426 research outputs found

    Phosphorylation of pRb: mechanism for RB pathway inactivation in MYCN-amplified retinoblastoma.

    Get PDF
    A small, but unique subgroup of retinoblastoma has been identified with no detectable mutation in the retinoblastoma gene (RB1) and with high levels of MYCN gene amplification. This manuscript investigated alternate pathways of inactivating pRb, the encoded protein in these tumors. We analyzed the mutation status of the RB1 gene and MYCN copy number in a series of 245 unilateral retinoblastomas, and the phosphorylation status of pRb in a subset of five tumors using immunohistochemistry. There were 203 tumors with two mutations in RB1 (RB1(-/-) , 83%), 29 with one (RB1(+/-) , 12%) and 13 with no detectable mutations (RB1(+/+) , 5%). Eighteen tumors carried MYCN amplification between 29 and 110 copies: 12 had two (RB1(-/-) ) or one RB1 (RB1(+/-) ) mutations, while six had no mutations (RB1(+/+) ). Immunohistochemical staining of tumor sections with antibodies against pRb and phosphorylated Rb (ppRb) displayed high levels of pRb and ppRb in both RB1(+/+) and RB1(+/-) tumors with MYCN amplification compared to no expression of these proteins in a classic RB1(-/-) , MYCN-low tumor. These results establish that high MYCN amplification can be present in retinoblastoma with or without coding sequence mutations in the RB1 gene. The functional state of pRb is inferred to be inactive due to phosphorylation of pRb in the MYCN-amplified retinoblastoma without coding sequence mutations. This makes inactivation of RB1 by gene mutation or its protein product, pRb, by protein phosphorylation, a necessary condition for initiating retinoblastoma tumorigenesis, independent of MYCN amplification

    Bovine Ocular Squamous Cell Carcinoma : In Vitro Investigations of a Viral Etiology

    Get PDF
    Bovine ocular squamous cell carcinoma, commonly known as cancer eye, is a common and economically important problem to the U.S. cattle industry. This neoplasm is particularly significant in aged breeding stock. The tumor usually originates from the squamous epithelial cells of the corneal-scleral junction and the nicitating membrane of the eye. Eye cancer lesions progress from small pin point plaques to large tumors involving the eye and surrounding tissue. This disease causes parital or total loss of vision in the affected eye and the cancer may metastasize. The objectives of this research were to: investigate the properties of tumor cell cultures derived from bovine ocular squamous cell carcinoma and its precursor lesions, determine if viral agents are present in or can be induced in tumor cell cultures, and attempt to demonstrate viral antigens in the tumor cell cultures

    Hemangiosarcoma of the third eyelid in a horse

    Get PDF
    A 12-year-old Belgian Warmblood mare was referred to the equine clinic of the Faculty of Veterinary Medicine (Ghent University) for a mass on the third eyelid of the right eye. The horse had been having a recurrent red-tinged ocular discharge for several months. After complete ophthalmologic examination, a large part of the third eyelid was surgically excised and submitted for histopathologic examination. The histopathologic examination revealed a proliferation of blood-filled vascular spaces lined by a single layer of flattened cells, which were identified as endothelial cells using immunohistochemistry. The tumor was identified as a cavernous low-grade hemangiosarcoma. No complications were reported six months after surgery

    ETS-1 and ETS-2 are upregulated in a transgenic mouse model of pigmented ocular neoplasm

    Get PDF
    Purpose: Choroidal melanoma is the most common primary malignant ocular tumor in human adults. Relevant mouse models of human uveal melanoma still remain to be developed. We have studied the transgenic mouse strain, Tyrp-1-TAg, to try to gain insight into possible molecular mechanisms common to pigmented ocular neoplasms occurring spontaneously in the eyes of these mice and human choroidal melanoma. The role of two members of the ETS (E26 avian leukemia oncogene) family of transcription factors, ETS-1 and ETS-2, has been investigated in many cancers but has not yet been studied in ocular tumors. Methods: This is the first study describing the production and distribution of ETS-1 and ETS-2 mRNAs and proteins using in situ hybridization and immunohistochemistry in murine ocular tissue sections of normal control eyes and tumoral eyes from mice of the same age. Using semi-quantitative reverse-transcription polymerase chain reaction (RT–PCR) and western blots experiments, we compared changes in ETS-1 and ETS-2 expression, their protein levels, and the regulation of some of their target gene expressions at different stages of the ocular tumoral progression in the transgenic mouse model, Tyrp-1-TAg, with those in normal eyes from control mice of the same age. Results: In normal control adult mouse eyes, ETS-1 was mostly present in the nuclei of all neuroretinal layers whereas ETS-2 was mostly localized in the cytosol of the cell bodies of these layers with a smaller amount present in the nuclei. Both were found in the retinal pigmentary epithelium (RPE). ETS-1 and ETS-2 mRNA and protein levels were much higher in the ocular tissues of Tyrp-1-TAg mice than in control ocular tissues from wild-type mice. This upregulation was correlated with tumor progression. We also demonstrated upregulation of ETS-1 and ETS-2 target expressions in Tyrp-1-TAg mice when comparing with the same target expressions in control mice. Conclusions: Our findings suggest that ETS-1 and ETS-2 are upregulated in ocular tumors derived from the retinal epithelium and may be involved in one or several signaling pathways that activate the expression of a set of genes involved in ocular tumor progression such as those encoding ICAM-1 (intercellular adhesion molecule-1), PAI-1 (Plasminogen activator inhibitor-1), MCP-1 (monocyte chemoattractant protein-1) and p16 (Cyclin dependent kinase inhibitor 2A)

    Clinical, genomic, and pharmacological study of MYCN-amplified RB1 wild-type metastatic retinoblastoma

    Get PDF
    An uncommon subgroup of unilateral retinoblastomas with highly aggressive histological features, lacking aberrations in RB1 gene with high-level amplification of MYCN (MCYNampl RB1+/+) has only been described as intra-ocular cases treated with initial enucleation. Here, we present a comprehensive clinical, genomic, and pharmacological analysis of two cases of MCYNampl RB1+/+ with orbital and cervical lymph node involvement, but no central nervous system spread, rapidly progressing to fatal disease due to chemoresistance. Both patients showed in common MYCN high amplification and chromosome 16q and 17p loss. A somatic mutation in TP53, in homozygosis by LOH, and high chromosomal instability leading to aneuploidy was identified in the primary ocular tumor and sites of dissemination of one patient. High-throughput pharmacological screening was performed in a primary cell line derived from the lymph node dissemination of one case. This cell line showed resistance to broad spectrum chemotherapy consistent with the patient’s poor response but sensitivity to the synergistic effects of panobinostat–bortezomib and carboplatin–panobinostat associations. From these cells we established a cell line derived xenograft model that closely recapitulated the tumor dissemination pattern of the patient and served to evaluate whether triple chemotherapy significantly prolonged survival of the animals. We report novel genomic alterations in two cases of metastatic MCYNampl RB1+/+ that may be associated with chemotherapy resistance and in vitro/in vivo models that serve as basis for tailoring therapy in these cases.Fil: Zugbi, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Ganiewich, Daiana. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Bhattacharyya, Arpita. Tata Memorial Hospital; IndiaFil: Aschero, María del Rosario. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ottaviani, Daniela. Centre National de la Recherche Scientifique; FranciaFil: Sampor, Claudia. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Cafferata, Eduardo Gustavo Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Mena, Marcela. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Sgroi, Mariana. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Winter, Ursula Andrea. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Lamas, Gabriela. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Suñol, Mariona. Hospital Sant Joan de Deu Barcelona; EspañaFil: Daroqui, Manuel. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Baialardo, Edgardo. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Salas, Beatriz. Hospital Asencio Villaroel; BoliviaFil: Das, Anirban. Tata Memorial Hospital; IndiaFil: Fandiño, Adriana Cristina. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Francis, Jasmine H.. Memorial Sloan-kettering Cancer Center.; Estados UnidosFil: Lubieniecki, Fabiana. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Lavarino, Cinzia. Hospital Sant Joan de Deu Barcelona; EspañaFil: Garippa, Ralph. Memorial Sloan-kettering Cancer Center.; Estados UnidosFil: Podhajcer, Osvaldo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Abramson, David. Memorial Sloan-kettering Cancer Center.; Estados UnidosFil: Radvanyi, François. Centre National de la Recherche Scientifique; FranciaFil: Chantada, Guillermo Luis. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; ArgentinaFil: Llera, Andrea Sabina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Schaiquevich, Paula Susana. Gobierno de la Ciudad de Buenos Aires. Hospital de Pediatría "Juan P. Garrahan"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Reduction of brain metastases in plasminogen activator inhibitor-1-deficient mice with transgenic ocular tumors

    Get PDF
    Plasminogen activator inhibitor-1 is known to play a paradoxical positive role in tumor angiogenesis, but its contribution to metastatic spread remains unclear. We studied the impact of plasminogen activator inhibitor (PAI)-1 deficiency in a transgenic mouse model of ocular tumors originating from retinal epithelial cells and leading to brain metastasis (TRP-1/SV40 Tag mice). PAI-1 deficiency did not affect primary tumor growth or vascularization, but was associated with a smaller number of brain metastases. Brain metastases were found to be differentially distributed between the two genotypes. PAI-1-deficient mice displayed mostly secondary foci expanding from local optic nerve infiltration, whereas wild-type animals displayed more disseminated nodules in the scissura and meningeal spaces. SuperArray GEarray analyses aimed at detecting molecules potentially compensating for PAI-1 deficiency demonstrated an increase in fibroblast growth factor-1 (FGF-1) gene expression in primary tumors, which was confirmed by reverse transcription-polymerase chain reaction and western blotting. Our data provide the first evidence of a key role for PAI-1 in a spontaneous model of metastasis and suggest that angiogenic factors, such as FGF-1, may be important for primary tumor growth and may compensate for the absence of PAI-1. They identify PAI-1 and FGF-1 as important targets for combined antitumor strategie

    Circumscribed choroidal hemangioma: A case report and literature review

    Get PDF
    AbstractChoroidal hemangioma is a rare congenital ocular tumor that can present as either circumscribed or diffuse. Circumscribed choroidal hemangioma (CCH) typically manifests as a red-orange mass within the posterior pole and appears similar to other ocular conditions, such as choroidal melanoma and choroidal metastasis. Proper diagnosis is crucial and is aided by the use of ancillary testing. CCH itself is benign but can cause secondary complications such as subretinal fluid accumulation and subsequent retinal detachment. If these conditions should arise, several treatment options are available

    Circumscribed choroidal hemangioma: A case report and literature review

    Get PDF
    AbstractChoroidal hemangioma is a rare congenital ocular tumor that can present as either circumscribed or diffuse. Circumscribed choroidal hemangioma (CCH) typically manifests as a red-orange mass within the posterior pole and appears similar to other ocular conditions, such as choroidal melanoma and choroidal metastasis. Proper diagnosis is crucial and is aided by the use of ancillary testing. CCH itself is benign but can cause secondary complications such as subretinal fluid accumulation and subsequent retinal detachment. If these conditions should arise, several treatment options are available

    Proton beam radiotherapy in the management of uveal melanoma: clinical experience in Scotland

    Get PDF
    <p>Aim: To evaluate proton-beam radiotherapy (PBRT) in the management of uveal melanoma in Scotland.</p> <p>Methods: A retrospective review was undertaken on all patients receiving PBRT for uveal melanoma (1994–2005). Data obtained included: gender, past ocular/medical history, age, presenting complaint(s), diagnosis, laterality, tumor location/ultrasound characteristics, visual acuity (VA) and intraocular pressure. At post-treatment reviews (3, 6, 12, and 24 months), the following data was obtained: VA, intraocular pressure, tumor appearance and ultrasound characteristics. Mean follow up was 38.8 months.</p> <p>Results: Seventy-six patients were included. Mean age was 64 years; male to female ratio was 1.1:1. Ninety-seven percent demonstrated initial treatment response; 87% had successful control of tumor growth. Mean pre-treatment tumor height was 6.2 mm v.s. 4.8 mm post-irradiation (p < 0.001). Pre-irradiation VA was <3/60 in 18.5% compared with 74% post-irradiation (p < 0.0001). There was a statistically significant association between adverse events (enucleation, metastasis) and greater maximal basal tumor diameter. Eighteen eyes were enucleated. The median survival time was estimated to be 54 months.</p> <p>Conclusion: In our experience, PBRT is a precise, reliable and effective treatment in the management of large, and previously treated uveal melanomas. It prevents enucleation in the majority at short term follow-up.</p&gt
    corecore