15 research outputs found

    Octilinear Force-Directed Layout with Mental Map Preservation for Schematic Diagrams

    Get PDF
    We present an algorithm for automatically laying out metro map style schematics using a force-directed approach, where we use a localized version of the standard spring embedder forces combined with an octilinear magnetic force. The two types of forces used during layout are naturally conflicting, and the existing method of simply combining these to generate a resultant force does not give satisfactory results. Hence we vary the forces, emphasizing the standard forces in the beginning to produce a well distributed graph, with the octilinear forces becoming prevalent at the end of the layout, to ensure that the key requirement of line angles at intervals of 45? is obtained. Our method is considerably faster than the more commonly used search-based approaches, and we believe the results are superior to the previous force-directed approach. We have further developed this technique to address the issues of dynamic schematic layout. We use a Delaunay triangulation to construct a schematic “frame”, which is used to retain relative node positions and permits full control of the level of mental map preservation. This technique is the first to combine mental map preservation techniques with the additional layout criteria of schematic diagrams. To conclude, we present the results of a study to investigate the relationship between the level of mental map preservation and the user response time and accuracy

    Improving Automated Layout Techniques for the Production of Schematic Diagrams

    Get PDF
    This thesis explores techniques for the automated production of schematic diagrams, in particular those in the style of metro maps. Metro map style schematics are used across the world, typically to depict public transport networks, and therefore benefit from an innate level of user familiarity not found with most other data visualisation styles. Currently, this style of schematic is used infrequently due to the difficulties involved with creating an effective layout – there are no software tools to aid with the positioning of nodes and other features, resulting in schematics being produced by hand at great expense of time and effort. Automated schematic layout has been an active area of research for the past decade, and part of our work extends upon an effective current technique – multi-criteria hill climbing. We have implemented additional layout criteria and clustering techniques, as well as performance optimisations to improve the final results. Additionally, we ran a series of layouts whilst varying algorithm parameters in an attempt to identify patterns specific to map characteristics. This layout algorithm has been implemented into a custom-written piece of software running on the Android operating system. The software is targeted at tablet devices, using their touch-sensitive screens with a gesture recognition system to allow users to construct complex schematics using sequences of simple gestures. Following on from this, we present our work on a modified force-directed layout method capable of producing fast, high-quality, angular schematic layouts. Our method produces superior results to the previous octilinear force-directed layout method, and is capable of producing results comparable to many of the much slower current approaches. Using our force-directed layout method we then implemented a novel mental map preservation technique which aims to preserve node proximity relations during optimisation; we believe this approach provides a number of benefits over the the more common method of preserving absolute node positions. Finally, we performed a user study on our method to test the effect of varying levels of mental map preservation on diagram comprehension

    Embedding travel time cues in schematic maps

    Get PDF

    A face-based approach for automatic metro-map generation

    Get PDF

    Similarity measures and algorithms for cartographic schematization

    Get PDF

    MetroSets: Visualizing Sets as Metro Maps

    Full text link
    We propose MetroSets, a new, flexible online tool for visualizing set systems using the metro map metaphor. We model a given set system as a hypergraph H=(V,S)\mathcal{H} = (V, \mathcal{S}), consisting of a set VV of vertices and a set S\mathcal{S}, which contains subsets of VV called hyperedges. Our system then computes a metro map representation of H\mathcal{H}, where each hyperedge EE in S\mathcal{S} corresponds to a metro line and each vertex corresponds to a metro station. Vertices that appear in two or more hyperedges are drawn as interchanges in the metro map, connecting the different sets. MetroSets is based on a modular 4-step pipeline which constructs and optimizes a path-based hypergraph support, which is then drawn and schematized using metro map layout algorithms. We propose and implement multiple algorithms for each step of the MetroSet pipeline and provide a functional prototype with \new{easy-to-use preset configurations.} % many real-world datasets. Furthermore, \new{using several real-world datasets}, we perform an extensive quantitative evaluation of the impact of different pipeline stages on desirable properties of the generated maps, such as octolinearity, monotonicity, and edge uniformity.Comment: 19 pages; accepted for IEEE INFOVIS 2020; for associated live system, see http://metrosets.ac.tuwien.ac.a

    Network Visualization: Algorithms, Applications, and Complexity

    Get PDF

    A Survey on Transit Map Layout – from Design, Machine, and Human Perspectives

    Get PDF
    Transit maps are designed to present information for using public transportation systems, such as urban railways. Creating a transit map is a time‐consuming process, which requires iterative information selection, layout design, and usability validation, and thus maps cannot easily be customised or updated frequently. To improve this, scientists investigate fully‐ or semi‐automatic techniques in order to produce high quality transit maps using computers and further examine their corresponding usability. Nonetheless, the quality gap between manually‐drawn maps and machine‐generated maps is still large. To elaborate the current research status, this state‐of‐the‐art report provides an overview of the transit map generation process, primarily from Design, Machine, and Human perspectives. A systematic categorisation is introduced to describe the design pipeline, and an extensive analysis of perspectives is conducted to support the proposed taxonomy. We conclude this survey with a discussion on the current research status, open challenges, and future directions
    corecore