1,101 research outputs found

    Stochastic Occupancy Grid Map Prediction in Dynamic Scenes

    Full text link
    This paper presents two variations of a novel stochastic prediction algorithm that enables mobile robots to accurately and robustly predict the future state of complex dynamic scenes. The proposed algorithm uses a variational autoencoder to predict a range of possible future states of the environment. The algorithm takes full advantage of the motion of the robot itself, the motion of dynamic objects, and the geometry of static objects in the scene to improve prediction accuracy. Three simulated and real-world datasets collected by different robot models are used to demonstrate that the proposed algorithm is able to achieve more accurate and robust prediction performance than other prediction algorithms. Furthermore, a predictive uncertainty-aware planner is proposed to demonstrate the effectiveness of the proposed predictor in simulation and real-world navigation experiments. Implementations are open source at https://github.com/TempleRAIL/SOGMP.Comment: Accepted by 7th Annual Conference on Robot Learning (CoRL), 202

    Stereo vision-based obstacle avoidance module on 3D point cloud data

    Get PDF
    This paper deals in building a 3D vision-based obstacle avoidance and navigation. In order for an autonomous system to work in real life condition, a capability of gaining surrounding environment data, interpret the data and take appropriate action is needed. One of the required capability in this matter for an autonomous system is a capability to navigate cluttered, unorganized environment and avoiding collision with any present obstacle, defined as any data with vertical orientation and able to take decision when environment update exist. Proposed in this work are two-step strategy of extracting the obstacle position and orientation from point cloud data using plane based segmentation and the resultant segmentation are mapped based on obstacle point position relative to camera using occupancy grid map to acquire obstacle cluster position and recorded the occupancy grid map for future use and global navigation, obstacle position gained in grid map is used to plan the navigation path towards target goal without going through obstacle position and modify the navigation path to avoid collision when environment update is present or platform movement is not aligned with navigation path based on timed elastic band method

    Radar-based Dynamic Occupancy Grid Mapping and Object Detection

    Full text link
    Environment modeling utilizing sensor data fusion and object tracking is crucial for safe automated driving. In recent years, the classical occupancy grid map approach, which assumes a static environment, has been extended to dynamic occupancy grid maps, which maintain the possibility of a low-level data fusion while also estimating the position and velocity distribution of the dynamic local environment. This paper presents the further development of a previous approach. To the best of the author's knowledge, there is no publication about dynamic occupancy grid mapping with subsequent analysis based only on radar data. Therefore in this work, the data of multiple radar sensors are fused, and a grid-based object tracking and mapping method is applied. Subsequently, the clustering of dynamic areas provides high-level object information. For comparison, also a lidar-based method is developed. The approach is evaluated qualitatively and quantitatively with real-world data from a moving vehicle in urban environments. The evaluation illustrates the advantages of the radar-based dynamic occupancy grid map, considering different comparison metrics.Comment: Accepted to be published as part of the 23rd IEEE International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece, September 20-23, 202

    Fusion of aerial images and sensor data from a ground vehicle for improved semantic mapping

    Get PDF
    This work investigates the use of semantic information to link ground level occupancy maps and aerial images. A ground level semantic map, which shows open ground and indicates the probability of cells being occupied by walls of buildings, is obtained by a mobile robot equipped with an omnidirectional camera, GPS and a laser range finder. This semantic information is used for local and global segmentation of an aerial image. The result is a map where the semantic information has been extended beyond the range of the robot sensors and predicts where the mobile robot can find buildings and potentially driveable ground

    Fully Convolutional Neural Networks for Dynamic Object Detection in Grid Maps

    Full text link
    Grid maps are widely used in robotics to represent obstacles in the environment and differentiating dynamic objects from static infrastructure is essential for many practical applications. In this work, we present a methods that uses a deep convolutional neural network (CNN) to infer whether grid cells are covering a moving object or not. Compared to tracking approaches, that use e.g. a particle filter to estimate grid cell velocities and then make a decision for individual grid cells based on this estimate, our approach uses the entire grid map as input image for a CNN that inspects a larger area around each cell and thus takes the structural appearance in the grid map into account to make a decision. Compared to our reference method, our concept yields a performance increase from 83.9% to 97.2%. A runtime optimized version of our approach yields similar improvements with an execution time of just 10 milliseconds.Comment: This is a shorter version of the masters thesis of Florian Piewak and it was accapted at IV 201
    • ā€¦
    corecore