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Abstract

We explore three different face-based approaches to automatically generate metro maps. The first
two approaches give unsatisfactory results, but they help to discover the underlying problems. The
results in final approach has significant opportunities to improve the readability of metro maps.

The first approach is called Grid Map approach. We embed the metro map into a grid map
to help ensure an octilinear layout. We want to increase the roundness of the face to leave more
space for labels and to separate the close routes. To do this, we calculate the centroid of a face
and draw a circle with the centroid as the center. We move the vertices inside the circle away
from the centroid and move the vertices outside the circle toward the centroid. Every vertex has
five candidate positions and they can move one grid each step. We hope to move them onto
the circle so that the face will have the largest roundness. However, we have to make sure the
topology is unchanged every time we move a vertex and all the incident edges of the vertex have
to be octilinear. This put too much restrictions on the location selection for the vertices and
consequently there map be sharp bends in the final result. Besides, for some vertices, none of
the five candidate positions can be used and these vertices can not be optimized at all. Thus, we
decide to change our research direction.

The second approach is called Attach Circle approach. We abandon the grid map and the
octilinear layout in this approach. We drag the vertices on a face directly onto the circle. We first
divide the circle evenly, and then find a target point for each vertex. We move the vertices one
by one by a small step to their target points. If after one step a vertex breaks the topology, we
move it back this small step. This approach can increase the roundness of the faces and reduce
the clusters. However, when two adjacent faces are too far away, their common vertices have to
attach to the two far-away circles at the same time. Eventually the common vertices will fall near
the middle of the two circles, far from their target points in both circles. This causes long edges,
making the edge length of the metro map more unbalanced. Thus, we have to propose another
approach to deal with the long edges.

The final approach is called Force-Directed approach. The long edges are caused by the poor
distribution of centroids, so we first rearrange the centroids to obtain a better centroid distribution.
We use a force-directed method to make adjacent FaceClircles to be tangent and rotate the
centroids. Then we use the collapse-and-reinsert method to first place the degree-3+ vertices
and then reinsert the degree-2 vertices on the chains between the degree-3+ vertices. We process
the outside vertices and the inside vertices in different ways. The inside degree-3+ vertices are
placed at the junction of their adjacent faces, and the distances from the adjacent centroids are
proportional to the number of vertices on the faces. The outside degree-3+ vertices are placed on
the apollonian circle of their adjacent centroids. The inside degree-2 vertices are reinserted on the
apollonian circle arc of their adjacent centroids and two arcs that can connect the apollonian circle
arc with the two degree-3+ vertices smoothly. The outside degree-2 vertices are processed in a
similar way to the inside degree-2 vertices, but replace the apollonian circle with the FaceCircle.
We add a box around the metro map to include the dangling edges in a face to get a real metro
map. We tested this approach with five metro maps. In each metro map, the variance of the
edge lengths is reduced, meaning that the distances between the stations are more even. The
roundness of the faces increased, and the faces obtain a more regular area distribution. We believe
our final approach has significant opportunities to automatically generate the metro maps with
higher readability and usability.
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Chapter 1

Introduction

In this chapter, we first describe the problem of metro map creation and make a formal definition
of our research in Section 1.1. Then we give a brief history of metro map design in Section 1.2,
which was the first stage in the creation of metro maps. Next we introduce the evolution of metro
map optimization in Section 1.3, which is the second stage of creating metro maps. In Section 1.4
we talk about our innovations and major contributions and in Section 1.5 we provide an overview
of our thesis.

1.1 Problem description

Metro is an important means of travel for passengers and is essential to the public transportation
system in big cities. After nearly two centuries of development, the metro network is not just a
means of transport in itself, it is also an important symbol of the city’s uniqueness. When looking
at the metro network schematic diagram shown in Figure 1.1, we can easily identify which city
each metro network corresponds to.
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Figure 1.1: An example to show metro networks in different cities. If people see a circle in the
middle of a metro map, and the other routes cross the circle diagonal, it is easy to know that this
is a metro map of Moscow. Similarly, when there are two nested squares in the center of a metro
map and other routes run horizontally or vertically through the square, one can easily recognize
it is a metro map of Beijing. Figure form [9)].

In order to show the metro network in more detail and facilitate people’s navigation, the metro
maps were created. However, designing a metro map is one of the most difficult graphic design
tasks because there are hundreds of stations distributed unevenly and dozens of routes cross each
other. In urban centres, stations tend to be particularly close to each other, with dense routes
overlapping each other, while in the suburbs the stations are sparsely distributed and have only
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CHAPTER 1. INTRODUCTION

one or two routes. The design of metro maps is very important for passengers’ navigation. Bad
metro map design, as is shown in the New York metro map in Figure 1.2a, routes are very close
and overlap each other, making it difficult to track routes and distinguish stations. Such a poorly
readable map often confuses passengers, for it does not even show the names of the stations and
its clustered routes are easy to misread. On the contrary, good subway design not only meets the
design aesthetic criteria, but also has the practicality to facilitate passengers navigating, as shown
in Figure 1.2b of another New York metro map. Passengers can easily track each route, distinguish
different stations, quickly locate the destination and expediently choose their interchange stations.
Therefore, designing an aesthetic and practical metro map is a very challenging but important
task.

SUBWAY MAP

NP ()

Figure 1.2: An example of two different metro map designs for New York to show why metro map
design is important for navigation. (a): A bad designed map of the New York metro map. On the
left side of the map, dozens of routes overlap and wrap together, making it difficult to distinguish
stations and track routes. The name of the stations are not marked on the map because the
crowded route and clustered stations leaves no room for labels. Passengers are often confused
when using such maps to navigate, and it is easy to misread the routes and get lost. Figure from
[8]. (b): A good designed map of the New York metro map. The map uses octilinear layout, with
routes horizontal, vertical, or diagonal, and each route is represented in a different color, making
it easy to track. In addition, the name of each station is marked next to it, and the distance
between stations is balanced, making it easy for passengers to find their destination and make
transfer plans. Figure from [1].

Creating a metro map usually involves three stages, respectively the stages are design, optim-
ization and beautification. The design stage is the first stage of creating a metro map. During the
design stage, the designers set aesthetic criteria that the map should meet, such as layout type
(octilinear or hexagonal), distance between stations (fixed or arbitrary length), and the shape of
the routes (straight line or curve). As early as 1933, Harry Beck developed a set of aesthetic cri-
teria for metro maps while designing London metro maps, including removing useless details, using
octilinear layout, keeping smooth straight routes, distributing stations evenly [15]. We will discuss

2 A face-based approach for automatic metro-map generation.



CHAPTER 1. INTRODUCTION

these design criteria in more detail later. Beck’s design criteria profoundly improved the readab-
ility and practicability of metro maps and were imitated by other cities over the next hundred
years.

The next stage is the optimization stage. During the optimization stage, taking the original
geographic location as the initial input, the location of stations and routes are adjusted to get a
more even feature spacing. In each iteration, the stations and routes are moved by a small distance
to better meet the aesthetic criteria, while keeping the topology unchanged. Previous metro map
optimization was done manually, and cartographers embedded the original metro map in the grid
map, adjusting the location of each station with the grids [28]. In recent years, computer-assisted
metro map optimization has begun to develop. Computer scientists use algorithms to control
computers to automatically adjust the location of stations and routes while trying to satisfy the
design criteria.

The last stage is the beautification stage. During the beautification stage, different routes on
the metro maps are embellished with lines of different thickness and color, and different station
types are marked as different symbols. For example, transfer stations are represented by a large
red circle symbol in bold, while ordinary stations on the road are represented by a small black
dot. In addition, this stage determines the style of labels and legends, including font style, color,
size, and so on.

The formal definition of our research

We want to create practical and beautiful metro maps for different cities through the above
stages and our main research at each stage is described here. During our design stage, we adapt
Beck’s design criteria according to our research needs. We want our metro map stations to be
evenly distributed, with smooth and non-intersecting routes, which are in line with Beck’s design
criteria. But we do not necessarily choose octilinear layout. We want to compare the octilinear
and curvilinear layout and choose the one that works better.

Then we mainly focus on the optimization stage. Traditional automatic optimization al-
gorithms improve the feature spacing of metro maps by directly adjusting the location of stations,
which are called ‘vertex-based’ algorithm. These algorithms focus on the stations and routes to see
if they are too close or too far away and then move them directly. Many ‘vertex-based’ algorithms
algorithms are inefficient for complex metro maps because the distance between every two stations
has to be calculated in each iteration to determine whether to move. However, we observe that
the number of faces (closed regions surrounded by routes) in the map is much smaller than the
stations. Even for complex maps with hundreds of stations, there are only a few dozen faces.
Therefore, we think that we can first distort the faces to have regular size and shape, and then
just place the routes and stations at the border of the faces. Because the number of faces is much
smaller than stations, we assume that this method would be more efficient. Besides, although the
existing ‘vertex-based’ algorithms can more or less optimize the layout of metro maps, all of these
algorithms that directly adjust hundreds of stations have disadvantages. Some algorithms do not
guarantee octilinearity, while others do not obtain even distribution of stations. Thus, we want
to explore the performance of the new algorithm that indirectly adjust stations through faces in
dealing with these disadvantages. We hope to bring new research ideas for metro map optimiza-
tion. Therefore, our main focus in this thesis is presenting an automatic optimization algorithm
to distort the faces to improve the feature spacing of the metro maps. Our algorithm that focuses
on faces is called ‘face-based’” method. And just like ‘vertex-based’ method, we adjust our faces
iteratively. We adjust the sharp corners in the faces to make them flat, and we adjust the size
of the faces to make them regular, such as making the area to be proportional to the number of
stations.

As for the last beautification stage, since we only represent the metro map with geometric
shapes, beautification is not the emphasis of our thesis and will not be discussed.

A face-based approach for automatic metro-map generation. 3



CHAPTER 1. INTRODUCTION

1.2 A brief history of metro map design

The design stage is the first step in creating metro maps, which is crucial for the final effect of
the metro maps. The earliest metro maps are very complex that includes not only stations and
routes, but also rivers, building details and parks at their real geographic location (see Figure
1.3a). Although very precise, these details in the metro map are not practical and cumbersome
for passengers. People can know what parks and buildings are around each station, but they do
not know the name of the stations or at which stations they can change lines.

Later, designers removed some details and retained only stations, routes, and iconic geographic
features, such as rivers (see Figure 1.3b). However, this map still requires that the map and the
actual geographic location correspond accurately. The central area of the map is overcrowded, the
boundary region wastes a lot of space and the crossed routes cause confusion and disorientation.
When passengers’ eyes track along one route, it is likely to mistakenly switch to another route at
the intersection. So the readability and usability of this metro map is still not high.

Figure 1.3: The development of metro map design. (a): The early metro map that contains not
only stations and routes but also rivers, building details and parks. Figure from [7]. (b): The
early metro map that requires the map and the actual geographic location should correspond
accurately. The central area is clustered, but the boundary region waste a lot of space. Figure
from [5]. (c): Fred Stingemore’s metro map for London. The distance between stations is more
even and the space between close routes is slightly larger. Figure from [6]. (d): Harry Beck’s metro
map for London. Beck ignored the real geographical location and used only horizontal, vertical
and diagonal lines. He also made the distance between stations equal to avoid the clusters. Figure
from [4].

4 A face-based approach for automatic metro-map generation.



CHAPTER 1. INTRODUCTION

Then in 1926, a cartographer named Fred Stingemore improved the London metro map by fur-
ther simplifying the metro maps ( see Figure 1.3¢). He abandoned all elements that were useless
to the metro map used as navigation, leaving only stations and routes. Besides, he moved the
stations from their real geographic location and made the distance between the stations approx-
imately equal. This can make the stations more evenly distributed. The routes were also slightly
deviated from their actual geographic locations. Two routes that were very close to each other
were moved some distance apart so that the space between them increased and they were overlap-
free. Besides, he shortened the length of long routes in suburbs and enlarged the downtown area.
These changes improved readability over maps that were entirely geographically based.

The breakthrough in metro map design came in 1933, when an idea by Harry Beck completely
changed the conventional metro maps. Beck thought that it was not the geography of the stations
that matters to passengers, but the interchanges between routes. In an interview in 1985 with
Ken Garland [15], author of the book Mr Beck’s Underground Map, Garland said that passengers
in the metro were in the underground ‘Tube’. So passengers are unconcerned about the real
geographic elements above ground or the real distance between two stations, what is important
are the connections between the 'tubes’ and at which stations they should transfer. This idea is
critical to Beck’s design. To achieve this, Beck ignored the actual geographical location, instead
he used all horizontal, vertical or diagonal lines to depict the topology of stations and routes.
In addition, he specified that each route should have minimal bends and distributed the stations
by equal distance along the routes (see Figure 1.3d). The center of the metro map is no longer
clustered, the boundary region is used properly, and the routes are smooth and easy to track. This
design greatly improved the readability of the metro map, and became the classic design of metro
map in the future.

Beck’s design has been widely adopted around the world for decades and it has become an
universal design language for metro maps. Over the last two decades, many designers further
improved and deformed on Beck’s basis and have designed more metro map layout styles. Wu
et al. [28] summarize some existing design styles of metro maps and Figure 1.4 is an example to
show several different layout designs of the same metro map. Curvilinear layout means stations are
connected by smooth curves. Schematised Curvilinear layout means stations are adjusted to the
appropriate location and then connected by smooth curves. Concentric circles layout means each
edge follows a radial mesh consisting of a set of concentric circles and lines from the center of the
circle. Multilinear layout means all edges are straight lines but can be in any direction. Octilinear

p \ S/ s
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Figure 1.4: Several different layout designs of the same metro map.
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CHAPTER 1. INTRODUCTION

layout means the incident edges of each vertex have to be horizontal, vertical or diagonal lines.
Thus, the angle between each edge and z-axis is an integer multiple of 45 degrees. Hezxalinear
layout is similar to octilinear layout. The incident edges have to be horizontal or at an Angle of
60 degrees from the horizontal line.

In addition to these design styles, there have been styles designed specifically for research
and visual effects in recent years, such as the metro maps in Figure 1.5. In all of the designs,
Beck’s octilinear layout is the most popular one, but each design has its own advantages and
disadvantages, designers can choose according to their needs.

Mockosckwuit merpononuren
uuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Figure 1.5: Metro map styles only used for research and visual effects. (a): A design style of
London metro map by Francisco Dans. Figure from [2]. (b): A design style (Rectilinear) of
Moscow metro map by Ilya Borisovich Birman. Figure from [10].

1.3 A brief history of metro map optimization

The optimization stage is the second step in creating metro maps and determines the final results
of the maps. The initial metro map optimization was done manually and Wu et al. [28] describe
this process in their paper (Figure 1.6). First embed the original map into a dense grid map,
then iteratively adjust the location of each stations in the grid according to aesthetic criteria, and
finally remove the grid map and add legends. This was an extremely time consuming process, as
the metro map had to be redrawn every time a station was moved. Therefore, as metro maps
became more complicated, drawing maps manually became an extremely challenging task. In
addition to being boring and time-consuming, it was also difficult to determine which points on
the grid a station should go to and where the routes should be bent when drawing by hand. And
it was difficult to ensure that stations were evenly distributed while maintaining the topology.

Figure 1.6: The time-consuming manual drawing process: first embed the original map into a
dense grid map, then iteratively adjust the location of each stations in the grid according to
aesthetic criteria, and finally remove the grid map and add legends. Figure comes from the paper
of Wu et al. [28].

6 A face-based approach for automatic metro-map generation.



CHAPTER 1. INTRODUCTION

Therefore, automatically optimize metro maps with computers came into being.

At first, there was no algorithm specifically for metro maps optimization. Until about 2000,
the algorithms that existed were all about the general schematization of geographic maps. Map
schematization abstracts important information from the geographic map’s original shape and
neglects irrelevant details, such as Figure 1.7 shows. The algorithm can determine which points
are relevant for the shape of the map and remove the unimportant points to abstract the map to a
polygon. In 2000, Barkowsky et al. [12] first applied map schematization algorithm to metro maps
and was believed to be the first person attempt to automatically optimize the metro maps [22].
Their results for Hamburg metro map is shown in Figure 1.8. The bends of the routes are reduced
and the topology is maintained, but there are intersections and clusters in the result metro map.

1
4‘/_ o / “

|
|
A
\
\/ '

Figure 1.7: An example to show map schematization.
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Figure 1.8: The first attempt to apply the map schematization algorithm to metro maps. (a):
Original input for Hamburg metro map. (b): Result for Hamburg metro map in Barkowsky et al.’
paper. Figure from [12].

Later, algorithms that are specifically designed for metro maps started being developed by
people. Hong et al.[19] proposed a new automatic algorithm for metro map layout problem. They
studied various hand-drawn metro maps that existed at that time and summarized their findings
into five criteria that a good map should meet. The five criteria were straight lines for edges,
no edge crossings, no overlapping, octilinear layout, and each line had an unique color. Then
they presented a force-directed method to automatically distort the metro maps to meet these
criteria. They regarded routes as springs, stations as spring connections and gave an optimal
distance between two stations. Two stations close together were pushed by a repulsive force and
two stations far apart were pulled by an attractive force, and eventually the whole map system
would be dynamically balanced (see Figure 1.9a). Hong et al.’” algorithm can give a much better
result (see Figure 1.9b) than the algorithm of Barkowsky et al. that we show before (Figure 1.8)
and the interesections and clusters disappear. However, the stations are still not evenly distributed
and the layout is not exactly octilinear.

Then Daniel Chivers and Peter Rodgers [16] improved Hong et al.” algorithm to obtain a well
distributed and octilinear metro map. Hong et al. combined the standard spring embedder forces
with an octilinear magnetic force, but these forces conflict with each other, making the metro map

A face-based approach for automatic metro-map generation. 7



CHAPTER 1. INTRODUCTION

close to but not exactly octilinear. However, Daniel and Peter varied the forces. They emphasize
the standard forces in the beginning to produce a well distributed graph, with the octilinear forces
becoming prevalent at the end of the layout. The result of Daniel and Peter’ algorithm is shown
is Figure 1.10. The stations are evenly distributed and the edge lengths are balanced, which is
much better than Hong et al. result.

Now there are many algorithms of metro map optimization, many of which can give satisfactory
results. We will discuss them in detail in Chapter 3. And we will study them and adapt them
into algorithms that fit our ‘face-based’ method.

Random Graph Layout Force Directed Layout

—_—
Equilibrium State a—— {/y ‘g‘- /
(a) Iy

(b)

Figure 1.9: An example to show Hong et al.” force-directed method that is specifically for metro
map optimization. (a): Two close stations are pushed by repulsive force and two stations far
apart are pulled by attractive force, and eventually the whole map system would be dynamically
balanced. Figure from [3]. (b): Result of Hong et al.” algorithm.
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Figure 1.10: The result of Daniel Chivers and Peter Rodgers.
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CHAPTER 1. INTRODUCTION

1.4 Our contribution

All existing automatic optimization algorithms are ‘vertex-based’ methods, that is, map optimiza-
tion is realized through direct manipulation of vertices(stations). We are the first to optimize metro
maps using ‘face-based’ method. We want to explore whether this method can produce beautiful
and practical maps, thus bringing new ideas to map optimization. Besides, since the number of
faces is much smaller than the number of vertices, we want to test if ‘face-based’ method can
improve algorithm efficiency. In addition, we want to compare the results of ‘face-based” method
with ‘vertex-based’ method to see the advantage and disadvantages of both method.

1.5 Outline of this thesis

The structure of this thesis is as follows. Chapter 1 introduces our research topic and our contri-
bution. Chapter 2 introduces some definitions and relevant knowledge that will be used in this
thesis. Chapter 3 lists some previous work related to the automatic optimization of metro maps
and discusses their strengths and weaknesses. Chapter 4 describes and discussed our first approach
and why it can not work. Chapter 5 describes and discussed our second approach and why we
think it unsatisfactory. Chapter 6 describes and discussed our final approach and discusses its
advantages and disadvantages. Chapter 7 is our conclusion and our plan for the future work.

A face-based approach for automatic metro-map generation. 9



Chapter 2

Preliminaries

In this chapter,we first review the basic geometry and the calculations of them in Section 2.1.
We review what is graph and some special terms about graphs in our thesis. We also review the
construction of faces from a graph and the calculation of the Apollonian Circle. Then in Section
2.2 we introduce some relevant background knowledge about the metro maps that we use in this
thesis, including the metro map design criteria and the force-directed graph drawing.

2.1 Basic Geometry

2.1.1 Graphs

A graph is an data structure to model relationships between a set of objects. An undirected graph
G = (V,E) consists of a set of vertices V and a set of edges E where E are the line segments
between V. Two vertices u and v that are connected by an edge uv are called adjacent and u
and v are called neighbors to each other. We denote the neighborhood of v to be N(v), which
means all vertices that adjacent to v. The degree of a vertex v is the number of its neighbors and
is abbreviated by deg(v). Edge uv is called an incident edge of u and v. The number of incident
edges of a vertex is equal to deg(v). We call the closed region surrounded by vertices and edges
to be a face. The face is called the incident face of all vertices and edges on it. Faces that have
at least one common vertex are called neighbors.

In our thesis, we use graph to represent the metro maps and some specific definitions of our
thesis are given here and we use Figure 2.1 as an example to illustrate. Vertices are the stations
of the metro map, for example vertex u, v and p. Fdges are the routes of the metro map, for

Figure 2.1: An example graph. For vertex u, vertex v, w, m are its neighbours and edge uv, uw,
um are its incident edges. Face f1, fo, f3 are its incident faces. The degree of u is 3. Edges uv,
uw, and um are neighbors to each other. Faces f1, f2, and f3 are neighbors to each other.

10 A face-based approach for automatic metro-map generation.



CHAPTER 2. PRELIMINARIES

example edge uv, pg and vr. Inside faces are the faces that are surrounded by edges forming a
closed loop, for example face f1, fo and f3. The outside face is the face that around the entire
metro map. There is only one outside face f;. An inside degree-3+ vertex is the vertex that has
degree greater than or equal to 3 and all incident faces are inside face, for example vertex u. An
outside degree-3+ vertex is the vertex that has degree greater than or equal to 3 and adjacent to
the outside face, for example vertex v, n, m and w. Chains are the sequences of degree-2 vertices
between two degree-3+ vertices, for example, chain [wpgm| and [vm]. Inside chains are the chains
that all incident faces are finite faces, for example chain [um] and [uv]. Outside chains are chains
that are adjacent to infinite face, for example chain [vm] and [wpgm]. Dangling edges are the
edges which either stand alone, or are attached only to one vertex, for example edge vr and sn.

2.1.2 Construct faces on the map

Our focus is on the ‘face-based” method, so the first thing is to find all the faces in the graph. We
first sort the incident edges for each degree-3+ vertex counterclockwise and obtain an incident-
order-list (see Figure 2.2a). Then we start at any vertex and traverse the edges of a face clockwise.
Whenever a degree-3+ vertex is encountered, always select the next edge of the edge that we have
just traversed according to the incident-order-list. Then we continue to traverse until we encounter
the vertex where we start, and we find a face.

It is important to note that constructing faces on metro maps in this way will loss the dangling
edges, for we do not deal with the outside face. Thus, after this step, our metro map will look
like the one shown in Figure 2.2b. But we will propose a method to handle dangling edges and
the stations in subsequent chapters. Finally we successfully add the dangling edges back and get
a complete metro map.

Figure 2.2: An example to show constructing faces on the metro maps. (a): First sort the incident
edges for degree-3+ vertices in counterclockwise order. The incident-order-list for vertices m, u
and w are all 1— > 2— > 3— > 1. Then we start at vertex ¢ for example. We traverse clockwise
through p and until we meet w. The edge we have just traversed is pw(1), and the next edge in
the incident-order-list of w is wu(2). Again at vertex u, the next traverse edge in the incident-
order-list of wu(1) is wm(2) and at vertex m we should traverse from um(1) to mq(1). We meet
g again, and then we get face f3. (b): Dangling edges will be lost in this step.

2.1.3 Apollonian Circle

In our algorithm, we use the Apollonius circle to show the proportional force of two faces. Thus,
we will review the calculation of Apollonius circle here.

The definition of Apollonius circle is: the trajectory of a moving point on the plane whose
distance ratio to two fixed points is equal to a constant k. As is shown in Figure 2.3, A(z1,v1)
and B(zq,y2) are two fixed points, and the distance between A and P(z,y) is dj, the distance
between B and P(z,y) is d2. When moving P, we require that dy/ds will always be k, that

A face-based approach for automatic metro-map generation. 11
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Figure 2.3: An example of Apollonius circle. A and B are two fixed points, and the distance
between A and P is dy, the distance between B and P is dp. If when moving P, dy/ds will
always be k, then the trajectory of P will be a circle and we can calculate its radius and center
coordinates.

2.2 Metro maps
In this section, we introduce some background about metro maps, including the common metro

map design criteria, what is the protection of topology and the force-directed graph drawing.

2.2.1 Metro map design criteria

As discussed in Chapter 1, The appropriate design criteria is vital for modeling the metro map
problem. When looking at Ovenden’s book [24], we can find that most of the maps meet some
common principles. Nollenburg summarized these principles in his paper[22]:

C1 Metro maps should have octilinear design style, which is the most common metro map layout
today.

C2 The embedding of the map must be preserved, which means keeping the topology when
moving the vertices and edges.

C3 The bends in the routes should be as few and smooth as possible to facilitate eye following.
C4 Distances between adjacent stations should be as equal as possible to reduce clusters.

C5 Leave enough space for the station labels in the drawing.

In this thesis, we first use criteria C1, C2, C3, C4 and C5 in our first Grid Graph approach
and then we abandon criteria C1 but still keep the others in our second and third approach.

12 A face-based approach for automatic metro-map generation.
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2.2.2 Preserve the topology

The good map design criteria C2 in Section 2.2.1 mentions that the topology of the map must be
preserved, which is the basic principle of metro map optimization. Keeping the topology means
that no new intersections can be introduced and the counterclockwise order of the adjacent edges
of each point remains unchanged.

Stott [25] mentioned three cases that can introduce new intersections, which are vertex-vertex
overlap, vertex-edge overlap and edge-edge intersect or overlap. Figure 2.4 is an example to show
the three cases. And for edge ordering, all incident edges of each vertex are sorted counterclockwise,
and the edge ordering of each vertex have to remain unchanged before and after the optimization.
Figure 2.5 is an example to show the topology is broken by changing edge ordering of a vertex.

Vi Vi e e

€1

€1

Vo Vo €y

(a) Vertex and vertex overlap. (b) Vertex and edge overlap. (c) Edge and edge intersect.

Figure 2.4: An example to show the three cases that introducing the intersections will break the
topology. (a): Vertex Vj will be overlapped with vertex Vi after moving. (b): Vertex Vj will
overlap with edge e after moving. (c): Edge eg will have a intersection with edge e; after moving.

€] €4 €2 (&

€3 €1 €3

Figure 2.5: An example to show the topology is broken by changing edge ordering of a vertex.
The order on the left is ejeseseq, but the order on the right becomes ejesesey after moving, so
the topology is destroyed.

2.2.3 Force-directed graph drawing

The force-directed spring model is an excellent model for graph layout problems derived from the
physical model, which was proposed by Eades [17] in 1984. Here is a quotation from Eades’s
explanation:

The basic idea is as follows (see Figure 2.6). To embed [lay out] a graph we replace
the vertices by steel rings and replace each edge with a spring to form a mechanical
system... The vertices are placed in some initial layout and let go so that the spring
forces on the rings move the system to a minimal energy state.

Every vertex is subjected to an attractive force and a repulsive force. Eades designed his own
formula to calculate the forces. The attractive force is only caused by connected neighbour vertices
and the formula is in terms of the logarithm of the distance d between the vertices:

d
Ja =c1log — (2.1)
C2

The repulsive force exists between every pair of vertices, and the formula uses an inverse square
law:

=2 (2.2)

A face-based approach for automatic metro-map generation. 13
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Figure 2.6: An example to show the force-directed spring model. Figure from Kobourov’s [20]
paper.

Finally when the system reaches dynamic balance, the energy of the whole system is minimum,
and the length of each edge is roughly equal to achieve the purpose of a balanced distribution of
vertices. Figure 2.7 is an example to show how force-directed algorithm works.

frea =1/4/3

froa = 1_-"'.\/3‘

fapa = log3d faca = logh

=

frl.-l(' = 'ro.{f'u)
foan = log3
frec =1/2 A

cop =1/2 !
et ! Jaocr = logd fape = 'rf’.ff-l‘

frac=1/\/5

frap =1/3

Figure 2.7: An example to show how force-directed algorithm works. The triangle on the left
has sides AB = 3, BC' = 4, and AC = 5. Each vertex is repulsive and attractive to the other
two vertices. For example vertex A, the attractive force from vertex B is fy,pa = log3 and the
repulsive force is f,pa = 1/v/3. Attractive force is proportional to distance, and repulsive force
is inversely proportional to distance. Thus, this triangle will eventually become the equilateral
triangle on the right.

Later in 1991, Fruchterman et al. [18] improved Eades’s algorithm by adding a method to
calculating the ideal distance between vertices. They expected that if the vertices are evenly
distributed across the canvas, then the distance between them should be k:

k=c . (2.3)

where w and [ are the width and length of the canvas, n is the number of vertices, and c is a
constant. Then the attractive force and repulsive force can be calculated by k:

2

= (2.4)
2

fo= % (2.5)
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Chapter 3

Related Work

In this chapter, we will give an overview of the previous related works on automatic metro-map
generation.

Metro map optimization developed from schematization of geographic maps, with additional
constraints added. Barkowsky et al. [12] are the first to attempt to automate the process of drawing
schematic geographic maps. They apply their algorithm not only to geographic maps, but also to
metro maps. Their algorithm focuses on the line simplification of polygons named discrete curve
evolution. This algorithm can simplify real geographic curve lines into simple abstract geometry.
The algorithm preserves the topology of the input map but it does not deal with the crowded
downtown area, and the edge directions are arbitrary.

Avelar and Miiller [11] propose an algorithm to automatically generate schematic metro maps
with octilinear line segments. They test it with a street map. For each vertex in the map, they
calculate a new position iteratively. The new position depends on the neighbourhood of the vertex
such that edges approach the expected directions. Besides, they set a maximum length for each
segment and a minimum distance between different segments, which makes the map more evenly
distributed. Although some lines are not completely octilinear, the readability is greatly improved.

Later, several researches specifically focus on the automatic generation of metro maps. Hong
et al. [19] define a set of aesthetic criteria for good metro map layouts. They use a force-directed
approach such that only vertices that are neighbours attract each other, but all vertices repel each
other. Thus, the additional magnetic forces drag edges towards the closest octilinear direction. In
addition, they use a preprocessing step to accelerate the algorithm. Chains of degree-2 vertices
are collapsed into one edge and will be re-inserted after computing the simplified layout. This
data-reduction step reduces the running time considerably and in our face-based approach, we
also take advantage of this idea of re-inserting the degree-2 vertices. The algorithm can improve
the readability of metro maps and the edge lengths are more even. But the metro map layout is
not perfect octilinearity.

Stott and Rodgers[27] [26] use the multi-criteria optimization approach with a hill climber.
Each criterion is weighted and vertices are moved to a new place only when the total of the
weighted criteria is reduced. Their criteria include edge intersections, octilinear layout, the length
of edges, the angular resolution and the straightness of metro lines. In each iteration, an alternative
position is checked for each vertex to improve the quality of the layout. The alternative positions
of a vertex is within a circle and the radius of the circle shrinks with each iteration. They also use
the same method as Hong et al. to collapse and re-insert degree-2 vertices to reduce the running
time. Multi-criteria optimization also does not guarantee perfect octlinearity but the edge lengths
are quite uniform. However, the biggest problem of this method is the existence of local minima
of the target function in some examples, which is disappointing.

Nollenburg and Wolft[22] [23] describe a method named mixed-integer linear programming(MIP).
This method extends linear programming by introducing the notion of constraining variables to
be within certain discrete integer ranges. They define a set of hard and soft constraints. The
hard constraints are compulsory while the soft constraints should be approximated as tightly as
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possible. These soft constraints are used to measure the quality of a metro map. The hard con-
straints include octilinear layout, thus MIP is the first method that ensures perfect octilinearity.
Besides, since MIP does optimization globally, it does not have local minima problem. However,
the running time is not polynomial in the worst-case. Thus, when the input scale is large, the
algorithm will run for a very long time.

Lutz [21] introduces an efficient algorithm in his Master’s thesis. His algorithm can transform
a geometric graph into cartogram with given edge lengths and distort edge directions as little as
possible. He applies his algorithm to drawing metro maps and the running time is very short.
His algorithm uses a method called integer linear programming(ILP), which is based on linear
least-squares optimisation. ILP also has soft constraints and Lutz linearises these constraints to
simplify the problem. He realizes this by rotating the coordinate system and breaking the angular
error down into parallel and vertical components. He defines that a direction error of 7 /4 radians
is equally as bad as being too long or too short by 50%. Linearization of constraints can greatly
improves the efficiency of the algorithm, so they can apply their algorithm in drawing travel-time
metro maps.

Recently, there are also some researches on automatically optimizing metro maps. In 2020,
Wu et al.[28] summarized the existing research on transit map layout, and analyzed it from the
perspectives of designers, machines, and users, and provided ideas for future research directions.
Bast et al. [13] proposed a method to automatically generate octilinear metro maps where the
number of bends will be optimal, and the edges can be bent arbitrarily. Later in 2021, they
improved the algorithm to make it more general [14], automatically generating all kinds of layouts,
including octalinear, hexalinear and orthogonal.

All of the above related works are vertex-based, which distort the metro map by directly
moving the vertices and edges. Now our project will introduce a completely different face-based
approach. We mainly change the size and shape of the faces between the metro lines to make the
metro map evenly distributed and improve the readability.

16 A face-based approach for automatic metro-map generation.



Chapter 4

Approach 1: Grid Map

We have tried three different approaches and experimented with each approach. Our initial two
approaches ultimately failed to give satisfactory results. This chapter discusses our ideas for the
first approach, including why we choose to use a grid map, how we optimize the size and shape of
the face with the help of the grid map and why this approach does not work.

4.1 Introduction

In this section, we give a brief introduction of our grid map approach. We discuss our decisions in
the design stage and give the pseudo-code for the optimization stage. Then we give an overview
of this chapter.

Advantages of grid map

A grid map is an integer square grid and vertices can only be put on the grid intersections (black
dots), as is shown in Figure 4.1a. For convenience, we omit the lines between the grids and keep
only the grid intersections. The distance between two adjacent grid intersections is g and we call
g the edge length of the grid map. In the design stage of this approach, we embed our input
metro map into a grid map, which means each vertex will be pulled to an integer grid intersection.
We use this approach because the grid map has many advantages. Firstly, we decide to use the
same design criteria used by the vast majority of metro maps mentioned in section 2.2, i.e. use
octilinear layout, keep topology, smooth bends, evenly distribute stations and leave enough space
for labels. Thus, we choose to use the grid map because we think it is convenient to control the

D)

(a) (b) (c)

Figure 4.1: An example to show the advantages of grid map. (a): A grid map is an integer square
grid and vertices can only be put on the grid intersections. (b): The convenience of grid map in
controlling the octilinear layout and edge length. (c): A grid map can significantly reduce the
number of potential positions for vertices. Vertex A can be placed directly at point P, otherwise
it has to test other potential candidates such as the blue points.

A face-based approach for automatic metro-map generation. 17
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octilinear layout (C1) and edge length (C4) with fixed and evenly spaced grids. As is shown in
Figure 4.1b, edges can easily be placed horizontally, vertically or diagonally in the grid map and
edge lengths are exactly the distance g between grids in the horizontal or vertical direction (and
V2¢ in diagonal direction). Another reason we choose to use the grid map is because the grid
intersections can significantly reduce the number of potential positions for vertices. As is shown
in Figure 4.1c, vertices can only be placed at grid intersections, which can improve our algorithms
efficiency greatly.

Embed in the grid map

As a first step, we have to embed our metro map into the grid map. This is because our input
data is the exact geographical positions, but our grid map only has integer coordinates. Figure
4.2 is an example to show embedding the metro map to integer square grids.

The embed method we use is the same as Stott and Rodgers [27]. We first drag every vertex
to its nearest grid intersection, as is shown in Figure 4.2. If more than one vertex shares the
same nearest grid intersection, we move all the redundant vertices to their second nearest vacant
grid intersections. Figure 4.3 is an example to show this. If there are still conflicts for the grid
intersections, that means the grid is too sparse and we should reduce the grid size. As is shown in
Figure 4.4, shortening the grid length ¢ will increase the number of grid intersections, which can
reduce the conflicts.

Figure 4.2: An example to show how to embed a map with accurate geographical float value on
an integer square grid map.

Figure 4.3: An example to show how to deal with the conflicts for the grid intersections. Vertex
v and vertex w both have the grid intersection A as the nearest. But they can not both move to
A, because there would be overlap. Thus, we can move vertex v to A and then move vertex w to
its second near vacant grid intersection, which is B.

Figure 4.4: An example to show shortening the grid length g can reduce the conflicts. The vertices
a,b,c,d,e on the left are all nearest to A, and there are not enough vacant grid intersections. Then
we shortening the grid length to increase the number of vacant grid intersections, so that the five
blue vertices can move respectively to the five red intersections.

18 A face-based approach for automatic metro-map generation.
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The pseudo-code of the first optimization algorithm

Algorithm 1: Approach 1: grid maps

Input: The routes of the metro map and the original geographic coordinates of all
stations on the routes.

Output: The optimized station coordinates.

Embedded the original geographic metro map into the grid map;

for each face do

Calculate the roundness of the face (Section 4.2);

while roundness <threshold do

Calculate the centroid C' of the face (Section 4.3);

Define the ideal radius r of a circle (Section 4.4);

Draw a circle with C' as the center and r as the radius;

for each vertex on the face do
move the vertex towards to the centroid if it is outside the circle;
move the vertex away from the centroid if it is inside the circle;
(Section 4.5 and 4.6);

© 0 N o s W
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After the embedding step, we optimize the faces of the metro map one by one. In the optim-
ization stage we want to adjust the shape and size of the faces so that the map meets as many of
the criteria as possible. Here we give an overview of our algorithm and we will give more details
as well as our motivation in the later sections. The pseudo-code of our grid maps approach is
shown in Algorithm 1. Figure 4.5 is a sketch of the process. For each face, we want to increase
its roundness as much as possible because the closer the face is to the circle, the larger the space
between the routes and the less likely it is to be crowded. If the roundness is smaller than our
threshold, we first calculate the centroid of the face and draw a circle with the centroid as the
center. We give a definition of the optimal radius of the circle and vertices on the circle are con-
sidered to have the optimal distance from the centroid. The vertices inside the circle are too close
to the centroid, resulting in the small roundness. So the inside vertices should be moved away
from the centroid. Similarly, the vertices outside the circle should move toward the centroid and
finally all the vertices fall near the circle. After all the vertices are processed once, the roundness
is calculated again. If the roundness is still less than the threshold, the algorithm is repeated until
the roundness is greater than the threshold.

In the following sections, we will step by step give the motivation and algorithmic details for
each of our steps. Section 4.2 talks about why we want to increase the roundness and Section
4.3 shows why we need the centroid of a face and how to calculate it. Then we describe how to
calculate the radius for the circle in Section 4.4 and show how to increase the roundness of a face
in Section 4.5. Section 4.6 is about how to find a target grid for each vertex and we will show the
results of our algorithm in Section 4.7.
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Figure 4.5: The algorithmic process of the Grid Approach.
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4.2 Calculate the roundness of a face

In Section 2.2.1, criteria C5 states that the layout should leave enough space for the labels in the
drawing. Considering that among all geometric figures with the same perimeter, the area of the
circle is the largest, we decide to use the roundness as one of the standards to measure a face. The
greater the roundness of a face, the closer the face is to a circle, so our algorithm should maximize
the roundness of each face as much as possible to leave enough space for the labels. Another
benefit of increasing the roundness of the faces is that it increases the distance between the close
routes, which can avoid some sharp bends and prevent clusters of stations. As Figure 4.6 shows,
when the roundness of the face increases, the distance between two close routes increases and the
space left for the label becomes larger. This can reduce the clusters and overlaps and can make
the routes more smooth.

Figure 4.6: An example to show why we use the roundness to measure a face. The map on the
left has small roundness. Vertices are clustered, labels are overlapped, bends of the routes are
very sharp. However, when the roundness of the face is increased on the right, the clusters and
overlaps are reduced and routes are more smooth.

Roundness is the area of a face over a circle that has the same perimeter as the face, so we can
calculate roundness as follows:

area(Face) area(Face) 4m x area(Face)
roundness = - = - - = .
area(Circle) ( Perimeter(Circle) )2 (Perimeter(Face))?

2

4.3 Calculate the centroid of a face

We observe that for a circle, its center is exactly its centroid, and all vertices on the circle are
at the same distance from the centroid. Conversely, when the shape of a face is irregular, the
distance between the vertices on the face and the centroid will be very unbalanced. As shown in
Figure 4.7, for the face on the right, the distance from the vertices on the face to its centroid is
not balanced, so its roundness is smaller than the circle on the left. We assume, then, that the
greater the roundness of a face, the smaller the difference in distance between vertices on the face
and its centroid. Thus, our algorithm should aim to modify the shape of the face by reducing the
distance difference between vertices on the face and the centroid to increase the roundness.
The centroid of a polygon face can be calculated as follows:
First divide the face into triangles, and calculate the centroid and area of every triangle:

To+21+2x2 Yo+ Y1+ Y2
3 ’ 3

) (4.1)

centroid(

g - (1 — 20)(y2 — yo) — (2 — w0)(y1 — ¥o)
2

(4.2)
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Figure 4.7: An example to show smaller distance difference between vertices and centroid leads to
greater roundness face.

Doiey (wisi) D iea (yisi))

Then the centroid of the face is: (X = = Y = =

Dlim1 i Yic1si

where (z;,y;) is the centroid of the ith triangle, and s; is the area of the ith triangle.

4.4 Calculate the radius for FaceCircle of a face

To reduce the distance difference between vertices on the face and the centroid, we draw a circle
with the centroid as the center, called FaceC'ircle, like Figure 4.8 shows. Vertices on the circle
are regarded to have the optimal distance to the centroid. Thus, vertices inside the FaceClircle
should be moved further away from the centroid to increase their distance, and vertices outside the
FaceClircle should be moved closer to the centroid to reduce their distance. Ideally, all vertices
end up on the FaceCircle, have the same distance from the centroid. Thus, defining the radius
of FaceClircle is very important.

Figure 4.8: An example to show FaceCircle. The circle take the centroid as the center. Vertices
inside the circle will be moved further away from the centroid and vertices outside the circle will
be moved closer to the centroid. Ideally, all vertices will end up on the FaceCircle, and have the
same distance from the centroid.

We calculate the radius of the FaceCircle through a regular polygon and the idea is as follows.
Our design criteria specify that our edges are straight lines (Octilinear layout), so each face cannot
be a true circle, but rather as a polygon as close to the FaceCircle as possible (The right-most one
in Figure 4.8). Of all polygons, the regular polygon with all vertices exactly on the FaceCircle
is closest to the FaceCircle and has the maximum roundness and area. It also has uniform edge
length and has a regular shape. As shown in Figure 4.9, the red circle has the FaceCircle of the
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Figure 4.9: An example to show the regular polygon with all vertices on the circle has the maximum
roundness and area, as well as the uniform edge length and regular shape.
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Figure 4.10: An example to show the calculation for the radius of FaceCircle. (a): Calculate
the radius of FaceC'irce for triangles, quads, and hexagons. For each face, we calculate a regular
polygon with the same number of the face and take the edge length to be I. The circumcircle
of the regular polygon is the the FaceCircle. (b): The radius of FaceCircle is only determined
by the number of vertices on the face and it does not matter how big the face was. For these
three quadrangles, their regular polygons are squares of edge length [, so their optimal area and
FaceClircle are exactly the same.

face and vertices on the circle have the optimal distance to the centroid. The right-most regular
polygon is the maximum roundness for a face with five vertices. For every face we can calculate the
regular polygon that is exactly on the FaceCircle, as is shown in Figure 4.10a. The FaceClircle
is the circumcircle of the regular polygon and as long as we know the edge length of the regular
polygon, we can compute the radius of FaceCircle.

We define the edge length of a regular polygon as [ and the radius of the FaceClircle can be
calculated as Figure 4.11 shows. The edge length [ of the regular polygon can determines the
optimal distance between the centroid and the vertices and thus influences the size and shape of
the face. We will discuss this later and will compare the effects of different [ to the final metro
map.

We define that the optimal area of a face is proportional to the number of vertices on the
face. Faces with more vertices need more area for labels and more space to avoid clustering.
Therefore, such an area distribution can make the metro map more evenly balanced. Figure 4.12
is an example of the proportional distribution. The area of regular polygon is determined by the
number of vertices on the face, so the faces with the same number of vertices will have the same
radius for FaceCircle, no matter how big the faces’ area was before, as Figure 4.10b shows.

Figure 4.11: An example to show how to calculate the circumcircle of a regular polygon. The edge
length is [ and the central angle is 360/2n, where n is the number of the vertices on the face.
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Figure 4.12: An example to show the area distribution is proportional to the number of vertices
on the face.

4.5 Increase the roundness

To increase the roundness, we have to reduce the distance difference from vertices to the centroid.
We have tried two methods to improve the roundness.

Methodl: Use Force-directed method

In this method, the forces on the vertices are exactly along the radius. To be specific, vertices
inside the FaceCircle are repulsed away from the centroid, and vertices outside the FaceCircle
are attracted toward to the centroid, as is shown in Figure 4.13. The repulsive and attractive forces
can be calculated with the formulae in Section 2.2.3. The attractive force is f, = logd and the

1
repulsive force is f,. = ﬁ, where d is the distance between the vertex and the centroid. According

to the formulae, the closer a vertex is to the centroid inside the circle, the more repulsive force
it will receive, which pushes it farther away from the centroid; and the farther away a vertex is
from the centroid outside the circle, the greater attractive force it will receive, which makes it be
attracted closer to the centroid. This is exactly what we want: to balance the distance between
vertices on the circle and the centroid.

However, we find this method sometimes gives unexpected results. Figure 4.14 shows the
unexpected situation, since vertices A and B can only be attracted or repelled along the radius, the
final result has intersections that break the topology. Besides, it has very sharp bends, violating
the criteria C3 in Chapter 2.2, which says the bends should be as smooth as possible. This
restriction on the direction of movement also causes clusters, which prevents vertices from being
evenly distributed on the circle.

Figure 4.13: An example to show Force-directed method to increase roundness. Vertices inside the
FaceClircle (B and F) are repulsed in the opposite direction of the centroid, and vertices outside
the FaceCircle (A,C,D,F) are attracted toward the direction of the centroid. The repulsive force
is inversely proportional to the distance from the vertex to the centroid (B is closer to O than E
so B will be repulsed further). The attractive force is proportional to the distance from the vertex
to the centroid (A is further to O than F so A will be attracted furthur than F).
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Figure 4.14: An example to show the irrationality of force-directed method in increasing the
roundness of a face. The four figures are: the original face, the face that has been processed at all
vertices except A and B, the face with A processed, and the final face with B processed. A and
B can only move along the radius, causing inevitable intersections or sharp bends. In addition,
the upper half of the circle is sparsely distributed, while the lower half of the circle is clustered

Method2: Divide face into left and right chains

Then we propose another way to increase the roundness of the face. Instead of restricting the
movement of vertices in the direction of the radius, the face is divided into left and right chains,
with each vertex on the chains has five moving directions. As is shown in Figure 4.15a, we first
find the highest vertex and the lowest vertex of the face, use these as the dividing points to divide
the face into two chains of blue and green. Every vertex on left blue chain inside the FaceCircle
has five directions, that is, top, topLeft, left, bottomLeft, bottom; every vertex on right green
chain inside the FaceC'ircle also has five directions, that is, top, topRight, right, bottomRight,
bottom. Vertices that are outside FaceCircle have the opposite five directions. Each vertex can
only move one grid distance at a time or stay unmoved, which means that each vertex has at most
six positions to choose. Figure 4.15b is an example to show the candidate positions.

max
topleft top
left

bottomleft bhottom

Figure 4.15: Divide face into left and right chains. (a): An example to show how to divide face
into chains and the directions for vertices on chains. (b): An example to show five candidate
positions that a vertex can be moved to. vy is on left chain and inside the FaceClircle, and its five
candidate positions are marked with blue dots, but it can only choose left position because there
are already vertices on other candidate positions. vy is on right chain and inside the FaceC'ircle,
and its five candidate positions are marked with green dots, and it can be moved to any of the
candidate positions.

4.6 Find a target grid

Although every vertex has five candidate positions, not every candidate position is available. We
must ensure that the metro map is octilinear and the topology is unchanged during the movement.
Thus, every time we want to move a vertex to a candidate position, we must check whether the
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angle between all adjacent edges of this vertex and the x-axis is an integer multiple of 45 degrees.
If not, this candidate location is not available. For example in Figure 4.16, vertex v can not be
moved to its candidate location bottom because after moving, octilinear layout will be destroyed.
Likewise, we have to check the topology if we want to move a vertex to its candidate position. If
there exist new intersections or if it changes the ordering of edges (see Section 2.2.3), the candidate
position also has to be abandoned.

Figure 4.16: An example to show candidate positions where the angles between the adjacent edges
and the x-axis is not an integer multiple of 45 degrees are not available.

For a single face, we want to update the positions for all vertices simultaneously. We use the
shortest-path method to realize this and the idea is shown in Figure 4.17. For each vertex, we
draw its six candidate positions and list them in a column. Each candidate position has a weight
and the weight is equal to the distance from candidate position to the FaceCircle. The columns
for the two adjacent vertices in the face are listed next to each other. Then for each candidate
position of a vertex, check which candidate positions of its neighbor’s are octilinear with it and do
not break the topology. If such a candidate position exists, the corresponding points are connected
by a line between their candidate position columns. After all the vertices on the face go through
this step, we will obtain the shortest-path graph on the right.

Then we can directly get the new shape for the face. To be specific, we randomly start from a
candidate position in the shortest-path graph, and we find a shortest path that gets back to this
candidate position again. All the candidate positions on the path are the new locations for the
vertices of the face. Then we can obtain a new shape of the face. We only choose shapes that
make the roundness of the face larger. If this path does not increase roundness, we find another
path. Then we update all the vertices of a single face simultaneously. Figure 4.18 is an examples
to show how to get a new shape from the shortest-path graph.
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Figure 4.17: An axample to show the shortest-path method that can update the positions for all
vertices on a single face simultaneously. Suppose that the face is too small and all the vertices are
inside the FaceCircle. ai, as, as, a4, as are the candidate positions for vertex A and are listed
in a column on the right figure. Then there are the B,C, D, E, F' candidate position columns.
Then we check for the octilinear. For example, candidate position a; of vertex A can only go to
candidate positions b; and bs of vertex B and the edges between them are still octilinear. Then we
draw a line between a1b; and a1bs. For the figure in the middle, the weight for candidate position
as is we and candidate position as has weight ws.
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)

Figure 4.18: An axample to show obtaining a new shape from the shortest-path graph. For
example, we start form as, and then find a path asbicsdse; foas that back to ag, as is shown in
the red line. Then we can update vertices A, B,C, D, E, F' to as, by, c3,ds, e1, fo respectively and
get a new shape for the face.

However, when there are multi faces in a metro map, the shortest-path graph can not be used
anymore. This may break the octilinearity of neighbour faces, as is shown in Figure 4.19. Thus,
in our implementation, we can not update all the vertices of a face at the same time, instead we
have to move vertices one by one to check the octilinearity and topology.

fl
ol
D" ey ds

dy ds

Figure 4.19: An axample to show shortest-path graph can not be used for multi faces. After the
left face changes its shape according to the shortest-path graph, the edges of the triangle above is
no longer octilinear.

4.7 Results

For this method, we did not experiment on a real map, but used a demo graph containing only two
faces and skipped the embed step to see the effect. We chose the edge length of the regular polygon
to be one. We want the roundness of each face to be as large as possible, but it is impossible to
achieve maximum roundness due to the influence of neighboring faces and the octilinear restriction.
Besides, the fewer vertices a face has, the smaller the maximum roundness a face can achieve. The
face with the fewest vertices is the triangle, and the maximum roundness of a positive triangle with
an edge length of one is v/37/9(= 0.6). Therefore, we define that 0.5 is a threshold for roundness,
and we only adjust the faces with roundness less than 0.5. For the faces with roundness greater
than 0.5, we think they have left enough space for labels and the cluster is not serious.
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The process of changing the shape of the map using the first approach is shown in the Figure
4.20. Figure 4.20a is the original input. First deal with the left face and in each iteration we get
a new position for each vertices on both chains. After calculation, the roundness of this face is
smaller than 0.5, so divide the face into left and right chains and check the available candidate
positions for each vertex. After this loop, the map looks like Figure 4.20b and we get a new left
face and calculate the roundness again. The roundness is still less than 0.5, so we repeat the
progress and get Figure 4.20c, Figure 4.20d and Figure 4.20e. Now the roundness of left face is
larger than the threshold, so we move to next face. Figure 4.20f shows the algorithm begins to
deal with the right face, and Figure 4.20g is the final result of the whole map.

We can see that it is true that the roundness of the faces can become larger, the shapes of
the faces can become more regular, the edge length are even, and the layout is octilinear, which

(g) Right face two step.

Figure 4.20: Examples to show the process of changing the shape of the map during processing.
The left face is processed first, and if the roundness is less than the threshold the algorithm will
be repeated until the roundness is greater than the threshold. Then the right face is processed.
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suits our purposes. However, this algorithm has fatal problems. First, because the algorithm deals
with faces one by one, the face that has been processed will be affected by its neighbors later,
resulting in invalid processing. For example, in Figure 4.20e, the roundness for the left face meets
the threshold, but when dealing with the right face in Figure 4.20f, their common edges are pushed
back again, causing the left face to become smaller again.

Second, we regard the regular polygon of every face to be its optimal shape and size, but the
octilinear layout makes it impossible for the face to be a regular polygon. The distance between
two grid is ¢ in horizontal and vertical directions but v/2g in diagonal direction. It is not possible
that all vertices of a regular polygon are on the grid intersections. In other words, it is impossible
for the face to reach maximum roundness and the edges cannot be equal in length. Figure 4.21 is
an example for the first problem.

Third, we set the threshold of the roundness to be 0.5, which is not general for all the faces.
For faces with 3 vertices, the maximum roundness is 0.6 so 0.5 is a good threshold. However, for
faces with more vertices, their roundness maybe larger than 0.5 but still do not have the optimal
shape. They may have sharp bends or very long edges. Figure 4.22 is an example of this problem.

Fourth, this algorithm only works for some specific faces. The faces in our demo already have
octilinear layout, and all edge lengths are exactly the grid length g (v/2¢ in diagonal). This is a
very special case and does not represent the faces of the real geographic metro map embedded in
the grid map. The edge length of a true embedded face is often very uneven and the layout is
not octilinear, as is shown in Figure 4.23. The algorithm does not work for such faces because all
candidate positions for all vertices are unavailable. Thus, these irregular faces are never optimized.
Besides, the final results are very likely to contain inappropriate bends, such as the upper left corner
of Figure 4.20g.

All in all, the first method combined with grids cannot achieve our goal well. So we decided
to change our exploration direction.

. . . . . . .

Figure 4.21: An example to show the octilinear layout makes it impossible for the face to be a
regular polygon. To the left of the arrow are the faces embedded in the grid map, and to the right
of the arrow are the standard regular polygons.

Figure 4.22: An example to show setting the threshold of the roundness to be 0.5 is unreasonable
for faces with many vertices. The roundness of this face is already larger than 0.5, so it will not
be optimized. But it has unbalanced edges and it can never be optimized to the shape shown on
the right.
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Figure 4.23: An example to show faces that the algorithm can not process. The triangle on the
left is too large, but the candidate positions (blue dots) for all vertices are not available because
none of these dots can make the face to be octilinear. Same reason for the faces on the right.
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Chapter 5

Approach 2: Attach Circle

This chapter discusses our ideas for the second approach. In Section 5.1, we first discuss why we
abandon the octilinear layout and the grid map and describe the advantages of our second Attach
Circle approach. Then we give the pseudo-code and our general idea of this approach. Next we
describe our attach regulation in Section 5.2 and show how we deal with the attachment when
there are multiple circles in Section 5.3. In Section 5.4 we show how we preserve the topology of
the whole metro map. In Section 5.5 we show the results on real metro maps of this approach and
discuss the advantages and disadvantages.

5.1 Introduction

We learn form the first approach that one of the reason for the failure of the first approach is that
there are too many restrictions on the location selection of vertices. Vertices can only be put on the
intersections of the grid map and the octilinear layout places too many restrictions on the shape
of the faces. The horizontal and vertical lengths (g) of the grid are not the same as the diagonal
lengths (1/2g), making it impossible for faces to become perfect regular polygons. Edges of the
faces and x-axis angles can only be an integer multiple of 45 degrees, making it impossible for
faces to reach a maximum roundness close to the circle. In addition, if none of the five candidate
positions for vertices are available, irregular faces will never be optimized. All of these problems
are caused by the design criteria C1 (octilinear layout) and contrary to our optimization ideas.
We want to smooth the shape of the faces and maximize the roundness of the faces. Therefore,
we have to change our design criteria.

Although the octilinear layout is the most common design style for metro maps, but it does
not perform well in our ‘face-based’ algorithm. We observe that with regular faces shape and
balanced space distribution, metro maps are also readable and useful. For example, the schemat-
ised curvilinear layout 1.4b in Figure 1.4 is much more beautiful and practical than the original
curvilinear input 1.4a. There are no clusters of stations and the routes are very smooth. The
space distribution is also better and the area of the faces are approximately proportional to the
number of vertices on the face. Inspired by this, we think we can use a similar design layout in
this approach and we can further optimize the curve edges to straight lines. Therefore, we decide
to combine the multilinear and schematised curvilinear layout to replace octilinear layout C1 in
Section 2.2. The only difference between our layout and schematised curvilinear is that we still
use straight lines to connect stations, as shown in Figure 5.1. Besides, we still keep the criteria
C2 to C5 in Section 2.2 for these are the hard requirements of a good metro map. Thus, our
design criteria in the second approach are as follows. We combine a schematised curvilinear with
multilinear layout; we require the preservation of the topology; we want to reduce bends; we aim
to obtain a more even edge length and leave enough space for labels.
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Figure 5.1: An example to show our metro map layout. The overall layout fits schematised
curvilinear but we use straight lines to connect stations. Vertices can be moved to any positions
and do not have to be on integer grids.

5.1.1 Advantages of Attach Circle approach

From Grid Map approach, we learn that if we deal with only one face at a time, the faces that
have already been processed will be affected by its neighbors. Their common edges will be pushed
back, making the roundness of the processed face smaller again. So dealing faces one by one does
not guarantee the roundness of the processed faces. Thus, we want to come up with an approach
that can deal with all the faces in the metro map at the same time. We call it Attach Circle
approach and the general idea is shown in Figure 5.2.

The pseudo-code of the second optimization algorithm

Algorithm 2: Approach 2: Attach Circle
Input: The routes of the metro map and the original geographic coordinates of all
stations on the routes.
Output: The optimized station coordinates.
1 for each face do
2 Calculate the centroid and FaceClircle as Grid Map approach;
3 for each vertex on the face do
4 Find the ideal target position on the circle (Section 5.2);
5
6

Calculate the displacement vector towards the target position (Section 5.3);

if Moving the vertex to the new position does not break the topology (Section 5.4)
then

7 L Move each vertex to its target position;

Figure 5.2: The optimization idea of Attach Circle approach. We find target positions on the
FaceClircle for all vertex and drag them to the circle directly.
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In this approach, without the direction restriction of the edges, we can directly move the
vertices on the face to the FaceCircle and distribute the vertices evenly on the circle. This can
make the face to be a perfect regular polygon wuth the largest roundness, which is in line with our
optimization ideas. We regard the movement of the vertex as a displacement vector, the original
position is the vector tail, the target position is the vector head, and the movement distance is the
vector length. Figure 5.3a is an example to explain the displacement vector. We will discuss later
how to find the target position. And when a vertex has multiple incident faces, we can directly
add up the displacement vectors caused by all faces and obtain the final position of the vertex.
Figure 5.3b is an example to show multi faces. Therefore, we can calculate the final positions for
all vertices on the map first and then update their coordinates at the same time. The advantage
of this approach is that it can prevent the problem of common edges being pushed back and faces
can be optimized to be the regular polygons with maximum roundness.

Figure 5.3: Examples to show the displacement vector. (a): Displacement vector for a single circle.
If we move vertex v to point u on the circle, we will get a displacement vector ot for vertex v. The
original position v is the vector tail, the target position u is the vector head, and the movement
distance |vu| is the vector length. (b): Vector addition for multi incident faces. Vertex v has
two incident faces so it has two displacement vectors o0 and v. We can use vector addition to

calculate the final displacement vector vj for vertex v.

5.2 Attach regulation

We still want to make the faces as round as possible but instead of using roundness as the threshold
for measuring the face, we expect to directly attach vertices on the face to FaceCircle. Asis shown
in Figure 5.4, we first calculate the regular polygon of the face and draw the FaceClircle as in the
Grid Map approach. Then we rotate the regular polygon, making one vertex of the regular polygon
to overlap with the rightmost point of the FaceCircle. The points at which regular polygon and
FaceClircle overlap are the target positions for the vertices of the face.

Secondly, we attach vertices on the face to target locations on the FaceCircle. As Figure 5.5
shows, we attach the vertex with the largest horizontal coordinate on the face to the rightmost
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Figure 5.4: An example to show how to find the target positions for each vertex on FaceCircle.
Rotate the regular polygon that one vertex overlaps with the rightmost point (the red one) of the

FaceCircle.
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Figure 5.5: An example to show how to attach vertices onto FaceCircle evenly. Vertex v, has
the largest horizontal coordinate, so attach it to the rightmost point u; on FaceCircle. Then in
counterclockwise order, vy to us, vz to uz and so on.

point on FaceCircle. Then starting from this vertex, counterclockwise attach all other vertices
on the face to the corresponding target locations on FaceC'ircle.

5.3 Multiple target positions

In the real metro map, most of the vertices have two or more incident faces, which means that such
vertices have to be attached to multiple different circles simultaneously. Figure 5.6a is an example
of this case. We can find the target positions for a vertex on each FaceC'ircle using the method
discussed in the previous section and obtain the displacement vectors for this vertex. Then the
final location of v is simply the average of the sum of the vectors. Figure 5.6b is an example to
explain this vector average method. After attaching all vertices to their target positions, we can
move all the vertices simultaneously in one step.

Figure 5.6: Examples to show the displacement vector. (a): An example to show vertex have to
be attached to multiple different circles simultaneously. Vertex v has three incident faces, and
on these three faces, it should be mapped to uy, us and ug in turn. The final location of v is
vuy + vug + vig . .
—— . (b): An example to show using the average of the displacement vectors as the
target position. Vertex v has two target positions and the displacement vectors are vty and v.
VU + v

The final location of v is 5

5.4 Preserve the topology

No matter what layout style is used, maintaining topology is an essential criterion for metro map
optimization. We have to make sure that there is no new intersections and the edge orderings
remain unchanged during the optimization. One advantage of the Attach Circle approach is that
we can update the coordinates of all vertices at the same time. However, updating the coordinates
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of all the vertices at the same time makes it difficult to maintain the topology. As is shown in
Figure 5.7, we can find the target positions on each circle for all vertices and can know the final
displacement vectors. However, we do not know whether the topology structure will be broken
after moving all vertices. We need to check each edge for new intersections and check whether the
edge ordering of each vertex has changed. This makes the algorithm very inefficient. Besides, if
we detect that the topology is broken, we have to return all the vertices to their original position,
so the metro map optimization fails.

Figure 5.7: An example to show moving all vertices at the same time is difficult to preserve the
topology. We can not know whether the topology structure will be broken after moving all vertices
and do not know which vertex on which face are causing the problem.

An improved method is to divide the displacement vector evenly into many small parts and
move one small part in each step. Check the topology once for each step. If the topology is
broken, only this small step is reversed. Figure 5.8 is an example of this method. However, this
method also has disadvantage. If one edge breaks the topology after only a few small steps, the
rest of the edges and vertices will be stopped optimizing and the map will look almost identical
to the original map. Moreover, because this method checks the topology once every small step,
the algorithm is more inefficient.

We want to prevent the case that the entire face stops being optimized because one vertex
destroys the topology. Instead of moving all the vertices at the same time, we move vertices one
by one. For each vertex, divide its displacement vector evenly into small parts and move one small
part in each step. In each step check whether all adjacent edges of this vertex will introduce new
intersections or change the edge ordering of some vertices. If the topology is broken, reverse the
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Figure 5.8: An example to show moving all vertices for a small step each time. (a): The input of
a face. The displacement vector for each vertex is drawn in red. Every time move a small step
at each vertex. (b): If the topology is broken, only one small step is reversed. (c): If one edge
breaks the topology after only a few small steps, the rest of the edges and vertices will be stopped
optimizing too.
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step for the vertex and begin to move next vertex. Figure 5.9 is an example to show the process.
The advantage of this method is that one vertex breaks the topology will not affect the continued
optimization of other vertices. The disadvantage is that this method is still inefficient, because
the topology has to be checked every step of each vertex move.

Uaq U6
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i

Figure 5.9: An example to show moving the vertices one by one while preserve the topology. The
target position for vertex v is w, but when vs move to ui, the topology is broken. The edge
ordering for vertex vs changes from 1234 to 1324. Thus, v2 have to go back a step to usa.

5.5 Results

We use the real metro map in Sydney to test the algorithm and we test three cases where the
optimal edge length of the regular polygon was defined as 5, 10, 15. We calculated the average
edge length, edge length variance, longest edge length, and shortest edge length before and after
map optimization. For the area distribution, we calculate the difference between each face area
and its optimal area. Then we calculate the average area difference, the variance of area difference,
the maximum area difference and the minimum area difference before and after map optimization.
The results for edge balancing are shown in Table 5.1 and the results for area distribution are
shown in Table 5.2. The metro map results are shown in Figure 5.10.

The edge balancing results
Average edge length | Edge length variance | Longest edge | Shortest edge
Before 15.06 54.99 66.52 3.77
Edge length = 5 11.26 168.29 73.27 0.5
Edge length = 10 13.23 96.82 57.63 2.48
Edge length = 15 15.92 90.49 56.90 0.83

Table 5.1: The edge balancing results before and after the optimization.

The area distribution results
Average difference | Area difference variance | Maximum | Minimum
Before(length=>5) 3051 19775541 13501 3
After(length=>5) 1265 1704891 3619 13
Before(length=10) 584 458855 1966 1.6
After(length=10) 546 424036 1635 11
Before(length=15) 4473 38348598 17258 10
After(length=15) 2487 12054969 9769 56

Table 5.2: The area distribution results before and after the optimization.

From Table 5.1 we can see that the the average edge length does not change much. But the
variance of the edge length increases significantly, which indicates that the edge length of our
metro map is more uneven after optimization. As can be seen from Figure 5.10, some vertices can
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(a) Input (b) Optimal edge length of the regular polygon is 5.

(c) Optimal edge length of the regular polygon is 10.(d) Optimal edge length of the regular polygon is 15.

Figure 5.10: The results of the Sydney Metro map optimized by Attach Circle approach.

be perfectly attached to the circle with equal distance between them, but there are often extremely
long edges at the junction of the two circles, resulting in a particularly unbalanced overall edge
length of the metro map. And the smaller the optimal edge length of the regular polygon, the
smaller the FaceC'ircle, the greater the imbalance. This is because the smaller the FaceCircle,
the longer the edges are required at the connection of the circles, so the greater the difference in
edge length from edges between the vertices attached to the circle. To be specific, the long edges
are caused by poor distribution of the centroids. For example in Figure 5.10b, the centroid v;
is too far away from centroid vs, the common vertices of the two faces are therefore have to be
distributed in the middle of the two Facecircles, far away from their target positions that are
exactly on the Facecircles. Besides, there exists unexpected bends in the metro map, which make
the shape of the faces very irregular.

Although the algorithm does not perform well in evening edge length, it gets good results in
balancing area distribution. As is shown in Table 5.2, both the average area difference and the
variance of the area difference are greatly reduced. This means each face on the metro map is
closer to the optimal area than before optimization. A decrease in variance of the area difference
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means that the faces are more evenly distributed, which is exactly what we expect. Therefore, in
the next approach, we can continue to use a similar method to improve the area distribution, but
have to propose a new method to balance the edge length.
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Chapter 6

Final Approach: Force-directed

This chapter discusses our ideas for the final approach. In this approach, we use a high level
‘face-based’ force-directed approach to obtain a better area distribution and we use a collapse-
and-reinsert method for degree-2 vertices to balance the edge length. Then we deal with the
dangling edges to make the result to be a real metro map. We give an introduction and the
pseudo-code of this approach in Section 6.1. Then we describe why and how we rearrange the
centroids to get a better area distribution in Section 6.2. In Section 6.3 we show how we use force-
directed method to locate the degree-3+ vertices and In Section 6.4 we show how we reinsert the
degree-2 vertices. In 6.5 we show the results of our algorithm. The dangling edges are processed
in Section 6.6 and the final results and the evaluations are shown in Section 6.7.

6.1 Introduction

We learn from the second approach that poor centroid distribution results in unbalanced long
edges and causes sharp bends. But despite these problems, the area distribution is better than the
original metro map. The difference between the real area with the optimal area is greatly reduced
and the variance of the area difference is smaller. The face with more vertices has a larger area,
and is approximately proportional to the number of vertices on the face. In addition, the distance
between the vertices that can be attached exactly on the circle is relatively uniform, which is also
in line with our expectations. So, to sum up, in our final approach, we can use the same design
criteria as Circle Attach approach but we have to come up with a different optimization approach
to deal with sharp bends and long edges.

We propose a ‘face-based’ force-directed approach and the pseudo-code is shown in Algorithm 3.
The idea is shown in Figure 6.1. We first rearrange the centroids of the faces, making the adjacent
FaceClircle to be exactly tangent. Then we rotate the centroids, adjusting their common chain
length between two degree-3+ vertices. Next the degree-3+ vertices are placed somewhere between
the junction of all its incident faces using a force-directed method. Then we reinsert the degree-2
vertices on the chain between two degree-3+ vertices. The chain between two faces can reflect the

Figure 6.1: The optimization process of the final force-directed approach. First rearrange the
centroids, then adjust the degree-3+ vertices. Then reinsert the degree-2 vertices onto the chains
between the degree-3+ vertices. Then add a box to include dangling edges and remove the box at
last.
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force that is exerted by the centroids and the force is proportional to the size of the face. Finally

we add a box around the metro map so that the dangling edges are included in the faces. After
processed the dangling edges, the box will be removed.

The pseudo-code of the second optimization algorithm

Algorithm 3: Approach 3: Force-directed
Input: The routes of the metro map and the original geographic coordinates of all
stations on the routes.
Output: The optimized station coordinates.
1 Add a box around the whole metro to deal with the dangling edges ;
2 for each face do
3 L Calculate the centroid and FaceClircle as in the Grid Map approach;

4 Use a force-directed method to rearrange the centroids;

5 Rotate the centroids to adjust their common chain length;

6 Use a force-directed method to place the degree-3+ vertices;
7 for each chain between two degree-3+ vertices do

8 L Reinsert the degree-2 vertices evenly along the chain;

9 Remove the box;

6.2 Rearrange the centroids

In the Circle Attach approach, poor centroid distribution results in long edges ( see Figure 6.2a).
The centroids of the two faces are too far apart, so their common vertices have long displacement
vectors. The common vertices ends up somewhere near the middle of the two centroids, but far
away from the optimal position on the circle. Thus, we decide to rearrange the centroids of the

faces so that the distance between the two centroids is just appropriate for the displacement vector,
as is shown in Figure 6.2b.
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Figure 6.2: The idea of rearranging the centroids. (a): An example to show poor centroid dis-
tribution results in long edges. Vertex v and w have two incident faces and the centroids of the
two faces are far away from each other. Thus the displacement vectors of v and u have very long
length and the final location of v and u will be somewhere near the middle of the two FaceCircles,
deviating far away from the target positions of both circles. (b): An example to show rearranging
centroids can improve the long edge problem. The centroids of the two faces are moved closer to

shorten the length of displacement vectors, and the result is much better with regard to the long
edge problem.
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We observe that for two adjacent faces, the farther apart their centroids are, the worse the long
edge problem is. But the centroids should not be too close together either, because that would
cause clusters of stations (see Figure 6.4). When two FaceClircles are perfectly tangent, there
are most likely neither long edges nor clusters. Figure 6.3 give an example of this observation.
Therefore, we define that the optimal distance between the centroids of two adjacent faces should
be exactly the sum of the radius of the two FaceC'ircles. In other words, all faces that are adjacent
should be tangent. Figure 6.4 demonstrates our idea about rearranging the centroids and our next
step is optimizing the distance between the centroids to approximate the ideal distance.
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Figure 6.3: An example to show our observation that when two FaceClircles are tangent, the

distribution of vertices is most even. Too far of the distance leads to long edges, too close leads
to clusters.

Figure 6.4: An example to show our idea about rearranging the centroids. The figure on the left
is the original input of a metro map and the centroids and FaceCircles are drawn with red pen.
The figure on the right shows the ideal distribution of centroids after rearranging. FaceC'ircles

of adjacent faces are exactly tangent and the distance between two centroids are the sum of the
radius of FaceCircles.

6.2.1 Distribute centroids

Since the process of rearranging the centroids does not involve stations and routes, we first ignore
the vertices and edges of the metro map, and abstract the problem, solely considering the centroids
graph (see Figure 6.5). We keep the FaceCircles in our model to facilitate the observation and
connect the adjacent centroids with straight lines. The centroids are vertices V' in the centroid
graph model G = (V| E) and the straight lines are edges E. Since we specify that the optimal
distance between the two centroids is the sum of the radius of the FaceCircles, we can assign
each edge of the centroid graph an ideal length. Therefore, our centroid graph model can be seen
as a weighted graph, with the ideal length as the weight for every edge.
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Inspired by the Force-directed graph drawing algorithm of Fruchterman et al. [18] that we
introduced in the Preliminary Chapter (2.4), we decide to use a weighted force-directed model
to optimize our weighted centroid graph. More specifically, we regard the centroids to be steel
rings and the edges between them to be springs, and the ideal length of edges is like the springs
in the natural state. Therefore, if the real distance is shorter or longer than the ideal length, the
spring will be squeezed or stretched and thus give the centroids an attractive or repulsive force.
Eventually the whole system will reach an equilibrium state where all real distances between
adjacent centroids are equal to the optimal length. The example in Figure 6.6 shows the weighted
force-directed model.
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Figure 6.5: An example our centroid graph model. We only keep centroids and FaceCircles in
our model to convenient the observation and connect the adjacent centroids with straight lines.

Figure 6.6: An example to show the weighted force-directed model. Edges are regarded as springs
and will give attractive or repulsive force to vertices. Eventually the whole system will reach
equilibrium and the adjacent circles will be approximately tangent.

Specific notes of our program

Although we use the same force-directed model as Fruchterman et al., we make some adaptations
specific to our metro map optimization project. We list our adaptations below.
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Force application

In both the force-directed model of Fruchterman et al. [18] and Eades [17], the forces are calculated
in the following way: attractive forces are calculated only between neighbours but repulsive forces
are calculated between every pair of vertices. However, this does not apply to our metro maps
because many of the long routes to the suburbs need to be curved to magnify the concentrated
downtown. Instead we apply forces in the following way: both attractive forces and repulsive
forces are calculated only between neighbours. Figure 6.7 and Figure 6.8 show an example of the
difference between our force application and Fruchterman et al. We believe our adaptation allows
us to produce a more reasonable result for our metro maps.

Figure 6.7: An example to show the result metro map using the force application of Fruchterman
et al. Since non-adjacent faces also have repulsive forces, faces along the long route are repulsed
into straight lines that extend to the upper right corner.

Figure 6.8: An example to show the result metro map using our force application. Because there
are no repulsive forces between non-adjacent faces, the long routes can be bent into the empty
space on the map, thus enlarging the map as a whole.

Minimum energy

In the real metro maps, sometimes adjacent faces can not be perfectly tangent, as in the example
in Figure 6.9. Therefore, we can calculate the energy sum of the entire system to set the end

Figure 6.9: An example to show the case that adjacent faces cannot be tangent. The four faces
are adjacent to each other, so the circles should be tangent to each other. But when the left and
right circles are tangent, the upper and lower two circles cannot be tangent.

42 A face-based approach for automatic metro-map generation.



CHAPTER 6. FINAL APPROACH: FORCE-DIRECTED

condition of the algorithm exactly the same as Fruchterman et al:

> (i —pil = 1)? (6.1)

where |p; — pj;| is the real distance between two centroids and [ is the ideal length between
them. We minimize this formula.

6.2.2 Rotate centroids

In our experiments, we found that just making adjacent faces tangent still does not solve some
of the clusters. For example in Figure 6.10, if there are many vertices on the common edges of
two faces, then when the two centroids are moving closer and the vertices are attached to the
FaceClircles, the vertices will become very crowded. Thus, we should increase the length of the
common edges with many vertices.
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Figure 6.10: An example to show the cluster after two centroids are moved closer.

We increase the length of the common edges with many vertices by rotating the centroids of
two adjacent faces, separating them. Our main idea is shown in Figure 6.11 and we use face A as
an example. We want to distribute vertices evenly on the face and suppose the total number of
vertices on face A is x. In the centroid graph, the centroid of face A has two adjacent edges with
its two neighbors B and C. Suppose the vertices on face A that are contained between edges AB
and BC' is k. We define that k& is half the number of vertices on the chains between face A and face
B and C'. To be specific, the chain between face A and face C' is v1vy and has y vertices, and the
chain between face A and face B is vov4 and has z vertices. The vertices contained between edge
AC and AB should be k = (y+ z—1)/2. If we distribute the x vertices evenly on the FaceCircle

k
of A, the angle between edge AB and AC should be — % 27. Thus, we should rotate centroids C'

and B to change the angle /C'AB. v

The above rotation idea is only for a single face A and faces B and C are not adjacent in the
example shown in Figure 6.11. However, when rotating the centroids of all the faces of the entire
metro map, the vertices on face A cannot be perfectly evenly distributed on its FaceCircle as
shown in Figure 6.11b. In the real metro map, faces B and C are very likely adjacent so that the
centroids of B and C' cannot rotate so much. Otherwise there will be long edges on faces B and C'.
Therefore, each centroid receives attractive and repulsive forces from distributing centroid process,
as well as a rotational force from rotating centroid process. Figure 6.12 is an example to show
the fores applying to the centroids. The centroids are subjected to a combination of forces and
eventually the whole centroid graph reaches a dynamic equilibrium. Figure 6.13 is the result of the
rearranging of the centroids of Sydney metro map. It is obvious that the distribution of centroids
is better. The FaceCircles of adjacent faces are approximately tangent, while maintaining the
topology of the centroid graph. Note that there is a possibility of destroying the topology during
the rotation step, but in our practice, this rarely happen.
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(b)

Figure 6.11: The idea of rotating the centroids. (a): There are 17 vertices on face A. The chain
between face A and its neighbour face C' is vyvy and there are 8 vertices on chain; the chain
between face A and its neighbour face B is vovy and there are 5 vertices on chain. Thus, we define
that there should be (8 +5 — 1)/2 = 6 vertices between edge AC' and edge AB, and the angle

6
between edge AC' and edge AB should be 7 * 27r. (b): Rotate centroids B and C' to change the

angle.

Figure 6.12: An example to show the fores applying to the centroids. The blue arrows represent
the attractive forces and the repulsive forces from centroids distribution process. For example,
F.B4 is the repulsive force to A from B and Fj,¢c 4 is the attractive force to A from C. The purple
arrows represent the rotation forces from centroids rotation process. For example, F,.,54 is the
rotation force to A from B and the rotation force is perpendicular to the edge AB.
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Figure 6.13: The result of the rearranging of the centroids of Sydney metro map. (a): The original
input of Sydney metro map. (b): Extract the centroid graph model. (c): The new distribution of
centroids after the rearranging process.
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6.3 Placing the inside vertices

After obtaining a better distribution of the centroids, we have to place vertices and edges on the
FaceClircles. Hong et al. [19] proposed a method to reduce the running time of their algorithm in
their paper, called degree-2 collapse method. They first removed all degree-2 vertices to simplify
the graph. Then their algorithm places the degree-3+ vertices at the right place. And then the
degree-2 vertices are reinserted evenly on the chains between degree-3+ vertices. Following Hong
et al. [19], we decide to use the same degree-2 collapse method to simplify our algorithm. When
all the degree-2 vertices are removed, there are only degree-3+ vertices left in our metro map. We
divide the degree-3+ vertices into two types, the inside degree-3+ vertices (which are not adjacent
to the outside face) and the outside degree-34 vertices (which are adjacent to the outside face).
Accordingly, chains between the degree-3+ vertices are also divided into inside chains (not have
the outside face as the incident face) and outside chains (have the outside face as the incident
face). Figure 6.14 shows the difference between them. We will deal with the inside vertices and
the outside vertices in different ways.

Figure 6.14: An example to show the difference between inside degree-3+ vertices and outside
degree-3+ vertices. The outside degree-3+ vertices (green) are adjacent to the outside face but
the inside degree-3+ vertices (blue) not. The outside chains (purple) have the outside face f; as
one of the incident face but the inside chains not (red).

6.3.1 Placing the inside degree-3+4 vertices

An inside degree-3+ vertex is located at the junction of several faces. Considering that the area of
the face should be proportional to the number of vertices on the face, we define that the distance
between the inside degree-3+ vertex and its adjacent centroids should also be proportional to the
number of vertices on the faces, as is shown in Figure 6.15. The FaceCircle of a face with more
vertices has a larger radius, so the inside degree-3+ vertex has to be further away from the centroid
of the face to be able to attached to the circle.

Ideally, the inside degree-3+ vertex should be somewhere in the middle of all its adjacent
FaceClirles. However, after rearranging the centroid, it is very likely that the position of this
inside degree-3+ vertex deviates from these FaceCirles farther away. Therefore, we first move
the inside degree-3+ vertex to the centroid of the polygon formed by the adjacent centroids, like
Figure 6.16 shows. Then again, we use force-directed method here to achieve the proportional
effect. We define the optimal distance between this inside degree-3+ vertex and the centroid of each
adjacent face as the radius of the FaceC'ircle of the face. That is, connecting the inside degree-3+
vertex with the centroid, the intersection of the line and the circle is the optimal position of this
vertex on the circle (blue dots in Figure 6.17). If the distance between the inside degree-3+ vertex
and the centroid is shorter than the radius of the FaceClircle, the centroid will give the vertex a
repulsive force to push it further away; and if the distance between the inside degree-3+ vertex
and the centroid is longer than the radius of the FaceC'ircle, the centroid will give the vertex an
attractive force to pull it towards to the centroid. Both the attractive forces and the repulsive
forces are proportional to the distance from the optimal position. When the inside degree-3+
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vertex is near the optimal position of all neighbor faces, the sum of the deviation from the optimal
position of all the neighbors is likely minimized. Figure 6.17 is an example of this force-directed
method for the inside degree-3+ vertex.

Figure 6.15: An example to show that the the distance between inside degree-3+ vertex V and
the adjacent centroids are proportional to the number of vertices on the face. Face A has more

vertices than face C, so the length of V' A should be longer than the length of VC. Ideally we will
VA VB VC VD

have — = — = — = —.
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Figure 6.16: An example to show that we move the inside degree-3+ vertex to the centroid of the
polygon formed by the adjacent centroids first.
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Figure 6.17: An example to show the force-directed method for the inside degree-3+ vertex. The
distance between vertex V' is shorter than the radius r 4, so centroid A has a repulsive force to V.
The distance between vertex V is longer than the radius g, so centroid B has an attractive force
to V. Vertex V deviates from the optimal position of centroid C' more than B, so C' has a bigger
attractive force. Finally V fall near the optimal position of all neighbor faces.

6.3.2 Placing the inside degree-2 vertices

After placing the inside degree-3+4 vertices, we reinsert the degree-2 vertices evenly along the
chains between the degree-3+ vertices. The simplest method of reinserting is to draw a straight
line between the two inside degree-3+ vertices and place the degree-2 vertices evenly on the line.
Figure 6.18 is an example to shown this simple reinsert method. However, when there are two or
more chains between the two inside degree-3+ vertices, this method makes the two chains overlap,
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as is shown in Figure 6.19. Instead, we use smooth arcs to represent the chains and reinsert the
degree-2 vertices along the arcs.

- /\\ .‘ ‘V e T

Figure 6.18: An example to show reinserting degree-2 vertices evenly on the straight line between
two inside degree-3+ vertices.

Figure 6.19: An example to show two or more chains between the two inside degree-3+ vertices
will cause overlap.

For the inside degree-3+ vertices, we define that the distance between the vertex and the
centroids of its adjacent faces are proportional to the number of vertices on the faces. Therefore,
for the inside degree-2 vertices, we also have the same definition. To be specific, the inside chain
has a proportional distance to its two incident faces. The more vertices on a face, the longer
distance between the centroid and the chain. Considering that the points on the apollonian circle
have a constant distance ratio to two fixed points, we decide to represent the chain by an arc of
the apollonian circle. We regard the two centroids as two fixed points, and take the ratio of the
two radius as the constant distance ratio. Then draw the apollonian circle of the two centroids.
The distance from the points on the circle to the two centroids is the ratio of their radius and we
reinsert the degree-2 vertices evenly along the arc of the apollonian circle. Figure 6.20 is the idea
of this method.

Figure 6.20: An example to show inserting the inside degree-2 vertices on the apollonian circle
of the two centroids. Vertices v; and vy are two inside degree-3+ vertices and the chain between
them has two incident faces A and B. We take the two centroids A and B as two fixed points and
draw the apollonian circle of them (blue arc). Then we reinsert the degree-2 vertices of the chain
on the arc of the apollonian circle evenly.

However, the example in Figure 6.20 is a special case where the apollonian circle A,p, passes
exactly the two degree-3+ vertices. In most cases, the two degree-3+ vertices are some distance
from the circle, so we need another two arcs to connect the two degree-3+ vertices with the arc
of Agpo, as is shown in Figure 6.21.

We have to make sure that the two arcs go through the two degree-3+ vertices and connect
with Aqp, smoothly. We observe that the arcs that are tangent to Agpo can connect smoothly,
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Figure 6.21: An example to show the apollonian circle A,y, does not go through the two degree-3+
vertices. We want to reinsert the degree-2 vertices on the arc of Agp,, so we need two more arcs
(purple arcs) to connect the two degree-3+ vertices with Ay, smoothly.

U1

Figure 6.22: An example to show that we use circles that go through the two degree-3+ vertices
and is tangent to Agp, to represent the two arcs. The purple circle is the apollonian circle for face
A and B. The blacks circles go through the two degree-3+ vertices v; and v, and are tangent to
the purple circle. Then we get a smooth three-part-arc (fat red line) between the two degree-3+
vertices.

as is shown in Figure 6.22. Thus, we decide to represent the two arcs with two circles that go
through the two degree-3+ vertices and that are tangent to Agp,.

Because the vertices on the apollonian circle arc are proportional to the two centroids, we want
the vertices on the chain to fall on the apollonian circle arc as much as possible, rather than on
our two new connection arcs. Thus, we need to make the two new connection arcs as short as
possible, that is, the smaller the radius of the connection circles, the better. Figure 6.23 is an
example. However, we observe that when the radius is too small, although the apollonian circle
arc is long, the two connection arcs are too curved, resulting in an unsmooth chain. Therefore,
we have to make a trade-off between the apollonian circle arc length and the smoothness of the
chain.

We define the radius for each connection circle as the distance between the degree-3+ vertex
and the apollonian circle (see Figure 6.24 and Figure 6.25). Such a radius not only ensures that
the connection circle passes through the degree-3+ vertex and is tangent to the apollonian circle,
but it also does not bend the chain too much and does not make the apollonian circle arc too
short.

Figure 6.23: An example to show the effects of different radius for the two connection circles.
When the radius is small, we can put more vertices on the apollonian circle arc (red arc), but the
chain is too curvey. When the radius is too big, the chain is smooth but we can only put a few
vertices on the apollonian circle arc.
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Figure 6.24: An example to show the radius for the connection circle when the degree-3+ vertex
is outside the apollonian circle. The distance from degree-3+ vertex vs to the apollonian circle is
|Ava| — r 4 and this is the radius for the connection circle for vertex vs.

Figure 6.25: An example to show the radius for each connection circle when the degree-3+ vertex
is inside the apollonian circle. The distance from degree-3+ vertex v; to the apollonian circle is
ra — |Av1| and this is the radius for the connection circle for vertex v;.

6.4 Placing the outside vertices

After locating all the inside vertices, we start to deal with the outside vertices. Outside vertices
have the outside face as an incident face and we can not calculate the centroid and FaceClircle for
the outside face, so we have to propose a different optimization method for both outside degree-
3+ vertices and degree-2 vertices. As with the inside vertices, we first determine the location of
the outside degree-3+ vertices and then reinsert the degree-2 vertices into the chain between the
degree-3+ vertices.

6.4.1 Placing the outside degree-3+ vertices

At first, we want to deal with the outside degree-3+ vertices in the same way we deal with the
inside degree-3+ vertices. To be specific, we first put an outside degree-3+ vertex to the centroid
of the polygon that formed by its adjacent centroids, then we use a force-directed method to make
the distance to the cenroids proportional to the number of vertices. However, when we look at
the real metro map, we find that there are two problems with dealing with outside degree-3+
vertices in this way. The first problem is that when both ends of a chain are outside degree-3+
vertices and they only have two incident faces, the chain will shrink into a single point, causing
overlap. Because the two incident faces of the two outside degree-3+ vertices are the same, these
two vertices will be placed in the same position on the line segment formed by the centroids of the
two faces. Figure 6.26b is an example to show this problem. The second problem is that moving
a outside degree-3+ vertex to the centroid of the polygon formed by the centroids of its adjacent
faces may cause clusters. Figure 6.26¢ is an example to show this problem.

We observe that most outside degree-3+ vertices have only two inside incident faces (not
include the outside face), so we first discuss the case of the outside degree-3+ vertices with only
two incident faces. To solve this issue, we draw the apollonian circle of the two centroids, then
the apollonian circle and the line segment will have an intersection. We call this intersection
proportional point. Instead of putting the outside degree-3+ vertex directly on this intersection,
we move the outside degree-3+ vertex along the apollonian circle to a certain distance from this
proportional point, as is shown in Figure 6.27. Thus, our next step is to determine the distance
from the intersection.
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{a) The outside degree-3+ vertices in Sydney metro map.

Figure 6.26: An example to show that if we use the same method as the inside degree-3+ vertices
to deal with the outside degree-3+ vertices, there will have two problems. (a): The outside degree-
3+ vertices of Sydney metro map are marked with red dots. (b): An example to show the first
problem. Oi, Oy and O3 are three outside degree-3+ vertices. O and Oz are the endpoints of
a same chain. The centroids of their incident faces are v; and v4 and form a line segment. The
centroid P of this segment is on the segment and force-directed method can only move A and Os
along the segment and two vertices will be put at the same point. (¢): An example to show the
second problem. O; has two incident faces v; and w3, and the centroid of the segment formed
by the two incident centroids is (). Then we use force-directed method to move @, making it
proportional to v; and vs. Vertex V is an inside degree-3+ vertex and its location has already

been determined. When dragging vertex O; to @, the chain between O1V will be too short,
causing clusters.

Figure 6.27: An example to show the idea of dealing with outside degree-3+ vertices. We draw
the apollonian circle of centroid A and B, and the apollonian circle intersects line segment AB at

P. P is called proportional point. We put the outside degree-3+ vertices on the apollonian circle,
some distance from the proportional point.

To determine the distance from the proportional point, we draw a circle with the proportional
point as the center, called the positioning circle, as is shown in Figure 6.28. The positioning circle
and the apollonian circle will have two intersections, and we place the outside degree-3+ vertices

at the two intersections. The problem is converted to determine the radius of the positioning
circle.

We observe that the larger the radius of the positioning circle, the longer the chain between
the two degree-3+ vertices. Too large the radius causes long edges on the chain, and too small the
radius causes clusters on the chain, as is shown in Figure 6.29. Therefore, the radius should be
proportional to the number of vertices on the chain. We define that the radius of the positioning
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circle is ( 1)l
n—1)x*
Tpositioning = D) (62)

where n is the number of vertices on the chain and [ is the edge length of the regular polygon
we input. Thus, the more vertices on the chain, the further away the outside degree-3+ vertex is
from the proportional point and the longer the chain. This can avoid the long edges and clusters
on the chain.

For outside degree-3+ vertices that have more than two incident faces, we do the above pro-
cessing for all its incident faces with common edges. Finally take the centroid of the polygon
composed of the resulting intersections as the position of the outside degree-3+ vertex. Figure
6.30 is an example of this case.

Figure 6.28: An example to show the positioning circle used to determine the locations of outside
degree-3+ vertices. The apollonian circle of A and B (purple) intersects segment AB at the
proportional point P. Take P as the center, draw a circle (blue). We call it the positioning circle.
The positioning circle intersects the apollonian circle at two points X and Y (blue) and these two
points are the positions for the outside degree-3+ vertices.
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Figure 6.29: An example to show the radius of the positioning circle should be proportional to
the number of vertices on the chain. Too large the radius causes long edges on the chain, and too
small the radius causes clusters on the chain.

6.4.2 Placing the outside degree-2 vertices

We reinsert the outside degree-2 vertices in a way similar to the inside degree-2 vertices. The
only difference is that instead of reinserting the degree-2 vertices on the apollonian circle arc, we
reinsert them on the arc of the FaceCircle, as is shown in Figure 6.31. We choose the FaceClircle
because the vertices on the FaceClircle are considered to have the optimal distance from the
centroid. Similarly, we need another two arcs to connect the outside degree-3 vertices with the
FaceClircle smoothly. We define the radius for the connection circle is the distance between the
outside degree-3+ vertex and the FaceCircle, as is shown in Figure 6.32.
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Figure 6.30: An example to show the outside degree-3+ vertex that have more than two incident
faces. Vertex X is an outside degree-3+ vertex and it has four incident faces A, B, C and D. The
apollonian circle and positioning circle for A and D is drawn in purple and their intersection is
marked by a purple square. Similarly, for A and B the intersection is marked by a green square
and for B and C is marked by a blue square. Then the three squares form a polygon and its
centroid (red dot) is the final position for the outside degree-3+ vertex X.
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Figure 6.31: An example to show the outside degree-2 vertices are inserted on the FaceClircle arc

(red arc) evenly. The purple arcs are the two arcs that can connect the outside degree-3 vertices
with the FaceCircle smoothly.
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Figure 6.32: An example to show the outside three-part-arcs. Outside chain between vertices v1ve
is placed evenly on the FaceCircle (red arc) of face N and two connection arcs (orange arcs).
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6.5 Results

We use the metro map of Sydney to test our approach and the input edge length of the regular
polygon is 10. The result is shown in Figure 6.33. We first calculate the centroids and FaceCirles
for each face. Then we rearrange the centroids with the force-directed method combined with a
rotation of the controids. Next step we locate the inside degree-3+ vertices and the outside degree-
3+ vertices. Finally we reinsert the inside degree-2 vertices and the outside degree-2 vertices evenly
on the chains between degree-3+ vertices. Figure 6.33a is the original input and the centroids and
FaceClircles are drawn. Figure 6.33b is the result after rearranging the centroids. Figure 6.33c
is locating the degree-3+ vertices. The inside degree-3+ vertices are marked by red dots and the
outside degree-3+ vertices are marked by purple dots. For ease of observation, we use the red
lines to represent the inside chains, and the purple lines to represent the outside chains. Figure
6.33d is the final result of Sydney metro map and the degree-2 vertices are reinserted on the
three-part-arcs.

(c) (d)

Figure 6.33: The result of Sydney metro map using our final approach. (a): Original input.
(b): The result after rearranging the centroids. (c): Locating the degree-3+ vertices. The inside
chains and outside chains are what we expect and are draw by hand. (d): The final result of our
algorithm.
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We believe that the final result is more readable than the original input. First, in the original
metro, there exists sharp bends, making eyes difficult to track routes. In the final result, the
routes are smoothly connected, and no sharp bends will disrupt the eye tracking. Second, the
two faces on the right have clusters and stations overlap with each other, making it difficult to
distinguish different stations. In the final result, stations and routes are separated by a certain
distance, making it easier to distinguish stations. In addition, the faces have a more regular shape
and size than the original map. Faces are more closer to the circle, leaving more space for the
labels and separating two close routes apart. Last, the length of the edges is more uniform, and the
distance between vertices on a chain is equal. But the distances between vertices on the different
chains are not equal. Thus in some chains the points are relatively clustered, in others they are
relatively sparse. In the later Section, we will give a more detailed evaluation and will give the
data comparison.

6.6 Deal with the dangling edges

The results we have got so far are not really metro maps, because the stations on the dangling
edges are not included. So our next step is to reinsert the dangling edges. In this thesis we are
using a ‘face-based’ approach and we do not include outside face in our processing. Therefore,
the dangling edges can only be processed if they are contained in an inside face. To include the
dangling edges in a inside face, we first add a box around the entire metro map, and then manually
add a line to connect the end vertex of the dangling edges to the border of the box, as is shown in
Figure 6.34b. The connection points on the border are arbitrary, but we ensure they do not break
the topology. This way all the dangling edges are contained in the inside faces and we can use
our algorithm to optimize the whole metro map. Then after the optimization step, we remove the
box and the connection lines (see Figure 6.34c). Then the result will be a real metro map with all
stations and edges in.

(a) (b) (c)

Figure 6.34: The idea of containing dangling edges in the inside faces by adding a box. (a): The
original input of Sydney metro map. (b): We add a box (blue lines) around the metro map and
connect the end vertex of the dangling edges to the border of the box (red lines). (c): After the
optimization step, we remove the box and the lines drawn by hand.

6.7 Evaluation

Now we can optimize the entire metro map using our final approach. In this section, we test our
approach with metro maps of five cities to check whether the algorithm can optimize all of them.
The five cities we choose are Sydney, Wien, Montreal, Washington and karlsruhe. We show the
optimization results of each metro map and analyze the data. For each metro map, we select
three different values as the edge length of the regular polygon to see if the metro map can be
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optimized under each edge length. We compare the average edge length, edge length variance,
maximum edge length and minimum edge length before and after algorithm optimization. This
shows how well our algorithm works when balancing the edges length. In addition, we calculate
the area difference between the faces and their optimal area before and after the optimization
of the algorithm. We calculate the average area difference, the variance of the area difference,
the maximum area difference and the minimum area difference. Besides, we calculate the average
roundness of all the faces of the metro map to see if the shape of the faces are more regular.

6.7.1 Sydney

For Sydney metro map, the three different edge length of our input for the regular polygon are 2, 6,
and 9 respectively. The results are shown in Figure 6.35, Figure 6.36, and Figure 6.37 respectively.
From the figures, we believe that the readability of the metro map has been improved. The distance
between stations is approximately equal compared to the original input. The original map routes
are curved and have sharp bends, but the optimized routes are relatively smooth. The original
map has close routes and clusters, but our results reduce the clusters and the faces look rounder.
However, we can see that when the optimal edge length is 2, the topology is broken. We think this
is caused by the three-part-arcs. Figure 6.38 is an example. When the radius of the apollonian
circle and the two conection circles are too small, the arcs that used to reinsert degree-2 vertices
will be too curve, resulting the intersection with other arcs. Besides, for each edge length, the
faces that are adjacent to the outside face do not reach the maximum roundness and the shape

(a) (b) (c)

(a) (b) (c)

Figure 6.36: The result of Sydney metro map (optimal edge length = 6).
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(a) (b) (c)

Figure 6.37: The result of Sydney metro map (optimal edge length = 9).
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Figure 6.38: An example to show the intersection of two chains.

is not as regular as we expect. This is because these faces are pushed by the faces formed by the
dangling edges and the box. We removed the added boxes and edges after the optimization was
complete, but the added faces were always present during the algorithm optimization process.

Next we use data to give a more detailed analysis. We draw the edge length before and after
optimization into a bar chart, and the changes of the edge length are shown in Figure 6.39. The
data of the three edge length before and after the optimization are collated into Table 6.1. For
each optimal edge length, our algorithm can optimize the metro map, making the edge length
more balanced. When we define that the optimal edge length is 2, the final average edge length
of the whole metro map is shortened from 17.18 to 3.69. Similarly, when we set the optimal edge
lengths to 6 and 9, the final average edge lengths are 5.71 and 8.04 respectively, both close to the
optimal edge length. This means that our algorithm successfully optimizes the edge length, and
the average edge length is close to the optimal edge length we input. Besides, for each optimal
edge length, the variance of the edge length is greatly reduced. This indicates that the edge
length of the metro map is more uniform and the distance between the two adjacent stations is
approximately equal. A smaller variance of the edge length means that there are fewer long edges
and clusters in the metro map. When we set the optimal edge length to be 6, the algorithm
reduces the variance of the edge length from 83.16 to 10.11. This is better than when the edge
length is 2 (from 83.16 to 12.99) or 9 (from 83.16 to 20.94). We believe that there is an optimal
edge length setting (around 6 in Sydney metro map), which can achieve the maximum balance of
the edge length of our metro maps.

The edge balancing results for Sydney metro map

Average edge length | Edge length variance | Longest edge | Shortest edge
Before 17.18 83.16 66.52 3.77
Edge length = 2 3.69 12.99 16 0.23
Edge length = 6 5.71 10.11 29.12 1.31
Edge length = 9 8.04 20.94 42.40 2.01

Table 6.1: The edge balancing results before and after the optimization for Sydney metro map.
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(b) Edge length of Sydney metro map after the optimization (optimal edge length = 2).
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(c) Edge length of Sydney metro map after the optimization (optimal edge length = 6).
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(d) Edge length of Sydney metro map after the optimization (optimal edge length = 9).

Figure 6.39: The result of edge balancing. The average edge length is reduced, which is more
closer to our optimal edge length. The variance of the edge length also reduces, which means that
edges are more balanced. The length of the edges of a chain are approximately the same, so there
are many consecutive edges of the same length on a bar chart.

The data of the area difference before and after optimization are collated into Table 6.2.
Different optimal edge lengths affect the size of the FaceCircles and influence the centroids
layout after rearranging. For the area distribution results, the average difference of each edge
length is reduced. This means the area of the faces on the metro map are closer to the optimal
area. When the edge length is 2, the average difference between the real area and the optimal area
is reduced from 3839 to 44. This means that almost all faces are close to their optimal area, and
the area of a face is proportional to the number of vertices. The variance of the area difference are
also reduced significantly. However, the roundness is reduced from 0.518 to 0.414 and we believe
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this is caused by the intersection. An intersection leads to an irregular shape of the faces, thus
lowering the average roundness of the metro map. When the edge length are 6 and 9, both the
area difference and the area difference variance are also reduced. The average roundness of the
faces are increased, which means the shapes of the faces on the map are more regular and closer
to the circle. This is exactly what we expect: to separate two close routes and increase the spaces
for labels.

The area distribution results for Sydney metro map
Average difference | Variance | Maximum | Minimum | Average roundness
Before(edge=2) 3839 30716336 16731 31 0.518
After(edge=2) 44 5116 221 0.52 0.414
Before(edge=6) 2643 15006953 11810 0.61 0.518
After(edge=6) 390 391035 1909 4.79 0.627
Before(edge=9) 996 2517630 4889 46 0.518
After(edge=9) 831 1695975 4120 0.79 0.612

Table 6.2: The area distribution results before and after the optimization for Sydney metro map.

6.7.2 Washington

The three different edge length we choose for Washington metro map are 5, 10, and 15 respectively.
The results are shown in Figure 6.40, Figure 6.41, and Figure 6.42 respectively. All the data are
collated into Table 6.3 and Table 6.4. The analysis of Washington metro map is similar to the
Sydney metro map. The average edge length is closer to the optimal edge length and the edge
length variance is reduced. Especially when the optimal edge length is equal to 10, the edge length
variance reduced from 151.03 to 13.89. We believe that our algorithm can significantly improve the
edge length balance of Washington metro map and the optimal edge length should be around 10.
The algorithm also improves the area distribution of Washington metro map. Both the average
area difference and the variance of area difference are reduced. When the optimal edge length
is b, the average area difference is reduced from 1444 to 23 and the variance of area difference
is reduced from 2538525 to 736. This means that almost all the faces are close to their optimal
area. In other words, the area of a face is proportional to the number of vertices on the face. The
roundness is increased so that the faces can leave more space for labels. The bar chart for the
edge length before and after the optimization are shown in Figure 6.43.

The edge balancing results for Washington metro map

Average edge length | Edge length variance | Longest edge | Shortest edge
Before 23.78 151.03 96.44 5.26
Edge length = 5 14.10 94.73 42.43 3.15
Edge length = 10 13.23 13.89 39.20 6.14
Edge length = 15 16.02 25.18 60.21 9.29

Table 6.3: The edge balancing results before and after the optimization for Washington metro

map.
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The area distribution results for Washington metro map

Average difference | Variance | Maximum | Minimum | Average roundness
Before(edge=5) 1444 2538525 4032 30 0.64
After(edge=5) 23 736 70 3 0.73
Before(edge=10) 1034 1681262 3192 2 0.64
After(edge=10) 126 9937 262 25 0.71
Before(edge=15) 548 525127 1793 56 0.64
After(edge=15) 281 51052 603 59 0.69

Table 6.4: The area distribution results before and after the optimization for Washington metro

map.
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Figure 6.42: The result of Washington metro map (optimal edge length = 15).
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(d) Edge length of Washington metro map after the optimization (optimal edge length = 15).

Figure 6.43: The result of edge balancing of Washington metro map.
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6.7.3 Karlsruhe

The three different edge length we choose for Karlsruhe metro map are 5, 10, and 15 respectively.
The results are shown in Figure 6.45, Figure 6.46, and Figure 6.47 respectively. All the data is
collated into Table 6.5 and Table 6.6. For each edge length, our algorithm can balance the distance
between stations and distribute the area of the faces better. The edge length bar chart are shown
in Figure 6.48. From the bar chart, the Karlsruhe metro map has been relatively uniform in edge
length before optimization, but there are several long edges. After optimization, the long edges
are shortened. When the optimal edge length is 5, there exists intersections that will break the
topology. This is caused by the three-part-arc (see Figure 6.44). In Figure 6.44a, we reinsert the
degree-2 vertices directly with a straight line between two degree-3+ vertices and the topology
is not destroyed. However in Figure 6.44b, the curved arcs intersect each other, destroying the
topology. But for the left two dangling edges, the three-part-arc can avoid the intersections.

(a) (b)

Figure 6.44: The three-part-arc may destroy the topology and may avoid intersections.

The edge balancing results for Karlsruhe metro map
Average edge length | Edge length variance | Longest edge | Shortest edge
Before 19.02 310.55 185.69 5.82
Edge length = 5 15.33 160.35 65.82 1.99
Edge length = 10 14.24 45.20 46.92 4.24
Edge length = 15 16.58 83.51 69.14 6.71

Table 6.5: The edge balancing results before and after the optimization for Karlsruhe metro map.
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The area distribution results for Karlsruhe metro map

Average difference | Variance | Maximum | Minimum | Average roundness
Before(edge=5) 569 64246 853 11 0.64
After(edge=5) 28 313 62 7 0.79
Before(edge=10) 182 10942 389 20 0.64
After(edge=10) 118 5047 236 25 0.79
Before(edge=15) 479 69524 855 75 0.65
After(edge=15) 278 25303 488 57 0.79

Table 6.6: The area distribution results before and after the optimization for Karlsruhe metro
map.

(a) (b) (c)

(a) (b) (c)

(a) (b) (c)

Figure 6.47: The result of Karlsruhe metro map (optimal edge length = 15).
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(a) Edge length of Karlsruhe metro map before the optimization.
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(c) Edge length of Karlsruhe metro map after the optimization (optimal edge length = 10).
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(d) Edge length of Karlsruhe metro map after the optimization (optimal edge length = 15).

Figure 6.48: The result of edge balancing of Karlsruhe metro map.
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6.7.4 Wien

The three different edge length we choose for Wien metro map are 5, 10, and 15 respectively. The
results are shown in Figure 6.49, Figure 6.50, and Figure 6.51 respectively. All the data is collated
into Table 6.7 and Table 6.8. The edge length bar chart are shown in Figure 6.52. Our algorithm
also performs good in balancing edge length and distributing area in Wien metro map.

(a)

(a)
Figure 6.50: The result of Wien metro map (optimal edge length = 10).
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(a)

Figure 6.51: The result of Wien metro map (optimal edge length = 15).

The edge balancing results for Wien metro map

Average edge length | Edge length variance | Longest edge | Shortest edge
Before 30.58 79.05 65.03 15.04
Edge length = 5 6.41 3.76 11.18 2.16
Edge length = 10 9.29 8.24 17.9 4.46
Edge length = 15 12.52 2451 26.76 6.73

Table 6.7: The edge balancing results before and after the optimization for Wien metro map.

The area distribution results for Wien metro map

Average difference | Variance | Maximum | Minimum | Average roundness
Before(edge=5) 2233 5702790 7833 466 0.59
After(edge=5) 25 1640 124 4 0.74
Before(edge=10) 1784 3396198 6128 391 0.59
After(edge=10) 98 25953 492 24 0.73
Before(edge=15) 1036 898108 3286 266 0.59
After(edge=15) 211 127222 1083 30 0.73

Table 6.8: The area distribution results before and after the optimization for Wien metro map.
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(b) Edge length of Wien metro map after the optimization (optimal edge length = 5).
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(d) Edge length of Wien metro map after the optimization (optimal edge length = 15).

Figure 6.52: The result of edge balancing of Wien metro map.
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6.7.5 Montreal

The three different edge length we choose for Montreal metro map are 5, 10, and 15 respectively.

The results are shown in Figure 6.53, Figure 6.54, and Figure 6.55 respectively. All the data is
collated into Table 6.9 and Table 6.10. The edge length bar chart are shown in Figure 6.56.
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Figure 6.55: The result of Montreal metro map (optimal edge length = 15).
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The edge balancing results for Montreal metro map

Average edge length

Edge length variance

Longest edge

Shortest edge

Before 35.29 165.25 90.02 17.81
Edge length = 5 12.54 86.55 34.86 3.70
Edge length = 10 12.05 10.84 21.18 7.37
Edge length = 15 14.63 11.27 26.55 10.47

Table 6.9: The edge balancing results before and after the optimization for Montreal metro map.

The area distribution results for Montreal metro map

Average difference | Variance | Maximum | Minimum | Average roundness
Before(edge=5) 18924 240713724 34438 3409 0.51
After(edge=5) 291 18576 427 154 0.76
Before(edge=10) 16494 202627433 30728 2259 0.51
After(edge=10) 1153 300739 1702 605 0.77
Before(edge=15) 12443 146434622 24544 342 0.51
After(edge=15) 2566 1545666 3809 1323 0.77

Table 6.10: The area distribution results before and after the optimization for Montreal metro

map.
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Edge length of Montreal metro map before(default = 5)
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(c) Edge length of Montreal metro map after the optimization (optimal edge length = 10).
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(d) Edge length of Montreal metro map after the optimization (optimal edge length = 15).

Figure 6.56: The result of edge balancing of Montreal metro map.

A face-based approach for automatic metro-map generation. 69



Chapter 7

Conclusions and future work

In this final chapter we make a conclusion of our research and point out directions for the further
work of ‘face-based’ approach for metro map optimization.

7.1 Conclusion

We propose three different ‘face-based’ approaches for automatic metro-map generation. We
describe the algorithm of each approach and do the implementation. The first two approaches
do not work well, but they help us find the final direction of research and the final approach can
generate readable metro maps.

The first approach is Grid Map approach. We use the grid map and the octilinear layout
design criteria. We want to leave more space for labels and avoid clusters of stations, so we decide
to increase the roundness of the faces. We draw the FaceCircle with the centroid as the center
and aim to move the vertices onto the circle. The vertices inside the circle are moved away from
the centroid and vertices outside the circle are moved toward the centroid. We use a shortest-
path-graph for a single face but it can not work for multi faces. So we have to move the vertices
one by one. Every vertex can be moved to other five candidate positions and we only choose
the positions that can enlarge the roundness the face. We have to preserving the topology while
moving a vertex and have to keep the octilinear layout. However, for some vertices, none of the
five candidate positions can be used so these vertices can not be optimized at all. The shape of
the face will still be irregular. Thus, we change our explore direction.

The second approach is Attach Circle approach. We use schematised curvilinear layout in this
approach. We attach the vertices on a face evenly onto the circle. Every vertex has a target point
on the circle and the vertex is moved by a small step to close the target point. When we move the
vertices, we have to keep the topology. This approach can increase the roundness of the faces, but
there are long edges in this approach. When two adjacent faces are too far away, their common
vertices will fall near the middle of the two faces. These vertices are far from their target points
so the connection edges are very long. This makes the metro map more unbalanced. Therefore,
we propose the third method to deal with the long edges.

The final approach is a face-based Force-Directed approach. We first rearrange the centroids
to get a better centroid layout. We use the force-directed method to achieve this. Then we first
remove the degree-2 vertices and just place the degree-3+ vertices. The distance from the adjacent
centroids to the degree-3+ vertices are proportional to the number of vertices on the faces. Then
we reinsert the degree-2 vertices on the chains between the degree-34 vertices. For inside degree-2
vertices, we use the apollonian circle arc with two smooth connection arcs. For outside degree-2
vertices, we use the FaceCircles arc and also with two smooth connection arcs. To obtain a real
metro map, we add a box around the metro map. The dangling edges are then included in a face
and can be processed with our algorithm. The results of this approach shows that our algorithm
can improve the readability and usability of the metro maps. The variance of the edge length is
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reduced and the average edge length is closer to the optimal edge length, meaning that the the
distances between the stations are more even. The differences between the faces area and their
optimal area decrease, which is also in line with our expectation: the area is proportional to the
number of vertices on the face. Finally, we get a readable metro map for each city.

7.2 Future Work

We are the first explore the face-based metro map generation algorithm and we think there are
still some shortcomings in our work. Here are a few possible research directions in the future work.

First, for a metro map, preserving the topology is a criteria that must be meet. However, our
final approach does not preserve the topology. In the future work, we consider adding another
force on each station to preserve the topology. When a station is detected to break the topology,
the added force will pull the station in a direction that does not break the topology.

Second, we reinsert the degree-2 vertices onto a three-part-arc. But sometimes these three arcs
are too curved to make the route irregular. We want to find other methods that can reinsert the
degree-2 vertices in future work.

Third, when we rearrange the centroids, we may change the original spatial orientation of the
metro maps. For example, a face that was at the bottom left of another face may be adjusted to
the top right. This is the opposite of the geographical impression in people’s minds. Therefore,
in our future work, we should try to keep the adjusted map in line with people’s impression of
geography.

Forth, different edge length of the regular polygon will influence the final results. Some edge
lengths cause the intersections in the metro map and break the topology, while others can give a
most balanced metro map. In the future work, we want to explore a method to find the optimal
edge length for each metro map.

Finally, in order to handle the dangling edges, we add a box outside the entire metro map and
manually connect the end of the dangling edges to the border of the box. We want to find a better
method to deal with edges instead of drawing by hand. Besides, the faces that are adjacent to the
outside face will not squeezed to achieve maximum roundness.
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