2,051 research outputs found

    Investigation of Human-Structure Interaction Through Experimental and Analytical Studies

    Get PDF
    Vibration serviceability is a widely recognized design criterion for assembly-type structures, such as stadiums, that are likely subjected to rhythmic human-induced excitation. Human-induced excitation of a structure occurs from the movement of the occupants such as walking, running, jumping, or dancing. Vibration serviceability is based on the level of comfort that people have with the vibrations of a structure. Current design guidance uses the natural frequency of the structure to assess vibration serviceability. However, a phenomenon known as human-structure interaction suggests that there is a dynamic interaction between the structure and passive occupants, altering the natural frequency of the system. Human-structure interaction is dependent on many factors, including the dynamic properties of the structure, posture of the occupants, and relative size of the crowd. It is unknown if the shift in natural frequency due to humanstructure interaction is significant enough to warrant consideration in the design process. This study explores the interface of both structural and crowd characteristics through experimental testing to determine if human-structure interaction should be considered because of its potential impact on serviceability assessment. An experimental test structure that represents the dynamic properties of a cantilevered stadium structure was designed and constructed. Experimental modal analysis was implemented to determine the dynamic properties of the empty test structure and when occupied with up to seven people arranged in different locations and postures. Comparisons of the dynamic properties were made between the empty and occupied testing configurations and analytical results from the use of a dynamic crowd model recommended from the Joint Working Group of Europe. Data trends lead to the development of a refined dynamic crowd model. This dynamic model can be used in conjunction with a finite element model of the test structure to estimate the dynamic influence due to human-structure interaction due to occupants standing with straight knees. In the future, the crowd model will be refined and can aid in assessing the dynamic properties of in-service stadium structures

    Human response to vibration in residential environments (NANR209), technical report 3 : calculation of vibration exposure

    Get PDF
    The Technical Report 3 describes the research undertaken to develop a methodology by which human exposure to vibration in residential environments can be calculated. That work has carried out by the University of Salford supported by the Department of environment food and rural affairs (Defra). The overall aim of the project is to derive exposure-response relationships for human vibration in residential environments. This document in particular focuses on the methods used to calculate vibration exposure from measured vibration signals due to different sources. The main objective of this report is to describe the different approaches used for calculating the different source-specific exposure. Reported here are findings obtained and a description of the feasibility of the methods used for evaluating exposure for different sources. In addition, an evaluation of the uncertainty related to the exposure calculation is considered

    Investigating the Effects of Various Crowd Characteristics on the Dynamic Properties of an Occupied Structure

    Get PDF
    One of the challenges for structural engineers during design is considering how the structure will respond to crowd-induced dynamic loading. It has been shown that human occupants of a structure do not simply add mass to the system when considering the overall dynamic response of the system, but interact with it and may induce changes of the dynamic properties from those of the empty structure. This study presents an investigation into the human-structure interaction based on several crowd characteristics and their effect on the dynamic properties of an empty structure. The dynamic properties including frequency, damping, and mode shapes were estimated for a single test structure by means of experimental modal analysis techniques. The same techniques were utilized to estimate the dynamic properties when the test structure was occupied by a crowd with different combinations of size, posture, and distribution. The goal of this study is to isolate the occupant characteristics in order to determine the significance of each to be considered when designing new structures to avoid crowd serviceability issues. The results are presented and summarized based on the level of influence of each characteristic. The posture that produces the most significant effects based on the scope of this research is standing with bent knees with a maximum decrease in frequency of the first mode of the empty structure by 32 percent atthe highest mass ratio. The associated damping also increased 36 times the damping of the empty structure. In addition to the analysis of the experimental data, finite element models and a two degree-of-freedom model were created. These models were used to gain an understanding of the test structure, model a crowd as an equivalent mass, and also to develop a single degree-of-freedom (SDOF) model to best represent a crowd of occupants based on the experimental results. The SDOF models created had an averagefrequency of 5.0 Hz, within the range presented in existing biomechanics research, and combined SDOF systems of the test structure and crowd were able to reproduce the frequency and damping ratios associated with experimental tests. Results of this study confirmed the existence of human-structure interaction andthe inability to simply model a crowd as only additional mass. The two degree-offreedom model determined was able to predict the change in natural frequency and damping ratio for a structure occupied by multiple group sizes in a single posture. These results and model are the preliminary steps in the development of an appropriate methodfor modeling a crowd in combination with a more complex FE model of the empty structure

    Vibration serviceability assessment of office floors for realistic walking and floor layout scenarios: Literature review

    Get PDF
    This is the author accepted manuscript. The final version is available from SAGE Publications via the DOI in this recordOver the last two decades, office floors have been built progressively lightweight with increasing spans and slenderness. Therefore, vibration performance of office floors due to walking dynamic loads is becoming their governing design criterion, determining their size and shape, and therefore overall weight and embodied energy of the building. To date, floor design guidelines around the world recommend walking load scenarios in offices featuring some or all of the following standard characteristics: (a) walking loads are assumed to be periodic dynamic excitation represented by the Fourier series, including harmonics corresponding to up to the first four integer multiples of the pacing frequency of which at least one is exciting the floor at a resonant frequency and (b) single person walking. However, the literature surveyed provides evidence that such assessment methodology is potentially an over-simplification which as it does not reflect real walking load scenarios, since crucial features of the floor vibration source, path and receiver are missing. First, in terms of vibration source realistic scenarios need to feature: (a) moving rather than stationary walking forces; (b) stochastic nature of human gait; (c) simultaneous multiperson walking; and (d) human-structure interaction. Second, for the transmission path (i.e. office floor structure), two features are needed to consider: (a) realistic office floor layouts and (b) presence, or absence, of non-structural elements. Finally, for the vibration receivers (i.e. floor occupants): (a) vibrations calculated at floor locations occupied by users (instead of at the potential highest response location which may not be occupied); (b) actual period over which occupants feel vibration due to such excitation and (c) assessment of vibration levels based on their probability of occurrence. This paper therefore addresses these seldom considered but increasingly important features and discusses realistic approaches to floor design for vibration serviceability.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES

    LOCALIZATION OF STATIONARY SOURCE OF FLOOR VIBRATION USING THE STEERED RESPONSE POWER METHOD

    Get PDF
    If the generated vibration in a building exceeds the acceptable limit design for a floor system, it is necessary to identify the source of vibration, a process known as localization. The objective of this study is the localization of stationary vibration sources, and the approach used is the steered response power (SRP) method. This method has already been shown to work well for wireless and acoustical applications to locate transmitter and sound sources, respectively. To the writer’s knowledge, this study is the first application of the SRP method to locate vibration sources using floor vibration measurements. However, because waves behave differently when propagated through a concrete floor as opposed to the air, this method has been significantly modified for the application presented herein. The key and prerequisite parameter for most vibration-sensing-localization approaches is wave propagation speed (WPS). The accuracy of these approaches therefore depends on the accuracy of the WPS estimate. The WPS of a concrete floor system is a function of parameters with high variability due to the mechanical and dynamic properties of the floor. This makes the task of vibration-sensing-localization challenging for the aforementioned approaches. The SRP method has been employed because it is based on an algorithm to post-process all received signals together and such structural variability is less likely to affect the accuracy; therefore, the SRP method is more robust. Most localization approaches are based on ideal wave propagation, e.g., constant propagation speed in all directions and vibration energy decreasing predictably as the source-sensor distance increases. However, such ideal propagation does not occur in many real-world structural systems such as a concrete floor. In this study, the WPS was estimated empirically in orthogonal directions using the cross-correlation function. The SRP method used herein was adopted to use the estimated WPS in orthogonal directions as an input parameter and then automatically interpolating the corresponding propagation speed for all other directions. This is another advantage of this method over existing methods. The experiment was conducted on the second floor of a full-scale, concrete-framed building at the University of Kentucky. The WPS was estimated in orthogonal directions using an electrodynamic shaker and seven accelerometers. The shaker applied an excitation force and acted as the source of vibration, and the accelerometers were put in various locations on the floor and measured the response. Using the estimated WPS and corresponding measurement data, the SRP method was able to locate the vibration source within 2.0 m in a floor approximately 13.4 m by 8.4 m in size

    Characterization of impact sound from lightweight joist floors

    Get PDF

    Vibration Excitation and Control of a Pedestrian Walkway by Individuals and Crowds

    Get PDF

    APPLICATIONS OF MACHINE LEARNING AND COMPUTER VISION FOR SMART INFRASTRUCTURE MANAGEMENT IN CIVIL ENGINEERING

    Get PDF
    Machine Learning and Computer Vision are the two technologies that have innovative applications in diverse fields, including engineering, medicines, agriculture, astronomy, sports, education etc. The idea of enabling machines to make human like decisions is not a recent one. It dates to the early 1900s when analogies were drawn out between neurons in a human brain and capability of a machine to function like humans. However, major advances in the specifics of this theory were not until 1950s when the first experiments were conducted to determine if machines can support artificial intelligence. As computation powers increased, in the form of parallel computing and GPU computing, the time required for training the algorithms decreased significantly. Machine Learning is now used in almost every day to day activities. This research demonstrates the use of machine learning and computer vision for smart infrastructure management. This research’s contribution includes two case studies – a) Occupancy detection using vibration sensors and machine learning and b) Traffic detection, tracking, classification and counting on Memorial Bridge in Portsmouth, NH using computer vision and machine learning. Each case study, includes controlled experiments with a verification data set. Both the studies yielded results that validated the approach of using machine learning and computer vision. Both case studies present a scenario where in machine learning is applied to a civil engineering challenge to create a more objective basis for decision-making. This work also includes a summary of the current state-of-the -practice of machine learning in Civil Engineering and the suggested steps to advance its application in civil engineering based on this research in order to use the technology more effectively

    Universal response spectrum procedure for predicting walking-induced floor vibration

    Get PDF
    ArticleFloor vibrations caused by people walking are an important serviceability problem both for human occupants and vibration-sensitive equipment. Present design methodologies available for prediction of vibration response due to footfall loading are complex and suffer from division between low and high frequency floors. In order to simplify the design process and to avoid the problem of floor classification, this paper presents a methodology for predicting vibration response metrics due to pedestrian footfalls for any floor type having natural frequency in the range 1 Hz to 20 Hz. Using a response spectrum approach, a database of 852 weight-normalised vertical ground reaction force (GRF) time histories recorded for more than 60 individuals walking on an instrumented treadmill was used to calculate response metrics. Chosen metrics were peak values of 1 second peak root-mean-square (RMS) acceleration and peak envelope one-third octave velocities. These were evaluated by weight-normalising the GRFs and applying to unit-mass single degree of freedom oscillators having natural frequencies in the range 1-20 Hz and damping ratios in the range 0.5-5%. Moreover, to account for effect of mode shape and duration of crossing (i.e. duration of dynamic loading), the recorded GRFs were applied for three most typical mode shapes and floor spans from 5 m to 40 m. The resulting peak values as functions of frequency i.e. spectra are condensed to statistical representations for chosen probability of being exceeded over a wide range of applications. RMS (acceleration) spectra show strong peaks corresponding to the first harmonic of pacing rate followed by clear minima at approximately 3.5 Hz, a second much smaller peak corresponding to the second harmonic and a steady decline with increasing frequency beginning around 5 Hz. One-third octave spectra show asymptotic trends with frequency, span and damping. A comprehensive validation exercise focusing on the acceleration RMS spectra was based on a representative range of floor samples for which modal properties had been identified and walking response studied during experimental campaigns of vibration serviceability evaluation. Due to the statistical approach an exact validation would not be possible, hence measured peak RMS values were matched to distributions for the equivalent idealized structure. In the vast majority of cases the measured values, intended to represent worst-case conditions fitted the upper decile of the corresponding simulated spectra indicating consistency with the proposed approach.Engineering and Physical Sciences Research Counci
    • …
    corecore