o

′
n)← (o1, . . . ,on) sentences instead of sets but that would introduce extra

notation and significant overhead in forthcoming definitions and results.

Example 4.3.1 (Renaming) Recall the module representing Alice’s conditions in Ex-
ample 2.2.2.

PA =

〈 { buy(X)← car(X),sa f e(X),not exp(X).
car(c1). car(c2). car(c3).},
{sa f e(c1),sa f e(c2),sa f e(c3), exp(c1),exp(c2),exp(c3)},
{buy(c1),buy(c2),buy(c3)},{car(c1),car(c2),car(c3)}

〉
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Its renamed output program module ρo′←o (PA) is the program module:

ρo′←o (PA) =

〈
{buy′(X)← car(X),sa f e(X), not exp(X).

car(c1). car(c2). car(c3).
⊥← buy′(X),not buy(X).},
{buy(c1),buy(c2),buy(c3),sa f e(c1),sa f e(c2),sa f e(c3),

exp(c1),exp(c2),exp(c3)},
{buy′(c1),buy′(c2),buy′(c3)},
{car(c1),car(c2),car(c3)}

〉

Its models are:
{exp(c1),exp(c2),exp(c3)}
{buy(c1),buy′(c1),sa f e(c1),exp(c2),exp(c3)}
{exp(c1),buy(c2),buy′(c2),sa f e(c2),exp(c3)}
{exp(c1),exp(c2),buy(c3),buy′(c3),sa f e(c3)}
{buy(c1),buy′(c1),sa f e(c1),buy(c2),buy′(c2),sa f e(c2),exp(c3)}
{exp(c1),buy(c2),buy′(c2),sa f e(c2),buy(c3),buy′(c3),sa f e(c3)}
{buy(c1),buy′(c1),sa f e(c1),buy(c2),buy′(c2),sa f e(c2),buy(c3),buy′(c3),sa f e(c3)}

4

Still before we dwell any deeper in this subject, we define operations useful to
project or hide sets of atoms from a module.

Definition 4.3.2 (Hiding and Projecting Atoms) Let P = 〈R, I,O,H〉 be a module
and S an arbitrary set of atoms. If we want to Hide (denoted as \) S from program
module P , we use

P\S = 〈R∪{{i}. | i ∈ I∩S}, I\S,O\S,H ∪ ((I∪O)∩S)〉. (4.2)

Dually, we can Project (denoted as |) over S in the following way:

P |S= 〈R∪{{i}. | i ∈ I \S}, I∩S,O∩S,H ∪ ((I∪O)\S)〉. (4.3)

N

Both operators Hide and Project do not change the answer sets of the original
program, i.e., AS(P) = AS(P\S) = AS(P|S) but do change the set of visible atoms
Atv(P\S) = Atv(P)\S and Atv(P | S) = Atv(P)∩S.

Example 4.3.2 (Hiding atoms) Take again the program module encoding Alice’s
conditions in Example 2.2.2. Hiding atoms exp/1 from it is denoted as PA\{exp/1}
and produces the following module:

PA\{exp/1}=< {buy(X)← car(X),sa f e(X),not exp(X).
car(c1). car(c2). car(c3).},
{sa f e(c1),sa f e(c2),sa f e(c3)},
{buy(c1),buy(c2),buy(c3)},
{car(c1),car(c2),car(c3), exp(c1),exp(c2),exp(c3)}>

4
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4.3.1 Relaxed Output Composition

For the reasons presented before, we start by defining a generalised version of the
composition operator, by removing the condition enforcing disjointness of the output
signatures of the two modules being combined.

Definition 4.3.3 (Relaxed Composition) Given two modules P1 = 〈R1, I1,O1,H1〉
and P2 = 〈R2, I2,O2,H2〉, their composition P1 ]P2 is defined when they respect
each others hidden atoms, i.e., H1 ∩At(P2) = /0 and H2 ∩At(P1) = /0. Then their
composition is

P1]P2 = 〈R1∪R2,(I1∪ I2)\(O1∪O2),O1∪O2,H1∪H2〉. (4.4)

N

Obviously, the following important properties still hold for ]:

Lemma 1 The relaxed composition operator is reflexive, associative, commutative
and has the identity element 〈 /0, /0, /0, /0〉. ◦

Proof of Lemma 1. The rules (respectively, the sets of output atoms and the sets of
hidden atoms) of the composition are the union of the rules (respectively, the output
atoms and the hidden atoms) of the individual modules. The set union operator has the
four properties we want to prove and so, they hold for these parts of the composition.
As for the input set of the composition, I1∪I1 = I1, O1∪O1 =O1 (respectively, I1∪ /0=
I1, O1∪ /0 = O1) and the output set is disjoint from the input set hence the input of the
composition of I1 with itself (respectively, the neutral element) remains unchanged.
This proves that the operator is: reflexive, associative and commutative and has an
identity element. �

Having defined the way to deal with common outputs in the composition of mod-
ules, we would like to redefine the operator ./ for combining the answer sets of these
modules. However, this is shown here to be impossible.

Lemma 2 The operation ] is not compositional, i.e., for any join operation ./′, it is
not always the case that

AS(P1]P2) = AS(P1) ./
′ AS(P2). (4.5)

◦

Proof of Lemma 2. A join operation is a function mapping a pair of sets of inter-
pretations into a set of interpretations. Consider the following program modules:

P1 =< {a.}, /0,{a,b}, /0 > Q1 =< {a. ⊥← a,b.}, /0,{a,b}, /0 >
P2 = 〈{b.}, /0,{b}, /0〉 Q2 = 〈{b.}, /0,{b}, /0〉
P1]P2 =< {a. b.}, /0,{a,b}, /0 > Q1]Q2 =< {a. ⊥← a,b. b.}, /0,{a,b}, /0 >
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One sees that AS(P1) = AS(Q1) = {{a}}, and AS(P2) = AS(Q2) = {{b}} but
AS(P1 ]P2) = {{a,b}} while AS(Q1 ]Q2) = {}. Therefore, it cannot exist ./′

since this would require AS(P1 ]P2) = AS(P1) ./
′ AS(P2) = {{a}} ./′ {{b}} =

AS(Q1) ./
′ AS(Q2) = AS(Q1]Q2), a contradiction. �

As we have motivated in the introduction, it is important to applications to be able
to use ] to combine program modules, and retain some form of compositionality.
The following definition presents a construction that adds the required information in
order to be able to combine program modules using the original natural join.

Definition 4.3.4 (Transformed Relaxed Composition) Consider the program mod-
ules P1 = 〈R1, I1,O1,H1〉 and P2 = 〈R2, I2,O2,H2〉. Let O = O1∩O2, and define the
sets of newly introduced atoms O′={o′ | o ∈ O} and O′′={o′′ | o ∈ O}. Construct
program module:

Punion =< Runion,O′∪O′′,O, /0 > where:
Runion = {o← o′. | o′ ∈ O′}∪{o← o′′. | o′′ ∈ O′′}.

The transformed relaxed composition is defined as the program module

(P1]RT P2) = [ρO′←O(P1)tρO′′←O(P2)tPunion] \ [O′∪O′′] (4.6)

N

Intuitively, we rename the common output atoms in the original modules, and
introduce an extra program module that unites the contributions of each module by a
pair of rules for each common atom o← o′ and o← o′′. We then hide all the auxiliary
atoms to obtain the original visible signature. If O = /0 then Punion is empty, and all
the other modules are not altered, falling back to the original definition.

Example 4.3.3 (Transformed Relaxed Composition) Recall modules PB and PC in
Example 4.2.1:

PA =

〈 R = {buy(X)← car(X),sa f e(X),not exp(X).
car(c1). car(c2). car(c3).},

I = { sa f e(c1),sa f e(c2),sa f e(c3),exp(c1),exp(c2),exp(c3)},
O = {buy(c1),buy(c2),buy(c3)},
H = {car(c1),car(c2),car(c3)}

〉

PB =

〈 R = {exp(c2).},
I = { },
O = {exp(c2),exp(c3)},
H = {}

〉

PC =

〈 R = { exp(c3).},
I = { },
O = { exp(c1),exp(c2),exp(c3)},
H = { }

〉
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From these, we construct the following program modules:

ρo′←o (PA) =

〈
R = { buy′(X)← car(X),sa f e(X), not exp(X).

car(c1). car(c2). car(c3).
⊥← buy(X)′,not buy(X).},

I = { buy(X),sa f e(c1),sa f e(c2),sa f e(c3),
exp(c1),exp(c2),exp(c3)},

O = { buy′(c1),buy′(c2),buy′(c3)},
H = { car(c1),car(c2),car(c3)}

〉

ρo′′←o (PB) =

〈 R = { exp(c2)
′′},

I = { exp(c2)},
O = { exp(c2)

′′,exp(c3)
′′},

H = { }

〉

Punion =

〈
R = { buy(c1)← buy′(c1).

buy(c2)← buy′(c2).
buy(c3)← buy′(c3).
exp(c2)← exp′′(c2). exp(c3)← exp′′(c3).},

I = { buy′(c1),buy′(c2),buy′(c3),exp′′(c2),exp′′(c3)},
O = { exp(c2), exp(c3)},
H = /0

〉

And their transformed relaxed composition is then:

PA]RT PB =

〈
R = {buy′(X)← car(X),sa f e(X), not exp(X).

car(c1). car(c2). car(c3).
⊥← buy(X)′,not buy(X).
exp′′(c2).
buy(c1)← buy′(c1).
buy(c2)← buy′(c2). buy(c3)← buy′(c3).
exp(c2)← exp′′(c2). exp(c3)← exp′′(c3).},

I = { buy(X),sa f e(c1),sa f e(c2),sa f e(c3),
exp(c1),exp(c2),exp(c3)},

O = {buy′(c1),buy′(c2),buy′(c3),exp′′(c2),exp′′(c3)},
H = {car(c1),car(c2),car(c3)}

〉

4

Theorem 4.3.1 Let P1 and P2 be arbitrary program modules without positive depen-
dencies among them. Then, modules joined with operators ] and ]RT are modularly
equivalent:

P1]P2 ≡m P1]RT P2. (4.7)

◦
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Proof of Theorem 4.3.1. By reduction of the conditions of the theorem to the con-
ditions necessary for applying the original Module Theorem. If P1 ]P2 is defined
then let their transformed relaxed composition be T = (P1 ]RT P2). It is clear that
the output atoms of T are O1 ∪O2, the input atoms are (I1 ∪ I2) \ (O1 ∪O2), and the
hidden atoms are H1 ∪H2 ∪O′ ∪O′′. Note that before the application of the hiding
operator the output atoms are O1∪O2∪O′∪O′′. The original composition operator t
can be applied since the outputs of ρO′←O(P1), ρO′′←O(P2) and Punion are respectively
O′∪ (O1 \O), O′′∪ (O2 \O) and O = O1∩O2, which are pairwise disjoint.

Because of this, we are in the conditions of the original Module Theorem and thus
it is applicable to the result of the modified composition ] iff the transformation did
not introduce positive loops between the program parts of the three auxiliary models.
If P1 ]P2 had no loops between the common output atoms than its transformation
P1]RT P2 also does not because it results from a renaming into new atoms.

Consider now the rules part of T ; if we ignore the extra introduced atoms in O′ and
O′′ the program obtained has exactly the same answer sets of the union of program
parts of P1 and P2. Basically, we are substituting the union of o← Body1

1., . . . ,o←
Body1

m. in P1, and o← Body2
1., . . . ,o← Body2

n. in P2 by:

o← o′. o← o′′.
o′← Body1

1. o′′← Body2
1.

. . . . . .
o′← Body1

m. o′′← Body2
n.

⊥← o′,not o. ⊥← o′′,not o.

This guarantees visible equivalence of P1 ]P2 and P1 ]RT P2, since the models
of each combined modules are in one-to-one correspondence, and they coincide in
the visible atoms. The contribution of the common output atoms is recovered by the
joins involving atoms in O′, O′′ and O, that are all pairwise disjoint, and ensuring
that answer sets obey to o = o′ ∨ o′′ via program module Punion. The constraints
introduced in the transformed models ρO′←O(P1) (respectively, ρO′′←O(P2)) simply
prune models that have o false and o′ (respectively, o′′) true, reducing the number
of models necessary to consider. Since the input and output atoms of P1 ]P2 and
P1]RT P2 are the same, then P1]P2 ≡m P1]RT P2. �

The important remark is that according to the original module theorem we have:

AS(ρO′←O(P1)tρO′′←O(P2)tPunion) =

AS(ρO′←O(P1)) ./ AS(ρO′′←O(P2)) ./ AS(Punion)

Therefore, from a semantical point of view, users can always substitute module P1]
P2 by P1 ]RT P2, which has an extra cost since the models of the renamed program
modules may increase. This is, however, essential to regain compositionality.

Example 4.3.4 Considering the following program modules:

Q1 =< {a. ⊥← a,b.}, /0,{a,b}, /0 >

51



and:

Q2 = 〈{b.}, /0,{b}, /0〉

We have that:

ρa′,b′←a,b(P1) =

〈 { a′. ⊥← a′,not a.
⊥← b′,not b.},

{ a,b},{a′,b′}, /0

〉

ρa′′,b′′←a,b(P2) =

〈 { b′′. ⊥← a′′,not a.
⊥← b′′,not b.},

{ a,b},{a′′,b′′}, /0

〉

Punion =

〈 { a← a′. a← a′′.
b← b′. b← b′′.},

{ a′,a′′,b′,b′′},{a,b}, /0

〉

ρa′,b′←a,b(Q1) =

〈 { a′. ⊥← a,b.
⊥← a′,not a.
⊥← b′,not b.},

{ a,b},{a′,b′}, /0

〉

ρa′′,b′′←a,b(Q2) = ρa′′,b′′←a,b(P2)
Q3 = Punion

The answer sets of the first two modules are {{a,a′},{a,b,a′}} and {{b,b′′},{a,b,b′′}},
respectively. Their join is {{a,b,a′,b′′}} and the returned model belongs to Punion

(and thus it is compatible), and corresponds to the only intended model {a,b} of
P1 ]P2. Note that the answer sets of Punion are 16, corresponding to the models
of propositional formula (a ≡ a′ ∨ a′′)∧ (b ≡ b′ ∨ b′′). Regarding, the transformed
module ρa′,b′←a,b(Q1) it discards the model {a,b,a′}, having answer sets {{a,a′}}.
But now the join is empty, as intended. �

4.3.2 Conservative Output Composition

In order to preserve the original outer join operator, which is widely used in databases,
for the form of composition we introduce next, one must redefine the original com-
position operator (⊕). We do that by resorting to a program transformation such that
the composition operator remains compositional with respect to the join operator (./).
The transformation we present next consists of taking Definition 4.3.4 and adding an
extra module to guarantee that only compatible models (models that coincide on the
visible part) are retained.

Definition 4.3.5 (Conservative Composition) Let P1 = 〈R1, I1,O1,H1〉 and P2 =
〈R2, I2,O2,H2〉 be modules such that O = O1 ∩O2 6= /0. Let O′ = {o′ | o ∈ O} and
O′′ = {o′′ | o ∈ O} be sets of newly introduced atoms.
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Construct program modules:

Punion = 〈Runion,O′∪O′′,O, /0〉
Where Runion is a set of rules.

Runion = {o← o′. | o′ ∈ O′}∪{o← o′′. | o′′ ∈ O′′}
and:
P f ilter = 〈{⊥← o′,not o′′.⊥← not o′,o′′. | o ∈ O},

O′∪O′′, /0, /0〉

The conservative composition is defined as the following program module:

P1⊗P2 = [(ρO′←O(P1)tρO′′←O(P2)tPuniontP f ilter]\
(
O′∪O′′

)
(4.8)

N

Note that when the intersection of the output sets is empty, the definition corresponds
to the case when we are combining a module with the neutral element. Note further
here that each rule not containing atoms that belong to O1∩O2 in P1∪P2 is included
in P1⊗P2. Therefore, it is easy to see that this transformational semantics (⊗) is a
conservative extension to the existing one (⊕).

Theorem 4.3.2 (Conservative Module Theorem) If P1,P2 are modules such that
P1⊗P2 is defined, then a model M ∈ AS(P1 ⊗ P2) iff M ∩ (At(P1) ∪ At(P2)) ∈
AS(P1) ./ AS(P2). ◦

Proof of Theorem 4.3.2. The theorem states that if we ignore the renamed literals
in ⊗ the models are exactly the same, as expected. The transformed program module
P1⊗P2 corresponds basically to the union of programs, as seen before. Consider a
common output atom o. The constraints in the module part P f ilter combined with the
rules in Punion restrict the models to the cases for which o≡ o′ ≡ o′′. The equivalence
o≡ o′ restricts the answer sets of ρo′←o(P1) to the original answer sets (except for the
extra atom o′) of P1, and similarly the equivalence o ≡ o′′ filters the answer sets of
ρo′′←o(P2) obtaining the original answer sets of P2. Now it is immediate to see that
compositionality is retained by making the original common atoms o compatible. �

The above theorem is very similar to the original Module Theorem of Oikarinen
and Janhunen apart from the extra renamed atoms required in P1⊗P2 to obtain com-
positionality.

Shortcomings Revisited This Section 4.3 provides a means to deal with the restric-
tion that we identified and that disallows the composition of modules with common
outputs. Take the following example:

Example 4.3.5 Returning to the introductory example, we can conclude that Pmg1 ⊗
Pmg2 has only one answer set:

{sa f e(c1),airbag(c1),car(c1),car(c2),car(c3)}
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since this is the only compatible model between Pmg1 and Pmg2 . The answer sets
of ρ(Pmg1) and ρ(Pmg2), are collected in the table below where compatible mod-
els appear in the same row and car(c1),car(c2),car(c3) has been omitted from
AS(ρ(Pmg2)). Predicate s (respectively, a) stands for sa f e (respectively, airbag).

Answer sets of ρ(Pmg1) Answer sets of ρ(Pmg2)

{s(c1),s′(c1)} {s(c1),s′′(c1),a(c1)}
{s(c1),s(c2),s′(c1)} {s(c1),s(c2),s′′(c1),a(c1)}
{s(c1),s(c3),s′(c1)} {s(c1),s(c3),s′′(c1),a(c1)}

{s(c1),s(c3),s′′(c1),
s′′(c3),a(c1),a(c3)}

{s(c1),s(c2),s(c3), {s(c1),s(c2),s(c3),
s′(c1)} s′′(c1),a(c1)}

{s(c1),s(c2),s(c3),s′′(c1),
s′′(c3),a(c1),a(c3),c(c1)}

The only compatible model retained after composing with Punion and P f ilter is the
combination of the answer sets in the first row:

{s(c1),s′(c1),s′′(c1),a(c1),c(c1),c(c2),c(c3)}.

Naturaly, this corresponds to the intended result if we ignore the s′ and s′′ atoms. �

We underline that models of composition P1⊗P2 will either contain all atoms o, o′,
and o′′ or none of them, and will only join compatible models from P1 having {o,o′}
with models in P2 having {o,o′′}, or models without atoms in {o,o′,o′′}.

4.3.3 Complexity

Regarding complexity, checking the existence of M ∈ P1⊕P2 and M ∈ P1 ]RT P2 is
an NP-complete problem. It is immediate to define a decision algorithm belonging to
Σ

p
2 that checks existence of an answer set of the module composition operators. This

is strictly less than the results in the approach of Dao-Tran et al. (2009) where the
existence decision problem for propositional theories is NEXPNP-complete – however
their approach allows disjunctive rules.

4.4 Compositional Semantics for Modular Logic Program-
ming

As we have seen, the existing compositional semantics does not work directly for
modules with common outputs. However, it becomes clear from Section 4.3 that the
effect of the extra renamed modules Punion and P f ilter is to impose extra conditions
on the compatible models of the other two modules, which are the same for both
composition forms. In fact, by changing the definition of answer sets of a module we
can obtain a fully compositional semantics.
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Definition 4.4.1 (Modular models of a generalised MLP) Given a program mod-
ule P = 〈R, I,O,H〉 its modular models are MM(P) = AS(ρOs←O(P)). N

The following Lemmas relates the modular models with the answer sets of a pro-
gram module, and thus provides a way of recovering the answer sets from modular
models.

Lemma 3 Let P be a program module P = 〈R, I,O,H〉. Then, M ∈ AS(P) iff (M∪
Ms) ∈MM(P) where Ms = {os | o ∈ O and o ∈M}. ◦

Proof of Lemma 3. Replacing the definitions: M ∈ LM(RM
I ∪ {a. | a ∈ M∩ I}) iff

(M∪ {os | o ∈ O and o ∈M}) ∈ LM(Rs,M
I ∪ {⊥← os,not o.} ∪ {a. | a ∈M∩ I}. We

can easily see that by adding renamed output atoms to the model on the left hand side
we will only allow supported models to obey the constraint on the right hand side and
vice-versa. All the remaining is the same. �

Lemma 4 Consider program module P = 〈R, I,O, /0〉. Then, M ∈MM(P) iff M∩(I∪
O) is a classical model of R. Moreover, atom o is supported in M iff os ∈M. ◦

Proof of Lemma 4. The first part of this lemma comes directly from the definition
that M ∈ AS(ρOs←O(P))⇔ LM

(
ρ(R)M

I∪O∪{a.|a ∈M∩ (I∪O)}
)
. As for the second

part, this is a necessity since otherwise M would not be a model due to ⊥← os,not o
and vice-versa. �

Our Modular Models are models of the original program with extra annotations
conveying if an atom is supported or not. This is a little more complex when hidden
atoms are involved, but the interpretation of the extra atoms is the same: whenever os

is true then there is a rule for o with true body, otherwise os is false. We now define
the join operators for the two forms of composition presented in Section 4.3:

Definition 4.4.2 Given two modules P1 = 〈R1, I1,O1,H1〉 and P2 = 〈R2, I2,O2,H2〉
and sets of MMs A1 ⊆ 2I1∪O1∪Os

1 and A2 ⊆ 2I2∪O2∪Os
2 . Let:

A1 ./
+ A2 = {M1∪M2 | M1 ∈ A1,M2 ∈ A2, and

M1∩ (I2∪O2) = M2∩ (I1∪O1)}
A1 ./

×A2 = {M1∪M2 | M1 ∈ A1,M2 ∈ A2,
M1∩ (I2∪O2∪Os

2) = M2∩ (I1∪O1∪Os
1)}

N

So, when joining two models we either look at visible atoms of the original mod-
ules for the case of the relaxed composition, or look at all visible atoms and extra
annotations, thus discarding non-supported modular models. The main result is as
follows:
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Theorem 4.4.1 If P1,P2 are modules such that P1]P2 and P1⊗P2 is defined, then:

(1) MM(P1]P2) = MM(P1) ./
+ MM(P2)

(2) MM(P1⊗P2) = MM(P1) ./
× MM(P2)

◦

Proof of Theorem 4.4.1.
(1) Is by Definition 4.4.1 equal to AS(ρOs←O(P1 ]P2)) = AS(ρOs←O(P1)) ./

+

AS(ρOs←O(P2)). Let now M, M1 and M2 respectively belong to AS(ρOs←O(P1]P2),
AS(ρOs←O(P1)) and AS(ρOs←O(P2)).

(→) Now, we have that M1 (respectively, M2) is M∩Atv(ρ(P1)) = M∩ (I1∪O1∪
H1∪Os) (respectively, M∩Atv(ρ(P2)) = M∩(I2∪O2∪H2∪Os)). Models M1 and M2
are compatible by Definition 4.4.2 if M∩M1∩ (I2∪O2) = M∩M2∩ (I1∪O1). Take
the ones that are compatible. M1 will now be an AS of P1 if it is a model and it is
minimal. It is easy to see that it is a model since the outputs of P1 and P2 were made
disjoint and M is supported by their composition and so, the rules supporting M1 must
come from P1. As for the minimality it is the case that for every os ∈ Os, either: (i)
os ∈M implying that o ∈M. For atom o to occur in M, it either belongs to M1, to M2
or to both. There are no occurrences of os in the bodies of rules (by construction) so
if there are rules r that are satisfied in P1 s.t. Head(r) = os then os (and thus o) ∈M1
and they have support in P1. Atom o can also have no support in rules but vary by
belonging to the input of P1 and/or P2. Or: (ii) o /∈M implies that os is not in M1 nor
M2.

It follows, because M is minimal, that M1 and M2 are MM of their respective
modular reducts, thus answer sets of P1 and P2 and that their join ./+ is M.

(←) For M1 and M2 to be compatible according to ./+, M1 ∩ (I2 ∪ O2) =
M2 ∩ (I1 ∪O1) meaning that all inputs and outputs must have the same truth value.
Now, M = M1 ∪M2 is an AS of the composition if it is a model of the composition
(atoms in M1 and in M2 are supported) and it is a minimal model. M1 is a model of
R1 and M2 a model of R2 and because all bodies of these rules coincide with M1 and
M2 (because they are compatible) and all ICs (⊥← o,not os and ⊥← not o,os) are
satisfied by construction, M is a model of ρOs←O(P1 ]P2). Model M would not be
minimal only if there was an os in it that (loosely speaking) did not need to be. That
would mean that all rules r : os← body would have body false but that is not possible
since that would make either M1 or M2 not minimal. Thus M is also a minimal model
and an AS.

(2): having proven (1), it suffices to see that ./× makes us look at annotations
Os for support, which discards all non supported models. That also happens on the
left hand side of the equality since ⊗ imposes the same restrictions with the intro-
duction of ICs in extra module 4. Since the models were the same to begin with
(before looking at annotations), and we discard all models that are not supported in
terms of o and os, we end up with the same models on both sides of the equality be-
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cause AS(ρOs←O(P1)) will not find support in AS(ρOs←O(P2)) since the renaming is
different (and vice-versa). �

Example 4.4.1 (Modular Models) Take again Example 4.3.4. Recall the following
program module:

Q1 = 〈{a. ⊥← a,b.}, /0,{a,b}, /0〉

Its renaming transformation is:

ρa′,b′←a,b(Q1) =

〈 { a′. ⊥← a,b.
⊥← a′,not a.
⊥← b′,not b.},

{ a,b},{a′,b′}, /0

〉

The transformed module ρa′,b′←a,b(Q1) has a single answer set {{a,a′}} which
corresponds to MModel M ∈MM(Q1) = {{a,as}} �

4.5 Conclusions and Future Work

We redefined the necessary operators in order to relax the conditions for combining
modules with common atoms in their output signatures. Two alternative solutions
are presented, both allowing us to retain compositionality while dealing with a more
general setting than before. Dao-Tran et al. (2009) provide an embedding of the orig-
inal composition operator of Oikarinen and Janhunen into their approach. Since our
constructions rely on a transformational approach using operator t of Oikarinen and
Janhunen, by composing both translations, an embedding into Dao-Tran et al. (2009)
is immediately obtained. Tasharrofi & Ternovska (2011) take Janhunen et al. (2009)
and extend it with an algebra which includes a new operation of feedback (loop) over
modules. They have shown that the loop operation adds significant expressive power
– modules can can express all (and only) problems in NP. The other issues remain
unsolved though.

The module theorem has been extended to the general theory of answer sets Babb
& Lee (2012), being applied to non-ground logic programs containing choice rules,
the count aggregate, and nested expressions. It is based on the new findings about
the relationship between the module theorem and the splitting theorem Lifschitz &
Turner (1994). It retains the composition condition of disjoint outputs and still for-
bids positive dependencies between modules. As for disjunctive versions, Janhunen
et al. (2009) introduced a formal framework for modular programming in the context
of DLPs under stable model semantics. This is based on the notion of DLP-functions,
which resort to appropriate input/output interfacing. Similar module concepts have
already been studied for the cases of normal logic programs and answer set programs
and even propositional theories, but the special characteristics of disjunctive rules are
properly taken into account in the syntactic and semantic definitions of DLP functions
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presented therein. In Gebser et al. (2011a), MLP is used as a basis for Reactive An-
swer Set Programming, aiming at reasoning about real-time dynamic systems running
online in changing environments.

As future work we can straightforwardly extend these results to probabilistic rea-
soning with answer sets by applying the new module theorem to Damásio & Moura
(2011) (see Chapter 6), as well as to DLP functions and general answer sets. An im-
plementation of the framework is also planned in order to assess the overhead when
compared with the original benchmarks in Oikarinen & Janhunen (2008).

Based on the work we present in Section 4.4, together with results in the litera-
ture, we believe that a fully compositional semantics can be attained by resorting to
partial interpretations e.g., SE-models Turner (2003b) for defining program models
at the semantic level. It is known that one must include extra information about the
support of each atom in the models in order to attain generalised compositionality
and SE-models are known to be sufficient while it may be the case that they are more
expressive than actually needed.
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Chapter 5

Allowing Positive Cyclic
Dependencies Between Modules

In this Chapter 5 we discuss two alternative solutions to the cyclic dependencies prob-
lem, generalising the module theorem by allowing positive loops between atoms in the
interface signatures of the modules being composed.

The work we discuss in this chapter relies on the concepts introduced previously
in Sections 2.2 and 4.2, where we presented an overview of the modular logic pro-
gramming paradigm, identifying its two shortcomings. We begin with an introduction
in Section 5.1 where we promptly present a relaxation of the module theorem that
will be necessary in the following Section 5.2, where we discuss alternative methods
for lifting the restriction that disallows positive cyclic dependencies. We finish the
chapter with conclusions and a general discussion.

5.1 Introduction

To attain a generalised form of compositionality we need to be able to deal with both
restrictions identified previously and in particular cyclic dependencies between mod-
ules. In the literature, Dao-Tran et al. (2009) present a solution based on a model
minimality property. It forces one to check for minimality on every comparable mod-
els of all program modules being composed. It is not directly applicable to our setting
though, which can be seen here in Example 5.1.1 where logical constant ⊥ represents
value f alse.

Example 5.1.1 Given MLP program modulesP1 = 〈{a← b. ⊥← not b.},{b},{a},{}〉,
having one answer set {a,b}, and P2 = 〈{b← a.},{a},{b},{}〉 having two answer
sets, namely {} and {a,b}, their MLP composition has no inputs and no intended
answer sets while their (minimal) join is {a,b}, according to Dao-Tran et al. (2009).
�

Oikarinen and Janhunen’s Modular Logic Programming approach is limited by
module conditions that are imposed in order to ensure the compatibility of their
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module system with the answer set semantics, namely forcing output signatures
of composing modules to be disjoint and disallowing positive cyclic dependencies
between different modules. These conditions are too restrictive in practice and after
discussing alternative ways of lifting the first restriction in the previous Chapter 4, we
now show in this current Chapter 5 how one can allow positive cyclic dependencies
between modules, thus widening the applicability of this framework and the scope of
the module theorem. We can furthermore assume that every pair of modules under
composition have disjoint outputs, either because they were disjoint to begin with or
they were made disjoint after applying the results we presented in the previous chapter.

Graph Definitions We define next what a dependency graph is as well as what
supported and self-supported (or unsupported) positive cyclic dependencies are.

Definition 5.1.1 (Dependency Graph) The positive dependency graph of a finite
program P, denoted by Dep+(P), is a finite directed graph with signed edges. Its
nodes are the relations occurring in P. For every clause in P which uses relation p
in its head and relation q in a positive (resp. negative) literal in its body, there is a
positive (resp. negative) edge (p, q) in Dep+(P). We say then that p uses q positively
(resp. negatively).

– We say that p depends positively (resp. negatively) on q if there is a path in
Dep+(P), from p to q with only positive edges (resp. at least one negative edge).

– We say that p depends evenly (resp. oddly) on q if there is a path in Dep+(P),
from p to q with an even (resp. odd) number of negative edges. N

We recall now that a strongly connected component (SCC) of a directed graph is
a maximal subset of mutually reachable nodes and use this to define next the concepts
of self-supported and well-supported positive loops. The graph formed by these SCCs
(each SCC as an individual node) and their dependencies (as arcs) is a directed acyclic
graph (DAG) to which we refer by Condensed Graph.

Definition 5.1.2 (Supported Positive Cyclic Dependencies) Given a logic program
P and an interpretation I, a well-supported, or simply a supported positive loop (or
positive cyclic dependency) is formed when an atom belonging to a strongly connected
component SCC1 of the dependency graph Dep+(P) has a rule r ∈ P which is applica-
ble with respect to interpretation I such that a∈Head(r) and every atom b∈ Body(r)
is such that b 6∈ SCC1. N

Definition 5.1.3 (Self-supported Positive Cyclic Dependencies) Given a logic pro-
gram P and an interpretation I, a self-supported positive loop (or just, positive cyclic
dependency) is formed when no atom belonging to a strongly connected component
SCC1 of the dependency graph Dep+(P) has a rule r ∈ P which is applicable with
respect to interpretation I such that a ∈Head(r) and every atom bi ∈ Body(r) is such
that bi 6∈ SCC1. N
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The compatibility criterion for the join operator ./ rules out the compositionality
of mutually dependent modules, but allows positive loops inside modules or nega-
tive loops in general. We recall the issue with self-supported positive loops between
modules in Example 2.2.7 for which problem we present a solution in this Chapter 5.

Example 5.1.2 (Self-Supported Cyclic Dependencies) Take the following two pro-
gram modules stating that “all safe cars have airbags” and that “a car is safe if it
has an airbag”:

P1 = 〈{airbag← sa f e.},{sa f e},{airbag}, /0〉
P2 = 〈{sa f e← airbag.},{airbag},{sa f e}, /0〉

Their answer sets are:

AS(P1) = AS(P2) = {{},{airbag,sa f e}}

while the single answer set of the composition P1⊕P2 (there are no remaining input
atoms to vary) is the empty model {}. Therefore:

AS(P1tP2) 6= AS(P1) ./ AS(P2) = {{},{airbag,sa f e}}

Thus, because the inputs of the composed module give support to the loop, this also
invalidates the module theorem.

Note that the program union contains a single SCC containing airbag and sa f e
which effectively forms a self-supported positive loop with respect to interpretation
{airbag,sa f e} but no self-supported loops with respect to to interpretation {} which
corresponds to its single answer set, while P1 and P2 contain each two SCCs, both of
them containing single atoms (namely airbag in one and sa f e in the other), thus hav-
ing no loops with respect to interpretations {} and {airbag,sa f e} which correspond
to their answer sets. �

This example sheds light over the real problem, which lies not in positive loops in
general but rather, more specifically, in positive self-supported loops which are intro-
duced when mutually dependent modules are composed. If we were to exclude this
type of loops, the original MLP framework could potentially cope with well supported
loops if one were to be able to identify and isolate the said self supported loops.

Consider now the following modified version of the previous example, depicting
a supported positive loop (which we also call well supported positive loop):

Example 5.1.3 (Well Supported Cyclic Dependencies) Take the following two pro-
gram modules, the first of which stating that “cars that are safe have airbags” and
that “new cars have airbags” while the second states that “a car is safe if it has an
airbag” and that “a car is safe if it has Electronic Stability Program (ESP)”:

P1 = 〈{airbag← sa f e. airbag← new.},{sa f e,new},{airbag}, /0〉
P2 = 〈{sa f e← airbag. sa f e← esp.},{airbag,esp},{sa f e}, /0〉
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Their answer sets are:

AS(P1) = {{},{airbag,sa f e},{airbag,new},{airbag,sa f e,new}}
AS(P2) = {{},{airbag,sa f e},{esp,sa f e},{airbag,esp,sa f e}}

while the answer sets of the composition of programs AS(P1⊕P2) (making inputs
atoms new and esp vary) are:

AS(P1tP2)= {{},{airbag,sa f e,esp},{airbag,new,sa f e,esp},{airbag,new,sa f e}}

Therefore, the following would hold if well supported positive loops between modules
were to be allowed:

AS(P1⊕P2) = AS(P1) ./ AS(P2).

Note now that the program union contains now three SCCs, one containing
airbag and sa f e and the other two containing respectively new and esp. This
effectively forms a supported positive loop with respect to interpretations {},
{airbag,sa f e,esp}, {airbag,new,sa f e,esp} and {airbag,new,sa f e} which all
correspond to its answer sets. The individual modules P1 and P2 contain each also
three SCCs, all of them containing single atoms (namely airbag, sa f e and new
in one and airbag, sa f e and esp in the other), thus having no loops with respect
to the intended interpretations {},{airbag,sa f e,esp},{airbag,new,sa f e,esp} and
{airbag,new,sa f e} which all correspond to their respective answer sets.

�

We capture this in the next theorem, relaxing the original applicability conditions
of the module theorem.

Theorem 5.1.1 (Relaxed Module Theorem) The module theorem (Theorem 2.2.1)
holds in the presence of supported positive loops between modules if we allow a new
operator tr to compose them by removing item (ii) from its conditions in Defini-
tion 2.2.4. ◦

Proof of Theorem 5.1.1. Let modules P1 and P2 be such that they have no self-
supported positive cyclic dependencies, but may have supported positive cyclic de-
pendencies, between their inputs and outputs. Let us denote their relaxed composition
by PC = P1trP2.

→ Towards a contradiction lets assume the following:

AS(PC) 6= AS(P1) ./ AS(P2)

There is an answer set M of PC which is not in AS(P1) ./ AS(P2). This means
that, M ∈ LM(〈R1 ∪R2,(I1\O2)∪ (I2\O1),O1 ∪O2,H1 ∪H2〉), M = M1 ∪M2
where M1 = M∩At(P1) and M2 = M∩At(P2) and one of the following:
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• M1 6∈ AS(P1) (respectively, M2 6∈ AS(P2)), which would mean that either
M1 6|=P1 (respectively, M2 6|=P2 ) or M1 (respectively, M2) is not minimal;
Let us start by considering the choice rules that are introduced for input
atoms. The union of the choice rules in P1 with the ones in P2 is poten-
tially different from the set of choice rules in the union PC (due to some
of the inputs of one of the modules being met by the outputs of the other
and vice versa). If we consider the truth values of each atom in model M
and make the corresponding choice rules in modules P1 and P2 take the
corresponding values in order to coincide with M, then it is the case that
M1 and M2 are respectively models of P1 and P2.
Having fixed the values for the choice rules, every other rule r in Pi, for
i ∈ {1,2}, is also in PC, thus if r is applicable with respect to M than
it is also applicable with respect to Mi because Mi is a model over a
vocabulary restricted to the vocabulary of Pi.

As for minimality, choice rules that are not in PC (the ones that were
met by the union of modules) are always, by definition, relative to output
atoms from P2 (respectively, P1) that appear in the head of some rule
rout ∈ P2 (respectively, rout ∈ P1). If we consider that the value of these
atoms is fixed in M and that they appear in the body of some rule rin ∈ P1
(respectively, rin ∈P2), this effectively isolates P1 from P2 in the union of
modules PC with respect to model M. As such if some Mi is not minimal,
then so is not M.

• M1∩At(P2) 6= M2∩At(P1), which would mean that the modules are ac-
tually not compatible which contradicts our assumption.

Because of this, equality in first direction always holds.

← We proceed with a proof by induction over the structure of the condensed graph
of PC, which we call CDep+(PC) which, we recall, is a directly acyclic graph
(DAG):

For the Base Cases consider strongly connected components SCCi (of the de-
pendency graph CDep+(PC)) not depending on any other SCC j:

1. SCCi contains a single atom which can be either:
(i) a hidden atom ahid , in which case if there is a fact for it in the reduct
(PC)

M, then the same fact occurs in either the reduct of P1 with respect to
M1 (PM1

1 ) or in the reduct ofP2 with respect to M2 (PM2
2 ), and the converse

holds when there is not a fact for ahid in the reduct (PC)
M, then such fact

also does not occur in either PM1
1 or in PM2

2 . If the atom is not hidden, it
must be:
(ii) an input atom which we call ain. There are two sub cases:
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- the first in which there is an un-met choice rule in PC which, for M to be
in the join of M1 and M2, takes the same value in the union of the modules
and in its corresponding original module;
- and the second, in which there is an output atom of one of the modules
(call it P1 without loss of generality) ain ∈ AtOut(P1)). We know that there
is no rule inP1 which makes ain true with respect to the M1 (and thus there
is also no rule in PC which makes ain true with respect to the M) because
otherwise this would reflect in the dependency graph.

2. SCCi contains more than an atom, all of which belong to the hidden sig-
nature of one of the original modules (say Pi). This SCC is necessarily
self-supported which reflects in every atom in this SCC being false in M
and in both M1 and M2. This is the case of a self-supported positive loop
inside one of the original modules.

3. SCCi contains more than an atom and some of them belong to the sig-
natures of both modules P1 and P2. This is the case of a self-supported
mutual dependency between the two modules and is discarded by the hy-
potheses of the theorem.

Inductive Hypotheses: Given a strongly connected component SCCi, every
other SCC j from which it depends1 (either directly or indirectly) take the same
values, atom wise, with respect to model M and with respect to both models M1
and M2.

For the Inductive Steps consider strongly connected components SCCi (of the
condensed graph CDep+(PC)) having atoms that depend on atoms outside their
own SCCi. Note that there are also three cases for the inductive step, which
correspond to the three base cases (but where atoms in SCCi have external de-
pendencies).

1. SCCi contains a single atom a for which either:
(i) there is an applicable rule r in reduct PM1

1 (respectively, in PM2
2 ) that

supports a (a ∈ Head(r) and the body is satisfied by the model). Then it
must be the case that r ∈ (PC)

M. Thus, by construction, every atom b in
Body(r) is such that b belongs to an SCC j below SCCi. Then, by induction
hypotheses, a is true in M1 which implies that it is also true in M.
(ii) the converse holds when there is no applicable rule r in reduct PM1

1
(respectively, PM2

2 ) and, hence, a has no support.

2. SCCi contains multiple atoms, all of which belong to the hidden signature
of the same module: a1 ∈ Ath(Pi), . . . ,an ∈ Ath(Pi), i ∈ {1,2}. For each of
these atoms, say a j ∈Mi such that j ∈ {1, . . . ,n}:
(i) if a is true in Mi then there in a rule r in PMi

i which is applicable with
respect to Mi and supports a j. Therefore, it is also the case that r ∈ (PC)

M.

1We say that SCC j is below SCCi
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Thus, similarly to step 1.(i), by construction every atom b in Body(r) is
such that if b belongs to a different strongly connected component SCC j,
then SCC j must be below SCCi to which a j belongs. Then, by induction
hypotheses, this atom a j is true in M1 which implies that it is true in M.
(ii) If on the contrary a j is false in the model, then the converse holds.

3. SCCi contains more than an atom and some of them belong to the sig-
natures of both modules P1 and P2. This case is the important case that
deals with supported positive mutual dependencies between the modules
under composition. Consider the following atoms in SCCi:

a1 ∈ At(P1), . . . ,an ∈ At(P1),

b1 ∈ At(P1),b1 ∈ At(P2), . . . ,bm ∈ At(P1),bm ∈ At(P2),

c1 ∈ At(P2), . . . ,co ∈ At(P2)

For each of these atoms, say ai such that i ∈ {1, . . . ,n} (respectively, ck
such that k ∈ {1, . . . ,o} or b j such that j ∈ {1, . . . ,m}), if ai (respectively,
ck or b j) is true then there in an applicable rule r in PM1

1 (respectively,
r in PM2

2 , or in the case of b j r in PMi
i where b j ∈ AtOut(Pi), and i ∈

{1,2}) with respect to its corresponding model, which gives support to
this atom. Therefore, it is also the case that r ∈ (PC)

M. Thus, similarly
to step 2.(i) and 2.(ii), by construction every atom d in Body(r) is such
that if d belongs to a different strongly connected component SCC j, then
SCC j must be below SCCi to which ai (respectively, ck) belongs. Then,
by induction hypotheses, these atoms ai are true in M1 (respectively, ck is
true in M2 or b j is true in both M1 and M2) which implies that they are true
in M.
Note that we discarded self-supported loops which implies that one of
these atoms indeed is supported by an applicable rule with respect to to
one of the models M1 or M2 and thus also M.
(ii) If on the contrary ai (respectively, ck or b j) is false in the model, then
the converse holds.

Because of this, equality in the second direction always holds as well. �

5.2 Positive Cyclic Dependencies Between Modules

5.2.1 Model Minimisation for Join Operator

We present a model join operation for definite programs that requires one to look at
every model of both modules being composed in order to check for minimality on
models comparable on account of their input signatures. This operation is able to
distinguish between atoms that are self supported through positive loops and atoms
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with proper support, allowing one to lift the condition in Definition 2.2.4 disallowing
positive dependencies between modules for some cases.

Definition 5.2.1 (Join) Given modules P1 and P2, let their composition be PC =
P1⊕P2. We define their minimal join as:

AS(P1) ./
min AS(P2) = {M |M ∈ AS(P1) ./ AS(P2) suchthat

@M′∈AS(P1)./AS(P2) : M′ ⊂M and M∩Atin(PC) = M′∩Atin(PC)}

N

Example 5.2.1 (Minimal Join) A car is safe if it has an airbag and it has an airbag
if it is safe and the airbag is an available option. This is captured by two modules,
namely:

P1 = 〈{airbag← sa f e,available option.},{sa f e,available option},{airbag}, /0〉

P2 = 〈{sa f e← airbag.},{airbag},{sa f e}, /0〉

Which respectively have:

AS(P1) = {{}, {sa f e}, {available option}, {airbag,sa f e,available option}}

AS(P2) = {{},{airbag,sa f e}}

The composition has as its input signature {available option} and therefore its
answer set {airbag,safe,available option} is not minimal regarding the input signa-
ture of the composition because {available option} is also an AS (and the only in-
tended model among these two). Thus,

AS(P1⊕P2) = AS(P1) ./
min AS(P2) = {{},{available option}}

�

This join operator allows us to lift the prohibition of composing mutually dependent
modules under certain situations. Integrity constraints containing only input atoms in
their body are still a problem with this approach as these exclude models that would
otherwise be minimal in the presence of self-supported loops. Because of this, we
need to discuss a more complex solution in the next section, that requires introducing
further information in the models.

Example 5.2.2 (Problem with Negative Rules) Consider the following two pro-
gram modules, one of which containing an integrity constraint:

P1 =

〈 R = {a← b. ← not b.},
I = {b},

O = {a}
H = {}

〉

66



having one answer set, i.e., AS(P1) = {{a,b}},and

P2 =

〈 R = {b← a.},
I = {a}

O = {b}
H = {}

〉

having two answer sets, i.e., AS(P2) = {{},{a,b}}
Their composition is:

PC =

〈 R = {a← b. b← a. ← not b.}
I = /0

O = {a,b}
H = {}

〉

This composition PC has no intended answer sets while the minimal join of the
models of the composing modules is {a,b} 4

The following theorem shows that, for positive programs, a minimisation is suffi-
cient to lift the applicability of MLP to mutually dependent modules.

Theorem 5.2.1 (Minimal Module Theorem for Positive Programs) If P1,P2 are
modules such that P1⊕P2 is defined (allowing cyclic dependencies between mod-
ules), and that only positive rules are used in modules, then:

AS(P1⊕P2) = AS(P1) ./
min AS(P2)

◦

Proof of Theorem 5.2.1. Let us start by assuming there are no cyclic dependencies
between the modules. Then, because we know from the original module theorem that
the answer sets of the composition are the same as the join of the individual sets of
answer sets:

AS(P1⊕P2) = AS(P1) ./ AS(P2)

and that given an input set, by definition of an AS they are all minimal relative to
set inclusion, the minimisation introduced by the minimal join will not eliminate any
model.

Let us now assume there are cyclic dependencies between the modules. Towards
a contradiction assume that this is a self-supported loop (as per Definition 5.1.3) with
respect to one model of the composition (belonging to the join of models), such that it
is not removed by the minimality condition. This means that, because it is an answer
set, this model would be minimal relative to its corresponding set of inputs of the
composition. For it not to be an intended model due to being unsupported then some
atom in the model is supported by a set of atoms in the input of one of the modules that
are not inputs of the composition (because the rules of the composition are the rules
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of the original programs plus choice rules for the inputs). There will thus be another
model of the same original module where all these input atoms are false. Because
of the join conditions, this model (joined with the corresponding one from the other
module) is minimal regarding the inputs which contradicts our assumption. �

5.2.2 Annotated Models For Dealing With Positive Loops

Because the former operator is not general and it forces us to compare each model
with every other model for minimality, thus not being “local”, and furthermore it
does not fully solve the problem, we present next an alternative that requires adding
annotations to models.

We need a way to identify self-supported positive cyclic dependencies (loops) that
are formed by composition by looking only at one model from each module under
composition. It is known from the literature (e.g., Slota & Leite (2012)) that in order
to do without looking at the rules of the program modules being composed, which in
the setting of MLP we have to assume not even having access to, we need to have
extra information incorporated into their models.

We start by defining next what is an annotated interpretation, which maps every
atom into a set of subsets of input atoms tracking the dependencies of the atom from
combinations of its input atoms, following by a fixed point definition of an annotated
model given an annotated reduct. After that we define a form of compatibility for
annotated models and with that criterion, define a loop tolerant join operator which
allows us to redefine the module theorem to a completely general setting.

Definition 5.2.2 (Annotated Interpretation) Given a program module P , we define
annotated interpretations IA of P as functions mapping sets of atoms to sets of subsets
of input atoms as follows:

IA : At(P)→ 22Atin(P)

such that the mapping for an atom a ∈ Atin(P) is either IA(a) = {} or IA(a) = {{a}}
when a is set as false (respectively, true) in the input signature of P . The set of all
interpretations is a complete lattice with the following partial order relation:

IA � JA iff ∀a : a ∈ At(P) =⇒ IA(a)⊆ JA(a)

N

We denote an atom a annotated with a set of subsets of input atoms D as aD. We in-
troduce next an operator that projects annotated atoms from annotated interpretations.

Definition 5.2.3 (Projection operator Int(IA)) Given an annotated interpretation
IA, we obtain a standard interpretation from it by discarding its annotations as
follows:

Int(IA) = {a | IA(a) 6= {}}

N
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We define next an annotated model as the least model of a fixed point operator
iterating over the rules of a module.

Definition 5.2.4 (Annotated Model) Given a definite program P, a set of (input)
atoms In and an annotated interpretation IA as defined before, the annotated model
over annotations of P will be the least fixed point of the immediate consequences
monotonic operator defined as follows for every atom a ∈ At(P):

T A
P,In(I

A)(a) =
⋃
{D1∪ . . .∪Dm | a← L1, . . . ,Lm ∈ P∧

D1 ∈ IA(L1)∧ . . .∧Dm ∈ IA(Lm)} , i f a 6∈ In, and
{{a}} , (i f a ∈ In) otherwise.

The annotated least model (ALM) of program P is thus:

ALMP,In = l f p(T A
P,In) = T A

P,In ↑λ

for some ordinal λ s.t. we start from T A
P,In ↑0 where for every atom a,

T A
P,In ↑0 (a) = {}

And update it with:

T A
P,In ↑α+1= T A

P,In(T
A

P,In ↑α) if α +1 is a successor ordinal, and
T A

P,In ↑α=
⋃

β<α T A
P,In ↑β if α is a limit ordinal.

N

As we only consider positive programs, and because the annotations are also finite
(albeit exponential), the operator reaches a fixed point after a finite number of itera-
tions. Naturally, the operator is monotonic, which means that given two annotated
interpretations, if one precedes the other in terms of annotation ordering, then so do
their annotated fixed points. We capture this in the following theorem.

Lemma 5 (Monotony of T A
P )

If IA �A JA then T A
P (IA)�A T A

P (JA)

◦

Proof of Lemma 5. Having:
IA � JA

implies that it is the case that for every atom Li ∈ At:

IA(Li)⊆ JA(Li)
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Which means that, because the program P is positive, given rules like the following:

a← L1, . . . ,Lm ∈ P

for which:
D1 ∈ IA(L1)∧ . . .∧Dm ∈ IA(Lm)

it is then the case that:
D1∪ . . .∪Dm ∈ IA

Because of the initial assumption, this further implies that

D1∪ . . .∪Dm ∈ JA

Taking the previous Definition 5.2.4, we can conclude that:

∀a 6∈ In, if D1∪ . . .∪Dm ∈ T A
P (IA)(a) then D1∪ . . .∪Dm ∈ T A

P (JA)(a)

and
∀a ∈ In, if {a} ∈ T A

P (IA)(a) then {a} ∈ T A
P (JA)(a)

Because the dependencies for individual atoms in the body of the rule are in the
interpretations, we have that the following is then generically the case:

T A
P (IA)(a)⊆ T A

P (JA)(a)

Which means that the annotated interpretation for a given atom a in a given anno-
tated interpretation IA one obtains by iterating the T A

P operator until reaching the fixed
point is always contained in the interpretation obtained by iterating the operator given
a superset interpretation JA.

Then:
T A

P (IA)�A T A
P (JA)

�

We now state an important lemma establishing the correspondence between an-
notated models and classical models. It will later become clear that this property is
crucial for our goal of allowing positive loops between modules.

Lemma 6 (Correspondence of T A
P,In and TP∪In) Given a definite program P, and a

set of (true input) atoms In, the projection of each annotated fixed point corresponds
to a fixed point of the original operator TP∪In for every atom a ∈ At(P):

a ∈ Int(l f p(T A
P,In)) iff a ∈ l f p(TP∪In)

◦

Proof of Lemma 6. We prove the lemma by fixed point induction.
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Base Case: For every a, a 6∈ Int(T A
P,In ↑0) and a 6∈ TP∪In ↑0.

Inductive Hypothesis: Assume that a ∈ Int(T A
P,In ↑n) iff a ∈ TP∪In ↑n.

Inductive Case: We will prove that ∀a∈At(P), a∈ Int(T A
P,In ↑n+1) iff a∈ TP∪In ↑n+1.

Case 1 (Suppose a ∈ In): There is a fact a. for it in P∪ In. Then, by definition
T A

P,In ↑n+1 (a)= {{a}} hence it is the case that a∈ Int(T A
P,In ↑n+1). Because

it is also the case that a ∈ TP∪In ↑n+1 (a), the steps match.

Case 2 (Suppose a 6∈ In): We know that:
(i) By definition of the T A

P operator:

a ∈ Int(T A
P,In ↑n+1)

if there is a dependency:
D1∪ . . .∪Dm

in the set of dependencies for a such that rule:

r : a← L1, . . . ,Lm. ∈ P

and
D1 ∈ T A

P,In ↑n (L1)∧ . . .∧Dm ∈ T A
P,In ↑n (Lm).

(ii) Now, by definition of the TP operator,

a ∈ TP∪In ↑n+1

if it is the case that a is derived from at least one rule satisfied in P such
that:

a← L1, . . . ,Lm.

and:
L1 ∈ TP∪In ↑n ∧ . . .∧Ln ∈ TP∪In ↑n .

We proceed to prove the two directions separately as follows:

(If a ∈ TP∪In ↑n+1=⇒ a ∈ Int(T A
P,In ↑n+1)): Assuming:

a ∈ TP∪In ↑n+1

Implies that there is a rule r, satisfied in P:

r : a← L1, . . . ,Lm. ∈ P

Such that:
L1 ∈ TP∪In ↑n ∧ . . .∧Lm ∈ TP∪In ↑n .
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Now, by the inductive hypothesis:

D1 ∈ T A
P,In ↑n (L1)∧ . . .∧Dm ∈ T A

P,In ↑n (Lm).

hence, the dependency set for a:

D1∪ . . .∪Dm

appears in the set of dependencies (
⋃

in the definition of the operator)
for a, meaning that:

a ∈ Int(T A
P,In ↑n+1).

(If a ∈ Int(T A
P,In ↑n+1) =⇒ a ∈ TP∪In ↑n+1): Assuming:

a ∈ Int(T A
P,In ↑n+1).

Implies that there is a satisfied rule r:

r : a← L1, . . . ,Lm. ∈ P

Such that:

D1 ∈ T A
P,In ↑n (L1)∧ . . .∧Dm ∈ T A

P,In ↑n (Lm).

Now, by hypothesis:

L1 ∈ TP∪In ↑n (L1)∧ . . .∧Lm ∈ TP∪In ↑n .

Which means that it is also the case that that every atom at ∈ Body(r)
is satisfied by TP∪In ↑n: hence a, is satis f ied and as such:

a ∈ TP∪In ↑n+1 .

Hence a ∈ Int(T A
P,In ↑n+1) iff a ∈ TP∪In ↑n+1.

Note that it might be the case that T A
P,In stops after more steps than TP∪In, intu-

itively because the alternative annotations for alternative rules must propagate after
step n when the projected model Int(T A

P,In ↑n) is already fixed. It is the case though
that because we are facing positive programs with finite (albeit possibly exponential)
annotations, the annotated operator will always converge for computations when the
original operator also converges. �

The next Lemma states that a model is annotated correctly if all of its atoms are
annotated only with subsets of a conjunction of its inputs.

Lemma 7 (Correctness of T A
P,In) Let P be a definite program, and In be a set of (in-

put) atoms. Given any C ⊆ In then it is the case that any atom a ∈ l f p(TP∪C) iff
∃D j ∈ l f p(T A

P,In)(a) and D j ⊆C. ◦
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Proof of Lemma 7. We prove the lemma by fixed point induction.

Base Case: For every atom a, 6 ∃D j ∈ T A
P,In ↑0 (a) and a 6∈ TP∪C ↑0 such that D j ⊆C.

Inductive Hypothesis: Assume that a∈ TP∪C ↑n iff ∃D j ∈ T A
P,In ↑n (a) such that D j ⊆

C.

Inductive Case: We will prove that ∃D j ∈ T A
P,In ↑n+1 (a) iff a ∈ TP∪C ↑n+1 such that

D j ⊆C.

Case 1 (Suppose a ∈C): There is a fact a. for it in P∪C. Then, by definition

T A
P,In ↑n+1 (a) = {{a}}

hence it is the case that

D j ∈ T A
P,In ↑n+1 (a), D j = {a} and D j ⊆C

Because it is also true that

a ∈ TP∪C ↑n+1,

this case holds.

Case 2 (Suppose a 6∈C): We proceed to prove the two directions separately as
follows:

(If a ∈ TP∪C ↑n+1=⇒∃D j ∈ T A
P,In ↑n+1): We begin by assuming:

a ∈ TP∪C ↑n+1

which implies that there is a rule r, satisfied in P∪C:

r : a← L1, . . . ,Lm. ∈ P∪C

such that the following holds:

L1 ∈ TP∪C ↑n ∧ . . .∧Lm ∈ TP∪C ↑n .

Now, by induction hypothesis, it is also the case that:

∃D1 ∈T A
P,In ↑n (L1)∧. . .∧∃Dm ∈T A

P,In ↑n (Lm),s.t. D1⊆C, . . . ,Dm⊆C.

hence, it is the case that there is a dependency set D j = D1∪ . . .∪Dm

for a that is contained in C and because of that:

∃D j ∈ T A
P,In ↑n+1 and D j ⊆C

which proves this direction.

73



(If ∃D j ∈ T A
P,In ↑n+1=⇒ a ∈ TP∪C ↑n+1): We begin by assuming:

∃D j ∈ T A
P,In ↑n+1 and D j ⊆C

which implies that there is a satisfied rule r:

r : a← L1, . . . ,Lm. ∈ P

such that the following holds:

∃D1 ∈T A
P,In ↑n (L1)∧. . .∧∃Dm ∈T A

P,In ↑n (Lm),s.t. D1⊆C, . . . ,Dm⊆C.

Now, by hypothesis:

L1 ∈ TP∪C ↑n ∧ . . .∧Lm ∈ TP∪C ↑n .

Which means that it is also the case that that every atom at ∈ Body(r)
is satisfied by TP∪C ↑n: hence a, is satis f ied and as such:

a ∈ TP∪C ↑n+1

Hence a ∈ Int(T A
P,In ↑n+1) iff a ∈ TP∪C ↑n+1 and D j ⊆ C. Which proves

this direction, and because both directions hold, proves also this case. �

We introduce now the notion of reconstructed program which, intuitively, corre-
sponds to a positive program having one rule for each of the dependencies of an atom
in a given annotated model. If an atom has no dependencies but belongs to the model,
then a fact is added.

Definition 5.2.5 (Reconstructed program) Given a module P , a program Prec(M)
can conversely be reconstructed from one of the module’s annotated models M simply
as a set of rules r1, . . . ,rm for each annotated atom a{D1,...,Dm} ∈ M s.t. a is not an
input atom (a /∈ Atin(P)), of the following form:

Head(r1) = a and Body(r1) = D1.
...

Head(rm) = a and Body(rm) = Dm.

(5.1)

N

Note that, because atoms in the bodies of these rules are all input atoms (and thus,
there are no rules defining them in the reconstructed program), reconstructed pro-
grams are loop free.

Such reconstructed program Prec(M) will be equivalent (but not strongly equiv-
alent in the sense of Lifschitz et al. (2000)) to taking the original program and adding
facts that belong to the annotated model M, intersected with the input signature of P ,
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correspondingly. We present an example of a reconstructed program after defining
what are annotated answer sets.

We define next a reduct operator, able to deal with annotated interpretations, in
a way similar to the original Gelfond-Lifschitz reduct which then allows us to define
annotated answer sets.

Definition 5.2.6 (Annotated Reduct) Given a program module P and an annotated
interpretation IA, we define P IA

as follows:

P IA
= {Head(r)← Body+(r) | r ∈ R(P),Body−(r)∩ Int(IA) = /0} (5.2)

N

Definition 5.2.7 (Annotated Answer Sets) Take a program module P and its answer
sets AS(P). We define its annotated answer sets as :

ASA(P) = {MA
i |Mi ∈ AS(P) ∧ MA

i = ALMP IA
, M∩Atin(P)

}

N

Example 5.2.3 (Annotated Answer Sets and Reconstructed Programs) Consider
the following program module:

P = 〈{a← b,c. b← d,not e,not f .},{d, f}, {a,b}, {c,e}〉

P has four annotated models, corresponding to the four alternative input combi-
nations, as per Definition 5.2.7:

ASA(P) = {{b{{d}},d{{d}}}, { f{{ f}}}, {d{{d}}, f{{ f}}}}, {}}

Now take the annotated model M = {b{{d}},d{{d}}}. A program Prec(M) recon-
structed from model M, as per Definition 5.2.5, is as follows: Prec(M) = {b← d.}.

4

In the previous Example 5.2.3, the first rule a← b,c. can never be satisfied be-
cause c is not an input atom (c /∈ I) and it is not satisfied by the rules of the module
(RP 6|= c). Thus, the only potential positive loop is identified by {b{{d}},d{{d}}}}. If
we compose P with e.g., module Ploop = 〈{d← b.}, {b}, {d}, /0〉, having one anno-
tated model {d{{b}},b{{b}}}, then it becomes possible to identify that this composition
produces a positive loop and because of this only if some atom in the loop is satisfied
by the module composition, there will be an answer set reflecting that.

Also note that since e is not a visible atom (e ∈H), it does not interfere with other
modules, as long as it is respected, and thus it does not need to be in the annotation.
As for f , it does not need to be in the annotation of answer sets containing b because
it appears negated and the join operator for models will disallow its join with models
where it appears as being true.
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5.2.2.1 Cyclic Compatibility

Next we define the compatibility of mutually dependent models. We assume that the
outputs are disjoint as per the original MLP definitions, which can always be achieved
with the work we presented before in Chapter 4. The compatibility is defined as a two
step criterion. The first is similar to the original compatibility criterion, only adapted
to dealing with annotated models by disregarding the annotations. This first step
makes annotations of negative dependencies unnecessary. The second step disallows
the join of models that contain atoms belonging to a self-supported positive loop.

Definition 5.2.8 (Basic Model Compatibility) Let P1 and P2 be two modules. Let
ASA(P1), respectively ASA(P2) be their annotated models. Let now MA

1 ∈ ASA(P1)
and MA

2 ∈ ASA(P2) be two annotated models, they will be compatible if:

Int(MA
1 )∩Atv(P2) = Int(MA

2 )∩Atv(P1)

N

Now, for the second step of the cyclic compatibility criterion one takes models
that passed the basic compatibility criterion and reconstruct their respective positive
programs as defined previously. Then one computes the minimal model of the union
of these reconstructed programs and see if the union of the originating models is
a model of the union of their reconstructed programs (obtained through rules with
form (5.1)).

Definition 5.2.9 (Annotation Compatibility) Let P1 and P2 be two modules. Let
ASA(P1), respectively ASA(P2) be their annotated models. Let now MA

1 ∈ ASA(P1)
and MA

2 ∈ ASA(P2) be two basic compatible annotated models according to Defini-
tion 5.2.8. They will be compatible annotated models if:

LM(Prec(MA
1 )∪Prec(MA

2 )∪ trueInputs) = Int(MA
1 )∪ Int(MA

2 )

where

trueInputs =
(
Int(MA

1 )
⋃

Int(MA
2 )
)⋂

Atin(P1⊕P2)

N

This compatibility check has the effect of blocking positive loops between mod-
ules that become self-supported once the modules are composed and relevant input
atoms, previously giving support to rules involved in the loop, cease to exist. This is
the second step we need towards a generalised module theorem, allowing us to retain
compositionality in the face of positive loops.

76



5.2.3 Attaining Cyclic Compositionality

After setting the way by which one can deal with positive loops by using annotations
in models, the join operator needs to be redefined. The original composition operators
are applicable to annotated modules and this way, the positive dependencies of their
atoms are added to their respective models.

Definition 5.2.10 (Modified Join) Given two compatible annotated modules P1,P2
(in the sense of Definition 5.2.9), their composition is P1⊗P2 = P1⊕P2 provided
that P1⊕P2 is defined.

This way, given modules P1 and P2 and their annotated models, respectively MA
1

and MA
2 , their natural join, is defined as follows:

MA
1 ./A MA

2 =

{
ALM(Prec(MA

1 )∪Prec(MA
2 )), Atin(P1⊕P2)

| s.t. MA
1 and MA

2 are
annotation compatible.

}
N

We now follow by stating our main result in this Chapter.

Theorem 5.2.2 (Cyclic Module Theorem) If P1,P2 are modules with annotated
models such that P1tP2 is defined, then:

ASA(P1⊕P2) = ASA(P1) ./A ASA(P2)

◦

Proof of Theorem 5.2.2. Take P1 and P2. Let M1 ∈ AS(P1) and M2 ∈ AS(P2) and
let M ∈ AS(P1⊕P2) be an answer set of their union.

From Lemmas 6 and 7, we know that respectively MA
1 , MA

2 and MA are their re-
spective annotated answer sets.

Our annotated compatibility check in Definition 5.2.9 implies that in the subse-
quent Definition 5.2.10 the annotated join of models deriving from self-supported
positive loops are disallowed, but preserves the rest of compatible models, including
well supported loops.

Now, because the relaxed module theorem (Theorem 5.1.1) shows that the original
MLP join and composition operators deal correctly with well supported positive loops,
and because Definition 5.2.9 puts us now under its conditions, it is thus the case that

ASA(P1⊕P2) = ASA(P1) ./A ASA(P2)

�

Theorem 5.2.2 extends the original module theorem with annotations, which al-
low us to detect self-supported loops. Considering two compatible annotated models
MA

1 and MA
2 , by definitions of basic and annotation compatibility (Definitions 5.2.8

and 5.2.9), it is respectively the case that Int(MA
1 )∩Atv(P2) = Int(MA

2 )∩Atv(P1) and
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that LM(Prec(MA
1 )∪Prec(MA

2 )∪ trueInputs) = Int(MA
1 )∪ Int(MA

2 ). The program re-
construction operation basically takes a model MA and considers its annotations as
providing support for literals, turning these into rules and constructing a positive pro-
gram such that its single stable model trivially coincides with annotated model MA

from which it originated.
When assessing whether or not this model MA is to be joined with some other

model M′A, we not only perform the compatibility checks that were originally pre-
scribed in MLP and work for programs without self justifications, but also perform
an extra verification to check whether or not the way the truth values of input atoms
are varied to obtain the original MLP semantics actually introduces support to (self
supported) positive loops. We thus do not include the set of facts which are no longer
in the input signature of the composed module and would otherwise potentially
provide support to self-justified loops but do add facts trueInputs which guarantee
that the behavior of the union of reconstructed programs is the same as the union of
the original programs.

5.2.4 Shortcomings Revisited

Going back to Example 5.1.2, the new composition operator is able to produce the
desired results:

Example 5.2.4 (Cyclic Dependencies Revisited) Take again the two program mod-
ules in Example 5.1.2:

P1 = 〈{airbag← sa f e.},{sa f e},{airbag}, /0〉
P2 = 〈{sa f e← airbag.},{airbag},{sa f e}, /0〉

which respectively have the following annotated models

ASA(P1) = {{},{airbag{{sa f e}},sa f e{{sa f e}}}}
ASA(P2) = {{},{airbag{{airbag}},sa f e{{airbag}}}}

while their composition and the (annotated) answer sets of their composition are:

P1⊗P2 = 〈{airbag← sa f e. sa f e← airbag.},{},{sa f e,airbag}, /0〉

ASA(P1⊗P2) = {{}}

Because of this, the annotated answer sets of their composition are the same as the
join of the annotated answer sets of the individual modules:

ASA(P1⊗P2) = ASA(P1) ./A ASA(P2)

�
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5.3 Relation with Multi-Context Systems and their Compo-
sitionality

A Multi-Context System (MCS) Brewka & Eiter (2007b) is a collection of contexts
that are linked using non-monotonic bridge rules. Each context has its own way of rep-
resenting knowledge, including its own syntax and semantics. Non-monotonic bridge
rules define how knowledge can be transferred between contexts. In MCSs, a model
has the form of a collection of belief sets (called a belief state). An individual context
is denoted as Mcs := (L,kb,br) where L is its underlying logic, kb its knowledge base
and br its bridge rules.

We overview next the semantics of MCSs that are of interest to us, which are as
follows.

1. Equilibrium semantics (ES) defines intended models as exactly those belief
states that, if viewed operationally, remain unchanged after first applying bridge
rules and then applying contexts, hence the name of an equilibrium.

2. Minimal equilibrium semantics (MES) defines intended models as those
equilibriums that are also minimal.

3. Grounded equilibrium semantics (GES) defines intended models as the
minimal equilibriums of a positive MCS obtained by reducing the original
MCS. Reducing MCSs is similar (both methodically and intent-wise) to the
Gelfond/Lifschitz reduct operation Gelfond & Lifschitz (1988) use to define
the stable model semantics.

4. Supported Equilibrium Semantics (SES). Grounded equilibrium semantics
(GES) is defined over MCSs in which all contexts are reducible. Thus, even
one non-reducible context is enough to render GES non-applicable. Tasharrofi
& Ternovska (2014) solved this by proposing an intermediate semantics (SES)
capturing the robustness of ES, thus making it applicable to every MSC while
— like GES does — dealing with the problem of self justified loops.

5.3.1 Supported Equilibrium Semantics (SES)

We present next an overview of the supported equilibrium semantics Tasharrofi &
Ternovska (2014).

5.3.1.1 Support for Contexts

Justifications are intuitively introduced as: “Justifications for belief set bs are possible
explanation of why beliefs in bs are believed. Then, also intuitively, justifications are
used to define the support for a logic: SupL(kb,bs) denotes a (usually non-exhaustive)
set of possible justifications for bs.
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Using the definition of supports on the level of logic, we present next their defini-
tion of support on the level of contexts. Unlike supports for logics that worked with
syntactic (knowledge base formulas) and semantic (beliefs) objects simultaneously,
in Definition 5.3.1, supports at the level of contexts work solely on semantic objects
(beliefs).

Definition 5.3.1 (Support for Contexts Tasharrofi & Ternovska (2014)) Consider
MCS M := (C1, . . . ,Cn), its context Ci := 〈Li,kbi,bri〉, and its belief state S :=
(S1, . . . ,Sn). Also, let SupLi be the support function for logic Li.

Support of belief set Si (from context Ci ) under S, denoted by SupSi , is the set of
functions2 f : Si→ P(X(S)) that are computed by taking a function3 g ∈ SupLi(kbi∪
appi(S),Si) and tracing the reason for the inclusion of the knowledge that comes from
bridge rules. More formally, a function f is included in SupSi if and only if functions
g ∈ SupLi(kbi ∪ appi(S),Si) and R : Si → P(bri) exist such that, for all b ∈ Si, we
have4:

f (b) := {i : b′|b′ ∈ f st(g(b))}
⋃

r∈R(b)

Body+(r).

and R(b) ⊆ {r | r ∈ bri and S |= Body(r)} is a minimal subset of applicable bridge
rules that justifies the knowledge that comes from bridge rules, i.e., for all formulas
k ∈ (snd(g(b))\kb), a rule r ∈ R(b) exists with Head(r) = k. N

Note that, in Definition 5.3.1, if snd(g(b))\kb = /0 for some belief b, then R(b) =
/0. Intuitively, it means that support from other contexts is required only when existing
knowledge of a context is not sufficient for supporting a belief.

Supports at the level of contexts are used to define supported equilibrium seman-
tics for MCSs Tasharrofi & Ternovska (2014). In the following definition, the authors
provide the notion of a supported equilibrium. Informally, a belief state is called a
supported equilibrium if all beliefs are well-justified, i.e., they are justified and noth-
ing justifies itself (either directly or indirectly). Self-justifications are avoided by
requiring the existence of a well-ordering on the beliefs X(S).

Definition 5.3.2 (Supported Equilibrium Tasharrofi & Ternovska (2014)) A be-
lief state S := (S1, . . . ,Sn) of MCS is a supported equilibrium with respect to
(SupL1 , . . . ,SupLn) if functions f1 ∈ SupS1 , . . . , fn ∈ SupSn and well-founded strict
partial ordering < on X(S) exist s.t. if p ∈ Si and ( j : q) ∈ fi(p) then ( j : q)< (i : p).
N

First, note that Definition 5.3.2 does not put any special requirement on contexts and
works for all contexts and all supports. Therefore, unlike grounded equilibrium se-
mantics of Brewka & Eiter (2007b), introspection in supported equilibrium semantics

2Where X(S) is used for the disjoint union of beliefs in all belief states Si, i.e., X(S) := {(i : b) | 1≤
i≤ n and b ∈ Si}.

3Where appi(S) = {Head(r) | r ∈ bri∧S |= Body(r)} is used to denote the heads of all applicable
bridge rules of context Ci wrt. S.

4They use, for a pair P := (X ,Y ), f st(P) to denote X and snd(P) to denote Y .
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does not come at the cost of excluding non-reducible contexts. Second, they note that
Definition 5.3.2 tests a belief state for being supported but not for being an equilib-
rium. So, one might reasonably suspect that a belief state S might exist such that S
is a supported equilibrium (according to Definition 5.3.2) but not an equilibrium (ac-
cording to the original definition of equilibrium semantics Brewka & Eiter (2007b).
However, their Theorem 1 states that if S is a supported equilibrium then it has to be
an equilibrium as well. Therefore, the term “supported equilibrium” is a reasonable
name for belief states that satisfy the condition of Definition 5.3.2.

5.3.2 Defining a Notion of Compositionality for Multi-Context Systems

As for the notion of compositionality we presented at the very beginning of this doc-
ument, MCS (even under the supported equilibrium semantics) are not compositional
in the sense of compositionality in MLP.

It is the case though that MLPs are translatable to MCSs where contexts have the,
so called in Tasharrofi & Ternovska (2014), “logic of normal answer set programs
under stable model semantics” which we will henceforth denote as Lasp. In this case,
and because in MLP it is the case that visible atoms are globally available and usable
by other modules, we define their translation to multi-context systems as follows:

Definition 5.3.3 (Translation of MLP to MCS) Given n MLP modules M1
l p, . . . ,M

n
l p,

we obtain from it a multi-context context system formed by contexts

M1
cs := (L1,kb1,br1), . . . ,Mn

cs := (Ln,kbn,brn)

such that logic L1 = . . . = Ln = Lasp, bridge rules r ∈ br j will be all rules of the
following type:

a←Ck : a. s.t. j,k ∈ {1, . . . ,n} (5.3)

such that a is an input atom in some MLP module, namely a ∈ Atin(M
j
l p) and a is

an output atom in some other MLP module, namely a ∈ Atout(Mk
l p). Finally kb j =

Rules(M j
l p). N

Note that in the presence of a new context, the corresponding bridge rules must
be created between contexts being intended for combination. Having these rules, new
models must then calculated for the system.

MCSs having the logic Lasp are also translatable to MLPs by constructing a mod-
ule for the bridge rules associated to a context and another module for the rules of the
context.

Definition 5.3.4 (Translation of MCS to MLP) Consider a reducible context C :=
(L,kb,br) where L = Lasp is its underlying logic, kb is its knowledge base and br
its set of non-monotonic bridge rules. A translation to an MLP setting is defined as
follows:

Mi = 〈Pi, Ii,AtC, /0〉
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Where Pi contains, for each rule r of the following type s.t. r ∈ kb:

L0← L1, . . . ,Lm,not Lm+1, . . . ,not Ln .

a rule r′ of the following (translated) type:

Ci : L0←Ci : L1, . . . ,Ci : Lm,not Ci : Lm+1, . . . ,not Ci : Ln.

together with rules r of the following type s.t. L0← Body(r). ∈ bri

Ci : L0← Body(r).

Furthermore, the input signature of Ii of Mi is:

Ii = {Ci : Li | Ci : Li ∈ Body(r). s.t. r ∈ bri}

and the output signature AtC of Mi is:

AtC = {Ci : L | L is an atom in the language of context Ci}

N

All MCS in this class are reducible and as such SES-semantics is not necessary as we
could simply apply the ES-Semantics. However, consider now the following Exam-
ple 5.3.1 taken from Tasharrofi & Ternovska (2014).

Example 5.3.1 Let M := (C1,C2,C3) be5 a multi-context system with Ci :=
(Li,kbi,bri) ( f or i ∈ {1,2,3}), Li be the logic of normal answer set programs
under stable model semantics and kbi, bri be as follows:

C1 :=



kb1 := { f orbes400(bg).
wealthy(X)← f orbes400(X).

wealthy(X)← celebrity(X). }

br1 := { celebrity(X)←C2 : f amous(X). }

C2 :=


kb2 := { actor(bp). f amous(X)← actor(X). }

br2 := { f amous(X)←C1 : wealthy(X).

f amous(X)←C3 : comedian(X). }

C3 :=


kb3 := { {comedian( jk).} }

br3 := { ⊥←C3 : comedian(X), not C2 : f amous(X). }

5The authors use := to represent “denotes” or “equals by definition”.
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With X ranging over the possibilities, namely “bg” (Bill Gates), “bp” (Brad Pitt),
“jk” (Jimmy Kimmel) and “aj” (Average Joe). According to the equilibrium seman-
tics, M has equilibriums S1, . . . ,S6 as follows:

for i ∈ {1, . . . ,6} : Si := (bsi
1,bsi

2,bsi
3) where,

bs1
1 := { f orbes400(bg),wealthy(bg),wealthy(bp),

celebrity(bg),celebrity(bp)}
bs2

1 := bs1
1∪{wealthy(a j),celebrity(a j)},

bs3
1 := bs4

1 := bs1
1∪{wealthy( jk),celebrity( jk)},

bs5
1 := bs6

1 := bs2
1∪bs3

1,
bs1

2 := {actor(bp), f amous(bg), f amous(bp)},
bs2

2 := bs1
2∪{ f amous(a j)},

bs3
2 := bs4

2 := bs1
2∪{ f amous( jk)},

bs5
2 := bs6

2 := bs2
2∪bs3

2,
bs1

3 := bs2
3 := bs3

3 := bs5
3 := {},

bs4
3 := bs6

3 := {comedian( jk)}.
From which only one is a grounded equilibrium:

S1 :=


{ f orbes400(bg),wealthy(bg),wealthy(bp),

celebrity(bg),celebrity(bp)},
{ actor(bp), f amous(bg), f amous(bp)},
{ }.


If the names in this example are to be taken literally, among all the six equilibrium

models above, only S4 is a reasonable belief state. This is because “Average Joe” by
definition is not famous, wealthy, or a celebrity, and also because “Jimmy Kimmel”
is a famous comedian and a wealthy celebrity.

The two answer sets of the MLP translation correspond to having or not an atom
comedian( jk), from which AS2 corresponds exactly to S1 and AS1 corresponds to our
intended belief state S4:

AS1 :


actor(bp), f orbes400(bg),comedian( jk),wealthy(bp),wealthy(bg),
wealthy( jk),celebrity(bp),celebrity(bg),celebrity( jk),
f amous(bp), f amous(bg), f amous( jk)


AS2 :

{
actor(bp), f orbes400(bg),wealthy(bp),wealthy(bg),celebrity(bp),
celebrity(bg), f amous(bp), f amous(bg)

}
4

The supported equilibrium semantics (SES) coincides in this case with the answer
sets of the union of bridge rules and knowledge bases within contexts under compo-
sition which, as we have seen, are the answer sets of our generalised MLP models
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and we conjecture that it is indeed applicable to solving the positive cyclic depen-
dency issue but leave this for future work. No compositionality results (in the spirit of
the module theorem) are provided in the literature though and even if the supported
equilibrium semantics provides a reasonable way to evaluate MCSs under the stable
model semantics, compositionality is not achieved. This conclusion follows from (1)
our result showing that models must be richer than simply answer sets in terms of
the information they contain about support, in order to allow for compositionality in
the sense of MLP’s module theorem, and (2) the fact that a suitable join operator for
models is not provided.

Relation to our Dependency Annotations Supported equilibrium semantics is de-
fined in terms of support functions f (b) that take support at the level of contexts for a
literal b as knowledge coming from the positive part of the bodies of applicable bridge
rules. This is intuitively very similar to the fact that in our generalised MLP approach
we take dependency annotations as being positive atoms in the bodies of applicable
rules having a given target literal, for which we want to track the dependency, in their
head. We furthermore only consider (chains of) dependencies stemming from input
atoms of a given module which as we have seen are translated into MCS as bridge
rules. We present next a conjecture of a correspondence between multi-context sys-
tems and modular logic programs, and follow-up with a discussion of a possible path
for proving it. We leave this as a partial open-end for future work.

Conjecture 5.3.1 (Correspondence of MCS and MLP) Let Mcs be a reducible
multi-context system under Lasp and let Ml p be its translation to MLP according to
Definition 5.3.4. The SES-models of Mcs correspond to the answer sets of Ml p. The
converse, using the inverse translation from MLPs to MCSs in Definition 5.3.3, is also
true.

Let Mcs be a reducible multi-context system under Lasp and let Ml p be its trans-
lation to MLP by Definition 5.3.4.

For the (→) direction, one can start by assuming, towards a contradiction, that
there is a supported equilibrium Seq of Mcs s.t. Seq 6∈ AS(Ml p). Then, either Seq is not
a model of the reduct MSeq

l p or that Seq is not a minimal model.
By Definition 5.3.2 of supported equilibria, functions f1 ∈ SupS1 , . . . , fn ∈ SupSn

and a well-founded strict partial ordering < on X(S) exist s.t. if p ∈ Si and ( j : q) ∈
fi(p) then ( j : q)< (i : p). This means respectively that all atoms in Seq are supported
and that no support comes from self-supported loops. Now, by Definition 5.2.4, an
annotated model of Ml p is the least fixed point l f p(T A

P,In) which implicitly imposes an
ordering similar to the well-founded strict partial ordering < on X(S) imposed in Seq.
This contradicts our assumption that Seq is not a minimum model of Ml p. The direct
way in which the rules are translated by Definition 5.3.4, should lead by fixed-point
induction to Seq being a model of Ml p which would contradict our assumption that Seq

is not a model of Ml p.
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As for the converse direction (←), using Definition 5.3.3, the proof should be
straightforward by fixed-point induction.

5.4 Conclusions and Future Work

We lift the restriction that disallows composing modules with cyclic dependencies
in the framework of Modular Logic Programming Oikarinen & Janhunen (2008). We
present a model join operation that requires one to look at every model of two modules
being composed in order to check for minimality of models that are comparable on
account of their inputs. This operation is able to distinguish between atoms that are
self supported through positive loops and atoms with proper support, allowing one to
lift the condition disallowing positive dependencies between modules. However, this
approach is not local as it requires comparing every models and, as it is not general
because it is restricted to positive programs.

Because of this lack of generality of the former approach, we present an alternative
solution requiring the introduction of extra information in the models for one to be
able to detect dependencies. We use models annotated with the way they depend on
the atoms in their module’s input signature. We then define their semantics in terms
of a fixed point operator. After setting the way by which one deals with positive
loops by using annotations in models, the join operator needs to be redefined. The
original composition operators are applicable to annotated modules. This way, their
positive dependencies are added to their respective models. This approach turns out
to be local, in the sense that we need only look at two models being joined and unlike
the first alternative we presented, it is applicable to all programs. This is the most
important contribution of this chapter.

We also provide, as far as we know, the first formal definition of a connection
between MLP with reducible multi-context systems by combining the approaches of
Chapters 4 and 5 we obtain a fully compositional semantics for modular logic pro-
grams.

As we have seen before, Dao-Tran et al. (2009) provide an embedding of the
original composition operator of Oikarinen and Janhunen into their approach. Since
our constructions in Chapter 4 rely on a transformational approach using operator t
of Oikarinen and Janhunen, by composing both translations, an embedding into Dao-
Tran et al. (2009) is immediately obtained. It remains to be checked whether the
same translation can be used in the presence of positive cycles.
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Chapter 6

Modular P-Log: A Probabilistic
Extension to Modular Logic
Programming

In this chapter we propose and discuss an approach for modularising P-log programs
and corresponding compositional semantics based on conditional probability mea-
sures. We do so by resorting to Oikarinen and Janhunen’s definition of a logic pro-
gram module and extending it to P-log by introducing the notions of input random
attributes and output literals. For answering to P-log queries our method does not
imply calculating all the answer sets (possible worlds) of a given program, and pre-
vious calculations can be reused. Our framework also handles probabilistic evidence
by conditioning (observations).

6.1 Introduction and Motivation

The P-log language Baral et al. (2004) has emerged as one of the most flexible frame-
works for combining probabilistic reasoning with logical reasoning, in particular, by
distinguishing acting (doing) from observations and allowing non-trivial conditioning
forms Baral et al. (2004); Baral & Hunsaker (2007). It is a non-monotonic probabilis-
tic logic language supported by two major formalisms, namely Answer Set Program-
ming Gelfond & Lifschitz (1988, 1990); Lifschitz (2008a,b) for declarative knowl-
edge representation and Causal Bayesian Networks Pearl (2000) as its probabilistic
foundation. In particular, ordinary Bayesian Networks can be encoded in P-log. The
relationships of P-log to other alternative uncertainty knowledge representation lan-
guages like Kwiatkowska et al. (2001); Pfeffer & Koller (2000); Poole (1997) have
been studied in Baral et al. (2004). Unfortunately, the existing current implementa-
tions of P-log Anh et al. (2008); Gelfond et al. (2006) have exponential best case
complexity, since they enumerate all possible models, even though it is known that
for singly connected Bayesian Networks (polytrees) reasoning can be performed in
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polynomial time Pearl (1988).
The contributions of this chapter are the definition of compositional modules for

the P-log language, their corresponding compositional semantics as well as the def-
inition of their probabilistic interpretation. Our semantics relies on a translation to
the aforementioned logic program modules in Oikarinen & Janhunen (2008). With
this appropriate notion of P-log modules one can obtain possible worlds incremen-
tally, and this can be optimised for answering to probabilistic queries in polynomial
time for specific cases, using techniques inspired in the variable elimination algorithm
proposed in Zhang & Poole (1996).

The rest of this chapter is organised as follows. Section 6.2 briefly overviews P-
log syntax and semantics as well as recalls the essential modularity results for answer
set programming. Next, Section 6.3 is the core of this chapter defining modules for
P-log language as well as its translation into (G)MLP modules. The subsequent sec-
tion presents the module theorem and a discussion of the application of the result to
Bayesian Networks. We conclude with final remarks and foreseen work.

6.2 Preliminaries

In this section, we start by reviewing the syntax and semantics of the P-log lan-
guage Baral et al. (2004), and illustrate it with an example encoding a Bayesian
Network. The reader is assumed to have familiarity with (Causal) Bayesian Net-
works Pearl (2000). A good introduction to Bayesian Networks can be found in Rus-
sell & Norvig (2010).

6.2.1 P-log Programs

P-log is a declarative language Baral et al. (2004), based on a logic formalism for
probabilistic reasoning and action, that uses answer set programming (ASP) as its
logical foundation and Causal Bayesian Networks (CBNs) as its probabilistic founda-
tion. P-log is a complex language to present and the reader is referred to Baral et al.
(2004) for full details. We try to make its presentation self-contained for this chapter,
abbreviating or even neglecting the irrelevant parts, and following closely the way it
is presented in Baral et al. (2004).

6.2.1.1 P-log syntax.

A probabilistic logic program (P-log program) Π consists of

Definition 6.2.1 (Probabilistic Logic Program (P-log) Π)

(i) a sorted signature,

(ii) a declaration part,

(iii) a regular part,

(iv) a set of random selection rules,
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(v) a probabilistic information part, and

(vi) a set of observations and actions.

Notice that the first four parts correspond to the generation of actual answer sets, and
the last two define the probabilistic information.

The declaration part defines a sort c by explicitly listing its members with a
statement c = {x1, . . . ,xn}, or by defining a unary predicate c in a program with a
single answer set. An attribute a with n parameters is declared by a statement a :
c1× . . .× cn → c0 where each ci is a sort (0 ≤ i ≤ m); in the case of an attribute
with no parameter the syntax a : c0 may be used. By range(a) we denote the set of
elements of sort c0. The sorts can be understood as domain declarations for predicates
and attributes used in the program, for appropriate typing of argument variables.

The regular part of a P-log program consists in a set of Answer Set Programming
rules (without disjunction) constructed from the usual ASP literals plus attribute liter-
als of the form a(t) = t0 (including strongly negated literals), where t is a vector of n
terms and t0 is a term, respecting the corresponding sorts in the attribute declaration.
Given a sorted signature Σ we denote by Lit(Σ) the set of literals in Σ (i.e., Σ-literals)
excluding all unary atoms ci/1 used for specifying sorts.

Random selection rules define random attributes and possible values for them
through statements of the form:

[r] random(a(t) : {X : p(X)})← B.

expressing that if B holds then the value of a(t) is selected at random from the set {X :
p(X)}∩ range(a) by experiment r, unless this value is fixed by a deliberate action,
with r being a term uniquely identifying the rule. The concrete probability distribution
for random attributes is conveyed by the probabilistic information part containing pr-
atoms (probability atoms), of the form:

prr(a(t) = y|cB) = v

stating that if the value of a(t) is fixed by experiment r and B holds, then the prob-
ability that r causes a(t) to take value y is v, with v ∈ [0,1]. The condition B is a
conjunction of literals or the default negation (not) of literals.

Finally, observations and actions are statements of the form obs(l) and do(a(t) =
y), respectively, where l is an arbitrary literal of the signature.

Example 6.2.1 (Wet Grass) Suppose that there are two events which could cause
grass to be wet: either the sprinklers are on, or it is raining. Furthermore, suppose
that the rain has a direct effect on the use of the sprinklers (namely that when it rains,
the sprinklers are usually not turned on). Furthermore, cloudy sky affects whether the
sprinklers are on and obviously if it is raining or not. Finally, notice that, the grass
being wet or dry affects it being slippery or not.

This scenario can be modeled with a Bayesian network (shown in Figures 6.1
and 6.2). All random variables are Boolean and have no parameters; also notice
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how the conditional probability tables (CPTs) are encoded with pr-atoms as well as
causal dependencies among random attributes. The P-log semantics will take care
of completing the CPTs assuming a uniform distribution for the remaining attribute
values (e.g., cloudy = f alse will have probability 0.5). Rules can be used to extract
additional knowledge from the random variables (e.g., the “dangerous if slippery”
rule). In particular we will be able to query the program to determine the probability
P(dangerous|sprinkler = t).

Boolean = {t, f}.
cloudy : Boolean.
rain : Boolean.
sprinkler : Boolean.
wet : Boolean.
slippery : Boolean.

dangerous← slippery = t.

Cloudy

SprinklerRain

Wet

Slippery

[rc]random(cloudy,{X : Boolean(X)}).
[rr]random(rain,{X : Boolean(X)}).
[rsk]random(sprinkler,{X : Boolean(X)}).
[rw]random(wet,{X : Boolean(X)}).
[rsl]random(slippery,{X : Boolean(X)}).

Figure 6.1: Bayesian Network encoded in P-log

4

6.2.1.2 P-log semantics.

The semantics of a P-log program Π is given by a collection of the possible sets of
beliefs of a rational agent associated with Π, together with their probabilities. We refer
to these sets of beliefs as possible worlds of Π. Note that due to the restriction on the
signature of P-log programs the authors enforce (all sorts are finite), possible worlds
of Π are always finite. The semantics is defined in two stages. First we will define a
mapping of the logical part of Π into its Answer Set Programming counterpart, τ(Π).
The answer sets of τ(Π) will play the role of possible worlds of Π. The probabilistic
part of Π is used to define a measure over the possible worlds, and from these the
probabilities of formulas can be determined. The set of all possible worlds of Π will
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prrr(rain = t |c cloudy = f ) = 0.2.
prrr(rain = t |c cloudy = t) = 0.8.

prrsk(sprinkler = t |c cloudy = f ) = 0.5.
prrsk(sprinkler = t |c cloudy = t) = 0.1.

prrsl(slippery = t |c wet = f ) = 0.1.
prrsl(slippery = t |c wet = t) = 0.9.

prrw(wet = t |c sprinkler = f ,rain = f ) = 0.0.
prrw(wet = t |c sprinkler = f ,rain = t) = 0.9.
prrw(wet = t |c sprinkler = t,rain = f ) = 0.9.
prrw(wet = t |c sprinkler = t,rain = t) = 0.99.
obs(sprinkler = t).

Figure 6.2: Conditional Probability Tables for CBN in Figure 6.1

be denoted by Ω(Π).
The Answer Set Program τ(Π) is defined in the following way, where capital

letters are variables being grounded with values from the appropriate sort. To reduce
overhead we omit the sort predicates for variables in the program rules. It is also
assumed that any attribute literal a(t) = y is replaced consistently by the predicate
a(t,y) in the translated program τ(Π), constructed as follows:

τ1: For every sort c = {x1, . . . ,xn} of Π, τ(Π) contains facts c(x1), . . . ,c(xn). For any
remaining sorts defined by an ASP program T in Π, then T ⊆ τ(Π).

τ2: Regular part:

(a) For each rule r in the regular part of Π, τ(Π) contains the rule obtained by
replacing each occurrence of an atom a(t) = y in r by a(t,y).

(b) For each attribute term a(t), τ(Π) contains ¬a(t,Y1)← a(t,Y2), Y1 6= Y2
guaranteeing that in each answer set a(t) has at most one value.

τ3: Random selections:

(a) For an attribute a(t), we have the rule: intervene(a(t))← do(a(t,Y )). In-
tuitively, the value of a(t) is fixed by a deliberate action, i.e., a(t) will not
be considered random in possible worlds satisfying intervene(a(t)).

(b) Random selection [r] random(a(t) : {X : p(X)}) ← B is translated
into rule 1{ a(t,Z) : poss(r,a(t),Z) }1 ← B, not intervene(a(t)). and
poss(r,a(t),Z) ← c0(Z), p(Z),B, not intervene(a(t)). with range(a) =
c0.
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τ4: Each pr-atom prr(a(t) = y|c B) = v is translated into the following rule
pa(r,a(t,y),v)← poss(r,a(t),y),B of τ(Π) with pa/3 a reserved predicate.

τ5: τ(Π) contains actions and observations of Π.

τ6: For each Σ-literal l , τ(Π) contains the constraint← obs(l),not l.

τ7: For each atom a(t) = y, τ(Π) contains the rule a(t,y)← do(a(t,y)).

In the previous construction, the two last rules guarantee respectively that no pos-
sible world of the program fails to satisfy observation l, and that the atoms made true
by the action are indeed true. The introduction of reserved predicates poss/3 and
pa/3 is a novel contribution we make to the transformation, and has the purpose of
simplifying the presentation of the remaining details of the semantics.

P-log semantics assigns a probability measure for each world W , i.e., answer set,
of τ(Π) from the causal probability computed deterministically from instances of
predicates poss/3 and pa/3 true in the world. Briefly, if an atom pa(r,a(t,y),v)
belongs to W then the causal probability P(W,a(t) = y) is v, i.e., the assigned prob-
ability in the model. The possible values for a(t) are collected by poss(r,a(t,yk))
instances true in W , and P-log semantics assigns a (default) causal probability for
non-assigned values, by distributing uniformly the non-assigned probability among
these non-assigned values.

The details to make this formally precise are rather long Baral et al. (2004) but
for our purpose it is enough to understand that for each world W the causal probability
∑y∈range(a) P(W,a(t) = y) = 1.0, for each attribute term with at least a possible value.
These probability calculations can be encoded in ASP by means of aggregate rules
(#sum and #count), making use of only pa/3 and poss/3 predicates.

Example 6.2.2 Consider the P-log program of Example 6.2.1. This program has 16
possible worlds (notice that sprinkler = t is observed and thus fixed). One possible
world is W1 containing:

cloudy( f ) ¬cloudy(t)
rain( f ) ¬rain(t)
wet(t) ¬wet( f )
sprinkler(t) ¬sprinkler( f )
slippery(t) ¬slippery( f )

dangerous
obs(sprinkler(t))

Furthermore the following probability assignment atoms are true in that model:

poss(rc,cloudy, t) poss(rc,cloudy, f )
poss(rr,rain, t) poss(rr,rain, f ) pa(rr,rain(t),0.2)
poss(rsk,sprinkler, t) poss(rsk,sprinkler, f ) pa(rsk,sprinkler(t),0.5)
poss(rsl,slippery, t) poss(rsl,slippery, f ) pa(rsl,slippery(t),0.9)
poss(rw,wet, t) poss(rw,wet, f ) pa(rw,wet(t),0.9)
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which determines the following causal probabilities in the model

P(W1,cloudy = t) = 1.0−0.0
2 = 0.5 P(W1,cloudy = f ) = 1.0−0.0

2 = 0.5
P(W1,rain = t) = 0.2 P(W1,rain = f ) = 1.0−0.2

1 = 0.8
P(W1,sprinkler = t) = 0.5 P(W1,sprinkler = f ) = 1.0−0.5

1 = 0.5
P(W1,wet = t) = 0.9 P(W1,wet = f ) = 1.0−0.9

1 = 0.1
P(W1,slippery = t) = 0.9 P(W1,slippery = f ) = 1.0−0.9

1 = 0.1

4

The authors define next the measure µΠ induced by a P-log program Π:

Definition 6.2.2 (Measure) Let W be a possible world of a P-log program Π. The
unnormalised probability of W induced by Π is

µ̂Π(W ) = ∏
a(t,y)∈W

P(W,a(t) = y)

where the product is taken over atoms for which P(W,a(t) = y) is defined.
If Π is a P-log program having at least one possible world with nonzero unnor-

malised probability, then the measure, µΠ(W ), of a possible world W induced by Π is
the normalised probability of W divided by the sum of the unnormalised probabilities
of all possible worlds of Π, i.e.,

µΠ(W ) =
µ̂Π(W )

∑Wi∈Ω µ̂Π(Wi)
.

When the program Π is clear from the context we may simply write µ̂ and µ instead
of µ̂Π and µΠ respectively. N

Example 6.2.3 For world W1 of Example 6.2.2 we obtain that:

µ̂(W1) = P(W1,cloudy = f )×P(W1,rain = f )×P(W1,wet = t)×
P(W1,sprinkler = t)×P(W1,slippery = t) =

= 0.5×0.8×0.9×0.5×0.1 = 0.018

Since the sum of the unconditional probability measure of all the sixteen worlds of the
P-log program is 0.3, then we obtain that the normalised probability for this possible
world is µ(W1) = 0.06. 4

The truth and falsity of propositional formulas with respect to possible worlds are
defined in the standard way. A formula A, true in W, is denoted by W ` A.

Definition 6.2.3 (Probability) Suppose Π is a P-log program having at least one
possible world with nonzero unnormalised probability. The probability, PΠ(A), of a
formula A is the sum of the measures of the possible worlds of Π on which A is true,
i.e.:

PΠ(A) = ∑
W`A

µΠ(W ).

N
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Conditional probability in P-log is defined in the usual way by PΠ(A|B) = PΠ(A∧
B)/PΠ(B) whenever PΠ(B) 6= 0, where the set B stands for the conjunction of its
elements. Moreover, under certain consistency conditions on P-log programs Π, for-
mulas A, and a set of literals B such that PΠ(B) 6= 0, it is the case that PΠ(A|B) =
PΠ∪obs(B)(A). See the original work Baral et al. (2004) where the exact consistency
conditions are stated, which are assumed to hold subsequently.

Example 6.2.4 Continuing Example 6.2.3, consider now P(dangerous | sprinkler =
t, wet = t). Since dangerous← slippery = t we are interested only on models where
slippery = t. The four possible worlds and their respective probabilities are thus:

{sp(t),sl(t),d,w(t),r(t),c(t)} = 0.3564
{sp(t),sl(t),d,w(t),r(t),c( f )} = 0.3564
{sp(t),sl(t),d,w(t),r( f ),c(t)} = 0.0891
{sp(t),sl(t),d,w(t),r( f ),c( f )} = 0.0891

Considering the obvious abbreviations. 4

6.2.2 Related Work

The PRISM system Sato (1995) is a general programming language with learning
ability for statistical parameters embedded in programs which allows building com-
plex statistical models. The theoretical background of PRISM is distribution seman-
tics for parameterised logic programs and EM (Expectation-Maximisation) learning
of their parameters from observations (cf. Sato (1995); Sato & Kameya (2001)).

Being comprised of two subsystems, one for learning and the other for execution,
a program in the PRISM system is a logic program in which facts have a parametrised
probability distribution so that the program can be seen as a parameterised statistical
model. The program defines a probability distribution (probability measure) over
the set of possible Herbrand interpretations. In execution, probabilities or samples
of various probabilistic constructs in the program will be calculated according to the
defined distribution. In learning, the authors use ML (maximum likelihood) estima-
tion of the program parameters from incomplete data by the EM algorithm so that the
defined distribution is closer to the observed distribution. Because PRISM programs
can be arbitrarily complex, their model can be arbitrarily complex as well, which
means it is possible to build large yet understandable symbolic-statistical models that
go beyond traditional statistical models.

P-log and PRISM Sato (1995) share a substantial number of common features.
Both are declarative languages capable of representing and reasoning with logical and
probabilistic knowledge. In both cases, logical part of the language is rooted in logic
programming. There are also substantial differences. The PRISM system seems to be
primarily intended as “a powerful tool for building complex statistical models” with
emphasis of using these models for statistical learning. As a result PRISM allows in-
finite possible worlds, and has the ability of learning statistical parameters embedded
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in its inference mechanism. The goal of P-log designers was to develop a knowl-
edge representation language allowing natural, elaboration tolerant representation of
common sense knowledge involving logic and probabilities. Infinite possible worlds
and algorithms for statistical learning were not a priority. Instead the emphasis was
on greater logical power provided by Answer Set Prolog, on causal interpretation of
probability, and on the ability to perform and differentiate between various types of
updates.

We have so far discussed logic programming approaches that attempt to integrate
logical and probabilistic reasoning. Apart from these, Vos & Vermeir (2000) presented
a notion where the theory has two parts: (1) a logic programming part which is able
to express preferences and (2) a joint probability distribution. Probabilities are then
used in order to determine the priorities of the possible alternatives.

6.3 P-log Modules

In this section, we define the notion of P-log modules and their semantics by means of
a translation into logic program modules. Its probabilistic interpretation is provided by
conditional probability measures. In what follows, we assume that different modules
may have different sorted signatures Σ.

Definition 6.3.1 A P-log module P over Σ is a structure 〈Π,Rin,Rout〉 such that:

1. Π is a P-log program (possibly with observations and actions);

2. Rin is a set of ground attribute literals a(t) = y, of random attributes declared
in Π such that y ∈ range(a);

3. Rout is a set of ground Σ-literals, excluding attribute literals a(t) = y ∈ Rin;

4. Π does not contain rules for any attribute a(t) occurring in attribute literals of
Rin, i.e., no random selection rule for a(t), no regular rule with head a(t) = y
nor a pr-atom for a(t) = y.

N

The notion of P-log module is quite intuitive. First, the P-log program specifies the
possible models and corresponding probabilistic information as before. However, the
P-log module is parametric on a set of attribute terms Rin, which can be understood as
the module’s parent random variables. Rout specifies the random attributes which are
visible as well as other derived logical conclusions. The last condition ensures that
there is no interference between input and output random attributes.

The semantics of a P-log module is defined again in two stages. The possible
worlds of a P-log module are obtained from the Answer Sets of a corresponding logic
programming module. For simplifying definitions we assume that the isomorphism
of attribute literals a(t) = y with a(t,y) instances is implicitly applied when moving
from the P-log side to ASP side, and vice-versa.
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Definition 6.3.2 Consider a P-log module P = 〈Π,Rin,Rout〉 over signature Σ, and
let P(P) = 〈RP, IP,OP,HP〉 be the corresponding ASP module such that:

1. RP is τ(Π)∪ {← a(t,y1),a(t,y2) | a(t) = y1 and a(t) = y2 in Rin s.t. y1 6=
y2} ∪ {← not hasvalP(a(t))} ∪ {hasvalP(a(t))← a(t,y) | a(t) = y ∈ Rin},
where predicates defining sorts have been renamed apart;

2. The set of input atoms IP of P(P) is Rin.

3. The set of output atoms OP of P(P) is Rout union all instances of pa/3 and
poss/3 predicates of random attributes in Rout;

4. The set of hidden atoms HP of P(P) is formed by hasvalP/1 instances for
attribute literals in Rin, the Σ-literals not included in the output or input atoms
of P(P), with all sort predicates renamed apart.

The possible models of P are Ω(P) = {M∩ (Rin∪Rout) | M ∈ AS(P(P)) }. The
name hasvalP is local to P and it does not occur elsewhere. N

The necessity of having sort predicates renamed apart is essential to avoid name
clashes between different modules using the same sort attributes. Equivalently, the
program can be instantiated, and all sort predicates removed. The extra integrity con-
straints in RP discard models where a random attribute has not exactly one assigned
value. The set of input atoms in P is formed by the random attribute literals in Rin.
The set of output atoms includes all the instances of pa/3 and poss/3 in order to be
possible to determine the causal probabilities in each model. By convention, all the
remaining literals are hidden. A significant difference to the ordinary MLP modules
is that the set of possible models are projected with respect to the visible literals, dis-
carding hidden information in the models. The semantics of a P-log module is defined
by probabilistic conditional measures:

Definition 6.3.3 Consider a P-log module P = 〈Π,Rin,Rout〉 over signature Σ. Let
E be any subset of Rin∪Rout, and W be a possible world of P-log module P. If
E ⊆W then the conditional unnormalised probability of W given E induced by P is

µ̂P(W |E) = ∑
Mi∈AS(P(P)) s.t. Mi∩(Rin∪Rout)=W

∏
a(t,y)∈Mi

P(Mi,a(t) = y)

where the product is taken over atoms for which P(Mi,a(t) = y) is defined in Mi.
Otherwise, E 6⊆W and we set µ̂P(W |E) = 0.0.

If there is at least one possible world with nonzero unnormalised conditional prob-
ability, for a particular E, then the conditional probability measure µP(.|E) is deter-
mined, and µP(W |E) for a possible world W given E induced by P is:

µP(W |E) =
µ̂P(W |E)

∑Wi∈Ω(P) µ̂P(Wi|E)
=

µ̂P(W |E)
∑Wi∈Ω(P)∧E⊆Wi µ̂P(Wi|E)

.

When the P-log module P is clear from the context we may simply write µ̂(W |E)
and µ(W |E) instead of µ̂P(W |E) and µP(W |E) respectively. N
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An important remark regarding the above definition is that a possible world W
of the P-log module can correspond to several models (the answer sets Mi) of the
underlying answer set program, since hidden atoms have been projected out. This
way, we need to sum the associated unconditional measures of the ASP models which
originate (or contribute to) W . The attentive reader should have noticed that for any
world W the unconditional probability measure µ̂P(W |E) and any E ⊆W ∩ (Rin∪
Rout), is identical to µ̂P(W |W ∩ (Rin∪Rout)), and zero elsewhere. So, in practice
each world just requires one real value in order to obtain all conditional probability
measures.

Example 6.3.1 Construct P-log module Sprinkler from Example 6.2.1 whose input
atoms are {cloudy = t,cloudy = f} and output atoms are {sprinkler = t,sprinkler =
f}. The P-log program of Sprinkler (with the observation removed) is

Boolean = {t, f}.
cloudy : Boolean.
sprinkler : Boolean.
[rs]random(sprinkler,{X : Boolean(X)}).
prrs(sprinkler = t |c cloudy = f ) = 0.5.
prrs(sprinkler = t |c cloudy = t) = 0.1.

For which, the corresponding ASP program in module P(Sprinkler) is:

hasval(cloudy) ← cloudy(t).
hasval(cloudy) ← cloudy( f ).

← not hasval(cloudy).
← cloudy(t), cloudy( f ).

¬sprinkler(Y 1)← sprinkler(Y 2), Y 1! = Y 2, Boolean(Y 1), Boolean(Y 2).

1{sprinkler(Z) : poss(rsk,sprinkler,Z)}1← not intervene(sprinkler).
poss(rsk,sprinkler,Z)← Boolean(Z),not intervene(sprinkler).
intervene(sprinkler)← do(sprinkler(Y )),Boolean(Y ).

pa(rsk,sprinkler(t),0.1)← poss(rsk,sprinkler, t),cloudy(t).
pa(rsk,sprinkler(t),0.5)← poss(rsk,sprinkler, t),cloudy( f ).

← obs(sprinkler(t)),not sprinkler(t).
← obs(sprinkler( f )),not sprinkler( f ).

Module P(Sprinkler) has four answer sets all containing both poss(rsk,sprinkler, t)
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and poss(rsk,sprinkler, f ), and additionally:

M1 = {sprinkler(t), cloudy(t), pa(rsk,sprinkler(t),0.1)}
M2 = {sprinkler( f ), cloudy(t), pa(rsk,sprinkler(t),0.1)}
M3 = {sprinkler(t), cloudy( f ), pa(rsk,sprinkler(t),0.5)}
M4 = {sprinkler( f ), cloudy( f ), pa(rsk,sprinkler(t),0.5)}

The first two correspond to possible worlds W1 = {sprinkler(t), cloudy(t)} and
W2 = {sprinkler( f ), cloudy(t)} where cloudy= t. So, µ̂(W1|{cloudy(t)}) = 0.1 and
µ̂(W2|{cloudy(t)}) = 0.9 and µ̂(W3|{cloudy(t)}) = µ̂(W4|{cloudy(t)}) = 0.0. Since
the sum of the unconditional probability measures for all world totals 1.0, then the
normalised measure coincides with the unnormalised one for the particular evidence
{cloudy = t}. 4

Definition 6.3.4 (Conditional Probability) Suppose P is a P-log module and E ⊆
Rin∪Rout for which µΠ(.|E) is determined. The probability, PP(A|E), of a formula A
over literals in Rout, is the sum of the conditional probability measures of the possible
worlds of P on which A is true, i.e.,

PP(A|E) = ∑
W`A

µP(W |E).

N

The following theorem shows that P-log modules generalise appropriately the no-
tion of conditional probability of P-log programs.

Theorem 6.3.1 Let Π be P-log program Π. Consider the P-log module P =
〈Π,{},Lit(Σ)〉 then for any set B ⊆ Lit(Σ) such that PΠ(B) 6= 0 then PΠ(A|B) =
PP(A|B). ◦

Proof of Theorem 6.3.1. By definition we have PΠ(A|B) = PΠ(A∧B)/PΠ(B) when-
ever PΠ(B) 6= 0. Since the P-log module P transforms all literals in the signature into
output atoms, then the corresponding ASP module has no hidden and no input atoms.
Thus the answer sets of P(P) are exactly the possible worlds of P-log program RP.
Since there are no input atoms in the P-log module P then RP = τ(Π). Moreover,
since there are no hidden atoms, then the possible worlds of P are exactly the answer
sets of RP i.e., the possible models of Π.

Since possible worlds of the P-log module are in one-to-one correspondence with
the possible worlds of Π then µ̂P(W |B) = µ̂Π(W ), whenever B⊆W . But the worlds
W for which B⊆W are exactly the worlds where the conjunction of elements in B is
true. Thus,

µP(W |B) =
µ̂P(W |B)

∑Wi∈Ω(P)∧B⊆Wi µ̂P(Wi|B)
=

µ̂Π(W )

∑Wi`B µ̂Π(Wi)
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Therefore:

PP(A|B) = ∑
W`A

µP(W |B) =
∑W`A∧B µ̂Π(W )

∑Wi`B µ̂Π(Wi)
=

=

∑W`A∧B µ̂Π(W )
∑Wi µ̂Π(Wi)

∑Wi`B µ̂Π(Wi)

∑Wi µ̂Π(Wi)

=
PΠ(A∧B)

PΠ(B)

�

A P-log module corresponds to the notion of factor introduced by Zhang & Poole
(1996) in their variable elimination algorithm. The difference is that P-log modules
are defined declaratively by a logic program with associated probabilistic semantics,
instead of just matrixes of values for each possible combination of parameter vari-
ables.

6.4 P-log module theorem

This section provides a way of composing P-log modules and presents the corre-
sponding module theorem. The composition of a P-log module mimics syntactically
the composition of an answer set programming module, with similar pre-conditions:

Definition 6.4.1 (P-log module composition) Consider P-log modules P1 =
〈Π1,Rin1,Rout1〉 over signature Σ1, and P2 = 〈Π2,Rin2,Rout2〉 over signature
Σ2, such that:

1. Rout1∩Rout2 = /0

2. (Lit(Σ1)\ (Rin1∪Rout1))∩Lit(Σ2)=Lit(Σ1)∩ (Lit(Σ2)\ (Rin2∪Rout2))= /0

3. The sorts of Σ1 and Σ2 coincide and are defined equivalently in Π1 and Π2.

The composition of P1 with P2 is the P-log module P1⊕P2 = 〈Π1 ∪Π2,(Rin1 ∪
Rin2)\ (Rout1∪Rout2),(Rout1∪Rout2)〉 over signature Σ1∪Σ2.

The join P1 tP2 =P1⊕P2 is defined in this case whenever additionally there
are no dependencies (positive or negative) among modules. N

The first condition forbids the composition of modules having a common output
literal, while the second one forbids common hidden atoms (except possibly the sort
predicate instances). We lifted the first unnatural condition before but avoid here
joining modules having both negative and positive dependencies.

The compositionality result for P-log modules is more intricate since besides the
compositional construction of possible worlds, it is also necessary to ensure compo-
sitionality for the underlying conditional probability measures induced by the joined
module:
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Theorem 6.4.1 (P-log Module Theorem) Consider two P-log modules P1 and P2
such that their join P1tP2 is defined. Then, the possible worlds of their join is the
natural join of their possible worlds:

Ω(P1tP2) = Ω(P1) ./ Ω(P2)

Where:
Ω(P1) ./ Ω(P2) = {W1∪W2 |W1 ∈Ω(P1),W2 ∈Ω(P1)

and:
W1∩ (Rin2∪Rout2) =W2∩ (Rin1∪Rout1)}

Let now E = E1 ∪E2 where: E1 = E ∩ (Rin1 ∪Rout1) and E2 = E ∩ (Rin2 ∪Rout2)
Then:

µ̂P1tP2(W |E) = µ̂P1(W1|E1)× µ̂P2(W2|E2) with W =W1∪W2

such that:
W ∈Ω(P1tP2, W1 ∈Ω(P1) and W2 ∈Ω(P2)

◦

Proof of Theorem 6.4.1. Under the conditions of the theorem, the join of ASP
modules P(P1) and P(P2) is defined, and the answer sets of AS(P(P1)tP(P2)) =
AS(P(P1)) ./ AS(P(P2)). However the answer sets of RP1tP2 are the answer sets of
RP1 ∪RP2 because the only difference between the programs is possibly the integrity
constraints imposed to an input attribute literal in RP1 (or RP2) which might be absent
from RP1 ∪RP2 because the input attribute literal is an output literal in the other mod-
ule. However, if it is an output attribute literal there must exist a random selection rule
for it which imposes at least the constraint in the other program; so the claim holds.

Let M ∈ AS(P(P1)tP(P2)) then by the ASP module theorem we know that M =
M1∪M2 such that M1 ∈ AS(P(P1)) and M2 ∈ AS(P(P2)) such that M1 is compatible
with M2 (i.e., coincide in common atoms). If we eliminate hidden atoms of W we
obtain a possible world W of P(P1)tP(P2), i.e., W = M ∩ (Rin1 ∪Rout1 ∪Rin2 ∪
Rout2). Moreover, W1 = M1∩ (Rin1∪Rout1∪Rin2∪Rout2) = M1∩ (Rin1∪Rout1) is
a possible world of P1, and similarly W2 = M2∩ (Rin2∪Rout2) is a possible world of
P2, otherwise there would be a hidden literal in one module belonging to the literals
of the other module. Therefore:

W = M∩ (Rin1∪Rout1∪Rin2∪Rout2)
= (M1∪M2)∩ (Rin1∪Rout1∪Rin2∪Rout2)
= (M1∩ (Rin1∪Rout1∪Rin2∪Rout2)) ∪

(M2∩ (Rin1∪Rout1∪Rin2∪Rout2))
= (M1∩ (Rin1∪Rout1))∪ (M2∩ (Rin2∪Rout2)) =W1∪W2

By the conditions imposed to the join of P-log modules it is clear that no common
atom to M1 and M2 will be eliminated from M when projecting wrt to the visible
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literals of the join. Therefore W1 is compatible with W2 and W = W1 ∪W2 regarding
compositionality of unnormalised conditional probability measures. �

Notice that the P-log module theorem is defined only in terms of the unnormalised
conditional probability measures. The normalised ones can be obtained as in the pre-
vious case dividing by the sum of unconditional measure of all worlds given the evi-
dence. Again, we just have to consider one value for each world (i.e., when evidence
is maximal).

The application to Bayesian Networks is now straightforward. First, each random
variable in a Bayesian Network is captured by a P-log module having the correspond-
ing attribute literals of the random variable as output literals, and input literals are all
attribute literals obtainable from parent variables. The conditional probability tables
are represented by pr-atoms, as illustrated before in Example 6.2.1. P-log module
composition inherits associativity and commutativity from ASP modules, and thus P-
log modules can be joined in arbitrary ways since there are no common output atoms,
and there are no cyclic dependencies.

The important remark is that a P-log module is an extension of the notion of factor
used in the variable elimination algorithm Zhang & Poole (1996). We only need a way
to eliminate variables from a P-log module in order to simulate the behaviour of the
variable elimination algorithm, but this is almost trivial:

Definition 6.4.2 (Elimination Operation) Consider a P-log module P= 〈Π,Rin,Rout〉
over signature Σ, and a subset of attribute literals S ⊆ Rout. Then, P-log module
Elim(P,S) = 〈Π,Rin,Rout \ S〉 eliminates (hides) from P the attribute literals in S.
N

By hiding all attribute literals of a given random variable, we remove the random
attribute from the possible worlds (as expected), summing away corresponding orig-
inal possible worlds. By applying the composition of P-log modules and eliminate
operations by the order they are performed by the variable elimination algorithm, the
exact behavior of the variable elimination algorithm is attained.

Example 6.4.1 (Variable Elimination) Take the following joint probability distribu-
tion. A variable, v can be summed out between a set of instantiations where the set
V\v must agree over the remaining variables. The value of variable v becomes irrel-
evant if it is the variable to be summed out.

V1 V2 V3 V4 V5 Pr(.)
true true true f alse f alse 0.80
f alse true true f alse f alse 0.20

After eliminating V1, its reference is excluded and we are left with a distribution only
over the remaining variables and the sum of each instantiation.

V2 V3 V4 V5 Pr(.)
true true f alse f alse 1.0
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The resulting distribution which follows the sum-out operation only helps to an-
swer queries that do not mention V1. Also worthy to note, the summing-out operation
is commutative. 4

Thus, for the case of Bayesian Networks with a polytree structure where each
variable corresponds to a P-log module, and all the conditional probability tables are
encoded with explicit pr-atoms, reasoning can be performed in polynomial time on
the size of the modules by eliminating at each stage a singly connected variable. Rea-
soning will be exponential in the maximum number of parents of a variable, i.e. input
atoms, but since the full CPTs is encoded in the program the polynomial complexity
result follows.

6.5 Conclusions and Future Work

We present the first approach in the literature to modularise P-log programs and to
make their composition incrementally by combining compatible possible worlds and
multiplying corresponding unnormalised conditional probability measures. A P-log
module corresponds to a factor of the variable elimination algorithm Zhang & Poole
(1996); Poole & Zhang (2011), clarifying and improving the relationship of P-log with
traditional Bayesian Network approaches. By eliminating variables in P-log modules
we may reduce the space and time necessary to make inference in P-log, in contrast
with previous algorithms Anh et al. (2008); Gelfond et al. (2006) which require
always enumeration of the full possible worlds (which are exponential on the number
of random variables) and repeat calculations. As expected, it turns out that the general
case of exact inference is intractable, so we must consider methods for approximate
inference.

6.5.1 Future Work

We intend to fully describe the inference algorithm obtained from the compositional
semantics of P-log modules and relate it formally with the variable elimination algo-
rithm. Furthermore we expect that the notion of P-log module may also help to devise
approximate inference methods, e.g., by extending sampling algorithms, enlarging
the applicability of P-log which is currently somehow restricted. We hope to gen-
eralise the P-log language to consider other forms of uncertainty representation like
belief functions, possibility measures or even plausibility measures Fagin & Halpern
(1994).

The ways with which we deal with conflicts that arise with both positive and neg-
ative cycles, in the following Part III, can potentially allow us to avoid the restrictions
we impose on modular P-log programs, forcing them to capture Bayesian Networks
and thus have no cycles. This direction may lead us to a way of dealing with hid-
den Markov models (HMM) which are statistical Markov models in which the system
being modeled is assumed to be a Markov process with unobserved (hidden) states.
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HMMs can be considered as the simplest dynamic Bayesian networks and are es-
pecially known for their application in temporal pattern recognition such as speech,
handwriting, gesture recognition, part-of-speech tagging, musical score following,
partial discharges and bioinformatics.

Still as future work we can straightforwardly extend these results to probabilistic
reasoning with ASP by applying the new module theorem to the work we presented
in Chapters 4 and 5, as well as to DLP functions and general answer sets. An im-
plementation of the framework is also foreseen in order to assess the overhead when
compared with the original benchmarks in Oikarinen & Janhunen (2008).

In the near future we plan to use the PRISM ideas to expand the semantics of
P-log to allow infinite possible worlds. Our more distant plans include investigation
of possible adaptation of PRISM statistical learning algorithms to P-log.

103





Part III

Conflicts in Answer Set
Programming

105





7 Paracoherent Answer Set Programming 113

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1.1 Use case scenarios . . . . . . . . . . . . . . . . . . . . . . . 115

7.1.1.1 Model building . . . . . . . . . . . . . . . . . . . 115

7.1.1.2 Inconsistency-tolerant query answering . . . . . . . 116

7.2 Semi-Stable Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3 Semantic Characterisation . . . . . . . . . . . . . . . . . . . . . . . 119

7.4 An Alternative Paracoherent Semantics . . . . . . . . . . . . . . . . 127

7.5 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . 132

7.5.1 Problem a) . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.5.2 Problem b) . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.5.3 Problem c) . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.5.4 Semi-Equilibrium Models . . . . . . . . . . . . . . . . . . . 134

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.6.1 General Principles . . . . . . . . . . . . . . . . . . . . . . . 134

7.6.2 Related Semantics . . . . . . . . . . . . . . . . . . . . . . . 135

7.6.3 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.6.4 Rule Modularity of Semi-Equilibrium Semantics . . . . . . . 137

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8 Justifications for Answer Set Programs 141

8.1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . . 142

8.1.1 Debugging of Answer Set Programs . . . . . . . . . . . . . . 143

8.1.2 Provenance . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.2 Provenance Transformation for the Well-Founded Semantics . . . . . 151

8.2.1 Provenance for the Well-Founded Semantics . . . . . . . . . 152

8.3 Provenance Transformation for the Answer Set Semantics . . . . . . 156

8.4 Unifying Provenance with Debugging . . . . . . . . . . . . . . . . . 161

8.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 163



9 Application Scenario: Characterising Conflicts in Access Control Policies165

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

9.1.1 Hierarchies, Inheritance and Exceptions . . . . . . . . . . . . 166

9.1.2 Access Control Policies . . . . . . . . . . . . . . . . . . . . 167

9.1.3 TheMP model . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.2 Strong Equivalence of Logic Programs . . . . . . . . . . . . . . . . . 172

9.2.1 Relativised Notions of Strong and Uniform Equivalence . . . 173

9.3 Conflict types in Access Control and their Characterisation . . . . . . 173

9.3.1 Modality Conflict . . . . . . . . . . . . . . . . . . . . . . . . 173

9.3.2 Redundancy Conflict . . . . . . . . . . . . . . . . . . . . . . 174

9.3.3 Potential Conflict . . . . . . . . . . . . . . . . . . . . . . . . 175

9.4 Default Negation as a Cause of Conflicts . . . . . . . . . . . . . . . . 176

9.4.1 Characterising Conflicts in Terms of Default Theories . . . . 176

9.5 Conflict resolution methods . . . . . . . . . . . . . . . . . . . . . . . 179

9.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 180

108



Part Overview:

When combining LPs from different origins, conflicts may occur. There are, in gen-
eral, two ways to solve them which we study in this Part III:

(1) Syntactically: By applying changes to the program modules, providing justi-
fications and debugging models.

(2) Semantically: By using paraconsistent/paracoherent semantics.

The Barber Paradox

”The barber is a man in town who shaves all those, and only those, men
in town who do not shave themselves. Who shaves the barber?”

Example 6.5.1 Consider the following logic program capturing this paradox:

P =


shaves(barber,X) ← male(X),not shaves(X ,X).

shaved(X) ← shaves(Y,X).
unshaved(X) ← male(X),not shaved(X).

male(barber).


4

The program has no models due to incoherence and as we said before, this can be
dealt with in two different ways:

(1) Syntactically: By applying changes to the program either by removing rules
or by adding facts.

Example 6.5.2 Say that our intuitions asks for the barber to be Shaved. We can
simply add a module containing fact shaves(barber,barber) to our modular system, but
that goes against the statement that says that “the barber only shaves those who do
not shave themselves”. It is thus a fix, yes, but one which implies going against what
we wanted to represent in the first place i.e., AS(P∪{shaves(barber,barber)}) =

{{male(barber),shaves(barber,barber),shaved(barber)}}

4

Example 6.5.3 Say that our intuitions asks for the barber to be Unshaved. Removing
the first or second rules, or fact male(barber), from the program (thus obtaining
program P′) are the most intuitive actions.

AS(P′) = {{male(barber),unshaved(barber)}}

4

(2) Semantically: By using a paracoherent semantics to evaluate the original
program.



Example 6.5.4 Semi-Stable Model semantics does not propagate belief (in the
formed of K atoms) and provides a single model to this program:

{male(barber),Kshaves(barber,barber),unshaved(barber)}

In this case, Kshaves(barber,barber) does not provide support to shaved(barber)
and so, we can conclude that the barber is unshaved even though we believe that he
shaves himself. 4

Example 6.5.5 A better alternative is using a semantic that propagates belief. Our
Semi-Equilibrium Model semantics also provides one module:

{male(barber),Kshaves(barber,barber),Kshaved(barber)}

In this case, Kshaves(barber,barber) provides support to Kshaved(barber) and so,
we can conclude that we believe the barber is shaved because of our belief that he
shaves himself. 4

Outline We start by studying paracoherent semantics for ASP in Chapter 7.
These are semantics that ascribes models to (disjunctive) logic programs with non-
monotonic negation even if no answer set exists, due to a lack of stability in models
caused by cyclic dependency through negation, or due to constraints. Ideally, such
semantics approximates the answer set semantics faithfully and delivers models
whenever possible; this can be beneficially exploited in scenarios where unexpected
inconsistency arises and one needs to stay operational. Among few well-known
semantics which feature these properties are the semi-stable model semantics Sakama
& Inoue (1995a), and our novel semi-equilibrium model semantics, which amends
the semi-stable model semantics by eliminating some anomalies. For both se-
mantics, which are defined by program transformations, we present model-theoretic
characterisations.

In Chapter 8 we provide a transformation to compute why not provenance models
under the well-founded and the answer set semantics by computing the answer sets of
meta-programs that capture the original programs and include some necessary extra
atoms. We do this in a modular way, preserving compatibility with the previous work
of Viegas Damásio et al. (2013) and computing the models directly without first
obtaining provenance formulas for interpretations which enables computing prove-
nance answer sets in an easy way by using AS solvers. Having this, we then align
provenance and debugging answer sets in a unified transformation and show that the
provenance approach generalises the debugging one, since any error has a counterpart
provenance but not the other way around. Our mapping allows generating answer
sets capturing errors and justifications for (intended) models. As expected, they are
exponential.

Then, in Chapter 9, we identify different types of basic conflicts that occur in a
real-world scenario of access control programs and characterise them in terms of a



(relativised) notion of strong equivalence of logic programs Lifschitz et al. (2000);
Eiter et al. (2007). We will also identify conflicts that occur when we introduce
default negation and characterise them in terms of default logic. These characterisa-
tions potentially enable the detection of conflicts to be done automatically by using
automatic theorem provers. Overall, these characterisations are flexible enough to be
extended to several types of conflicts and can be used to detect which types of conflict
are generated, as well as trace them back to the sources. This can be done by linking
these characterisations with our unified justifications and debugging framework and
is left for future work.
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Chapter 7

Paracoherent Answer Set
Programming

The answer set semantics may assign a logic program no model, due to logical contra-
diction or unstable negation, which is caused by cyclic dependency of an atom from
its negation. While logical contradictions can be handled with traditional techniques
from paraconsistent reasoning, instability requires other methods. We consider resort-
ing to a paracoherent semantics, in which 3-valued interpretations are used where a
third truth value besides true and false expresses that an atom is believed true. This
is at the basis of the semi-stable model semantics, which was defined using a pro-
gram transformation. In this chapter, we give a model-theoretic characterisation of
semi-stable models, which makes the semantics more accessible. Motivated by some
anomalies of semi-stable model semantics with respect to basic epistemic proper-
ties, we propose an amendment that satisfies these properties. The latter has both a
transformational and a model-theoretic characterisation that reveals it as a relaxation
of equilibrium logic, the logical reconstruction of answer set semantics, and is thus
called the semi-equilibrium model semantics. A complexity analysis of major rea-
soning tasks shows that semi-equilibrium models are harder than answer sets (i.e.,
equilibrium models), due to a global minimisation step for keeping the gap between
true and believed true atoms as small as possible. Our results contribute to the logical
foundations of paracoherent answer set programming, which gains increasing impor-
tance in inconsistency management, and at the same time provide a basis for algorithm
development and integration into answer set solvers.

7.1 Introduction

Answer Set Programming (ASP) is a declarative programming paradigm with a
model-theoretic semantics, where problems are encoded using rules, and its models
encode solutions. However, due to non-monotonicity, programs may be incoherent,
i.e., lack an answer set due to cyclic dependencies of an atom from its default nega-
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tion. Nonetheless, there are many cases when this is not intended and one might want
to draw conclusions also from an incoherent program, e.g., for debugging purposes,
or in order to keep a system (partially) responsive in exceptional situations. This
is akin to the principle of paraconsistency, where non-trivial consequences shall be
derivable from an inconsistent theory. As so-called extended logic programs also
may be inconsistent in the classical sense, i.e., they may have the inconsistent answer
set as their unique answer set, we use the term paracoherent reasoning to distinguish
between paraconsistent reasoning and reasoning from incoherent programs.

Both types of reasoning from answer set programs have been studied in the course
of the development of the answer set semantics; for approaches on paraconsistent
ASP cf., e.g., Sakama & Inoue (1995a), Alcântara et al. (2005), Odintsov & Pearce
(2005)). Numerous semantics for logic programs with nonmonotonic negation can be
considered as a paracoherent semantics for ASP. Ideally, such a semantics satisfies the
following properties:

1. Every (consistent) answer set of a program corresponds to a model (answer set
coverage).

2. If a (consistent) answer set exists for a program, then all models correspond to
an answer set (congruence).

3. If a program has a classical model, then it has a model (classical coherence).

Widely-known semantics, such as 3-valued stable models Przymusinski (1991a), L-
stable models Eiter et al. (1997b), revised stable models Pereira & Pinto (2005),
regular models You & Yuan (1994), and pstable models Osorio et al. (2008), satisfy
only part of these requirements (see the Discussion section for further semantics and
more details). Semi-stable models Sakama & Inoue (1995a) however, satisfy all three
properties and thus are the prevailing paracoherent semantics.

Despite the model-theoretic nature of ASP, semi-stable models have been defined
by means of a program transformation, called epistemic transformation. A semantic
characterisation in the style of equilibrium models for answer sets Pearce & Valverde
(2008) is still missing. In this chapter, we address this problem and present the fol-
lowing main contributions.
– We characterise semi-stable models by pairs of 2-valued interpretations of the orig-
inal program, similar to so-called here-and-there (HT) models. In that, we point out
some anomalies of the semi-stable semantics with respect to basic rationality prop-
erties in modal logics (K and N), that essentially prohibit a 1-to-1 characterisation in
terms of HT-models.

– This leads us to propose an alternative paracoherent semantics, called semi-
equilibrium semantics, which satisfies the aforementioned properties and can be
characterised using HT-models. Moreover, semi-equilibrium models can be ob-
tained by selecting answer sets of an extension of the epistemic transformation
(applying the same criteria as for semi-stable models).
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Our results contribute to a more logical foundation of paracoherent answer set
programming, which gains increasing importance in inconsistency management.

7.1.1 Use case scenarios

Paracoherent semantics may be fruitfully employed in different use cases of ASP, such
as model building respectively scenario generation, but also traditional reasoning from
the models of a logical theory. The semi-stable model semantics is attractive as it

(1) brings in “unsupported” assumptions as being believed,
(2) remains close to answer sets in model building, but distinguishes atoms that

require such assumptions from atoms derivable without them, not creating justified
truth from positive beliefs, and

(3) keeps the closed world assumption1 (CWA)/LP spirit of minimal assumptions.
Let us now consider the following two scenarios.

7.1.1.1 Model building

In ASP, one of the principal reasoning tasks is model building, which means to com-
pute some, multiple or even all answer sets of a given program. Each answer set
encodes a possible world or solution to a problem that is represented by the program.

The standard answer set semantics may be regarded as appropriate when a knowl-
edge base, i.e., logic program, is properly specified adopting the CWA principle to
deal with incomplete information. It may then be perfectly ok that no answer set ex-
ists, as e.g. in the theoretical exercise of the barber paradox. However, sometimes the
absence of an answer set is unacceptable as a possible world is known to exist, and in
this case a relaxation of the answer set semantics is desired.

Example 7.1.1 Suppose we have a program that captures knowledge about friends of
a person regarding visits to a party, where go(X) informally means that X will go:

P =


go(John)← not go(Mark).
go(Peter)← go(John),not go(Bill).

go(Bill)← go(Peter).


It happens that P has no answer set. This is unacceptable as we know that there

is a model in reality, regardless of who will go to the party, and we need to cope with
this situation. Semi-stable semantics is a tool that allows us to gain an answer set,
by relaxing the CWA and adopting beliefs without further justifications. In particular,
the semi-stable models of this program are IK

1 = {Kgo(Mark)} and IK
2 = {go(John),

Kgo(John), Kgo(Bill)}. Informally, the key difference between IK
1 and IK

2 concerns
the beliefs on Mark and John. In IK

2 Mark does not go, and, consequently, John will
go (moreover, Bill is believed to go, and Peter will not go). In IK

1 , instead, we believe
Mark will go, thus John will not go (likewise Peter and Bill). Notably, and different

1If every rule with an atom a in the head has a false body, or its head contains a true atom distinct
from a with respect to an acceptable model, then a must be false in that model.
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from other related formalisms (cf. Section 7.6.2), positive beliefs do not create justified
truth: if we had a further rule fun← go(Mark) in P, then from just believing that Mark
will go we can not derive that fun is true; IK

1 would remain a semi-stable model. 4

As already mentioned, paracoherent semantics can serve as a starting point for
debugging and also repairing a program. Indeed, if all believed atoms were justified
true, then we would obtain an answer set of the program.2 Therefore, we might in-
vestigate reasons for the failure to derive these atoms justified, and possibly add new
rules or modify existing ones. However, fully dealing with this issue and linking it to
existing work on debugging and repair of answer set programs is beyond the scope of
this thesis; we will briefly address it in Section 7.6.2).

7.1.1.2 Inconsistency-tolerant query answering

Query answering over a knowledge base resorts usually to brave or, respectively, to
cautious inference from the answer sets of a knowledge base, where the query has to
hold in some, respectively in every, answer set; let us focus on the latter here. How-
ever, if incoherence of the knowledge base arises, then we lose all information and
query answers are trivial, since every query is vacuously false (respectively vacuously
true). This, however, may not be satisfactory and be problematic, especially if one can
not modify the knowledge base, which may be due to various reasons (no permission
for change, the designer/administrator of the knowledge base might be unavailable
etc). Paracoherent semantics can be exploited to overcome this problem and to render
query answering operational, without trivialisation. We illustrate this on an extension
to the barber paradox (but could equally well consider other scenarios).

Example 7.1.2 Consider a variant of the barber paradox, cf. Sakama & Inoue
(1995a):

P =


shaves(joe,X)← not shaves(X,X), man(X).
man(paul).
man( joe).


While this program has no answer set, the semi-stable model semantics gives us
the model {man(joe), shaves(joe,paul), man(paul), Kshaves(joe, joe)}, in which
shaves(joe, joe) is believed to be true (as expressed by the prefix ’K’); here the in-
coherent rule shaves(joe, joe)← not shaves(joe, joe),man(joe), which is an instance
of the rule in P for joe, is isolated from the rest of the program to avoid the absence
of models;3 this treatment allows us to derive, for instance, that shaves(joe,paul)
and man(paul) are true; furthermore, we can infer that shaves(joe, joe) can not be
false. Such a capability seems to be very attractive in query answering: to tolerate
inconsistency (that is, incoherence ) without a “knowledge exploision.” 4

2As we shall see, this actually holds for the amended semi-stable semantics.
3A similar intuition underlies the CWA inhibition rule in Pereira et al. (1992) that is used for con-

tradiction removal in logic programs.
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The well-founded semantics (WFS) van Gelder et al. (1991), which is the most
prominent approximation of the answer set semantics, has similar capabilities, but
takes intuitively a coarser view on the truth value of an atom, which can be either
true, false, or undefined; in semi-stable semantics, however, undefinedness has a bias
towards truth, expressed by “believed true” (or stronger, by “must be true”); in the
example above, under WFS shaves(joe, joe) would be undefined. Furthermore, un-
definedness is cautiously propagated, which may prevent one from drawing expected
conclusions.

Example 7.1.3 Consider the following extension of Russell’s paraphrase:

P =

{
shaves(joe, joe)← not shaves(joe, joe).
visits barber(joe)← not shaves(joe, joe).

}
.

Arguably one expects that visits barber(joe) is concluded false from this program:
to satisfy the first rule, shaves(joe, joe) can not be false, and thus the second rule can
not be applied; thus under CWA, visits barber(joe) should be false. However, under
well-founded semantics all atoms are undefined; in particular, the undefinedness of
shaves(joe, joe) is propagated to visits barber(joe) by the second rule.

The single semi-stable model of P from its epistemic transformation is {Kshaves(joe, joe)},
according to which shaves(joe, joe) is believed true while visits barber(joe) is false.

4

Furthermore, it is well-known that the well-founded semantics has problems with
reasoning by cases.

Example 7.1.4 From the program

P =


shaves(joe, joe)← not shaves(joe, joe);
angry(joe)← not happy(joe). happy(joe)← not angry(joe).
smokes(joe)← angry(joe); smokes(joe)← happy(joe).

 ,

which is still incoherent with respect to answer set semantics, we can not conclude
that smokes(joe) is true under WFS, while we can do so under semi-stable semantics
and its relatives. Moreover, under these semantics we can not derive that smokes(joe)
is true, which means that trivialisation is avoided. 4

7.2 Semi-Stable Models

Sakama & Inoue (1995a) introduced semi-stable models as an extension of paracon-
sistent answer set semantics (called PAS semantics, respectively p-stable models by
the authors) for extended disjunctive logic programs. Their aim was to provide a
framework which is paraconsistent for incoherence, i.e., in situations where stability
fails due to cyclic dependencies of a literal from its default negation.

Since we are primarily interested in paracoherence, in the following summary and
study of semi-stable semantics, we disregard aspects devoted to paraconsistency, more
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specifically, we exclude strong negation. Note also that Sakama & Inoue (1995a) al-
lowed for programs with variables, while we focus on the propositional case. These
restrictions help to put their technique to handle incoherence in perspective. More-
over, our results easily carry over to the original setting considering PAS semantics
and allowing for non-ground programs. This will be considered in more detail in the
Discussion section below.

We consider an extended propositional language ΣK = Σ∪{Ka | a ∈ Σ}. Intu-
itively, Ka can be read as a is believed to hold. Semantically, we resort to subsets
of ΣK as interpretations IK and the truth values false ⊥4, believed true bt, and true
t, where ⊥ � bt � t. The truth value assigned by IK to a propositional variable a is
defined by

IK(a) = t if a ∈ IK ,

bt if Ka ∈ IK and a 6∈ IK ,

⊥ otherwise.
The semi-stable models of a program P are defined via its epistemic transforma-

tion PK .

Definition 7.2.1 (PK Sakama & Inoue (1995a)) Let P be a disjunctive program.
Then its epistemic transformation is defined as the positive disjunctive program
PK obtained from P by replacing each rule r of the form (2.2) in P, such that
Body−(r) 6= /0, with:

λr,1∨ . . .∨λr,l ∨Kbm+1∨ . . .∨Kbn ← b1, . . . ,bm, (7.1)

ai ← λr,i, (7.2)

← λr,i,b j, (7.3)

λr,i ← ai,λr,k, (7.4)

for 1≤ i≤ l, m+1≤ j ≤ n, and 1≤ k ≤ l

N

Intuitively, the atom Kc j means that c j must be believed to be true, and λr,i means
that in the rule r, some atom ai in the head must be true. With this meaning, the
rule (2.2) is naturally translated into the rule (7.1): if all atoms in Body(r) are true,
then either some atom in Head(r) is true, and thus some λr,i is true, or some atom ci in
Body−(r) must be believed to be true (then not ci is false). The rule (7.2) propagates
the value of λr,i to ai, which then is visible also in other rules. The other rules restrict
the choice of λri for making the head of r true: if c j is true, the rule r is inapplicable
and no atom in Head(r) has to be true (7.3). Furthermore, if the atom ai in the head
is true (via some other rule of P or by (7.2)), then whenever some atom ak in Head(r)
must be true, then also ai must be true (7.4); the minimality of answer set semantics
effects that only ai must be true.

4In Sakama & Inoue (1995a) ⊥ is called ‘undefined’, as it should be if strong negation is considered
as well.
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Note that for any program P, its epistemic transformation PK is positive. Models
of PK are defined in terms of a fixed point operator in Sakama & Inoue (1995a),
with the property that for positive programs, according to Theorem 2.9, minimal fixed
points coincide with minimal models of the program. Therefore, for any program P,
minimal fixed points of PK coincide with answer sets of PK .

Semi-stable models are then defined as maximal canonical interpretations among
the minimal fixed points (answer sets) of PK as follows:

Definition 7.2.2 (Maximal Canonical) Given an interpretation IK over Σ′ ⊇ ΣK , let
gapIK = {Ka | Ka ∈ IK and a 6∈ IK}. Given a set S of interpretations over Σ′, an
interpretation IK ∈ S is maximal canonical in S iff there is no interpretation JK ∈ S
such that gapIK ⊃ gapJK . N

Let mc(S) denote maximal canonical interpretations in S and let SST (P) be the
semi-stable models of a program P, then we can equivalently paraphrase the definition
of semi-stable models in Sakama & Inoue (1995a) as follows.

Definition 7.2.3 Let P be a program over Σ. Then, SST (P) = {IK ∩ ΣK | IK ∈
mc(AS(PK))}. N

Example 7.2.1 Reconsider P = {a← not a}, where a stands for shaves( joe, joe).
Then PK = {λ1∨Ka← . a← λ1. ← a,λ1. λ1← a,λ1}, which has the single answer
M = {Ka}; hence, {Ka} is the single semi-stable model of P. 4

Example 7.2.2 Consider the simple stratified program P= {b← not a}. Its epistemic
transformation is PK = {λ1∨Ka← . b← λ1. ← a,λ1. λ1← b,λ1.}, which has the
answers sets M1 = {Ka} and M2 = {λ1,b}; as gap(M1) = {a} and gap(M2) = /0,
among them M2 is maximal canonical, and hence M2∩ΣK = {b} is the single semi-
stable model of P. This is in fact also the unique answer set of P. 4

For a study of the semi-stable model semantics, we refer to Sakama & Inoue
(1995b); notably,

Proposition 3 ( Sakama & Inoue (1995b)) The SST -models semantics, given by
SST (P) for arbitrary programs P, satisfies properties (D1)-(D3). ◦

7.3 Semantic Characterisation

As opposed to its transformational definition, in this work we aim at a model-theoretic
characterisation of semi-stable models in the line of model-theoretic characterisations
of the answer set semantics by means of HT.

Example 7.3.1 Let P = {a← not a}. The program is incoherent, with {Ka} as its
unique semi-stable model. Its HT-models are ( /0,{a}) and ({a},{a}). One might aim
characterising the semi-stable model by ( /0,{a}). 4
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However, resorting to HT-interpretations will not uniquely characterise semi-
stable models as illustrated next.

Example 7.3.2 Consider now the following program

P = {a. b. c. d← not a,not b. d← not b,not c.}.
It is coherent, with a single answer set {a,b,c}, while its semi-stable models are:

SST (P) = {{a,b,c,Kb},{a,b,c,Ka,Kc}}

Note that neither ({a,b,c},{b}) nor ({a,b,c},{a,c}) is a HT-interpretation. 4

Hence, for a 1-to-1 characterisation we have to resort to different structures. Stick-
ing to the requirement that, given a program P over Σ, pairs of two-valued interpre-
tations over Σ should serve as the underlying semantic structures, we say that a bi-
interpetation of a program P over Σ is any pair (I,J) of interpretations over Σ, and
define:

Definition 7.3.1 Let φ be a formula over Σ, and let (I,J) be a bi-interpretation over
Σ. Then, (I,J) is a bi-model of φ , denoted (I,J) |=β φ iff

1. (I,J) |=β a if a ∈ I, for any atom a,

2. (I,J) 6|=β ⊥,

3. (I,J) |=β ¬φ if J 6|= φ ,

4. (I,J) |=β φ ∧ψ if (I,J) |=β φ and (I,J) |=β ψ ,

5. (I,J) |=β φ ∨ψ if (I,J) |=β φ or (I,J) |=β ψ ,

6. (I,J) |=β φ → ψ if:

(i) (I,J) 6|=β φ , or

(ii) (I,J) |=β ψ and I |= φ .

Moreover, (I,J) is a bi-model of a program P, iff (I,J) |=β φ , for all φ of the form
(2.5) corresponding to a rule r ∈ P. N

Note that the only difference in the recursive definition of bi-models and HT-
models is in item 6, i.e., the case of implication. While HT-models require that the
material implication φ → ψ holds in the there-world, bi-models miss such a connec-
tion between φ and ψ . This makes it possible that a bi-interpretation (I,J) such that
I ⊆ J is a bi-model but not an HT-model of an implication (2.5); a simple example is
given by ({},{a}) and a→ b. On the other hand, each HT-model of an implication
(2.5) is also a bi-model of it.

In case of programs, its bi-models can alternatively be characterised by the fol-
lowing condition on its rules.
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Proposition 4 Let r be a rule over Σ, and let (I,J) be a bi-interpretation over Σ.
Then, (I,J) |=β r if and only if:

(a) Body+(r)⊆ I and J∩Body−(r) = /0 implies:

I∩Head(r) 6= /0 and I∩Body−(r) = /0

◦

Proof of Proposition 4. Let r be a rule over Σ, and let (I,J) be a bi-interpretation
over Σ.

(⇐) Suppose that (I,J) satisfies (a), i.e., Body+(r) ⊆ I and J ∩Body−(r) = /0
implies I∩Head(r) 6= /0 and I∩Body−(r) = /0. We prove that (I,J) |=β r, considering
three cases:

Case 1: Assume that Body+(r) 6⊆ I. Then (I,J) 6|=β a, for some atom a ∈ Body+(r),
and thus (I,J) 6|=β Body(r) which implies (I,J) |=β r.

Case 2: Assume that J ∩ Body−(r) 6= /0, Then (I,J) 6|=β ¬a, for some atom
a ∈ Body−(r), and thus (I,J) 6|=β Body(r) which implies (I,J) |=β r.

Case 3: Assume that Body+(r)⊆ I and J∩Body−(r) = /0. Then, since (I,J) satisfies
(a), it also holds that I∩Head(r) 6= /0 and I∩Body−(r)= /0. From Body+(r)⊆ I
and I∩Body−(r) = /0, we conclude that I |= Body(r). Moreover, I∩Head(r) 6=
/0 implies (I,J) |=β Head(r). Thus, (I,J) |=β r.

By our assumption, one of these three cases applies for (I,J), proving the claim.
(⇒) Suppose that (I,J) |=β r. We prove that (I,J) satisfies (a), distinguishing two

cases:

Case 1: Assume that (I,J) 6|=β Body(r). Then either (I,J) 6|=β a, for some atom a ∈
Body+(r), or (I,J) 6|=β ¬a, for some atom a ∈ Body−(r). Hence, Body+(r) 6⊆ I
or J∩Body−(r) 6= /0, which implies that (I,J) satisfies (a).

Case 2: Assume that (I,J) |=β Head(r) and I |= Body(r). Then I∩Head(r) 6= /0 and
I∩Body−(r) = /0, and thus (I,J) satisfies (a).

By our assumption, one of the two cases applies for (I,J), which proves the claim. �
To every bi-model of a program P, we associate a corresponding interpretation

(I,J)K over ΣK by (I,J)K = I ∪{Ka | a ∈ J}. Conversely, given an interpretation IK

over ΣK its associated bi-interpretation β (IK) is given by (IK ∩Σ,{a | Ka ∈ IK}).
In order to relate these constructions to models of the epistemic transformation,

which builds on additional atoms of the form λr,i, we construct an interpretation
(I,J)K,P of PK from a given bi-interpretation (I,J) of P as:

(I,J)K,P = (I,J)K ∪
{

λr,i | r ∈ P,Body−(r) 6= /0,ai ∈ I,
I |= Body(r),J |= Body(r)\Body+(r)

}
,

where r is of the form (2.2).
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Proposition 5 Let P be a program over Σ. Then,

(1) if (I,J) is a bi-model of P, then (I,J)K,P |= PK;

(2) if M |= PK then β (M∩ΣK) is a bi-model of P.

◦

Proof of Proposition 5. Let P be a program over Σ.
Part (1). First, let (I,J) be a bi-model of P. We prove that (I,J)K,P |= PK .
Towards a contradiction assume the contrary. Then there exists a rule r′ in PK ,

such that (I,J)K,P 6|= r′. Suppose that r′ is not transformed, i.e., r′ ∈P and Body−(r′)=
/0. Since (I,J) |=β r′, by Proposition 4 we conclude that Body+(r′) ⊆ I implies I ∩
Head(r′) 6= /0 (recall that Body−(r′) = /0). By construction (I,J)K,P restricted to Σ

coincides with I. Therefore, Body+(r′) ⊆ (I,J)K,P implies (I,J)K,P ∩Head(r′) 6= /0,
i.e., (I,J)K,P |= r′, a contradiction.

Next, suppose that r′ is obtained by the epistemic transformation of a correspond-
ing rule r ∈ P of the form (2.2), and consider the following cases:

– r′ is of the form (7.1): then {b1, . . . ,bm} ⊆ (I,J)K,P, which implies Body+(r) ⊆ I.
Moreover, Head(r′) ∩ (I,J)K,P = /0 by the assumption that (I,J)K,P 6|= r′. By
construction of (I,J)K,P, this implies J ∩ Body−(r) = /0. Since (I,J) |=β r, we
also conclude that I ∩ Head(r) 6= /0 and that I ∩ Body−(r) = /0. Consequently,
J |= Body(r)\Body+(r), ai ∈ I for some ai ∈ Head(r), and I |= Body(r). Note
also, that Body−(r) 6= /0 by definition of the epistemic transformation. According
to the construction of (I,J)K,P, it follows that λr,i ∈ (I,J)K,P, a contradiction to
Head(r′)∩ (I,J)K,P= /0.

– r′ is of the form (7.2): in this case, (I,J)K,P 6|= r′ implies λr,i ∈ (I,J)K,P and ai 6∈
(I,J)K,P. However, by construction λr,i∈(I,J)K,P implies ai∈ I; from the latter, again
by construction, we conclude ai ∈ (I,J)K,P, a contradiction.

– r′ is of the form (7.3): in this case, (I,J)K,P 6|= r′ implies λr,i∈(I,J)K,P and
b j∈(I,J)K,P. Note that b j∈(I,J)K,P iff b j∈ I. A consequence of the latter is that
I 6|= Body(r), contradicting a requirement for λr,i ∈ (I,J)K,P (cf. the construction of
(I,J)K,P).

– r′ is of the form (7.4): by the assumption that (I,J)K,P 6|= r′, it holds that λr,k ∈
(I,J)K,P and ai ∈ (I,J)K,P, but λr,i 6∈ (I,J)K,P. From the latter we conclude, by the
construction of (I,J)K,P, that ai 6∈ I, since all other requirements for the inclusion of
λr,i (i.e., r ∈ P, Body−(r) 6= /0, I |= Body(r), and J |= Body−(r)) must be satisfied as
witnessed by λr,k ∈ (I,J)K,P. However, if ai 6∈ I, then ai 6∈ (I,J)K,P (again by construc-
tion), contradiction.

This concludes the proof of the fact that if (I,J) is a bi-model of P, then (I,J)K,P |=
PK .
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Part (2). Let M be a model of PK . We prove that β (M∩ΣK) = (I,J) is a bi-
model of P. Note that by construction I = M ∩Σ and J = {a | Ka ∈ M}. First, we
consider any rule r in P such that Body−(r) = /0. Then r ∈ PK , J∩Body−(r) = /0 and
I∩Body−(r) = /0. Hence, by Proposition 4, we need to show that Body+(r)⊆ (M∩Σ)
implies (M∩Σ)∩Head(r) 6= /0. Since r ∈ PK , this follows from the assumption, i.e.,
M |= PK implies M |= r, and therefore if Body+(r)⊆M, then M∩Head(r) 6= /0. Since
r is over Σ, this proves the claim for all r ∈ P such that Body−(r) = /0.

It remains to show that (I,J) |=β r for all r ∈ P such that Body−(r) 6= /0. Towards
a contradiction assume that this is not the case, i.e., (i) Body+(r)⊆ (M∩Σ), (ii) J∩
Body−(r) = /0, and either (iii) (M∩Σ)∩Head(r) = /0 or (iv) (M∩Σ)∩Body−(r) 6= /0
hold for some r ∈ P of the form (2.2), such that Body−(r) 6= /0. Conditions (i) and (ii),
together with M |= PK , imply that λr,i is in M, for some 1 ≤ i ≤ l (cf. the rule of the
form (7.1) in the epistemic transformation of r). Consequently, ai is in M (cf. the
corresponding rule of the form (7.2) in the epistemic transformation of r), and hence
ai ∈ (M∩Σ). This rules out (iii), so (iv) must hold, i.e., b j ∈ (M∩Σ), for some m+1≤
j ≤ n. But then, M satisfies the body of a constraint in PK (cf. the corresponding
rule of the form (7.3) in the epistemic transformation of r), contradicting M |= PK .
This proves that there exists no r ∈ P such that Body−(r) 6= /0 and (I,J) 6|=β r, and
thus concludes our proof of (I,J) |=β r. Since r ∈ P was arbitrary, it follows that
β (M∩ΣK) is a bi-model of P. �

Based on bi-models, a 1-1 characterisation of semi-stable models succeeds im-
posing suitable minimality criteria.

Theorem 7.3.1 Let P be a program over Σ. Then,

(1) if (I,J) is a bi-model of P such that

(i) (I′,J) 6|=β P, for all I′ ⊂ I,

(ii) (I,J′) 6|=β P, for all J′ ⊂ J, and

(iii) there is no bi-model (I′,J′) of P that satisfies (i) and J′ \ I′ ⊂ J \ I,

then (I,J)K ∈ SST (P);

(2) if IK ∈ SST (P), then β (IK) is a bi-model of P that satisfies (i)-(iii).

◦

Proof of Theorem 7.3.1. Let P be a program over Σ. The proof uses the following
lemmas.

Lemma 8 If M ∈ AS(PK), then β (M∩ΣK) satisfies (i). ◦
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Proof of Lemma 8. Towards a contradiction assume that M ∈ AS(PK) and
β (M∩ΣK) = (I,J) does not satisfy (i). Then, there exists a bi-model (I′,J) of P,
such that I′ ⊂ I. By Proposition 5, (I′,J)K,P |= PK . Note that (I′,J)K ⊂ (M ∩ΣK).
Let S′ = {λr,i | λr,i ∈ (I′,J)K,P} and let S = {λr,i | λr,i ∈ M}. We show that S′ ⊆ S.
Suppose that this is not the case and assume that λr,i ∈ S′ and λr,i 6∈ S, for some
r ∈ P of the form (2.2) and 1 ≤ i ≤ l. By the construction of (I′,J)K,P, we con-
clude that ai ∈ I′, I′ |= Body(r), and J |= Body−(r). Since I′ ⊂ I, it also holds that
ai ∈ I and that I |= Body+(r). Consider the rule of the form (7.1) of the epistemic
transformation of r. We conclude that {b1, . . . ,bm} ⊆ M (due to I |= Body+(r)),
and that M 6|= Kbm+1 ∨ . . .∨Kbn (due to J |= Body−(r)). But M |= PK , hence λr,k
is in M, for some 1 ≤ k ≤ l. However, considering the corresponding rule of the
form (7.4) of the epistemic transformation of r, we also conclude that λr,i ∈ M, a
contradiction. Therefore S′ ⊆ S holds, and since (I′,J)K ⊂ (M ∩ΣK), we conclude
that (I′,J)K,P ⊂M. The latter contradicts the assumption that M is an answer set, i.e.,
a minimal model, of PK . This concludes the proof of the lemma. �

Next, we prove:

Lemma 9 If (I,J) is a bi-model of P that satisfies (i) and (ii), then there exists some
M ∈ AS(PK), such that β (M∩ΣK) = (I,J). ◦

Proof of Lemma 9. Let (I,J) be a bi-model of P that satisfies (i) and (ii). If
(I,J)K,P ∈ AS(PK), then (c) holds since β ((I,J)K,P∩ΣK) = (I,J). If (I,J)K,P 6∈
AS(PK), then there exists a minimal model, i.e., an answer set, M′ of PK , such that
M′ ⊂ (I,J)K,P. Let (I′,J′) = β (M′∩ΣK). Then I′ ⊆ I and J′ ⊆ J holds by construction
and the fact that M′ ⊂ (I,J)K,P. Towards a contradiction, assume that I′ ⊂ I. We show
that then (I′,J) is a bi-model of P. Suppose that (I′,J) is not a bi-model of P. Then, by
Proposition 4, there exists r∈P, such that Body+(r)⊆ I′, J∩Body−(r)= /0, and either
I′∩Head(r) = /0 or I′∩Body−(r) 6= /0. Note that Body+(r)⊆ I′ implies Body+(r)⊆ I,
and since (I,J) is a bi-model of P, we conclude I∩Head(r) 6= /0 and I∩Body−(r) = /0.
The latter implies I′∩Body−(r) = /0, hence I′∩Head(r) = /0 holds. If Body−(r) = /0,
then r is in PK and M′ 6|= r, contradiction. Thus, Body−(r) 6= /0. However, in this case
the epistemic transformation of r is in PK . Since J∩Body−(r) = /0 and J′ ⊆ J together
imply J′∩Body−(r) = /0, we conclude that for the rule of the form (7.1) of the epis-
temic transformation of r, it holds that {b1, . . . ,bm} ⊆M′ (due to Body+(r)⊆ I′), and
that M′ 6|= Kbm+1∨ . . .∨Kbn (due to J′∩Body−(r) = /0). Moreover M′ |= PK , hence
λr,i is in M′, for some 1≤ i≤ l. Considering the corresponding rule of the form (7.2)
of the epistemic transformation of r, we also conclude that ai ∈M′, a contradiction to
I′∩Head(r) = /0. This proves that (I′,J) is a bi-model of P, and thus contradicts the
assumption that (I,J) satisfies (i). Consequently, I′ = I. Now if J′ ⊂ J, then we obtain
a contradiction with the assumption that (I,J) satisfies (ii). Therefore also J′ = J,
which concludes the proof of the Lemma. �

The proof of the theorem is then as follows.

124



Part (1). Let (I,J) be a bi-model of P that satisfies (i)-(iii). We prove that
(I,J)K ∈ SST (P). By Lemma 9, we conclude that there exists some M ∈ AS(PK)
such that β (M∩ΣK) = (I,J). It remains to show that M is maximal canonical.
Towards a contradiction assume the contrary. Then, there exists M′ ∈ AS(PK) such
that gapM′ ⊂ gapM. Let (I′,J′) = β (M′∩ΣK). By Lemma 8, (I′,J′) satisfies (i),
and by construction since gapM′ ⊂ gapM, it holds that J′ \ I′ ⊂ J \ I. However,
this contradicts the assumption that (I,J) satisfies (iii). Therefore, M is maximal
canonical, and hence (I,J)K ∈ SST (P).

Part (2). Let IK ∈ SST (P). We show that β (IK) is a bi-model of P that satis-
fies (i)-(iii). Let (I,J) = β (IK) and let M be a maximal canonical answer set of PK

corresponding to IK . Then, β (M∩ΣK) = (I,J) by construction, and (I,J) satisfies (i)
by Lemma 8.

Towards a contradiction first assume that (I,J) does not satisfy (iii). Then there
exists a bi-model (I′,J′) of P such that (I′,J′) satisfies (i) and J′ \ I′ ⊂ J \ I. Let
M′ = (I′,J′)K,P and note that if M′ ∈ AS(PK), we arrive at a contradiction to M ∈
mc(AS(PK)), since gapM′ ⊂ gapM. Thus, there exists M′′ ∈ AS(PK), such that
M′′ ⊂M′. Let (I′′,J′′) = β (M′′∩ΣK). We show that (I′′,J′) is a bi-model of P, and
thus by (i) it follows that I′′ = I′.

Towards a contradiction, suppose that (I′′,J′) is not a bi-model of P. Then, by
Proposition 4, there exists r ∈ P, such that Body+(r) ⊆ I′′, J′ ∩Body−(r) = /0, and
either I′′ ∩Head(r) = /0 or I′′ ∩ Body−(r) 6= /0. Note that Body+(r) ⊆ I′′ implies
Body+(r) ⊆ I′, and since (I′,J′) is a bi-model of P, we conclude I′ ∩Head(r) 6= /0
and I′∩Body−(r) = /0. The latter implies I′′∩Body−(r) = /0, hence I′′∩Head(r) = /0
holds. If Body−(r) = /0, then r is in PK and M′′ 6|= r, contradiction. Thus, Body−(r) 6=
/0. However, in this case the epistemic transformation of r is in PK . Since J′ ∩
Body−(r) = /0 and J′′ ⊆ J′ together imply J′′∩Body−(r) = /0, we conclude that for the
rule of the form (3) of the epistemic transformation of r, it holds that {b1, . . . ,bm} ⊆
M′′ (due to Body+(r)⊆ I′′), and that M′′ 6|=Kbm+1∨ . . .∨Kbn (due to J′′∩Body−(r) =
/0). Moreover M′′ |= PK , hence λr,i is in M′′, for some 1≤ i≤ l. Considering the cor-
responding rule of the form (4) of the epistemic transformation of r, we also conclude
that ai ∈M′′, a contradiction to I′′∩Head(r) = /0.

This proves that (I′′,J′) is a bi-model of P. From the assumption that (I′,J′)
satisfies (i), it follows that I′′ = I′. Therefore gapM′′ ⊆ gapM′ holds, which implies
gapM′′ ⊂ gapM, a contradiction to M ∈mc(AS(PK)). This proves (I,J) satisfies (iii).

Next assume that (I,J) does not satisfy (ii). Then, there exists a bi-model (I,J′)
of P, such that J′ ⊂ J. We show that (I,J′) satisfies (i). Otherwise, there exists a bi-
model (I′,J′) of P, such that I′ ⊂ I; but then also (I′,J) is a bi-model of P. To see the
latter, assume that there exists a rule r ∈ P, such that Body(r)⊆ I′, J∩Body−(r) = /0
and either I′ ∩Head(r) = /0 or I′ ∩Body−(r) 6= /0. Since J′ ⊂ J, it then also holds
that J′ ∩ Body−(r) = /0. This contradicts the assumption that (I′,J′) is a bi-model
of P, hence (I′,J) |=β P. The latter is a contradiction to the assumption that (I,J)
satisfies (i), proving that (I,J′) satisfies (i). Since (I,J) satisfies (iii), we conclude
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that J′ \ I = J \ I. Now let S′ = {λr,i | λr,i ∈ (I,J′)K,P} and let S = {λr,i | λr,i ∈ M}.
It holds that S′ 6⊆ S (otherwise (I,J′)K,P ⊂ M, a contradiction to M ∈ AS(PK)), i.e.,
there exists r ∈ P of the form (1) and 1 ≤ i ≤ l, such that λr,i ∈ S and λr,i 6∈ S′. From
the former, since M is a minimal model of PK , we conclude that I |= Body+(r),
ai ∈ I, and J ∩Body−(r) = /0. Since J′ ⊂ J, also J′ ∩Body−(r) = /0. This implies
that λr,k ∈ S′, for some 1 ≤ k 6= i ≤ l (otherwise (I,J′)K,P does not satisfy the rule
of form (3) corresponding to r in PK , a contradiction to (I,J′)K,P |= PK). However,
since ai ∈ I, and thus ai ∈ (I,J′)K,P, and since λr,k ∈ (I,J′)K,P, we conclude that
λr,i ∈ (I,J′)K,P (cf. the respective rule of form (6) of the epistemic transformation of
r). This contradicts λr,i 6∈ S′, and thus proves that (I,J) satisfies (ii). �

Intuitively, Conditions (i) and (ii) filter bi-models that uniquely correspond to
(some but not all) answer sets of PK : due to minimality every answer set satisfies (i);
there may be answer sets of PK that do not satisfy (ii), but they are certainly not max-
imal canonical. Eventually, Condition (iii) ensures that maximal cononical answer
sets are selected. More formally, the proof of this theorem builds on the following
relationship between bi-models of P and answer sets of PK .

Corollary 1 Let P be a program over Σ. If M ∈AS(PK), then β (M∩ΣK) satisfies (i).
If (I,J) is a bi-model of P that satisfies (i) and (ii), then there exists M ∈AS(PK), such
that β (M∩ΣK) = (I,J).

For illustration consider the following example.

Example 7.3.3 Let P = {a← b; b← not b}. Its bi-models are all pairs (I,J), where
I ∈ { /0,{a},{a,b}} and J ∈ {{b},{a,b}}. Condition (i) of Theorem 7.3.1 holds for
bi-models such that I = /0, and Condition (ii) holds only-if J = {b}. Thus, {Kb} is the
unique semi-stable model of P. 4

The examples given so far also exhibit some anomalies of the semi-stable se-
mantics with respect to basic rationality properties considered in epistemic logics. In
particular, knowledge generalisation (or necessitation, respectively modal axiom N)
is a basic principle in respective modal logics. For a semi-stable model IK , it would
require that

Property N: a ∈ IK implies Ka ∈ IK , for all a ∈ Σ.

This property does not hold as witnessed by Example 7.3.2.
Another basic requirement is the distribution axiom (modal axiom K). Assum-

ing that we believe the rules of a given program (which might also be seen as the
consequence of adopting knowledge generalisation) the distribution property can be
paraphrased for a rule of the form (2.2) as follows:

Property K: If IK |= Kb1∧ . . .∧Kbm and
IK 6|= Kbm+1∨ . . .∨Kbn, then IK |= Ka1∨ . . .∨Kal .

Note that this does not hold for rule a← b in Example 7.3.3.
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7.4 An Alternative Paracoherent Semantics

In this section we define and characterise an alternative paracoherent semantics which
we call semi-equilibrium semantics (for reasons which will become clear immedi-
ately). The aim for semi-equilibrium models is to enforce Properties N and K on
them. Let us start considering bi-models of a program P, that satisfy these properties.
It turns out that such structures are exactly given by HT-models.

Proposition 6 Let P be a program over Σ. Then,

(1) if (I,J) is a bi-model of P, such that (I,J)K satisfies Property N and Property K,
for all r ∈ P, then (I,J) is an HT-model of P;

(2) if (H,T ) is an HT-model of P, then (H,T )K satisfies Property N and Property K,
for all r ∈ P.

◦

Proof of Proposition 6. Let P be a program over Σ.
Part (1). Let (I,J) be a bi-model of P, such that (I,J)K satisfies Property N and

Property K, for all r ∈ P. We show that (I,J) is an HT-model of P. Since (I,J)K

satisfies Property N, it holds that a ∈ I implies a ∈ J, therefore I ⊆ J, i.e., (I,J) is
an HT-interpretation. For every rule r ∈ P, (I,J) |=β r implies (I,J) 6|=β Body(r), or
(I,J) |=β Head(r) and I |= Body(r).

First suppose that (I,J) 6|=β Body(r). Then (I,J) 6|= Body(r) (note that for a con-
junction of literals, such as Body(r), the satisfaction relations do not differ). More-
over, since (I,J)K satisfies Property K for r, it holds that J |= r. To see the latter, let
Kr denote the rule obtained from r by replacing every a ∈ Σ occurring in r by Ka, and
let KJ denote the set {Ka ∈ (I,J)K | a ∈ Σ}. Then, (I,J)K satisfies Property K for r
iff KJ |= Kr. Observing that KJ = {Ka | a ∈ J}, we conclude that J |= r. This proves
(I,J) |= r, if (I,J) 6|=β Body(r).

Next assume that (I,J) |=β Head(r) and I |= Body(r). We conclude that (I,J) |=
Head(r) (the satisfaction relations also coincide for disjunctions of atoms). As (I,J)K

satisfies Property K for r, it follows J |= r. This proves (I,J) |= r , for every r ∈ P; in
other words, (I,J) is an HT-model of P.

Part (2). Let (H,T ) be an HT-model of P. We show that (H,T )K satisfies Prop-
erty N and Property K, for all r∈P. As a consequence of H ⊆ T , for every a∈ (H,T )K

such that a ∈ Σ, it also holds that Ka ∈ (H,T )K , i.e., (H,T )K satisfies Property N.
Moreover, (H,T ) |= P implies T |= r, for all r ∈ P. Let KT = {Ka | a∈T} and let
Kr as above; T |= r implies KT |= Kr, for all r ∈ P. By construction of (H,T )K and
definition of Property K for r, we conclude that (H,T )K satisfies Property K for all
r ∈ P. �

In order to define semi-equilibrium models, we follow the basic idea of the semi-
stable semantics and select subset minimal models that are maximal canonical. Let us
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define HT K(P) = {(H,T )K | (H,T ) |= P} and denote byMM(HT K(P)) its minimal
elements with respect to subset inclusion.

Definition 7.4.1 (Semi-Equilibrium Models) Let P be a program over Σ. An inter-
pretation IK over ΣK is a semi-equilibrium model of P iff IK ∈ mc(MM(HT K(P))).
The set of semi-equilibrium models of P is denoted by SEQ(P). N

A model-theoretic characterisation for this semantics is obtained as before, replac-
ing bi-models by HT-models and dropping Condition (ii). Intuitively, Condition (ii) is
not needed as it is subsumed by Condition (iii) (i.e., Condition (ii′) below) if Property
N and Condition (i) hold.

To formulate the result, we extend the notion of gap from ΣK-interpretations to
HT-interpretations as follows. For any HT-interpretation (X ,Y ), let gap(X ,Y )=Y \X ,
i.e., gap(X ,Y ) = gap(β ((X ,Y )K)) = {a | Ka ∈ gap((X ,Y )K)}.

Theorem 7.4.1 Let P be a program over Σ. Then,

(1) If (H,T ) is an HT-model of P such that

(i′) (H ′,T ) 6|= P, for all H ′ ⊂ H, and

(ii′) there is no HT-model (H ′,T ′) of P that satisfies (i′) and T ′ \H ′ ⊂ T \H,

then (H,T )K ∈ SEQ(P);

(2) if IK ∈ SEQ(P), then β (IK) is an HT-model of P that satisfies (i′) and (ii′).

◦

Proof of Theorem 7.4.1. Let P be a program over Σ.
Part (1). Let (H,T ) be an HT-model of P that satisfies (i′) and (ii′). We

show that (H,T )K ∈ SEQ(P). Towards a contradiction, first assume that (H,T )K 6∈
MM(HT K(P)). Then, there exists an HT-model (H ′,T ′) of P, such that H ′ ⊆ H,
T ′ ⊆ T , and at least one of the inclusions is strict. Suppose that H ′ ⊂ H. Then
(H ′,T ) is an HT-model of P (by a well-known property of HT), a contradiction
to the assumption that (H,T ) satisfies (i′). Hence, H ′ = H and T ′ ⊂ T must hold.
Moreover, by the same argument (H ′,T ′) also satisfies (i′). But, since T ′\H ′⊂ T \H,
this is in contradiction to the assumption that (H,T ) satisfies (ii′). Consequently,
(H,T )K ∈MM(HT K(P)).

We continue the indirect proof assuming that (H,T )K 6∈ mc(MM(HT K(P))),
i.e., there exists an HT-model (H ′,T ′) of P, such that T ′ \H ′ ⊂ T \H and (H ′,T ′)K ∈
MM(HT K(P)). The latter obviously implies that (H ′,T ′) satisfies (i′).

Again, this contradicts that (H,T ) satisfies (ii′), which proves that (H,T )K ∈
SEQ(P).

Part (2). Let IK ∈ SEQ(P). We show that β (IK) is an HT-model of P that sat-
isfies (i′) and (ii′). Let β (IK) = (H,T ). Towards a contradiction first assume that
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(H,T ) is not an HT-model of P. Then by the definition of SEQ(P), and the fact that
IK uniquely corresponds to sets H and T , we conclude that IK 6∈mc(MM(HT K(P))),
i.e., IK 6∈ SEQ(P); contradiction.

Next, suppose that (H,T ) does not satisfy (i′). Then, IK 6∈ MM(HT K(P)), as
witnessed by (H ′,T )K for an HT-model (H ′,T ) such that H ′ ⊂ H, which exists if
(H,T ) does not satisfy (i′). Therefore, IK 6∈mc(MM(HT K(P))), i.e., IK 6∈ SEQ(P);
contradiction.

Eventually assume that (H,T ) does not satisfy (ii′). Then, IK 6∈mc(MM(HT K(P))),
as witnessed by (H ′,T ′)K for an HT-model (H ′,T ′), such that T ′ \H ′ ⊂ T \H and
(H ′,T ′) satisfies (i′)—note that (H ′,T ′) exists if (H,T ) does not satisfy (ii′). To
see that (H ′,T ′)K is a witness for IK 6∈ mc(MM(HT K(P))), observe that ei-
ther (H ′,T ′)K ∈ MM(HT K(P)) or there exists an HT-model (H ′,T ′′), such that
(H ′,T ′′)K ∈MM(HT K(P)) and T ′′ ⊂ T ′ (which implies T ′′ \H ′ ⊂ T ′ \H ′ ⊂ T \H).

This proves that IK 6∈ SEQ(P), again a contradiction. This concludes the proof
that β (IK) is an HT-model of P that satisfies (i′) and (ii′). �

Alternatively, semi-equilibrium models may be computed as maximal canonical
answer sets, i.e., equilibrium models, of an extension of the epistemic program trans-
formation.

Definition 7.4.2 (PHT ) Let P be a program over Σ. Then its epistemic HT-
transformation PHT is defined as the union of PK with the set of rules:

Ka← a,
Ka1∨ . . .∨Kal ∨Kbm+1∨ . . .∨Kbn ← Kb1, . . . ,Kbm,

for a ∈ Σ, respectively for every rule r ∈ P of the form (2.2). N

The extensions of the transformation naturally ensure Properties N and K on its
models and its maximal canonical answer sets coincide with semi-equilibrium models.

Theorem 7.4.2 Let P be a program over Σ, and let IK be an interpretation over ΣK .
Then, IK ∈ SEQ(P) if and only-if IK ∈ {M∩ΣK |M ∈ mc(AS(PHT ))}. ◦

Proof of Theorem 7.4.2. Let P be a program over Σ, and let IK be an interpretation
over ΣK . The proof of this theorem uses the following auxiliary lemmas which we
state, and prove, before proceeding.

Lemma 10 If M |= PHT , then β (M∩ΣK) is an HT-model of P. ◦

Proof of Lemma 10. Let (I,J) = β (M∩ΣK). Since M |= PK , (I,J) is a bi-model
of P by Proposition 5. Moreover, M∩ΣK = (I,J)K and (I,J)K satisfies Property N,
otherwise there is an atom a ∈M such that Ka 6∈M, a contradiction to M |= Ka← a.
Also, (I,J)K satisfies Property K for all r ∈ P; otherwise, if Property K does not hold
for some r ∈ P of the form (2.2), then M |= Kb1∧ . . .∧Kbm and M 6|= Ka1∨ . . .∨Kal∨
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Kbm+1 ∨ . . .∨Kbn, i.e., M 6|= PHT ; contradiction. Therefore, by Proposition 6, (I,J)
is a HT-model of P. �

Next, we prove two Lemmas before proceeding with the proof of the main theo-
rem:

Lemma 11 If (H,T ) is an HT-model of P, then (H,T )K,P |= PHT . ◦

Proof of Lemma 11. Note that every HT-model of P is a bi-model of P. Assume the
contrary; then (H,T ) |= r and (H,T ) 6|=β r, for some r ∈P. Then, H 6|=Body(r), while
(H,T ) |=Body(r), must hold. However, (H,T ) |=Body(r) implies Body+(r)⊆H and
Body−(r)∩H = /0, and therefore H |= Body(r); contradiction. This proves that (H,T )
is a bi-model of P. Consequently, (H,T )K,P |= PK by Proposition 5.

Moreover, since (H,T ) is an HT-model, (H,T )K satisfies Property N (and Prop-
erty K for all r ∈ P) by Proposition 6. Because (H,T )K,P∩ΣK = (H,T )K , this implies
that (H,T )K,P |= r, for all rules of the form Ka← a in PHT \PK (this is an obvious
consequence of Property N).

For the remaining rules r in PHT \PK , (H,T )K,P |= r is a simple consequence of
T |= P. This proves (H,T )K,P |= PHT . �

Now let M ∈ AS(PHT ). We show that

Lemma 12 For every M ∈ AS(PHT ), β (M∩ΣK) satisfies (i′) in Theorem 7.4.1. ◦

Proof of Lemma 12. Towards a contradiction assume the contrary. Then there ex-
ists an HT-model (H ′,T ) of P such that H ′ ⊂ H. Note that M ∈ AS(PHT ) implies
M = β (M∩ΣK)

K,P. Since the latter is a model of PHT by Lemma 11, M must be a
subset thereof; however it obviously cannot be a strict subset on ΣK . By construction
of β (M∩ΣK)

K,P and the rules of form (6) of the epistemic transformation, we also
conclude that λr,i ∈ β (M∩ΣK)

K,P implies λr,i ∈M, for any r ∈ P of the form (2.2) and
1≤ i≤ l. This proves M = β (M∩ΣK)

K,P.
Now consider M′ = (H ′,T )K,P. Then, M′ ⊂M by construction, and M′ |= PHT by

Lemma 11. This is a contradiction to the assumption that M ∈ AS(PHT ), and thus
proves that β (M∩ΣK) satisfies (i′). �

Lemma 13 For every HT-model (H,T ) of P that satisfies (i′) of Theorem 7.4.1, there
exists some M ∈ AS(PHT ) such that gapM ⊆ gap(H,T )K . ◦

Proof of Lemma 13. Since (H,T )K,P |= PHT by Lemma 11, there exists M ∈
AS(PHT ), such that M ⊆ (H,T )K,P. To prove the lemma, it suffices to show that
M ∩Σ = H. Assume the contrary; then by (d) there exists an HT-model (H ′,T ′) of
P, such that H ′ ⊂ H and T ′ ⊆ T . However, then (H ′,T ) |= P, which contradicts the
assumption that (H,T ) satisfies (i′). �
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We now proceed with the proof of the theorem, which is then as follows.

(⇐) Suppose that IK∈{M ∩ΣK | M∈mc(AS(PHT ))}. We prove IK ∈ SEQ(P)
via Theorem 7.4.1. Let M ∈ mc(AS(PHT )), such that IK = M∩ΣK , and let (I,J) =
β (M∩ΣK). Then, (I,J) is an HT-model of P by Lemma 10 and (I,J) satisfies (i′) in
Theorem 7.4.1 by Lemma 12. We prove that (I,J) satisfies (ii′) in Theorem 7.4.1.

Towards a contradiction, assume that this is not the case, then there exists an
HT-model (H,T ) of P, such that T \H ⊂ J \ I and (H,T ) satisfies (i′). According
to Lemma 13, there exists M′ ∈ AS(PHT ), such that gapM′ ⊆ gap(H,T )K , which
implies gapM′ ⊂ gapM due to T \H ⊂ J \ I.

This contradicts the assumption that M ∈ mc(AS(PHT )), and thus proves that
(I,J) satisfies (ii′) in Theorem 7.4.1. We conclude that IK ∈ SEQ(P).

(⇒) Suppose that IK ∈ SEQ(P). We prove IK∈{M∩ΣK | M ∈ mc(AS(PHT ))}.
Let (H,T ) = β (IK). By Theorem 7.4.1, (H,T ) is an HT-model of P that satisfies (i′)
and (ii′).

We show that there exists M ∈ mc(AS(PHT )) such that β (M∩ΣK) = (H,T ).
Since (H,T )K,P |= PHT , there exists M ∈ AS(PHT ) such that M ⊆ (H,T )K,P. Since
(H,T ) satisfies (i′), it holds that M∩Σ = H. Moreover, M∩ΣK ⊂ (H,T )K contradicts
the fact that (H,T ) satisfies (ii′), because then β (M∩ΣK) = (H,T ′) is an HT-model
of P, such that T ′ \H ⊂ T \H and (H,T ′) satisfies (i′) due to Lemma 12. Hence,
β (M∩ΣK) = (H,T ).

It remains to show that M ∈ mc(AS(PHT )). If this is not the case, then some
HT-model (H ′,T ′) of P exists such that T ′ \H ′ ⊂ T \H. Since (H ′,T ′) = β (M′∩ΣK)
for some M′ ∈ AS(PHT ), we conclude by Lemma 12 that (H ′,T ′) satisfies (i′),
which again leads to a contradiction of the fact that (H,T ) satisfies (ii′). This proves
that M ∈ mc(AS(PHT )). As M ∩ ΣK = IK , we conclude that IK ∈ {M ∩ ΣK | M ∈
mc(AS(PHT ))}. �

The resulting semantics is classically coherent.

Proposition 7 Let P be a program over Σ. If P has a model, then it has a semi-
equilibrium model. ◦

Proof of Proposition 7. Let P be a program over Σ. If P has a model M, then (M,M)
is an HT-model of P. Therefore HT K(P) 6= /0, which implies MM(HT K(P)) 6= /0,
and thus mc(MM(HT K(P))) 6= /0. We conclude that SEQ(P) 6= /0, i.e., P has a semi-
equilibrium model. �

Another simple property is a 1-to-1 correspondence between answer sets and
semi-equilibrium models.

Proposition 8 Let P be a coherent program over Σ. Then,

(1) if Y ∈ AS(P), then (Y,Y )K is a semi-equilibrium model of P;
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(2) if IK is a semi-equilibrium model of P then β (IK) is an equilibrium model of P,
i.e., β (IK) is of the form (Y,Y ) and Y ∈ AS(P).

◦

Proof of Proposition 8. Let P be a coherent program over Σ, and let Y ∈ AS(P).
Then (Y,Y ) is an HT-model of P that satisfies (i′) in Theorem 7.4.1, since it is in
equilibrium. Moreover, it trivially satisfies also (ii′) because Y \Y = /0. Hence,
(Y,Y )K ∈ SEQ(P).

As P is coherent, there exists (T,T ) ∈ HT (P) that satisfies (i′) in Theorem 7.4.1
and (trivially) (ii′). Hence, gapIK = /0 for all IK ∈ SEQ(P). Moreover, β (IK) is of the
form (Y,Y ), and Y ∈ AS(P). �

For an illustration of the 1-to-1 relationship between answer sets and semi-
equilibrium models, let us reconsider Example 7.3.2. Note that this example also
gave evidence that semi-stable models do not satisfy Property N, which is the case
for semi-equilibrium models, however.

Example 7.4.1 Consider the coherent program of Example 7.3.2. Its unique semi-
equilibrium model is {a,b,c,Ka,Kb,Kc}, corresponding to the single answer set
{a,b,c}. 4

As a consequence of Property K, semi-equilibrium semantics differs from semi-
stable semantics not only with respect to believed consequences.

Example 7.4.2 Consider the following extension of the program in Example 7.3.3:
P = {a ← b; b ← not b; c ← not a}, and compare SST (P) = {{c,Kb}} with
SEQ(P) = {{Ka,Kb}} concerning the knowledge with respect to c. 4

7.5 Computational Complexity

We now consider the computational complexity of major reasoning tasks for programs
under semi-stable semantics:

a) deciding whether a program P has a semi-stable model,

b) recognising semi-stable models (given M and P), and

c) brave and cautious reasoning from the semi-stable models of a program P, where
an atom a is a brave (respectively, cautious) consequence of P with value v ∈
{⊥,bt, t}, denoted P |=v

b a (respectively, P |=v
c a) if IK(a) = v for some (respec-

tively, every) semi-stable model of P.

We also consider these problems for semi-equilibrium models. For brevity, we
compactly summarise the results in Table 7.1. In the following, we overview the main
results but leave the proofs for being read from the original article Eiter et al. (2010b).

Lemma 14 Given a bi-interpretation (I,J) of a program P, deciding (I,J) |=β P is
polynomial. ◦
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Problem normal P disjunctive P

SST (P) 6= /0 ? NP NP

IK ∈ SST (P) ? coNP ΠP
2

P |=v
b a ΣP

2 ΣP
3

P |=v
c a ΠP

2 ΠP
3

Table 7.1: Complexity of semi-stable models (completeness results). The same results hold for semi-
equilibrium models.

7.5.1 Problem a)

Since P has some semi-stable model iff P has some classical model, the complexity
of Problem a) is immediate.

Theorem 7.5.1 Given a disjunctive program P, deciding whether SST (P) 6= /0 is
NP-complete. The NP-hardness holds already for normal programs P. ◦

However, the problem is trivial, if the program P has no constraints, and is poly-
nomial e.g. if P consists of Horn clauses.

7.5.2 Problem b)

Recognising semi-stable models, however, is more complex than recognising classical
models.

Theorem 7.5.2 Given an interpretation IK over ΣK and a program P, deciding if
IK∈SST (P) is

(i) coNP-complete for normal P, and

(ii) ΠP
2 -complete for disjunctive P.

◦

7.5.3 Problem c)

Brave respectively cautious reasoning from the semi-stable models of programs is one
level higher up in the Polynomial Hierarchy than respective reasoning from the stable
models. Intuitively, this is because maximal canonicality is an orthogonal selection
on top of the stable models.

Theorem 7.5.3 Given a program P, an atom a, and a value v ∈ {⊥,bt, t}, deciding
whether
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(i) P |=v
b a is ΣP

2 -complete for normal P and ΣP
3 -complete for disjunctive P;

(ii) P |=v
c a is ΠP

2 -complete for normal P and ΠP
3 -complete for disjunctive P.

◦

7.5.4 Semi-Equilibrium Models

For disjunctive programs, Problems a)-c) have for semi-equilibrium models the same
complexity as for semi-stable models; we omit stating here the formal results.

The memberships proofs are similar but use Theorem 7.4.1 instead of Theo-
rem 7.3.1; note that deciding (H,T ) |= P is polynomial, and thus checking condition
(i′) in Theorem 7.4.1 is in coNP. Furthermore, similar hardness proofs work (with
slight adaptions).

Also for normal programs P, we get analogous complexity results, since testing
condition (i′) for such P is polynomial: similarly as for condition (i) in Theorem 7.3.1,
we can compute some H ′ ⊂H such that (H ′,T ) |= P (if one exists) as the least model
of a set of Horn clauses (more precisely of PT ).

In all cases, we also have matching hardness results. This follows easily from
well-known results for answer sets semantics of positive disjunctive programs, cf.
Eiter & Gottlob (1995a), which contain, without loss of generality, no facts; we can
easily emulate such programs under semi-equilibrium semantics, shifting disjunctions
to the rule bodies, and creating constraints in this way.

7.6 Discussion

In this section, we first review some general principles for logic programs with nega-
tion, and we then consider the relationship of semi-stable and semi-equilibrium se-
mantics to other semantics of logic programs with negation. Finally, we address some
possible extensions of our work.

7.6.1 General Principles

In the context of logic programs with negation, several principles have been identified
which a semantics desirably should satisfy. Among them are:

• the principle of minimal undefinedness You & Yuan (1994), which says that a
smallest set of atoms should be undefined (i.e., neither true nor false);

• the principle of justifiability (or foundedness) You & Yuan (1994): every atom
which is true must be derived from the rules of the program, possibly using
negative literals as additional axioms.

• the principle of the closed world assumption (CWA), for models of disjunctive
logic programs ( Eiter et al. (1997b)): “If every rule with an atom a in the head
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has a false body, or its head contains a true atom distinct from a with respect to
an acceptable model, then a must be false in that model.”

It can be shown that both the semi-stable and the semi-equilibrium semantics
satisfy the first two principles (properly rephrased and viewing bt as undefined), but
not the CWA principle; this is shown by the simple program P = {a← not a} and
the acceptable model {Ka}. However, this is due to the particular feature of making,
as in this example, assumptions about the truth of atoms; if the CWA condition is
restricted to atoms a that are not believed by assumption, i.e., IK(a) 6= bt in a semi-
stable respectively semi-equilibrium model IK , then the CWA property holds.

We eventually remark that Property N can be enforced on semi-stable models by
adding constraints ← a,not a for all atoms a to the (original) program. However,
enforcing Property K on semi-stable models is more involved and efficient encodings
seem to require an extended signature.

7.6.2 Related Semantics

P-stable (partial stable) models, which coincide with the 3-valued stable models of
Przymusinski (1991a), are one of the best known approximation of answer sets. Re-
cently, the P-stable models have been semantically characterised by Cabalar et al.
(2007) in the logic HT2 in terms of partial equilibrium models.

The L-stable models semantics by Eiter et al. (1997b), which selects those P-
stable models where a smallest set of atoms is undefined, is closest in spirit to semi-
stable and semi-equilibrium semantics; furthermore, it satisfies the three principles
from above, as well as answer set coverage and congruence (cf. Introduction). The
main difference is that L-stable—like P-stable—semantics takes a neutral position on
undefinedness, which in combination with negation may lead to weaker conclusions.

For example, the program in Example 7.4.2 has a single P-stable (and L-stable)
model in which all atoms are undefined, while c is true under semi-equlibrium seman-
tics. Similarly, the program

P =


a← not b.
b← not c.
c← not a.


has a single P-stable (and thus L-stable) model in which all atoms are undefined, while
it has multiple semi-stable models, viz. {a,Ka,Kc}, {b,Kb,Ka}, and {c,Kc,Kb},
which coincide with the semi-equilibrium models. If we add the rules d← a, d← b,
and d← c to P, the new program cautiously entails under both semi-stable and semi-
equilibrium model semantics that d is true, but not under L-stable semantics.

Furthermore, disjunctive programs may lack L-stable models, e.g.

P′ = P∪{a∨b∨ c←};

the semi-stable respectively semi-equilibrium models of P′ are those of P.
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Opposite to the L-stable semantics is the least P-stable model semantics, which
selects the P-stable model in which a largest set of atoms is undefined; for normal
logic programs, a unique such model always exists, and this model coincides with
the well-founded model of van Gelder et al. (1991); furthermore, it is characterised
in the logic HT2 in terms of the minimal partial equilibrium model (under a suitable
ordering) Cabalar et al. (2007). As in the examples for L-stable semantics above,
normal programs have a single P-stable model, the least P-stable and the L-stable
semantics for these programs coincide, showing thus similar differences to the semi-
stable and semi-equilibrium semantics.

Regular semantics You & Yuan (1994) is another 3-valued approximation of an-
swer set semantics that satisfies least undefinedness and foundedness, but not the
CWA principle. However, it is classically coherent. For the program P above, the
regular models coincide with the L-stable models; the program P′ has the regular
models {a}, {b}, and {c}. While regular models fulfill answer set coverage, they do
not fulfill congruence. For more discussion of 3-valued stable and regular models as
well as many other semantics coinciding with them, see Eiter et al. (1997b).

Revised stable models Pereira & Pinto (2005) are a 2-valued approximation of
answer sets; negated literals are assumed to be maximally true, where assumptions
are revised if they would lead to self-incoherence through odd loops or infinite proof
chains. For example, the odd-loop program P above has three revised stable models,
viz. {a,b}, {a,c}, and {b,c}. The semantics is only defined for normal logic pro-
grams, and fulfills answer set coverage but not congruence, cf. Pereira & Pinto (2005).
Similarly, pstable models Osorio et al. (2008), which have a definition for disjunctive
programs however, satisfy answer set coverage (but just for normal programs) and
congruence fails. Moreover, every pstable model of a program is a minimal model of
the program, but there are programs, such as P above, that have classical models but
no pstable models, thus classical coherence does not hold.

7.6.3 Extensions

As already mentioned, semi-stable semantics has originally been developed as an ex-
tension to p-minimal model semantics Sakama & Inoue (1995a), a paraconsistent se-
mantics for extended disjunctive logic programs, i.e., programs which besides default
negation also allow for strong (classical) negation. A declarative characterisation of p-
minimal models by means of frames was given by Alcântara et al. (2005), who coined
the term Paraconsistent Answer Set Semantics (PAS) for it. This characterisation has
been further simplified and underpinned with a logical axiomatisation in Odintsov &
Pearce (2005) by using Routley models Routley (1974), i.e., a simpler possible world
model.

Our characterisations for both, semi-stable models and semi-equilibrium models,
can be easily extended to this setting if they are applied to semantic structures which
are given by 4-tuples of interpretations rather than bi-interpretations, respectively to
Routley here-and-there models rather than HT-models. Intuitively, this again amounts
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to considering two ‘worlds’, each of which consists of a pair of interpretations: one for
positive literals (atoms), and one for negative literals (strongly negated atoms). The
respective epistemic transformations are unaffected except for the fact that literals
are considered rather than atoms. One can also show for both semantics that there
is a simple 1-to-1 correspondence to the semi-stable (semi-equilibrium) models of a
transformed logic program without strong negation: A given extended program P is
translated into a program P′ over Σ∪{a′ | a∈ Σ} without strong negation by replacing
each negative literal of the form ¬a by a′. If (I,J) is a semi-stable (semi-equilibrium)
model of P′, then

(I∩Σ,{¬a | a′ ∈ I},J∩Σ,{¬a | a′ ∈ J})

is a semi-stable (semi-equilibrium) model of P. Note that semi-stable (semi-
equilibrium) models of extended logic programs obtained in this way generalise the
PAS semantics, which means that they are paraconsistent as well as paracoherent.
Logically this amounts to distinguishing nine truth values rather than three, with the
additional truth values undefined, believed false, believed inconsistent, true with con-
tradictory belief, false with contradictory belief, and inconsistent. The computational
complexity for extended programs is the same.

Compared to Sakama & Inoue (1995a), we further restrict ourselves here to propo-
sitional programs, as opposed to programs with variables (non-ground programs).
However, the respective semantics for non-ground programs via their groundings are
straightforward. Alternatively, in case of semi-equilibrium models one can simply
replace HT-models by Herbrand models of quantified equilibrium logic Pearce &
Valverde (2008). Similarly for the other semantics, replacing interpretations in the
semantic structures by Herbrand interpretations over a given function-free first-order
signature, yields a characterisation of the respective models.

7.6.4 Rule Modularity of Semi-Equilibrium Semantics

While the SEQ-semantics has nice properties, it may select models that do not respect
a modular structure in the rules. To illustrate this, consider the following example.

Example 7.6.1 Suppose we have a program that captures knowledge about friends of
a person regarding visits to a party, where go(X) informally means that X will go:

P =


go(John)← not go(Mark).
go(Peter)← go(John),not go(Bill).

go(Bill)← go(Peter).


Then P has no answer set; its semi-equilibrium models are M1 = ( /0,{go(Mark)}),

and M2 = ({go(John)},{go(John),go(Bill)}). Informally, a key difference between
M1 and M2 concerns the beliefs on Mark and John. In M2 Mark does not go, and,
consequently, John will go (moreover, Bill is believed to go, and Peter will not go). In
M1, instead, we believe Mark will go, thus John will not go (likewise Peter and Bill).
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None of the two models provides a fully coherent view (on the other hand, the
program is incoherent, having no answer set). Nevertheless, M2 appears preferable
over M1, since, according with a layering (stratification) principle, which is widely
agreed in LP, one should prefer go(John) rather than go(Mark), as there is no way to
derive go(Mark) (which does not appear in the head of any rule of the program).

N

Modularity via rule dependency as in the example above is widely used in problem
modeling and logic programs evaluation; in fact, program decomposition is crucial
for efficient answer set computation. For the program P above, advanced answer set
solvers like DLV and clasp immediately set go(Mark) to false, as go(Mark) does
not occur in any rule head. In a customary bottom up computation along program
components, answer sets are gradually extended until the whole program is covered,
or incoherence is detected at some component (in our example for the last two rules).
But rather than to abort the computation, we would like to switch to a paracoherent
mode and continue with building semi-equilibrium models, as an approximation of
answer sets.

To overcome this limitation, Amendola et al. (2014, 2015) introduces a refined
paracoherent semantics, called split semi-equilibrium semantics. It coincides with
the answer sets semantics in case of coherent programs, and selects a subset of the
SEQ-models otherwise. Their main results are two model-theoretic characterisations
which identify necessary and sufficient conditions for deciding whether a SEQ-model
is selected. However, this approach does not attain the property of compositionality
in the terms we defined previously and as such, further work must be made in that
direction.

7.7 Conclusion

We have given a semantic characterisation of semi-stable models in terms of bi-
models, and of semi-equilibrium models, which eliminate some anomalies of semi-
stable models, in terms of HT-models. Furthermore, we characterised the complexity
of major reasoning tasks of these semantics.

Regarding implementation, we developed experimental prototypes for computing
SST (P) and SEQ(P) based on these characterisations. They construct the bi-models
(respectively, HT-models) of P and filter them according to the conditions in The-
orem 7.3.1 (respectively, Theorem 7.4.1). Alternatively, SST (P) and SEQ(P) are
obtainable by postprocessing the answer sets of the epistemic transformation PK re-
spectively its extension PHT , which are computed with any ASP solver.

Concerning future work, there are several issues. In this Chapter, we have con-
sidered paracoherence based on program transformation, as introduced by Sakama &
Inoue (1995a). Other notions, like forward chaining construction and strong compati-
bility Wang et al. (2009); Marek et al. (1999) might be other candidates to deal with
paracoherent reasoning in logic programs, which remain to be explored.
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Another subject is to extend paracoherence to language extensions, including ag-
gregates, nested logic programs etc. Of particular interest to us are modular logic
programs Janhunen et al. (2009); Dao-Tran et al. (2009), where module interaction
may lead to incoherence. Related to the latter are the more general multi-context
systems Brewka & Eiter (2007a), in which knowledge bases exchange beliefs via
non-monotonic bridge rules. Based on ideas and results of this Chapter, paracoherent
semantics for certain classes of such multi-context systems may be devised.

Another issue is to investigate the use of paracoherent semantics in AI applica-
tions such as diagnosis, where assumptions may be exploited to generate candidate
diagnoses, in the vein of the generalised stable model semantics Kakas & Mancarella
(1990).

Finally, a promising line of work is to apply the SEQ transformation and check
modular compositionality, having in consideration disjunctive MLPs in as much as
the SEQ transformation is also disjunctive.

We provide selected proofs of the results, omitting some details. In particular, we
concentrate on the semantic characterisation of semi-stable models in the first part of
the chapter. The proofs for semi-equilibrium semantics are similar in spirit.
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Chapter 8

Justifications for Answer Set
Programs

Viegas Damásio et al. (2013) introduced a way to construct propositional formulae
encoding provenance information for logic programs. From these formulae, justi-
fications for a given interpretation are extracted but it does not explain why such
interpretation is not an answer set (debugging). Resorting to a meta-programming
transformation for debugging logic programs, Gebser et al. (2008) does the converse.

In this chapter we unify these complementary approaches using meta-programming
transformations. First, an answer set program is constructed in order to generate every
provenance propositional model for a program, both for well-founded and answer set
semantics, suggesting alternative repairs to bring about (or not) a given interpretation.
In particular, we identify what changes must be made to a program in order for an
interpretation to be an answer set, thus providing the basis to relate provenance with
debugging.

With this meta-programming method, one does not have the need to generate the
provenance propositional formulas, and thus can obtain debugging and justification
models directly from the transformed program. This enables computing provenance
answer sets in an easy way by using answer set programming solvers. We show
that the provenance approach generalises the debugging one, since any error has a
counterpart provenance but not the other way around. Because the method we propose
is based on meta-programming, we extended an existing tool (Spock) and developed
a proof-of-concept (http://cptkirk.sourceforge.net) to help computing our models.

The most important contributions we make in this chapter are:
(1) bridging the gap between provenance models and logic programs using meta-

programming for ASP,
(2) unifying these two complementary approaches by mapping provenance mod-

els with debugging models Gebser et al. (2008), and
(3) obtainining justifications under the well-founded (WF) and answer set seman-

tics without explicitly calculating provenance formulae for logic programs.
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8.1 Introduction and Background

Knowledge was defined by Plato as justified true beliefs but only thousands of years
after this philosophical standpoint did Brouwer and the S4 provability logic of Gödel
formed the intuitionistic view. Since then, the progress towards more justified belief
systems has accelerated. Artemov (1995) introduced the Logic of Proofs (LoP) as
a formalisation that internalizes justifications for statements and several justification
logics were defined based on this LoP, namely Brezhnev (2001). The Knowledge rep-
resentation and reasoning (KRR) field has also both benefited from and contributed to
this direction. Fitting (2005) defined an epistemic semantics for logic programs, Ca-
balar (2011) used logic programming to define causal logic programming under sta-
ble model semantics and, recently, Cabalar et al. (2014); Cabalar & Fandinno (2017)
presented a multi-valued extension of logic programs associated with a set of justifi-
cations expressed in terms of causal graphs which are obtained in a semantic way by
algebraic operations and provide an order of rule application.

Theoretical results leading to tools for debugging answer set programs have in
the last few years been identified as a crucial prerequisite for a wider acceptance of
answer set programming. Tracing approaches, such as Busoniu et al. (2013), have
been argued not to expose too much the user to the intricacies of reasoners. Because of
this, declarative debugging approaches based in meta-programming techniques, such
as Brain et al. (2007), have instead been developed.

However, in this chapter we are fundamentally interested in addressing the afore-
mentioned questions which we now recall:

Justification models (informally): Answer the question: Why is a given interpreta-
tion indeed an Answer Set?

Debugging models (informally): Answer the question: Why is a given interpretation
not an Answer Set?

Example 8.1.1 Consider Π = {r1 : a← b. r2 : a← not b.}. Besides knowing a is
true in the single AS of Π, it is also be important to know that a is true because rules
r1 and r2 are in Π, independently of what we can conclude about b. One of the other
possible justifications for a being true is that r2 is in Π and b has no support. Of
course, if one intends a to be false then we must conclude that there is a bug in the
encoding of Π as it does not capture our intention, with one justification for it being
that rule r2 is unsatisfied. 4

In Viegas Damásio et al. (2013), each literal can be associated with its why not
provenance (WnP), i.e., a logical propositional formula explaining why a literal is true
or false in an answer set. In Example 8.1.1, provenance formula

Why(a) = (r1∧¬not(b))∨ (r2∧not(b)∨¬not(a))

is obtained for literal a and its negation for not a. Clearly, r1 ∧ r2 |= Why(a) is an
intuitive justification for a.
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This provenance approach is capable of providing the corrections (adding or re-
moving facts, and removing rules, e.g., not(a)∧ not(b)∧¬r2 |= ¬Why(a) in Exam-
ple 8.1.1) that are sufficient to bring about certain intended models, indicating that the
removal of rule r2 from the program, and neither adding facts for a nor b, makes a
false.

Provenance formulas are inspired by a program transformation previously defined
for declarative debugging of logic programs Pereira et al. (1993b) and have been
conjectured in Viegas Damásio et al. (2013) to be related with debugging.

The debugging of ASP programs has been addressed in the literature by several
authors, and the most effective approaches resort to meta-transformations to detect
the diverse forms of anomalies in programs Brain et al. (2007); Gebser et al. (2008);
Oetsch et al. (2010); Polleres et al. (2013), which, being very fine grained, are de-
signed to pinpoint errors in logic programs. On a different stance, Eiter et al. (2010a)
provided two approaches for explaining inconsistencies, both of which characterise
inconsistency in terms of bridge rules: by pointing out rules which need to be altered
for restoring consistency, and by finding combinations of rules which cause inconsis-
tency.

Next, in the remainder of this section, we review relevant logic programming for-
malisms followed by debugging and provenance literature. In Section 8.2 we intro-
duce a novel meta-programming transformation both for well-founded and answer set
semantics that is used to obtain models for WnP formulas of a given normal logic pro-
gram. We clarify which models are justifications, define them in terms of answer set
existence for the meta-program and discuss computational complexity. Section 8.4
provides a new mapping between our and the debugging transformations, showing
that provenance captures debugging models but not the other way around. We end
with a discussion, a comparison of these approaches with others in the literature and
possible future work.

8.1.1 Debugging of Answer Set Programs

Debugging of logic programs and in particular ASP has received important contribu-
tions over the last years.

We are mostly interested in Gebser et al. (2008) though, where a meta-
programming technique for debugging ASPs is presented. Debugging queries
are expressed by means of ASP programs, which allows restricting debugging infor-
mation to relevant parts. The main question addressed is: “Why are interpretations
that we expected to be answer sets, indeed not answer sets of a given ASP program?”
Thus it finds semantic errors in programs. The provided explanations are based on a
scheme of errors relying in a characterisation of answer set semantics by Lee (2005);
Ferraris et al. (2007). In Theorem 2 of Gebser et al. (2008), the four possible causes
of errors dealt by their debugging framework are:
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Unsatisfied rules: If rule r ∈ Gr(Π), with nonempty Head(r), is unsatisfied by an
interpretation I, the logical implication expressed by r is false with respect to I,
i.e., I |= Body(r) and Head(r) 6∈ I, and thus I is not a classical model of Π.

Violated integrity constraints: If an integrity constraint (IC) c ∈ Gr(Π) is applica-
ble with respect to an interpretation I, the fact that Head(c) = /0 implies I 6|= c,
and thus I cannot be an answer set of Π. This can be seen as a particular case
of unsatisfied rule.

Unsupported atoms: If {a} ⊆ I is unsupported with respect to an interpretation I,
no rule in Gr(Π) allows for deriving a, and thus I is not a minimal model of ΠI .

Unfounded loops: If a loop Γ⊆ I of Π is unfounded with respect to an interpretation
I, there is no acyclic derivation for the atoms in Π, and thus I is not a minimal
model of ΠI .

The modules in Figures 8.1, 8.2, and 8.3 capture exactly these four causes of errors
for disjunctive logic programs. Note here that head/2 (respectively body/2) is used
to relate a rule identifier with its head (respectively with its body), atom/1 capture all
possible atoms in the vocabulary of a program and int/1 captures the interpretation
we are evaluating (int(A) means that atom A is true whereas int(A) means that it is
false). The program πint is a choice loop producing every possible interpretation.
The program πsat determines if rules are unsatisfied, when they are applicable but the
head is not in that particular interpretation, and if an integrity constraint is violated.
The program πsupp determines if an atom is unsupported, whereas πu f loop detects
unfounded loops.

Finally, in πnoas, an interpretation is marked as not being an answer set if it con-
tains one of the error indicating predicates.

πint ={int(A)← atom(A),not int(A).
int(A)← atom(A),not int(A).}

πsat = {hasHead(R)← head(R, ).
someHInI(R)← head(R,A), int(A).

violated(C)← ap(C),not hasHead(C),hasHead(R).
unsatis f ied(R)← ap(R),not someHInI(R).}

πsupp ={unsupported(A)← int(A),not supported(A).
supported(A)← head(R,A),ap(R),not otherHInI(R,A).

otherHInI(R,A1)← head(R,A2), int(A2),head(R,A1),A1 6= A2.}

Figure 8.1: Static Modules of Meta-Program D(Π) (Part 1).
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πnoas ={noAnswerSet← unsatis f ied( ).
noAnswerSet← violated( ).
noAnswerSet← unsupported( ).
noAnswerSet← u f Loop( ).

← not noAnswerSet.}

πap ={bl(R)← Body+(R,A), int(A). %blocked rules
bl(R)← Body−(R,A), int(A).
ap(R)← rule(R),not bl(R).} %applicable rules

Figure 8.2: Static Modules of Meta-Program D(Π) (Part 2).

πu f loop ={u f Loop(A)← int(A),supported(A),not u f loop(A).
u f loop(A)← int(A),not u f Loop(A).

someBInLoop(R)← Body+(R,A),u f Loop(A).
someHOutLoop(R)← head(R,A),u f loop(A).

d pcy(A1,A2)← d pcy(A1,A3),d pcy(A3,A2).
d pcy(A1,A2)← head(R,A1),Body+(R,A2),ap(R),u f Loop(A1),

u f Loop(A2),not someHOutLoop(R).
← head(R,A),u f Loop(A),ap(R),

not someHOutLoop(R),not someBInLoop(R).
← u f Loop(A1),u f Loop(A2),not d pcy(A1,A2).}

Figure 8.3: Static Modules of Meta-Program D(Π) (Part 3).

Gebser et al. (2008) construct a meta-program from a given program Π and inter-
pretation I that is capable of detecting the errors we enumerated above via occurrences
of the following error-indicating meta-atoms (or error indicating predicates) in its
answer sets: unsatis f ied(lr) indicates that a rule r ∈ Gr(Π) is unsatisfied by an in-
terpretation I; violated(lc) indicates that an integrity constraint c ∈ Gr(Π) is violated
with respect to an interpretation I; unsupported(la) indicates that an atom a ∈ I is un-
supported; and u f Loop(la) indicates that an atom a belongs to some unfounded loop
Γ ⊆ I of Π with respect to an interpretation I. Note here that lr, lc, and la are literals
representing respectively a rule, an integrity constraint, and an atom.

Still in Gebser et al. (2008), the authors define the input meta-program πin(Π)
from a ground disjunctive logic program Π (note that later on we restrict our discus-
sion to normal logic programs) as the set of facts we depict in Figure 8.4:

Definition 8.1.1 (Module πin(Π)) Program module πin(Π) consists of facts stating
which rules and atoms occur in Π and, for each rule r ∈ Π, which atoms are con-
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πin(Π) = {atom(la)← | a ∈ At(Π)}∪
{rule(lr)← | r ∈Π}∪

{Head(lr, la)← | r ∈Π,a ∈ Head(r)}∪
{Body+(lr, la)← | r ∈Π,a ∈ Body+(r)}∪
{Body−(lr, la)← | r ∈Π,a ∈ Body−(r)}

Figure 8.4: Module πin(Π).

tained in its head (Head(r)), and body (Body+(r) and Body−(r)), and is depicted in
Figure 8.4. N

Given πin(Π), the non-disjunctive meta-program D(Π) is defined as follows:

Definition 8.1.2 (Meta Program D(Π)) Let Π be a ground DLP. Then, the meta-
program D(Π) for Π consists of πin(Π) together with the modules of Figures 8.1, 8.2,
and 8.3 , i.e., D(Π) = πin(Π)∪πint ∪πap∪πsat ∪πsupp∪πu f loop∪πnoas. N

Example 8.1.2 Consider program P = {r1 : a← b,c. r2 : b← d. r3 : b← not e. f1 : c.
f2 : d.}, for which an intended AS is I = {b,c,d,e}. An explanation for I not being
an AS is that r1 is unsatisfied and e is unsupported. On the other hand, Gebser et al.
(2008) cannot say why {a,b,c,d} is an answer set because a is true due to d being

true, and to e being false. 4

Example 8.1.3 Consider now a program with a positive loop and an integrity con-
straint: Π2 = {r1 : a← b. r2 : b← a. ic :← a,b.} where both a and b are expected
to be unsupported. The evaluation of D(Π2) yields 4 models with desirable debug-
ging explanations, from which, one is: {violated(ic), −u f Loop(a), −u f Loop(b),
supported(a), supported(b), noAnswerSet} meaning that the ic is violated when the
atoms have support outside the loop. This model is predicted in Theorem 4 of Gebser
et al. (2008).

4

As we have shown in Example 8.1.2, these approaches do not answer the question
of why a given (possibly unintended) interpretation is indeed an AS.

8.1.2 Provenance

In turn, Viegas Damásio et al. (2013) present a declarative approach to extract why
not provenance information for logic programs. Using values of a freely generated
Boolean algebra as annotation tags for atoms, they specify WnP for positive and nor-
mal logic programs under the well-founded semantics, and relate it to abduction and
calculation of prime implicants. The authors then propose a generalisation to ASP.
These WnP formulae are used to determine provenance of literals true in a given
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model, and are shown in Viegas Damásio et al. (2013) to extend the approaches
of evidence graphs Pemmasani et al. (2004) and off-line justifications Pontelli et al.
(2009). In the remaining of this section, assume that a logic program Π over Herbrand
base HΠ is given.

Why-not provenance (WnP) is defined in Viegas Damásio et al. (2013) and
summarised below:

Definition 8.1.3 Let BΠ be the free Boolean algebra generated by propositional vari-
ables of the following form:

HΠ ∪ not(HΠ) ∪ {ri | 1≤ i≤ |Π|}

where for each rule of Π there is a unique and distinct rule identifier ri. Elements of
BΠ are the equivalence classes of propositional formulas under logical equivalence,
and the partial ordering of BΠ is entailment:

[φ ]� [ψ] iff φ |= ψ

Thus BΠ is a lattice, with join and meet defined respectively by

[φ ]⊕ [ψ] = [φ ∨ψ]

[φ ]⊗ [ψ] = [φ ∧ψ]

and let
[φ ]− [ψ] = [φ ∧¬ψ]

N

WnP is extracted with monotonic multivalued programs and a WnP program P

over HΠ is defined as:

Definition 8.1.4 Let a WnP program P be formed by rules of the form

A⇐ [J]⊗B1⊗ . . .⊗Bm with m≥ 0

and where [J] ∈ BΠ and A,B1, . . . ,Bm ∈ HΠ

An interpretation I for P is a mapping I : HΠ→ BΠ. The set of all interpretations is
a lattice with point-wise ordering.

An interpretation I satisfies a rule

A⇐ [J]⊗B1⊗ . . .⊗Bm

of program P iff
I(A)� [J]⊗ I(B1)⊗ . . .⊗ I(Bm)

iff
J∧ I(B1)∧ . . .∧ I(Bm) |= I(A)

Interpretation I is a model of P iff I satisfies all the rules of P. N

147



The monotonicity of all rules of P guarantees the existence of a least model MP

for it, and by mimicking the construction of a Gelfond-Lifschitz like operator, why
not provenance for logic programs under the well-founded semantics can be defined.

Definition 8.1.5 (Provenance program P
I ) is constructed from Π and WnP inter-

pretation I as follows:
• For the ith rule A← B1, . . . ,Bm,not C1, . . . ,not Cn (m+n≥ 1) in Π add prove-

nance rule
A⇐ [ri∧¬I(C1)∧ . . .¬I(Cn)]⊗B1⊗ . . .⊗Bm

to P
I ;

• ∀A ∈ HΠ, if A ∈Π (respectively, A /∈Π), add the following to P
I :

A⇐ [A] (respectively, A⇐ [¬not(A)])

Operator GΠ(I) = MP
I

returns the least model of P
I .

N

The rationale for P is: If a program P has some fact A (respectively, no fact for
A), WnP formula for A is

[(ri∧Whyi)∨ . . .∨ (r j ∧Why j)∨A]

(respectively, [(ri∧Whyi)∨ . . .∨ (r j ∧Why j)∨¬not(A)]).

A justification for A is [A] meaning there is a fact for A. Other justifications are
obtained using a rule rk and justifying why its body is true. The later case (denoted
before by ’respectively’) is better understood taking the justification for not A which
has WnP formula [¬(ri ∧Whyi)∧ . . .∧¬(r j ∧Why j)∧ not(A)], expressing that all
bodies must be falsified and [not(A)] holds.

Example 8.1.4 (Provenance program) Consider again the program in Exam-
ple 8.1.2: P = {r1 : a← b,c. r2 : b← d. r3 : b← not e. f1 : c. f2 : d.}, for which an
intended AS is I = {a : f alse,b : f alse,c : f alse,d : f alse,e : f alse}. Note that in the
second rule for b, corresponding to r3, ¬I(e) originates true.

Its corresponding provenance program is:

P=



a ⇐ [r1] ⊗b ⊗ c.
a ⇐ [¬not a].
b ⇐ [r2] ⊗d.
b ⇐ [r3∧ true].
b ⇐ [¬not b].
c ⇐ [c].
d ⇐ [d].


4
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Operator GΠ is anti-monotonic and therefore G2
Π

is monotonic having a least
model TΠ, corresponding to provenance information for what is true in the WFM,
while TUΠ = GΠ(TΠ) contains the WnP of what is true or undefined in the WFM
of Π. The following definitions capturing Why-not provenance information under
the well-founded semantics are then provided:

Definition 8.1.6 Let TΠ be the least model of G2
Π

, TUΠ = GΠ(TΠ), and A be an
atom. Let:

WhyΠ(A) = [TΠ(A)]
WhyΠ(not A) = [¬TUΠ(A)]

WhyΠ(unde f A) = [¬TΠ(A)∧TUΠ(A)]

N

Theorem 8.1.1 (Provenance Models for the Well-Founded Semantics) Let G /∈ Π

and F ∈ Π (respectively, R ∈ Π) be sets of facts (respectively, rules). Literal L ∈
WFM((Π\ (F ∪R))∪G) iff there is a conjunction of literals C |=WhyΠ(L) such that

removeFact(C)⊆ F,
keepFact(C)∩F = /0,
removeRule(C)⊆ R,
keepRule(C)∩R = /0,
missingFact(C)⊆ G, and
noFact(C)∩G = /0

where noFact(C) (respectively, missingFact(C)) are facts that cannot (respectively,
must) be added:

keepFact(C) = {A. | A ∈ F}
removeFact(C) = {A. | ¬A ∈ F}
keepRule(C) = {ri : A← Body | ri ∈ R and ri ∈Π}
removeRule(C) = {ri : A← Body | ¬ri ∈ R and ri ∈Π}
noFact(C) = {A. | not(A) ∈ G}
missingFact(C) = {A. | ¬not(A) ∈ G}

◦

We henceforth call repair indicating predicates (or simply repair predicates)
to: removeFact/1, keepFact/1, removeRule/1, keepRule/1, missingFact/1, noFact/1

Example 8.1.5 (From Viegas Damásio et al. (2013)) Consider again program Π in
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Example 8.1.2. Its WnP information is:

Why(a) = [r1∧ c∧ ((r2∧d)∨ (r3∧not(e))∨¬not(b))∨¬not(a)]
Why(not a)= [not(a)∧ (¬r1∨¬c∨ (not(b)∧

(¬r2∨¬d)∧ (¬r3∨¬not(e)))]

Why(b) = [(r2∧d)∨ (r3∧not(e))∨¬not(b)]
Why(not b)= [not(b)∧ (¬r2∨¬d)∧ (¬r3∨¬not(e))]

Why(c) = [c]
Why(not c)= [¬c]

Why(d) = [d]
Why(not d)= [¬d]

Why(e) = [¬not(e)]
Why(not e)= [not(e)]

The provenance for atom a taking the truth value f alse, and all other atoms taking
the value true is derived from the models of the following conjunction of provenance
formulae:

Why(not a)∧Why(b)∧Why(c)∧Why(d)∧Why(e) =

= not(a)∧¬r1∧ (r2∨¬not(b))∧ c∧d∧¬not(e)

Thus, translating this to our program repair predicates, we get that a fact for a
must be absent (noFact(a)), we have to remove rule r1, keep rule r2 or add fact b
(missingFact(b)), keep rules encoding facts for c and d, and add fact e.

Gebser et al. (2008) detect that rule r1 is unsatisfied and e is unsupported but
their approach does not determine provenance for a.

One way to make a true is to simply add a fact for it; alternatively r1 must be kept
in Π as well as facts c and b. This is achieved by keeping r2 and d, keeping r3 and not
adding e, or adding b. �

Still from Viegas Damásio et al. (2013), one obtains AS provenance from the
WFM provence as follows:

Definition 8.1.7 (Provenance for Answer Set Semantics) Let Π be a logic pro-
gram, and L a literal. The answer set why-not provenance for literal L is

AnsWhyΠ(L) =WhyΠ(L)∧
∧

A∈HΠ

¬WhyΠ(unde f A)

N

This is done basically by forcing all atoms to be either positive or negative, i.e., non-
undefined, and using the provenance determined for the well-founded semantics (see
examples in Section 8.2). Justifications are defined as:
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Definition 8.1.8 (Justifications for Well-Founded Semantics) Given a logic pro-
gram Π and a literal l, a justification J for l in Π as an implicant of the why
provenance formula WhyΠ(l) , i.e., a conjunction of literals such that J |= WhyΠ(l).
The implicant is prime if there is no other implicant J′ of WhyΠ(l) with less literals.
N

Note that it has been proved in Viegas Damásio et al. (2013) that evidence
graphs Pemmasani et al. (2004) and off-line justifications Pontelli et al. (2009) mod-
els can all be captured by WnP implicants, but some of our justifications cannot be
mapped by them.

Also related to provenance are causal chains Cabalar (2011); Cabalar & Fandiño
(2013); Cabalar et al. (2014); Cabalar & Fandinno (2017) where a multi-valued se-
mantics for normal logic programs whose truth values form a lattice of causal chains
is provided. A causal chain is a concatenation of rule labels reflecting some sequence
of rule applications. In Cabalar & Fandinno (2017), the authors have shown that the
existence of enabled justifications is a sufficient and necessary condition for the truth
of a literal. Furthermore, their causal justifications capture, under the well-founded
semantics, both Causal Graphs and Why-not Provenance justifications. They have
also established a formal relation between these two approaches under this semantics.

They also proved a direct correspondence between the semantic values they ob-
tain and the syntactic idea of proof and extrapolated those results to stable models of
programs with default negation, understanding the latter as “absence of cause”.

Theorem 8.1.2 (In Viegas Damásio et al. (2013)) Let P be a program, M an answer
set of P, and L a literal true in M. Then there is a conjunction C |= AnsWhyP(L) such
that C does not contain any negative literals for literals true in the WFM(P). For
every atom A ∈ M but which is undefined in WFM(P), C includes not(A)∧¬ri1 ∧
. . .∧¬rik where {ri1 , . . . ,rik} is the set of identifiers of all rules for A. ◦

The above theorem follows from the result in Pontelli & Son (2006) stating that
there is an offline justification with respect to M and the set of assumptions containing
the literals false in M that are undefined in the well-founded model of P. Moreover,
this justification does not have cycles. Therefore, by representing these assumptions
as a conjunction of literals, we can then construct such a C. In order to assume a literal
false we cannot add a fact for it (not(A)), and must remove all existing rules for it in
the program (¬ri1 ∧ . . .∧¬rik ).

8.2 Provenance Transformation for the Well-Founded Se-
mantics

We define here a novel program transformation, capable of obtaining all models of
WnP formulae, composed of two parts:

1. a set of common modules in Fig. 8.5, shared by specific transformations for
both the well-founded and the answer set semantics;
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2. Modules specific to the well-founded semantics in Fig. 8.6.

Its vocabulary is based in Gebser et al. (2008) to ease their subsequent combina-
tion. We only deal with the non-disjunctive case and ICs must be represented in their
explicit form (i.e., ic← Body,not ic.).

π f act = { f act(X)← rule(R),head(R,X),not hasBody(r).
hasBody(r)← rule(R),bodyP(R,A).
hasBody(r)← rule(R),bodyN(R,A).}

πRules = {keepRule(R)← rule(R),not removeRule(R).
removeRule(R)← rule(R),not keepRule(R).}

πFacts = {missingFact(X)← atom(X),not f act(X),not noFact(X).
noFact(X)← atom(X),not f act(X),not missingFact(X).}

Figure 8.5: Common Provenance Modules πcommon∪π f act ∪πRules∪πFacts

Module π f act defines facts as rules in the program having empty bodies. Module
π f act assumes that module πin of D(Π) (Fig. 8.4) will also be applied, since it depends
on all facts defined in πin. Modules πRules and πFacts are the generators for proposi-
tional variables used in the provenance formulae in the vocabulary of Theorem 8.1.1.
Note that in πRules the provenance propositional variables for facts HΠ are captured
by keepRule/1 since, for generality purposes, rule/1 represents both rule and fact
identifiers.

8.2.1 Provenance for the Well-Founded Semantics

A provenance program under the well-founded Semantics is captured by πw f s com-
bined with debugging modules πcommon and πin. Module πttu encodes the Γ2 operator
for the program subject to changes defined by pairs keepRule/removeRule and
missingFact/noFact, where predicate t/1 represents what is true (the outer Γ), and
tu/1 what is true or undefined (the inner Γ). The constraint discards models where
assignments are contradictory, ensuring that t(A)⇒ tu(A) for every atom A. The
module also uses an extra meta-predicate unde f/1 that allows to make an atom
undefined, a new kind of change not captured by the original provenance model
for well-founded semantics that is included for the sake of completeness. Module
πapttu determines when a rule is applicable in the outer (ap(R, t)), and inner steps
(ap(R, tu)), and generalises module πap of Gebser et al. (2008).

We use W as an abbreviation for the provenance WF transformation produced by
all relevant modules:

W (Π) = πin(Π)∪πcommon∪πw f s(Π)

152



πttu = {←atom(A), t(A),not tu(A).
t(H)←head(R,H),keepRule(R),ap(R, t),not unde f (H).
t(H)←atom(H),missingFact(H),not f act(H), not unde f (H).

tu(H)←head(R,H),keepRule(R),ap(R, tu).
tu(H)←atom(H),missingFact(H),not f act(H).
tu(H)←atom(H),unde f (H).}

πapttu(Π) = {ap(ri, t)← t(B1), . . . t(Bm),not tu(C1), . . . ,not tu(Cn).,
ap(ri, tu)← tu(B1), . . . tu(Bm),not t(C1), . . . ,not t(Cn).

| A← B1, . . .Bm,not C1, . . . ,not Cn ∈Π

is identified by ri.}

Figure 8.6: Meta transformation πw f s modules

We define a reparation formula and a repaired program for W (Π) in the following
way:

Definition 8.2.1 (Reparation Formula) Let Π be a program and M ∈ AS(W (Π)) be
an answer set of its provenance WF transformation. A reparation formula Rep(M)
is conjunction of repair predicates R in the vocabulary of Theorem 8.1.1, namely:
removeRule; keepRule; missingFact or noFact, s.t. R ∈M. N

Definition 8.2.2 (Repaired Program) Let Π be a program and M′ ∈ AS(W (Π)) be
an answer set of its provenance WF transformation. We construct from M′ a repaired
program Π′ by deleting from Π every rule identified by ri such that removeRule(ri) ∈
M′, and adding a fact A to Π′ for every missingFact(rA←) ∈M′. N

Lemma 15 (Reverse Provenance Models) Let Π be a program, M′ ∈ AS(W (Π)) be
an answer set of its provenance WF transformation, and

Model(M′) = {A | t(A) ∈M′}∪
{

not A | tu(A) 6∈M′
}
.

Let Π′ be a repaired program, constructed as in Definition 8.2.2. Then, Model(M′)
is a PSM of Π′. Conversely, if Π′ is a program obtained by deleting rules or adding
facts, then every PSM of Π′ has a corresponding AS in W (Π). ◦

Proof of Lemma 15.
(i) Module πttu encodes the Γ2 operator for the program subject to changes de-

fined by pairs keepRule/removeRule and missingFact/noFact, where predicate t/1
represents what is true (the outer Γ), and tu/1 what is true or undefined (the inner Γ).

(ii) The constraint in πttu discards models where assignments are contradictory,
ensuring that t(A)⇒ tu(A) for every atom A.
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Note also that module πapttu determines when a rule is applicable in the outer
(ap(R, t)), and inner steps (ap(R, tu)).

(←) Assume there is an interpretation M′ = ΓW (Π)(M′). Then by the definition of
an answer set, M′ ∈ AS(W (Π)). If we do the reduct W (Π)M′ we obtain the repaired
program divided by the set of T atoms with respect to M′ (the set {A | t(A) ∈ M′}).
The set of TU atoms with respect to M′ corresponds to the rules that are thus left in
the repaired program reduct with respect to to M′. Because of (ii), TU atoms have
a bi-univocal correspondence to atoms is Γ(T ) and if we inject the TU atoms in the
rules for T and inject the T atoms in the rules that are applicable for Γ(TU), because
we are applying the operator to a fixed point and obtain nothing new, this fixed point
is a model and is a PSM.

(→) Assume that there is a partial stable model Psm ∈ PSM(Π′) which does not
have a corresponding AS because either it is not a model, of because there is a smaller
PSM P′sm ∈ PSM(Π′) which is indeed a model. That implies that T/TU literals of
the smaller model P′sm would be contained in Psm which implies that, because by (ii) a
comparable model cannot differ only on TU atoms but rather also on the correspond-
ing T atoms, and because we know by (i) that T rules mimic the outer Γ2 operator
which corresponds to the answer sets and TU rules mimic the inner Γ operator and
correspond to every partial stable model, if Psm is not a partial stable model then it is
not a model of Γ then, it is also not a model of the outer Γ2 operator and thus not an
answer set of W (Π) which contradicts our assumption. �

Lemma 16 Given a logic program Π and a propositional model M of WnP formula
for a literal L, namely WhyΠ(L), then there is an AS M′ of W (Π) = πin(Π)∪πcommon∪
πw f s(Π) s.t. L ∈Model(M′) and:

1. If A ∈ HΠ such that fact A ∈Π and A ∈M, then keepRule(rA←) ∈M′ and
removeRule(rA←) 6∈M′.

2. If A ∈ HΠ such that fact A ∈Π and A 6∈M, then keepRule(rA←) 6∈M′ and
removeRule(rA←) ∈M′.

3. If not(A) ∈ HΠ such that no fact A does occur as a fact in Π and not(A) 6∈M,
then missingFact(A) ∈M′ and noFact(A) 6∈M′.

4. If not(A) ∈ HΠ such that no fact A does occur as a fact in Π and not(A) ∈M,
then missingFact(A) 6∈M′ and noFact(A) ∈M′.

5. If ri ∈M, then keepRule(ri) ∈M′ and removeRule(ri) 6∈M′.

6. If ri 6∈M, then keepRule(ri) 6∈M′ and removeRule(ri) ∈M′.

◦

Proof of Lemma 16. Let M be a model of the provenance formula WhyΠ(L),
then there is an answer set M′ ∈ AS(W (Π)) such that L ∈ Model(M′), hence
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M |= WhyΠ(L). Then, it is possible to construct a repaired program by removing
facts and rules such that ¬ri ∈ M and a ¬A ∈ M, respectively, and add facts such
that ¬not(A) ∈ M. This originates a repaired program Π\(F ∪R)∪G and we know
from theorem 8.1.1 that L ∈WFM(Π\(F ∪R)∪G). By Lemma 15, every PSM of a
repaired program belongs to AS(W (Π)).

The rest of the proof follows by construction of the repair predicates:

1. Because f act(A) is in the program, the only applicable rules making t(A)
and tu(A) true and thus making A true in the model, would imply that
keepRule(A) must be in the model and, because they are mutually exclusive,
removeRule(rA←) 6∈M′.

2. Because f act(A) is in the program, the only way to make t(A) and tu(A) false
and thus to make A false in the model, is to not have keepRule(rA←) in the
model and, because of the choice loop between keepRule and removeRule pred-
icates, removeRule(rA←) ∈M′.

3. Because f act(A) is not in the program, the only applicable rules making
t(A) and tu(A) true and thus making A true in the model, would imply that
missingFact(A) must be in the model and, because they are mutually exclusive,
noFact(A) 6∈M′.

4. Because f act(A) is not in the program, the only way to make t(A) and tu(A)
false and thus to make A false in the model, is to not have missingFact(A) in
the model and, because of the choice loop between missingFact and noFact
predicates, noFact(rA) ∈M′.

5. The same as item 1, where a fact is taken as a particular case of a rule.

6. The same as item 2, where a fact is taken as a particular case of a rule.

For the converse direction, extra answer sets of W (Π) may be generated. When
we fix the changes to Π all partial stable models (PSM) of the changed program are
obtained, i.e., all fixed points of Γ2, instead of solely the least fixed point of Γ2. These
models can be filtered out by guaranteeing minimality of the model.

Lemma 17 Let M′ be an AS of W (Π), such that there is no M′′ ∈ AS(W (Π)) for
which Model(M′′)⊂Model(M′) and s.t. coincide on the truth value of atoms on the
repaired program vocabulary. Let M be the model obtained from M′ by reverting
transformation in Lemma 16. Then, M is a model of WhyΠ(L) for each L ∈M′. ◦

Proof of Lemma 17. Take a model s.t. M′ ∈ AS(W (Π)). We know by Lemma 15
that M′ is the least PSM of repaired program Π′ which implies that it is the WFM of
program Π′. Now, because L ∈WFM(Π′), we know from Theorem 8.1.1 that there is
a conjunction of literals C ∈M s.t. C |=WhyΠ(L), and because C ⊆M, it is also true
that M |=WhyΠ(L). �
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Example 8.2.1 Recall now Example 8.1.2, to which we apply transformation W (Π)
where

πin(Π) = { head(r1,a). bodyP(r1,b). bodyP(r1,c). head(r2,b). bodyP(r2,d).
head(r3,b). bodyN(r3,e). head( f1,c). head( f2,d).}

W (Π) has 256 answer sets corresponding to all possible changes to Π by removing
or keeping rules, and adding or not facts. Of these answer sets, 6 correspond to
literal a being false and all other atoms true, and are in exact correspondence with
the propositional models of formula not(a)∧ ¬r1∧ (r2 ∨¬not(b))∧ c∧ d ∧¬not(e)
obtained in Example 8.1.5. All answer sets below contain the following set of facts1:

{noFact(a), removeRule(r1), keepRule( f1; f2), missingFact(e)}

which correspond to conjuncts not(a),¬r1,c,d,¬not(e) of the previous formula and
are filtered for readability:

{keepRule(r2;r3),missingFact(b)}
{keepRule(r2;r3),noFact(b)}
{keepRule(r2),removeRule(r3),missingFact(b)}
{keepRule(r2),removeRule(r3),noFact(b)}
{removeRule(r2),keepRule(r3),missingFact(b)}
{removeRule(r2;r3),missingFact(b)}

There are 151 possible AS explaining why a is true, corresponding to the 151 prove-
nance models for a: WhyΠ(a). 4

8.3 Provenance Transformation for the Answer Set Seman-
tics

Forbidding undefined atoms in the model and also disallowing models where tu/1
occurs and t/1 does not occur (as in Figure 8.7), adapts the WF transformation pre-
sented before to the answer set semantics. We call this meta-transformation πas(Π) or
simply S(Π).

πas(Π) = πin∪πcommon∪πw f s(Π)∪{ ← atom(A), tu(A), not t(A).
← atom(A), unde f (A).}

Figure 8.7: Meta-transformation πas(Π) or simply S(Π)

We need to define next an auxiliary notion of what is the why not provenance of
an intended AS:

1We denote a set of facts {a(X), ...,a(Y )} as a(X ; ...;Y ).

156



Definition 8.3.1 (Why-not provenance for an interpretation) Let Π be a logic pro-
gram and I an interpretation. The AS WnP for I is:

AnsWhyI
Π
=

∧
∀a∈I AnsWhyΠ(a)

∧
∀a6∈I AnsWhyΠ(not a)

N

Intuitively, the provenance formula for an interpretation I is the intersection of the
provenance formulae for its positive (and negative) atoms. We then select provenance
formulae containing ¬r for every r ∈ Π such that an atom A /∈ I belongs to Head(r)
which effectively avoids considering rules giving support to unintended atoms, and
thus providing unnecessary justifications.

We define next what we consider to be the concept of Justifications for Answer
Set Programming, starting with an auxiliary concept of exhaustive justifications which
are justifications such that:

(i) They contain atoms in the vocabulary of repaired programs that are true in the
answer set of the WFM transformation

(ii) They model the why-not provenance formulae computed for each of their literals.

Definition 8.3.2 (Exhaustive Justifications) Given a program Π, an answer set M ∈
AS(Π) and a literal L ∈ M, we define an exhaustive justification for literal L as the
conjunction C of all atoms in reparation formula Rep(M) that are true in AS(S(Π)).
N

Definition 8.3.3 (Justifications for Answer Set Programming) Let Π be a logic
program and AS(S(Π)) be its provenance answer sets. We define the prime impli-
cants of the union of the exhaustive justifications for these answer sets as being the
justifications for the answer sets of the original program Π. N

We recall that a prime implicant of a function is an implicant that cannot be cov-
ered by a more general (more reduced, i.e., with fewer literals) implicant.

The concept in Definition 8.3.3 forms a restricted class, containing interesting
WnP formulas. The following Theorems 8.3.1 and 8.3.2 follow from the above Lem-
mata 15, 16 and 17 for the well-founded semantics:

Theorem 8.3.1 (Provenance Models for the Answer Set Semantics) Given a logic
program Π, and an interpretation I, each answer set AS of transformed program
S(Π) can be transformed into another answer set AS′ corresponding to a model M ∈
AnsWhyI

Π
(Definition 8.3.1), by:

1. Replacing every ri of a non-applicable rule with ¬ri for literals not belonging
to the interpretation.

2. Applying Theorem 8.1.2 to literals L in a conjunction of literals C (i.e., L ∈C),
s.t. L = f alse and L is also undefined in WFM(Prec(AS′)).
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◦

Proof of Theorem 8.3.1.

1. By removing rules that are not applicable (substituting keepRule(r) by
removeRule(r) in AS obtaining AS′) we obtain an answer set of S(Π) by
selecting a different choice in πRules for r; nothing else changes in the model.
The obtained repaired program is two-valued and therefore by Lemma 17
there is a model of M |= WhyΠ(L) for each L ∈ M. Since for every literal L
in I it is the case that either WhyΠ(L) or WhyΠ(not L) then for each literal
AnsWhyΠ(L), and therefore it is also the case that AnsWhyΠ(I)

2. First note that program S(Π) is simply imposing extra integrity constraints on
W (Π), thus any answer set of S(Π) is an answer set of W (Π). If we add to Π an
extra rule i← a1, . . . ,am, not b1, . . . ,not bn (where i is a new atom, a1, . . . ,am

are the true literals in interpretation I and b1, . . . ,bn are the false literals in I)
and consider only the answer sets containing ri and not i the answer sets of the
altered program for which i holds are in exact correspondence with the answer
sets of S(Π) for which I holds.

According to Theorem 8.3.2 it is possible to construct the corresponding model
of AnsWhy(i) which is immediate to see that is also a model of AnsWhy(I).

Theorem 8.3.1 shows that we may get a justification that does not occur directly
as a model of the WnP formula but can be turned into a model in two different ways.
Example 8.3.2 illustrates this situation.

Theorem 8.3.2 (From Models of Provenance Formulae to Answer Sets of S(Π))
Given a logic program Π and an interpretation I, every model of its provenance
propositional formula AnsWhyI

Π
has a correspondence with an answer set of trans-

formed program S(Π). ◦

Proof of Theorem 8.3.2. Let Π′ be the program with the additional rule for i, as in
the previous theorem. Note that the models of AnsWhyΠ′(i) will correspond exactly to
models of AnsWhyI

Π
except that propositional variables for rule i may appear. We will

consider again those models M′ of AnsWhyΠ′(i) such that M′ |= ri∧not(ri). Now by
Lemma 16, we will have an answer set A′ of W (Π′) such that t(i) ∈ A′ and tu(i) ∈ A′.
By construction of W (Π′) it is the case that also t(a j) ∈ A′ and tu(a j) ∈ A′ for every
a j ∈ I, and t(bk) 6∈ A′ and tu(bk) 6∈ A′ for every bk 6∈ I. But this means that A′ is also
an answer set of S(Π′). Since the answer sets of S(Π′) for which i, ri, and not i are
true in exact correspondence to the answer sets of S(Π) for which all literals of I hold,
then by removing any atom true in A′ which have in arguments i or ri we obtain an
answer set of S(Π).

These models are exhaustive in the sense they provide all possible justifications
for an AS or all explanations for why an interpretation is not a model. These can then
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be minimised according to whatever criteria one might have, e.g., subset minimality,
minimal changes to the program, disallowing or preferring certain repair operations
over others etc., which can be captured by optimisation constraints supported by the
major ASP solvers.

Example 8.3.1 Consider now the program in Example 1 of Viegas Damásio et al.
(2013):

P =



r1 : a← c,not b.
r2 : b← not a.
r3 : d← not c,not d.
r4 : c← not e.
r5 : e← f .
r6 : f ← e.


This program contains a self-supported loop between atoms e and f . Atom c acts as a
guard for that loop, and is true iff the loop produces no results being the case that there
is an integrity constraint eliminating models which do not contain the guard c. This
atom c is then required, so to say, to activate the choice loop between a and b, hence
the program has answer sets A1 : {a,c} and A2 : {b,c}. Below are some of the 144
WnP models for A1 from which we select the ones presenting intuitive explanations
(model selection is clarified in the next section) from all of which the following literals
are omitted:

F = {keepRule(r2; r3; r5; r6), noFact(b; d; e; f )}

1. F ∪{removeRule(r1), keepRule(r4), missingFact(a;c)}

2. F ∪{removeRule(r1; r4), missingFact(a;c)}

3. F ∪{removeRule(r1), keepRule(r4), missingFact(a), noFact(c)}

4. F ∪{keepRule(r1), removeRule(r4), noFact(a), missingFact(c)}

5. F ∪{keepRule(r1; r4), missingFact(a; c)}

6. F ∪{keepRule(r1; r4), noFact(a), missingFact(c)}

7. F ∪{keepRule(r1; r4), missingFact(a), noFact(c)}

8. F ∪{keepRule(r1), removeRule(r4), missingFact(a; c)}

9. F ∪{keepRule(r1; r4), noFact(a; c)}

4

Keeping in mind that our approach captures program repairs, which can be viewed
as transformations that bring about a certain answer set, we compare our results next
with an example taken from Cabalar & Fandinno (2017), and use it to show the way
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prime implicants of these repair answer sets can be regarded as being the most infor-
mative way to present these alternatives. We recall that we call Justifications to these
prime implicants, as per Definition 8.3.3.

Example 8.3.2 (From Cabalar & Fandinno (2017)) Let PCab be the program con-
sisting on the following rules:

PCab =


r1 : a← not b.
r2 : b← not a, not c.
f1 : c.
r3 : c← a.
r4 : d← b, not d.


In their approach, the (standard) WFM of program PCab is two-valued and corre-
sponds to the unique (standard) stable model {a,c}. Furthermore, they obtain two
justifications of c with respect to this unique stable model: the fact c and the pair of
rules r1 and r3. Note that when c is removed {a,c} is still the unique stable model,
but all atoms are undefined in the WFM(PCab). Hence, r1 and r3 is a justification for
the unique stable model of the program but not with respect to its WFM.

As for our transformation, excluding model Πprune, for PCab produces the 36 an-
swer sets for interpretation I = {a,c}. Note that it is the case that these answer sets
correspond to the answer set of the original program and thus, as expected, contain
no error-indicating atoms but rather present the changes to the program that would
still allow us to obtain that answer set. Calculating their prime implicants (with the
Quine-McCluskey Method), one obtains the following justifications (presented as a
Boolean formula)

Imp1 =

KeepRule( f1) . MissingFact(a) . noFact(b) . noFact(b) ∨
KeepRule(r3) . MissingFact(a) . noFact(b) . noFact(b) ∨
KeepRule(r1) . KeepRule( f1) . noFact(b) . noFact(b) ∨
KeepRule(r1) . KeepRule(r3) . KeepRule(r4) . noFact(b) . noFact(c) ∨
KeepRule(r1) . KeepRule(r2) . KeepRule(r3) . noFact(b) . noFact(c)

If we remove the fact for c from the program (rule f 1, for fact ’c’), we then also
obtain 36 answer sets which as expected, contain no error-indicating atoms but rather
also present the changes to the program that would still allow us to obtain that an-
swer set. Calculating their prime implicants, one obtains the following justifications
(presented as a Boolean formula):

Imp2 =

MissingFact(a) . MissingFact(c) . noFact(b) . noFact(b) ∨
KeepRule(r3) . MissingFact(a) . noFact(b) . noFact(b) ∨
KeepRule(r1) . MissingFact(c) . noFact(b) . noFact(b) ∨
KeepRule(r1) . KeepRule(r3) . noFact(b) . noFact(b)
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The provenance formula for the corresponding answer set is:

[r1∧not b∧ (¬r2∨¬not a∨ c)∨¬not a]∧

¬ [r2∧not a∧¬c∨¬not b]∧

[(r3∧ r1∧not b∧¬r2)∨ (r3∧¬not a)∨ c]∧

¬[r4∧notd∧ (r2∧not a∧¬c∨¬not b)∨¬not d]

≡

[r1∧not b∧ (¬r2∨¬not a∨ c)∨¬not a]∧not b∧ [¬r2∨¬not a∨ c]∧

[(r3∧r1∧¬r2)∨(r3∧¬not a)∨c]∧notd∧[¬r4∨¬not d∨not b∧(¬r2 ∨ ¬not a ∨ c)]

This formula can be further simplified but we can already see that a model of the
prime implicants formula having:

r1∧ r2∧ r3∧ r4∧not a∧not d∧¬c∧not b

is not a model of the provenance formula, but we can also see that

r1∧¬r2∧ r3∧ r4∧not a∧not d∧¬c∧not b

is indeed a model of the formula (assuming b as f alse because the corresponding rule
is not applicable).

4

8.4 Unifying Provenance with Debugging

As shown before, our meta-transformation produces a model for each WnP model
and some can be aligned with debugging models calculated by Gebser et al. (2008).
These approaches complement each other: we produce provenance models for ex-
isting answer sets, while the debugging approach is capable of obtaining more spe-
cific results regarding the non-existence of answer sets, namely in the presence of
unfounded loops. So, we need to impose equivalence between predicates int/1 and
t/1 (see Fig. 8.8) and thus we introduce a new module πmap. The resulting models
consist of two parts, one stating what is the problem with the interpretation at hand
(corresponding to the debugging part) and the other offering a justification for why
this interpretation is a model of the program (corresponding to the provenance part).

Module πt−int ensures that atoms int/1 and t/1 are equivalent which effectively
maps provenance and debugging at the interpretation level, while πics guarantees that
violated ICs are corrected by removing them. The combined program is:

J(Π) = πint ∪πsat ∪πsupp∪πu f Loop∪πas(Π)∪πmap∪D′(Π)
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πt−int =

{
← atom(A), int(A), not t(A).
← atom(A), int(A), t(A).

}
πics =

{
← rule(R), violated(R), keepRule(R).}

}
πprune =


← rule(R), removeRule(R), not ap(R).
← atom(A), missingFact(A),

supported(A), not u f Loop(A).
← atom(A), noFact(A), supported(A), u f Loop(A).


Figure 8.8: Transformation πmap = πt−int ∪πics∪πprune

where in order to determine provenance for a given AS, D′(Π) is obtained from D(Π)
by substituting πap with πapttu and removing πnoas.

Intuitively, an interpretation is guessed (represented by int/1), and one then forces
the correspondence of t/1 with int/1. The repaired program (removing rules or
adding missing facts) is guessed, and generates the extension of t/1, and it is always
possible to trivially repair a program and obtain any desired interpretation by remov-
ing all rules and adding all missing facts as prescribed by the corresponding repair
predicates. We now look at error-indicating predicates to detect problems with Π.

Theorem 8.4.1 Let M be an AS of D(Π). Then, there is an AS M′ of meta-program
J(Π) such that

M \ ({noAnswerSet}∪{ap(ri),bl(ri) | ri is a rule identifier}) ⊆M′

◦

Proof of Theorem 8.4.1. We retain the two procedural modules of Gebser et al.
(2008), namely the ones detecting loops and violation of integrity constraints, while
mapping their other modules that detect unsupported literals (unsupported(X)) and
unsatisfied rules (unsatis f ied(R)) respectively with provenance signalling that a fact
is missing (missingFact(X)) and that a rule must be removed (removeRule(R)). We
furthermore impose in πmap that the basic interpretation literals int and t must be
mutually consistent which effectively substantiates our meta transformation as an ex-
tension to their setting and thus indexes our models to their models at the level of truth
assignments for literals in the interpretation. Because of this it suffices to observe that,
if one looks only at the non-disjunctive part of the corresponding rules, the conditions
in which unsupported(X) occurs are the same as the ones where missingFact(X)
occurs and the same goes for unsatis f ied(R) with respect to removeRule(R). �

So, we are able to detect every error pointed out by error-indicating predicates
of Gebser et al. (2008). There is however a subtle difference: we prune debugging
answer sets which are not supported by the repaired program. Their exact relationship
is captured next.
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Theorem 8.4.2 (Mapping) Let M′ be an answer set of J(Π). Then,
• If unsatis f ied(ri) or violated(ri) ∈M′ then removeRule(ri) ∈M′;
• If unsupported(ri) ∈M′ then missingFact(ri) ∈M′;
• If u f Loop(a1..an) ∈M′ then ∃i ∈ [1, . . . ,n] such that missingFact(ai) ∈M′.

Also,
∃M′′ ∈ AS(J(Π)) s.t. u f Loop(a1..an) ∪ missingFact(a1..an) ∈M′′.

◦

Proof of Theorem 8.4.2. This is necessarily the case because the t/1 and int/1
literals are mapped one to one by module πmap which forces the literals to correspond
exactly as stated in the theorem. �

However, some provenance answer sets may be considered redundant (even
though correct) and we present module πprune in Fig. 8.8, which can be used to prune
these. It disallows removing blocked rules (bl/1), adding facts which are not in
unfounded loops but are already supported, and forces a missingFact to be added for
at least one atom belonging to each detected unfounded loop.

Example 8.4.1 Take again the program in Example 8.3.1 and include relevant mod-
ules of transformation D. We show next a sample of its answer sets, having in common
the following set of facts:

F =


keepRule(r1;r2;r3;r4;r6),
unsupported(a;b),
missingFact(a;b),
noFact(c;e)


F ∪

{
removeRule(r5),unsupported(d; f ),unsatis f ied(r5),missingFact(d; f )

}
F ∪

{
removeRule(r5),unsatis f ied(r5),supported(c;e),noFact(d),

unsupported( f ),missingFact( f )

}
F ∪

{
keepRule(r5),supported(c),unsupported(d),missingFact(d),noFact( f )

}
F ∪

{
keepRule(r5),supported(c),noFact(d; f )

}
4

8.5 Conclusions and Future Work

We provide a transformation to compute provenance models under the well founded
and answer set semantics by computing the answer sets of meta-programs that cap-
ture the original programs and include some necessary extra atoms. We do this while
preserving compatibility with the previous work of Viegas Damásio et al. (2013) and
computing the models directly without first obtaining the provenance formulas for cer-
tain interpretations. This enables computing provenance answer sets in an easy way by
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using answer set solvers. We then introduce the concept of justifications as being the
prime implicants of these answer sets. Having this, we align provenance and debug-
ging answer sets in a unified transformation and show that the provenance approach
generalises the debugging one, since any error has a counterpart provenance but not
the other way around. Since the proposed method is based on meta-programming,
we extended an existing tool Gebser et al. (2007b) and developed a proof-of-concept
(http://cptkirk.sourceforge.net) built solely to allow computing our models.

Our mapping allows generating answer sets capturing errors and justifications for
(intended) models. As expected, they are exponential. One direction to explore is to
obtain prime implicants by optimising these models using reification and then subset
inclusion preference ordering Gebser et al. (2007a, 2011b) via a saturation tech-
nique Eiter & Gottlob (1995b). Note that deciding if an AS is optimal for some
disjunctive logic program is a Π

p
2 -complete problem. Alternative offline justifica-

tions Pontelli et al. (2009) (which are also exponential) can be extracted from models
of J(Π) by adding extra constraints to the transformed program guaranteeing: only
one rule is kept for true atoms (providing support); literals assumed false have all
rules removed (which are undefined in the WFM); false literals have to keep all their
rules; and the dependency graph is acyclic. The major difference to Pontelli’s ap-
proach is that we provide justifications for the full model from which we may obtain
their justifications, but our approach subsumes it since we are capable of finding more
justifications as well as errors in the program.
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Chapter 9

Application Scenario:
Characterising Conflicts in Access
Control Policies

The emergence of technologies such as service-oriented architectures and cloud com-
puting, nowadays, allows us to perform business services more efficiently and effec-
tively. Access control is an important mechanism for achieving security requirements
in such information systems, which are described by means of access control policies
(ACPs).

However, these security requirements cannot be guaranteed when conflicts occur
in these ACPs. Furthermore, the design and management of access control policies is
often error-prone due not only to the lack of a logical and formal foundation but also
to the lack of automated conflict detection and resolution.

We use a meta-model MP Barker (2010) to describe ACPs as logic programs,
identify their basic conflict types and characterise them in terms of (relativised) strong
equivalence of logic programs. This characterisation allows for the automatic identi-
fication of such conflicts among other reasoning tasks.

9.1 Introduction

We begin by clarifying the term policy in the context of access control which is some-
what ambiguous in available literature. Next we describe different aspects of access
control policies that are of general interest to us and serve as motivation for our ap-
proach.

Still in this section we describe the state of the art relevant for us in the area of
logic based access control, particularly meta-models for access control, keeping in
mind the way it reflects in answer set programming Gelfond & Lifschitz (1988) in
particular.

We also present an overview of the relevant work in the context of logic programs
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as well as, towards the logical characterisation of conflicts in access control, an intro-
duction to strong equivalence in the context of logic programs due to Lifschitz et al.
(2000) and a relativised version of this notion due to Eiter et al. (2007).

In the following section we start by identifying and characterising different ac-
cess control conflicts. We then discuss the interplay of exceptions in access control,
particularly with our translation to answer set programming, with default negation in
logic programming. After this, there is a section where we discuss conflict resolution
methods and end with conclusions and future work.

9.1.1 Hierarchies, Inheritance and Exceptions

For a long time now, computer security models have supported some forms of abstrac-
tion regarding the authorisation elements, to formulate security policies concisely. For
example, users can be organised in groups. The authorisations granted to a user group
is applicable to all of its member users, and authorisations concerning a class of ob-
jects apply to all of its member objects. This is typically modelled via an authori-
sation hierarchy derived from the hierarchies of subjects, resources, and operations
(basic hierarchies).

The authorisation hierarchy can be exploited to formulate policies in a incremental
and top-down fashion. Starting with an initial set of general authorisations that can be
progressively refined with more specific authorisations that in turn introduce excep-
tions to the general rules. A benefit that come together with this is that policies may
be expressed concisely and allow easy management. Exceptions make inheritance a
defeasible inference in the sense that inherited authorisations can be retracted (or
overridden) as exceptions are introduced. As a consequence, the underlying logic
must be non-monotonic.

Exceptions require richer authorisations. It must be possible to say explicitly
whether a given permission is granted or denied. Then authorisations are typically
extended with some form of sign for granted permissions and some form of negation
for denials. It may easily happen that two conflicting authorisations are inherited from
two incomparable authorisations, therefore a policy specification language featuring
inheritance and exceptions must necessarily deal with conflicts.

A popular conflict resolution method — called denial takes precedence — con-
sists of overriding the positive authorisation with the negative one (i.e., in case of
conflicts, authorisation is denied), but this is not the only possible approach. In Al-
Kahtani & Sandhu (2004) the analysis includes user authorisation, conflict detection
among rules, conflict resolution polices, the impact of negative authorisation on role
hierarchies and an enforcement architecture.

Recent proposals have worked towards languages and models that are able to ex-
press, in a single framework, different inheritance mechanisms and conflict resolution
policies. Logic-based approaches, so far, are the most flexible and expressive.
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9.1.2 Access Control Policies

For a long time now, logic programming and rule-based reasoning have been proposed
as a strong basis for policy specification languages. However, the term “policy” has
never been given a unique meaning. In fact, it is used in the literature in an ambiguous
and broad sense that encompasses at least the following types:

Access Control Policies are policies that pose constraints on the behaviour of a sys-
tem. They are typically used to control permissions of users/groups while ac-
cessing resources and services.

Trust Management is based on policy languages used to collect user properties in
open environments, where the set of potential users spans over the entire web
and by definition is a priori partially unknown.

Action Languages are used in the specification of reactive policies to execute actions
like event logging, notifications, etc. Authorisations that involve actions and
side effects are sometimes called provisional.

Action languages typically are sorted into two classes: action description lan-
guages and action query languages. Examples of the former include STRIPS,
PDDL, Language A (a generalisation of STRIPS), Language B (an extension of
A) and Language C (which adds indirect effects also, and does not assume that
every fluent is automatically “inertial”).

There are also the Action Query Languages P, Q and R, being the case that there
are conversions from these languages into ASP, from which we particularly
highlight the translation for action language C.

Business Rules are “statements about how a business is done”. These are used to for-
malise and automate business decisions as well as for efficiency reasons. They
can be formulated as reaction rules, derivation rules, and integrity constraints.

We will use the term Policy as being an Access Control Policy.

In Kolovski (2007); Bonatti et al. (2009), the reader can find good introductory
surveys to logic-based ACPs. Kolovski (2007) is limited to the presentation of a DL-
based formalism to represent XACML1 policies, which is not formally characterised,
while Bonatti et al. (2009) considers a more general overview, including XACML.

Motivation The need for characterising conflict factors is not only due to the non-
monotonic nature of access control in ASP but also to the fact that some policies
are distributed, for instance in the form of different logic programming modules, and

1XACML stands for ”eXtensible Access Control Markup Language”. The standard defines a declara-
tive fine-grained, attribute-based access control policy language, an architecture, and a processing model
describing how to evaluate access requests according to the rules defined in policies.
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their interplay can as such derive conflicting conclusions. The characterisations we
present have the potential to improve the usage of answer set programming in an
access control framework by adding a further level of policy assurance.

We present next an example of an access control policy where a user is represented
by its credentials, each serving different purposes and each with different attributes.
The example contains only one user and one credential to improve readability. Each of
the aforementioned attributes need to be trusted by an entity in order to be acceptable
for a certain purpose. Subscriptions are available for different resources. There are
then also rules for deciding whether a user is authenticated, whether a credential is
valid, or to check if the policy grants access to a resource for a given purpose.

Example 9.1.1 presents a very simple access control policy in the form of a pos-
itive logic program where the the choice rule could, in the context of this positive
program, be replaced by selectCred(X)∨nselectCred(X)← credential(X).

Several limitations arise from directly implementing ACPs as positive logic pro-
grams. One comes from the fact that it is important to have a meta-model to describe
and possibly (inter)change this policy. Others result from the fact that more expressive
power is needed and features such as default knowledge and exceptions are desirable
and can be included, thus making it non-monotonic.

Negative authorisation is also described in the literature as being a necessary
feature which also leads to problems.

Example 9.1.1 The following is an example of an access control policy in ASP 2:

allow(download,Resource) :− public(Resource).
allow(download,Resource) :− authenticated(User),

hasSubscription(User,Subscription),
availableFor(Resource,Subscription).

authenticated(User) :− valid(Credential),
attr(Credential,name,User).

valid(Credential) :− selectCred(Credential),
attr(Credential, type,T ),
attr(Credential, issuer,CA),
trustedFor(CA,T ).

2Example 9.1.1 was taken and then adapted from http://asptut.gibbi.com Eiter et al. (June
2006).
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hasSubscription(“Joao”, law basic).
hasSubscription(“Joao”,computer basic).

availableFor(“nmr12.pd f ”,computer basic).

trustedFor(“NewUniversity”, id).
trustedFor(“PT Government”,ssn).

%resources r(at1, ...,atn);
credential(cr01).
attr(cr01, type, id).
attr(cr01,name,”Joao”).
attr(cr01, issuer,”NewUniversity”).

%Choice rule used to decide if a credential is used or not
{selectCred(X)} :−credential(X).

4

This program has two answer sets, from which we filter predicates selectCred,
valid, authenticated and allow, namely:

AS1 = { selectCred(cr01),valid(cr01),authenticated(“Joao”),
allow(download,”nmr12.pd f ”)}

AS2 = { }

9.1.3 TheMP model

Over the years, research in access control has proposed a number of different models
and languages in which terms authorisation policies can be defined. Despite the vari-
ety of proposed access control models described in the literature, most of the existing
access control models are based on a small number of primitive notions.

In Barker (2010) the authors describe the interpretation, syntax and semantics
that are adopted in their proposed access control meta-modelMP, which attempts
to identify the aforementioned small number of primitive notions and that we will use
throughout this chapter.

In order to define MP, a prior version called meta-model M Barker (2009) is
extended to accommodate data subjects, data controllers, denials of access, the notion
of purpose, contextual accessibility criteria and the flexible specification of permitted
recipients of a data subject’s personal data. For that, the following core (interpreted)
relations of theMP model (defined with respect to their many-sorted language) are
used:

• PCA, a 4-ary relation.

• ARCA, a 5-ary relation.
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• ARCD, a 5-ary relation.

• PAR, a 3-ary relation.

• PRM, a 3-ary relation.

The semantics of the n-ary tuples in PCA, ARCA, ARCD, PAR, and PRM are,
respectively, defined as:

• (kds,kdu,c, p) ∈ PCA if and only if a data user kdu ∈ Kdu is assigned to the
category c ∈C for the purpose p ∈ P according to the data subject kds ∈ Kds.

• (kds,a,r,c, p)∈ ARCA if and only if the permission (a,r), with respect to action
a∈ A and resource r ∈ R, is assigned to the category c∈C for the purpose p∈ P
according to the data subject kds ∈ Kds.

• (kds,a,r,c, p)∈ ARCD if and only if the permission (a,r), with respect to action
a ∈ A and resource r ∈ R, is denied to the category c ∈C for the purpose p ∈ P
according to the data subject kds ∈ Kds.

• (kdu,a,r)∈ PAR if and only if a data user kdu ∈ Kdu is authorised to perform the
action a ∈ A on the resource r ∈ R.

• (kds,r,m) ∈ PRM if and only if the data subject kds ∈ Kds “controls” access to
the resource r ∈ R and kds asserts that the meta-policy m ∈M applies to access
on the resource r.

For representing hierarchies of categories, the following definition is included as
part of the axiomatisation ofMP (where ’ ’ denotes an anonymous variable):

contains(C,C)← dc(C, ).
contains(C,C)← dc( ,C).
contains(C′,C′′)← dc(C′,C′′).
contains(C′,C′′)← dc(C′,C′′′),contains(C′′′,C′′).

Authorisation may then be generically defined inMP terms as:

par(Kdu,A,R)← prm(Kds,R,C), pca(Kds,Kdu,C′,P),
contains(C,C′),arca(Kds,A,R,C,P).

Intuitively meaning that the entity who is responsible for the resource asserts that
the policy C applies to access on the resource R, while the data user is assigned to
the category C′ for the purpose P, category which is contained and C and for which
category, permission is assigned for a specific purpose.

In this instance, a closed policy is specified as being enforced by all data subjects,
and contains is a definition of a partial ordering of categories that are elements in the
transitive-reflexive closure of a “directly contains” (dc) relation on pairs of category
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identifiers dc(ci,c j), such that: Π |= dc(ci,c j) if and only if the category ci ∈C (ci 6=
c j) is senior to the category c j ∈C in a category hierarchy defined in Π and there is no
category ck ∈C such that Π |= dc(ci,ck)∧dc(ck,c j) holds where ck 6= ci and ck 6= c j.

Although the partial ordering of categories is often a feature of access control
models, it should be clear that other relationships between categories may be easily
defined within theMP model.

We point out that this meta-model is formally well defined and is essentially based
on the use of just five key interpreted relations (the pra, pca, arca, arcd and prm
relations) and two proper axioms that define par and contains.

For further details we refer the reader again to Barker (2009, 2010).

Example 9.1.2 (Translation toMP) The following is the translation of Example
9.1.1 intoMP meta-model, encoded as a logic program:

arca(public,download,Resource,all,any):-

prm(public,Resource,MetaPolicy ).

arca(public,download,Resource,all,SubscriptionType):-

pca(ds,User,authenticated,generic),

pca(ds,User,hasSubscription,SubscriptionType),

par(SubsriptionType,availableFor,Resource).

pca(DS,User,authenticated,generic) :-

pca(DS,DU,Credential,valid),

prm(ds, attr(cr01,name,User), metapolicy1).

pca(DS,DU,Credential,valid) :-

par(DU,selectCred,Credential),

prm(DS, attr(CR,type,Type),MP),

prm(DS, attr(CR,issuer, Issuer),MP),

par(Type,trustedFor,Organisation).

par("Joao",hasSubscription,law_basic).

par("Joao",hasSubscription,computer_basic).

par(computer_basic,availableFor,"nmr12.pdf").

par(id,trustedFor,"New University").

par(ssn,trustedFor,"PT Government").

par(du,credential,cr01).
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prm(ds,attr(cr01,type,id),metapolicy1).

prm(ds,attr(cr01,name,"Joao"),metapolicy1).

prm(ds,attr(cr01,issuer,"New University"),metapolicy1).

%Credential selection

{par(DU,selectCred,Credential)} :- par(DU,credential,Credential).

4

9.2 Strong Equivalence of Logic Programs

Towards the logical characterisation of conflicts in access control, we point to the
introduction to the logic of here-and-there in Chapter 2 and introduce next the notions
of strong and relativised equivalence in the context of logic programs due respectively
to Lifschitz et al. (2000) and Eiter et al. (2007).

Strong Equivalence Theorem A program π is unary if, in every rule of π , the head
is an atom and the body is either > or an atom. In the statement of the theorem, for-
mulas and rules are identified in the sense of nested logic programs Lifschitz et al.
(1999) without strong negation and with propositional formulas. Accordingly, pro-

grams become a special case of theories, and we can talk about the equivalence of
programs in the logic of here-and-there.

Theorem 9.2.1 (Lifschitz et al. (2000)) For any programs π1 and π2 that are
strongly equivalent (π1 ≡s π2), the following conditions are equivalent:

(a) for every program π , programs π1tπ and π2tπ have the same answer sets,

(b) for every unary program π , programs π1 tπ and π2 tπ have the same answer
sets,

(c) π1 is equivalent to π2 in the logic of here-and-there.

◦

The fact that (b) implies (a) shows that the strong equivalence condition we are
interested in (“for every π , π1tπ is equivalent to π2tπ”) does not depend very much
on what kind of program π is assumed to be: it does not matter whether π is re-
quired to belong to the narrow class of unary programs or is allowed to be an arbitrary
program with nested expressions. The fact that (a) is equivalent to (c) expresses the
correspondence between the strong equivalence of logic programs and the equivalence
of formulas in the logic of here-and-there.
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9.2.1 Relativised Notions of Strong and Uniform Equivalence

In what follows, we revise the notion of relativised strong equivalence (RSE) and
relativised uniform equivalence (RUE) due to Eiter et al. (2007).

Definition 9.2.1 (Relativised Strong and Uniform Equivalence) Let P and Q be
programs and let A be a set of atoms. Then,

(i) P and Q are strongly equivalent relative to A, denoted P≡A
s Q, iff P∪R≡ Q∪R,

for all programs R over A;

(ii) P and Q are uniformly equivalent relative to A, denoted P ≡A
u Q, if and only if

P∪F ≡ Q∪F, for all sets of (non-disjunctive) facts F ⊆ A.

N

Observe that the range of applicability of these notions covers ordinary equivalence
(by setting A = /0) of two programs P , Q, and general strong (respectively, uniform)
equivalence (whenever Atm(P∪Q)⊆ A). Also the following relation holds:

For any set A of atoms, A′ = A∩Atm(P∪Q). T hen,

P≡A
e Q holds, if and only if P≡A′ Q holds, for e ∈ {s,u}.

They show that RSE shares an important property with general strong equiva-
lence: In particular, they state that it appears that for strong equivalence, only the
addition of unary rules is crucial. That is, by constraining the rules in the set in Defi-
nition 9.2.1 to unary rules does not lead to a different concept.

9.3 Conflict types in Access Control and their Characteri-
sation

Prohibition is essential to achieve the security requirements of modern information
systems. However, defining prohibition in access control model will give rise to con-
flicts. A policy conflict occurs when the objectives of two or more policies cannot
be simultaneously met. Wang et al. (2010) have summarised three types of policy
conflicts in their model, defined as modality, redundancy and potential conflicts.

9.3.1 Modality Conflict

Modality conflicts are inconsistencies in the policy specification which may arise
when two or more policies with opposite modalities refer to the same authorisation
subjects, actions and objects.

Simply put, a modality conflict occurs when there are both allow and deny deci-
sions with the same authorisation subject, action and objects.
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Definition 9.3.1 Let π be an access control policy. We say that there is a modality
conflict if:

π |=b Allow(X)∧Deny(X)

Where |=b denotes brave consequence. N

Due to the introduction of an arcd predicate to represent ¬ arca, in ASP andMP

terms, a modality conflict means having both arca (allow) and arcd (deny) predicates
with the same arguments in the same model.

9.3.2 Redundancy Conflict

It is known that assigning priorities (which implies an order, be that total or only par-
tial) to access control policies can solve modality conflicts. However, this method
can lead to the emergence of policy modules that never apply, which can be called
redundant policies. Even though a redundancy conflict has no influence in the en-
forcement of the access control policies, it should be identified and dealt with because
a redundant policy often reflects a mistake that was made while describing security
requirements.

Definition 9.3.2 (Redundancy inMP) Let π be an access control policy and Π a
set of access control policies. Assuming that the priority of Π is higher than the
priority of π (i.e., Π≺ π), we have a redundancy conflict inMP terms when, for each
subject, action and object in π , arca literals are derived such that:

π |=c arca(ds,a,r,c, p) and Π |=c arca(ds,a,r,c, p)

or arcd literals are derived such that:

π |=c arcd(ds,a,r,c, p) and Π |=c arcd(ds,a,r,c, p)

N

Thus, an access control policy π is a redundant policy if a permission or a prohi-
bition, having the same authorisation subject, authorisation action, and authorisation
object as π , is always (|=c denotes cautious consequence)3 derived from the set of
access control policies with higher priority than the priority of π4.

Definition 9.3.3 (Redundancy in terms of RSE) Let Π be a set of access control
policies and π be a policy such that Π≺ π . A redundancy conflict occurs when:

π ∪Π≡A
s Π

Thus, if π ∪Π is strongly equivalent (relative to A) to Π, where A is the language of
MP.

N
3We consider here the well-known concepts of brave and cautious (skeptical) consequence.
4Note that the meta-model MP does not allow directly the specification of order between policies

but this can be easily done in ASP.
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This characterisation of redundancy in terms of strong equivalence has been noted
in the past e.g., in Eiter et al. (2004).

9.3.3 Potential Conflict

Notice that the above two types of conflict are inconsistencies related to the authorisa-
tion subject, action and object. There is another type of conflict between two policies
having overlaps in their condition expression. It is the case that there are no modality
nor redundancy conflicts between the two polices, but when their associated condi-
tions are simultaneously satisfied, e.g., by adding logic programming modules that
satisfy the bodies of specific rules, the two policies result in a modality conflict or
redundant conflict. Consequently, potential conflicts are highly pervasive in access
control systems.

According to the definition, when some policies have the same condition literals,
where a condition is a conjunctive formula P1∧·· ·∧Pn and each Pi represents a generic
well-formed formula. One can automatically infer the existence of potential conflicts
among these policies.

Definition 9.3.4 (Potential Conflict) A potential conflict occurs between two poli-
cies πi and π j inMP terms if:

1. πi derives a permission (in the form of an arca literal) and π j derives a prohi-
bition (in the form of an arcd literal),

2. There are overlaps such as: condition(π j)∩ condition(πi) 6= /0, and

3. There is no policy πk in the policy set such that

condition(πi)∧ condition(π j)→ condition(πk)

and πk derives a prohibition when

priority(πi) ≺ priority(π j) ≺ priority(πk)

or πk derives a permission when

priority(π j) ≺ priority(πi) ≺ priority(πk).

N

Potential conflicts have also been analysed in the extension of Lobo’s PDL with
ordered disjunction by Bertino (2005), where logic programming with ordered dis-
junction was used as a way to prioritise action execution in case conflicting actions
were triggered by the policy.
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9.4 Default Negation as a Cause of Conflicts

Throughout this section we will present examples of programs which we start by
formulating as sets of default rules and then present their translation into ASP and their
underlying characterisation. Knowledge is represented in default logic Reiter (1987)
by a default theory 〈D,W 〉 consisting of a set of defaults D and a set of formulas W .
Each default rule like:

A : B1, . . . ,Bn

C
where A is a prerequisite, B1 . . .Bn are justifications and C is a conclusion, is repre-
sented in LP as a rule

C← A, not ¬B1, . . . , not ¬Bn.

There is work in the literature about intuitionistic interpretations of default
logic Cabalar & Lorenzo (2004). In Woo & Lam (1992), default rules are used to
provide semantics to closed and open policy bases for the case where a policy is
represented as a 4-tuple A = (P+,P−,N∗,N−) (akin to Routley models) into which
explicit approvals and denials as well as undetermined decisions can be fitted. We
leave a model theoretic characterisation of conflicts in terms of these Routley models
(or SE-models) for future work.

9.4.1 Characterising Conflicts in Terms of Default Theories

Some conflicts in a default theory cause the non-existence of answer sets. We call such
conflicts inconsistencies, incoherencies and conflicts. A default theory is conflicting
if it has no default extension.

Conflicts may be categorised into four different types, namely: default rule with
exception, omission of mandatory choice, need for action rules and incoherence: odd
negative loops, which we define and then capture in the examples, are presented next.
We also show the way in which they can be reflected as access control conflicts trans-
lated to conflicting ASP programs and the way to capture them with the aforemen-
tionedMP meta-model:

Default Rule with Exception A common conflict in the context non-monotonic
knowledge bases occurs when there is a default rule and an exception, in the form of
a fact or some other rule, that contradicts it.

Definition 9.4.1 (Default rule with exception.) Let T = 〈D,W 〉 with D = { : B
¬A} and

W = {A} be a default theory. In T , a contradiction occurs between W and the conse-
quents of applicable defaults. N

Example 9.4.1 Consider that Pedro is applying for a new role as software security
validation engineer. The company for which he is applying has a rule forbidding
access to its code to non employees. However, as part of the interviewing process,
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the company wants to allow Pedro access the code. The following captures this as an
ASP program reflecting this conflict:

P1 =


allow analysis(pedro,code).
candidate(pedro).
¬allow analysis(X ,code)← not employee(X).


4

Where the following is its translation toMP:

PM
P

1 =


arca(ds,read,code, pedro,analysis).
pca(ds, pedro,candidate,analysis).
arcd(ds,read,code, pedro,analysis)←

not pca(ds, pedro,employee,analysis).


Considering theMP meta-model, Example 9.4.1 derives a contradiction because

MP |=b arca(ds,read,code, pedro,analysis)∧arcd(ds,read,code, pedro,analysis).
and hence, its only answer set contains these two contradicting atoms:

arca(ds,read,code, pedro,analysis)

and
arcd(ds,read,code, pedro,analysis)

Omission of Mandatory Choice When two different default rules contradict each
other, an exception (or a choice), must be made between one of the the two.

Definition 9.4.2 (Omission of Mandatory Choice) Let T = 〈D,W 〉, where D =
{ :B

C , :D
¬C} and W = /0 be a default theory. In T , conflicts occur in the consequents of

applicable defaults. N

Example 9.4.2 In its knowledge base, the same company refers to persons as em-
ployees or candidates.

A company might want to allow access to its premises if it does not explicitly know
that someone is not an employee and conversely, allow access to its premises if it does
not explicitly know that someone is a candidate. Pedro is a person, known to the
company, but for some reason he is not registered in the knowledge base either as an
employee or as a candidate.

The following is an example of an ASP program reflecting this conflict:

P2 =


person(Pedro).
allow entrance(X , premises)← person(X), not ¬employee(X).
¬allow entrance(X , premises)← person(X), not ¬candidate(X).


4
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Where the following is its (simplified) translation toMP:

PM
P

2 =


arca(ds,enter, premises,X ,general)←

not ¬pca(ds,X ,employee,general).
arcd(ds,enter, premises,X ,general)←

not ¬pca(ds,X ,candidate,general).


Considering theMP meta-model, Example 9.4.2 presents a contradiction because

its only answer set contains arca and arcd predicates with the same arguments.

Need for Action Rules or Preferences In certain cases it is the case that one would
like to be able to introduce the concepts of precedence between rules or, alternatively
a notion of side effects that are associated to rules.

We define next a conflict that can occur when these are not somehow modelled
into the framework.

Definition 9.4.3 (Need for Action Rules or Preferences) Let T = 〈D,W 〉, where
D = { :¬B

A } and W = {A→ B} be a default theory. In T , conflicts occur between the
justifications of used defaults and the consequences of formulae in W. N

Example 9.4.3 To solve the problem in the previous example, the company wants to
automatically register every person that it knows as being a candidate if it is not an
employee. Operating in a difficult market, it wants further that every candidate (after
passing a certain triage) to become an employee. The following is an example of an
ASP program reflecting this conflict:

P3 =

{
candidate(X)← person(X), not employee(X).
employee(X)← person(X), candidate(X), triage(X).

}
Where the following is its translation toMP:

PM
P

3 =

{
pca(ds,X ,candidate,generic)← not pca(ds,X ,employee,generic).
pca(ds,X ,employee,generic)← pca(ds,X ,candidate,generic).

}
4

Considering theMP meta-model, Example 9.4.3 presents a conflict because it has
no answer sets. This is typically solved with the introduction of action languages such
as the ones described in the introduction that, for the aforementioned rule:

candidate(X)← person(X), not employee(X).

enforcing candidate(X) as a side effect.
Assigning a higher priority to such rule would also be a potential solution to this

problem.
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Incoherences: Conflicts can also be defined as incoherencies as we presented in
Chapter 7, in the sense of Eiter et al. (2010b), in terms of odd negative loops such as
the well known barber’s paradox.

Definition 9.4.4 (Incoherence: Odd negative loops) Let T = 〈D,W 〉, where D =
{ :¬A

A } and W = {} be a default theory. In T , incoherence results because there is a
dependency between the justifications of used defaults and the consequents of used
defaults). N

Example 9.4.4 The following is an example of an incoherent ASP program reflecting
this conflict:

P4 =

{
employee(pedro).
allow entrance(X)← employee(X), not allow entrance(X).

}
Where the following is itsMP description:

PM
P

4 =


pca(ds, pedro,employee,generic).
arca(ds,enter, premises,X ,generic)← pca(ds,X ,employee,generic),
not arca(ds,enter, premises,X ,generic).


4

We consider the program in Example 9.4.4 to be incoherence and, as such, it has
no answer sets.

9.5 Conflict resolution methods

Access control policies are expressed by means of rules which enforce derivation of
not only authorisations, access control and integrity constraint checking but also con-
flict resolution. To resolve rule conflicts, there must be a method for unambiguously
choosing a decision. Most conflict resolution methods in practice choose one of the
rules in conflict to take precedence over the others. (Other methods are possible, how-
ever, such as “majority rules” – choosing the decision of the majority of the rules in
conflict).

We list several possible conflict resolution methods below. Note that it is sufficient
to define them in terms of their behaviour when exactly two rules are in conflict,
because the access control system can handle cases of more than two rules in conflict
by following a simple algorithm that does paired matches of each Allow rule against
each Deny rule. This algorithm issues an Allow decision if any Allow rule wins its
matches against every Deny rule, and otherwise issues a Deny decision. Some of the
possible conflict resolution methods for choosing rules to take precedence are:

• Specificity precedence: A rule that applies to a more specific entity takes prece-
dence over a rule that applies to a more general entity.
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• Deny precedence: Deny rules take precedence over Allow rules.

• Order precedence: Rules are totally ordered, so it is possible to explicitly state
which rules take precedence over others.

• Recency precedence: Rules specified more recently in time take precedence
over others. Note that recency precedence is equivalent to order precedence
where order is determined by the time at which each rule was set.

These conflict resolution methods may be used in combination. It is possible
to use different conflict resolution methods depending on whether conflicting rules
differ in the principles they cover, the resources they cover, or both. For example
deny precedence if conflicting rules differ in principals, but specificity precedence if
conflicting rules differ in resources or in both resources and principals. It may also be
necessary to resort to multiple conflict resolution methods when one method fails to
resolve a conflict. For example, when conflicting rules cover groups, but those groups
are peers of each other, specificity precedence cannot resolve the conflict.

It has been shown in the literature how to use prioritised logic programming to
solve authorisation conflicts e.g., Bai (2007), where the authors assign each rule a
name representing its preference ordering, using a fixed point semantics to delete
those less preferred rules, then using ASP to evaluate the authorisation domain to get
the preferred authorisations.

In Ahn et al. (2010) different combining algorithms have been identified:
“Permit-overrides”, “Deny-Overrides”’ “First-Applicable”, and “Only-One-Applicable”
as well as the way they can be implemented in ASP.

9.6 Conclusions and Future Work

We identified different types of basic conflicts that occur in access control programs
and characterise them in terms of the notion of Relativised Strong Equivalence of logic
programs. We also identify conflicts that occur when we introduce default negation
and characterise them in terms of default logic while using meta-modelMP as well
as answer set programming throughout that section give examples of those conflicts.

These characterisations enable the detection of conflicts to be done automatically
by using automatic theorem provers such as Zinn & Intelligenz (n.d.) and most im-
portantly the ones identified in Cabalar & Lorenzo (2004) where it is stated that the
relation they established between S4F and the logic of Here-and-There, allows using
modal S4F provers for proving theorems in that intermediate logic. Because of the
characterisation of Strongly Equivalent programs as programs that are equivalent in
the logic of HT, we can use these theorem provers to perform reasoning and automat-
ically identify the conflicts we characterised before in terms of Strong Equivalence
and Relativised Strong Equivalence.
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Overall, these characterisations are flexible enough to be extended to several types
of conflicts, and can be used to detect which types of conflicts are generated, as well
as trace them back to the source (potentially identifying leaks in ACP).

Future Work Introducing strong negation (¬) may lead to modality conflicts, even
if this matter has been thoroughly studied and partially solved in the literature through
the introduction of paraconsistent semantics and by dealing with this form of negation
syntactically.

We still need to investigate the possibility of having a characterisation in the logic
of HT or in terms of (relativised) strong equivalence for the conflict types that we
identified as occurring with the introduction of default negation.

Research must be done next on conflict resolution methods, formally defining rule
combining algorithms inMP. We also plan to study the implication of using paraco-
herent semantics such as Semi-Equilibrium models which we presented in Chapter 7.
The development of access control policies could also greatly benefit from the work
we presented in Chapter 8 on how to calculate justification and debugging models for
ASP.
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Chapter 10

Conclusions and Future Work

In this final Chapter 10, we present general conclusions for the work we developed
in this thesis as well as directions for future research. This chapter is structured as
follows: First, Section 10.1 contains a brief summary of the thesis, including a de-
scription of the research problems we dealt with and it is the point where the overall
conclusions are provided, part by part. Afterwards, some directions for future work
are discussed in Section 10.2, specifically first for the work we presented on modular-
ity of answer set programs and next on ways to deal with conflicts in logic program-
ming.

10.1 Summary and Conclusions

Results Summary In short, the output of this PhD thesis is twofold and consists of

(i) A logic programming framework generalising modular logic programming results
and also providing operators for combining arbitrary LP modules, computa-
tional complexity results, and a compositional semantics for this generalised
modular logic programming framework. We also discussed a probabilistic ex-
tension to modular logic programming.

(ii) A characterisation of conflicts that occur when composing modules and ways of
dealing with them semantically (by providing a paracoherent semantics) and
syntactically by unifying complementary approaches that offer both justifica-
tions and debugging models for LP modules. Furthermore, we also provide a
prototypical tool for the last part of this work.

With the aforementioned increasing interest around modular logic programming
frameworks, a means of dealing with different degrees of certainty as well as to man-
age conflicts that imply inconsistent and incoherent knowledge is also becoming in-
creasingly important in the field both in academic research and in the industry. As we
discussed previously, the way of formally dealing with modularity aspects has already
become a very important research topic in the logic programming community. In the
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context of modular logic programming (MLP), we lifted the restriction disallowing
common outputs in Damásio & Moura (2014) as well as the one forbidding mutual
dependencies between modules in Damásio & Moura (2015), for which a thoroughly
improved and corrected version is presented in Chapter 5 of this thesis.

Being the case that our first contributions reside on showing how one can combine
generalised logic programming modules in the ASP setting, we furthermore charac-
terised conflicts in this setting and are able to find justifications for why a wanted
interpretation is not a model and why an unwanted interpretation is a model, thus
providing a means to deal with the conflicts syntactically.

This shows the potential for allowing the development of an access control mech-
anism for dealing with declarative policies — an already very well studied and much
needed real-world problem that still is, to a great extent, in need of a solution —
that allows to efficiently reason about these policies while providing means that help
managing them and the conflicts that arise when they are combined.

10.1.1 Conclusions

In Part II we redefined the necessary modular logic programming operators in or-
der to relax the conditions for combining modules with common atoms in their output
signatures as well as to allow arbitrary cyclic dependencies between modules.

For lifting the first restriction, two alternative solutions were presented, both al-
lowing us to retain compositionality while dealing with a more general setting than
before.

As for the second restriction, being more complex in nature, we present a model
join operation that requires one to look at every model of two modules being com-
posed in order to check for minimality of models that are comparable on account
of their inputs. This operation is able to distinguish between atoms that are self
supported through positive loops and atoms with proper support. However, this
approach is not local as it requires comparing every compatible combination of
models and, as it is not general because it does not allow combining modules with
integrity constraints, it is of limited applicability. We presented an alternative solution
requiring the introduction of extra information in the models for one to be able to
detect dependencies. We use models annotated with the way they depend on the
atoms in their module’s input signature. We then define their semantics in terms of
a fixed point operator. The join operator needed then to be redefined and positive
dependencies of literals are added to their respective models. This approach turned
out to be local, in the sense that we only need to look at the two models being joined
and unlike the first alternative we presented, it works well with integrity constraints.

Afterwards, we presented the first approach in the literature to modularise P-log
programs and to allow their incremental composition by combining compatible possi-
ble worlds and multiplying corresponding unnormalised conditional probability mea-
sures clarifying and improving the relationship of P-log with traditional Bayesian Net-
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work approaches. We reduce the space and time necessary to make inference in P-log,
in contrast with previous algorithms Anh et al. (2008); Gelfond et al. (2006) which
require always enumeration of the full possible worlds (which are exponential on the
number of random variables) and repeat calculations.

In Part III For dealing with conflicts that occur in LPs in a semantic way, we pro-
vided a semantic characterisation of semi-stable models in terms of bi-models, and
of semi-equilibrium models, which eliminate some anomalies of semi-stable mod-
els, in terms of HT-models. Furthermore, we characterised the complexity of major
reasoning tasks of these semantics.

Regarding implementation, we developed experimental prototypes for computing
SST (P) and SEQ(P) based on these characterisations. They construct the bi-models
(respectively, HT-models) of P and filter them according to the conditions in The-
orem 7.3.1 (respectively, Theorem 7.4.1). Alternatively, SST (P) and SEQ(P) are
obtainable by postprocessing the answer sets of the epistemic transformation PK

respectively its extension PHT , which can be computed with any ASP solver.

As for dealing with conflicts that occur in LPs in a syntactical way, we provided a
transformation to compute provenance models under the WF and answer set seman-
tics by computing the answer sets of meta-programs capturing the original programs
and then including some necessary extra atoms. We do this in a modular way and
preserve compatibility with the previous work of Viegas Damásio et al. (2013) and
are able to compute these models directly without first obtaining the provenance
formulas for certain interpretations. This enables computing provenance answer
sets in an easy way by using AS solvers. We then align provenance and debugging
answer sets in a unified transformation and show that the provenance approach
generalises the debugging one, since any error has a counterpart provenance but not
the other way around. Since the proposed method is based on meta-programming,
we extended an existing tool Gebser et al. (2007b) and developed a proof-of-concept
(http://cptkirk.sourceforge.net) tool.

We then presented our more applied work on identifying different types of basic
conflicts occurring in access control programs and characterise them in terms of the
notion of relativised strong equivalence of logic programs. We also identify conflicts
that occur when we introduce default negation and characterise them in terms of de-
fault logic while using meta-modelMP as well as answer set programming through-
out that section give examples of those conflicts. Overall, these characterisations are
flexible enough to be extended to several types of conflicts, and can be used to de-
tect which types of conflicts are generated, as well as trace them back to the source
(potentially identifying leaks in ACP).
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10.2 Future Work

Some topics that we leave for future work are natural extensions to the work we de-
veloped thus far while some other will have a more exploratory flavour to it. Starting
with the more exploratory, studying the implications of allowing negation in the heads
of modules and comparing this to evolving logic programs would be very interesting
and so would be studying the usage of compositionality in the context of stream rea-
soning.

10.2.0.1 Future Work on Generalised Modular Logic Programming (Part II)

We laid the fundaments for an integrated modular logic programming framework but
still need to relate all the isolated components. We believe it is easy to anticipate that
several months or even a few years of work must be put into this tasks and have to
leave it for future work. We enunciate a couple of sub-topics of interest: providing
modular justifications, and characterising conflicts in GMLP.

As regards future work on the generalised modular logic programming we pre-
sented in Chapters 4 and 5, we can straightforwardly extend our results to proba-
bilistic reasoning with answer sets by applying the new module theorem to our work
in Damásio & Moura (2011) (presented in Chapter 6), as well as to DLP functions and
general stable models. An implementation of the framework is also foreseen in order
to assess the overhead when compared with the original benchmarks in Oikarinen &
Janhunen (2008). Based on our own preliminary work and results in the literature,
we believe that a fully compositional semantics can be attained by resorting to partial
interpretations e.g., SE-models Turner (2003b) for defining program models at the
semantic level. It is known that one must include extra information about the sup-
port of each atom in the models in order to attain generalised compositionality and
SE-models appear to be enough.

On the modular probabilistic logic programming track we presented in Chapter 6,
as mentioned before, we intend to fully describe the inference algorithm obtained
from the compositional semantics of P-log modules and relate it formally with the
variable elimination algorithm. We expect that the notion of P-log modules may
also help to devise approximate inference methods, e.g., by extending sampling al-
gorithms, enlarging the applicability of P-log which is currently somehow restricted.
An interesting road to follow is to generalise the P-log language so as to consider
other forms of representing uncertainty like belief functions, possibility measures or
even plausibility measures Fagin & Halpern (1994). Applying GMLP to our modular
P-Log setting appears to be trivial and we also leave it for future work.

10.2.0.2 Future Work on Conflicts in Modular Logic Programming (Part III)

Concerning future work on the paracoherency track we discussed in Chapter 7, there
are several issues. In that Chapter, we considered paracoherence based on program
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transformation, as introduced by Sakama & Inoue (1995a). Other notions, like for-
ward chaining construction and strong compatibility Wang et al. (2009); Marek et al.
(1999) might be other candidates to deal with paracoherent reasoning in logic pro-

grams, it remains to explore these approaches further.
Another subject is to extend paracoherence to language extensions, including ag-

gregates, nested logic programs etc. Of particular interest are here modular logic
programs Janhunen et al. (2009); Dao-Tran et al. (2009), where module interaction
may lead to incoherence. Related to the latter are the more general multi-context
systems Brewka & Eiter (2007a), in which knowledge bases exchange beliefs via
non-monotonic bridge rules. Based on ideas and results of this thesis, paracoherent
semantics for certain classes of such multi-context systems may be devised.

Another issue is to investigate the use of paracoherent semantics in AI applica-
tions such as diagnosis, where assumptions may be exploited to generate candidate
diagnoses, in the vein of the generalised stable model semantics Kakas & Mancarella
(1990).

Also, in Pereira et al. (1993b), the authors apply a contradiction removal approach
to normal logic programs and use it uniformly to treat diagnosis and debugging.

Finally, a promising line of work is to apply the transformation used on the semi-
equilibrium semantics and check if it works well with modular compositionality,
having in consideration disjunctive MLPs in as much as the SEQ transformation is
also disjunctive.

The mapping between debugging and justification models we presented in Chap-
ter 8 allows generating answer sets capturing errors and justifications for (intended)
models. As expected, they are exponential. One direction to explore is to obtain
prime implicant by optimising these models using reification and then subset inclu-
sion preference ordering Gebser et al. (2007a, 2011b) via a saturation technique Eiter
& Gottlob (1995b). Note that deciding if an AS is optimal for a DLP is a Π

p
2 -complete

problem.

As for the work we presented in Chapter 9 on conflicts in ACP, as we mentioned
before, the introduction of strong negation (¬) may lead to modality conflicts, even if
this matter has been thoroughly studied and partially solved in the literature through
the introduction of paraconsistent semantics and by dealing with it syntactically.

We still need to investigate the possibility of having a characterisation in the logic
of HT or in terms of (relativised) strong equivalence for the conflict types that we
identified as occurring with the introduction of default negation.

Research must be done next on conflict resolution methods, formally defining
rule combining algorithms in MP. We also plan to study the implication of using
paracoherent semantics such as semi-equilibrium models which was presented in Eiter
et al. (2010b). It is necessary also to investigate the usage of action languages to solve
problems that arise from the introduction of default negation.

Finally, another issue is to investigate the requirements to generalise these charac-
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terisations of conflicts to our generalised modular logic programming (GMLP) setting.
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