168,171 research outputs found

    Prime component-preservingly amphicheiral link with odd minimal crossing number

    Get PDF
    For every odd integer c21c\ge 21, we raise an example of a prime component-preservingly amphicheiral link with the minimal crossing number cc. The link has two components, and consists of an unknot and a knot which is ()(-)-amphicheiral with odd minimal crossing number. We call the latter knot a {\it Stoimenow knot}. We also show that the Stoimenow knot is not invertible by the Alexander polynomials.Comment: 25 pages, 14 figure

    Condorcet Domains, Median Graphs and the Single Crossing Property

    Get PDF
    Condorcet domains are sets of linear orders with the property that, whenever the preferences of all voters belong to this set, the majority relation has no cycles. We observe that, without loss of generality, such domain can be assumed to be closed in the sense that it contains the majority relation of every profile with an odd number of individuals whose preferences belong to this domain. We show that every closed Condorcet domain is naturally endowed with the structure of a median graph and that, conversely, every median graph is associated with a closed Condorcet domain (which may not be a unique one). The subclass of those Condorcet domains that correspond to linear graphs (chains) are exactly the preference domains with the classical single crossing property. As a corollary, we obtain that the domains with the so-called `representative voter property' (with the exception of a 4-cycle) are the single crossing domains. Maximality of a Condorcet domain imposes additional restrictions on the underlying median graph. We prove that among all trees only the chains can induce maximal Condorcet domains, and we characterize the single crossing domains that in fact do correspond to maximal Condorcet domains. Finally, using Nehring's and Puppe's (2007) characterization of monotone Arrowian aggregation, our analysis yields a rich class of strategy-proof social choice functions on any closed Condorcet domain

    Removing Even Crossings

    Get PDF
    An edge in a drawing of a graph is called even\textit{even} if it intersects every other edge of the graph an even number of times. Pach and Tóth proved that a graph can always be redrawn such that its even edges are not involved in any intersections. We give a new, and significantly simpler, proof of a slightly stronger statement. We show two applications of this strengthened result: an easy proof of a theorem of Hanani and Tutte (not using Kuratowski's theorem), and the result that the odd crossing number of a graph equals the crossing number of the graph for values of at most 33. We begin with a disarmingly simple proof of a weak (but standard) version of the theorem by Hanani and Tutte

    Wigner-Poisson statistics of topological transitions in a Josephson junction

    Get PDF
    The phase-dependent bound states (Andreev levels) of a Josephson junction can cross at the Fermi level, if the superconducting ground state switches between even and odd fermion parity. The level crossing is topologically protected, in the absence of time-reversal and spin-rotation symmetry, irrespective of whether the superconductor itself is topologically trivial or not. We develop a statistical theory of these topological transitions in an N-mode quantum-dot Josephson junction, by associating the Andreev level crossings with the real eigenvalues of a random non-Hermitian matrix. The number of topological transitions in a 2pi phase interval scales as sqrt(N) and their spacing distribution is a hybrid of the Wigner and Poisson distributions of random-matrix theory.Comment: 12 pages, 15 figures; v2 to appear in PRL, with appendix in the supplementary materia

    Thrackles: An improved upper bound

    Get PDF
    A thrackle is a graph drawn in the plane so that every pair of its edges meet exactly once: either at a common end vertex or in a proper crossing. We prove that any thrackle of n vertices has at most 1.3984n edges. Quasi-thrackles are defined similarly, except that every pair of edges that do not share a vertex are allowed to cross an odd number of times. It is also shown that the maximum number of edges of a quasi-thrackle on n vertices is 3/2(n-1), and that this bound is best possible for infinitely many values of n. (C) 2019 Published by Elsevier B.V

    Thrackles: An improved upper bound

    Get PDF
    A thrackle is a graph drawn in the plane so that every pair of its edges meet exactly once: either at a common end vertex or in a proper crossing. We prove that any thrackle of n vertices has at most 1.3984n edges. Quasi-thrackles are defined similarly, except that every pair of edges that do not share a vertex are allowed to cross an odd number of times. It is also shown that the maximum number of edges of a quasi-thrackle on n vertices is 3/2(n-1), and that this bound is best possible for infinitely many values of n. © Springer International Publishing AG 2018

    Failure of Nielsen-Ninomiya theorem and fragile topology in two-dimensional systems with space-time inversion symmetry: application to twisted bilayer graphene at magic angle

    Full text link
    We show that the Wannier obstruction and the fragile topology of the nearly flat bands in twisted bilayer graphene at magic angle are manifestations of the nontrivial topology of two-dimensional real wave functions characterized by the Euler class. To prove this, we examine the generic band topology of two dimensional real fermions in systems with space-time inversion ISTI_{ST} symmetry. The Euler class is an integer topological invariant classifying real two band systems. We show that a two-band system with a nonzero Euler class cannot have an ISTI_{ST}-symmetric Wannier representation. Moreover, a two-band system with the Euler class e2e_{2} has band crossing points whose total winding number is equal to 2e2-2e_2. Thus the conventional Nielsen-Ninomiya theorem fails in systems with a nonzero Euler class. We propose that the topological phase transition between two insulators carrying distinct Euler classes can be described in terms of the pair creation and annihilation of vortices accompanied by winding number changes across Dirac strings. When the number of bands is bigger than two, there is a Z2Z_{2} topological invariant classifying the band topology, that is, the second Stiefel Whitney class (w2w_2). Two bands with an even (odd) Euler class turn into a system with w2=0w_2=0 (w2=1w_2=1) when additional trivial bands are added. Although the nontrivial second Stiefel-Whitney class remains robust against adding trivial bands, it does not impose a Wannier obstruction when the number of bands is bigger than two. However, when the resulting multi-band system with the nontrivial second Stiefel-Whitney class is supplemented by additional chiral symmetry, a nontrivial second-order topology and the associated corner charges are guaranteed.Comment: 23 pages, 13 figure
    corecore