76 research outputs found

    Generalized Video Deblurring for Dynamic Scenes

    Full text link
    Several state-of-the-art video deblurring methods are based on a strong assumption that the captured scenes are static. These methods fail to deblur blurry videos in dynamic scenes. We propose a video deblurring method to deal with general blurs inherent in dynamic scenes, contrary to other methods. To handle locally varying and general blurs caused by various sources, such as camera shake, moving objects, and depth variation in a scene, we approximate pixel-wise kernel with bidirectional optical flows. Therefore, we propose a single energy model that simultaneously estimates optical flows and latent frames to solve our deblurring problem. We also provide a framework and efficient solvers to optimize the energy model. By minimizing the proposed energy function, we achieve significant improvements in removing blurs and estimating accurate optical flows in blurry frames. Extensive experimental results demonstrate the superiority of the proposed method in real and challenging videos that state-of-the-art methods fail in either deblurring or optical flow estimation.Comment: CVPR 2015 ora

    Simultaneous Stereo Video Deblurring and Scene Flow Estimation

    Full text link
    Videos for outdoor scene often show unpleasant blur effects due to the large relative motion between the camera and the dynamic objects and large depth variations. Existing works typically focus monocular video deblurring. In this paper, we propose a novel approach to deblurring from stereo videos. In particular, we exploit the piece-wise planar assumption about the scene and leverage the scene flow information to deblur the image. Unlike the existing approach [31] which used a pre-computed scene flow, we propose a single framework to jointly estimate the scene flow and deblur the image, where the motion cues from scene flow estimation and blur information could reinforce each other, and produce superior results than the conventional scene flow estimation or stereo deblurring methods. We evaluate our method extensively on two available datasets and achieve significant improvement in flow estimation and removing the blur effect over the state-of-the-art methods.Comment: Accepted to IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) 201

    ๋™์  ํ™˜๊ฒฝ ๋””๋ธ”๋Ÿฌ๋ง์„ ์œ„ํ•œ ์ƒˆ๋กœ์šด ๋ชจ๋ธ, ์•Œ๋กœ๊ธฐ์ฆ˜, ๊ทธ๋ฆฌ๊ณ  ํ•ด์„์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2016. 8. ์ด๊ฒฝ๋ฌด.Blurring artifacts are the most common flaws in photographs. To remove these artifacts, many deblurring methods which restore sharp images from blurry ones have been studied considerably in the field of computational photography. However, state-of-the-art deblurring methods are based on a strong assumption that the captured scenes are static, and thus a great many things still remain to be done. In particular, these conventional methods fail to deblur blurry images captured in dynamic environments which have spatially varying blurs caused by various sources such as camera shake including out-of-plane motion, moving objects, depth variation, and so on. Therefore, the deblurring problem becomes more difficult and deeply challenging for dynamic scenes. Therefore, in this dissertation, addressing the deblurring problem of general dynamic scenes is a goal, and new solutions are introduced, that remove spatially varying blurs in dynamic scenes unlike conventional methods built on the assumption that the captured scenes are static. Three kinds of dynamic scene deblurring methods are proposed to achieve this goal, and they are based on: (1) segmentation, (2) sharp exemplar, (3) kernel-parametrization. The proposed approaches are introduced from segment-wise to pixel-wise approaches, and pixel-wise varying general blurs are handled in the end. First, the segmentation-based deblurring method estimates the latent image, multiple different kernels, and associated segments jointly. With the aid of the joint approach, segmentation-based method could achieve accurate blur kernel within a segment, remove segment-wise varying blurs, and reduce artifacts at the motion boundaries which are common in conventional approaches. Next, an \textit{exemplar}-based deblurring method is proposed, which utilizes a sharp exemplar to estimate highly accurate blur kernel and overcomes the limitations of the segmentation-based method that cannot handle small or texture-less segments. Lastly, the deblurring method using kernel-parametrization approximates the locally varying kernel as linear using motion flows. Thus the proposed method based on kernel-parametrization is generally applicable to remove pixel-wise varying blurs, and estimates the latent image and motion flow at the same time. With the proposed methods, significantly improved deblurring qualities are achieved, and intensive experimental evaluations demonstrate the superiority of the proposed methods in dynamic scene deblurring, in which state-of-the-art methods fail to deblur.Chapter 1 Introduction 1 Chapter 2 Image Deblurring with Segmentation 7 2.1 Introduction and Related Work 7 2.2 Segmentation-based Dynamic Scene Deblurring Model 11 2.2.1 Adaptive blur model selection 13 2.2.2 Regularization 14 2.3 Optimization 17 2.3.1 Sharp image restoration 18 2.3.2 Weight estimation 19 2.3.3 Kernel estimation 23 2.3.4 Overall procedure 25 2.4 Experiments 25 2.5 Summary 27 Chapter 3 Image Deblurring with Exemplar 33 3.1 Introduction and Related Work 35 3.2 Method Overview 37 3.3 Stage I: Exemplar Acquisition 38 3.3.1 Sharp image acquisition and preprocessing 38 3.3.2 Exemplar from blur-aware optical flow estimation 40 3.4 Stage II: Exemplar-based Deblurring 42 3.4.1 Exemplar-based latent image restoration 43 3.4.2 Motion-aware segmentation 44 3.4.3 Robust kernel estimation 45 3.4.4 Unified energy model and optimization 47 3.5 Stage III: Post-processing and Refinement 47 3.6 Experiments 49 3.7 Summary 53 Chapter 4 Image Deblurring with Kernel-Parametrization 57 4.1 Introduction and Related Work 59 4.2 Preliminary 60 4.3 Proposed Method 62 4.3.1 Image-statistics-guided motion 62 4.3.2 Adaptive variational deblurring model 64 4.4 Optimization 69 4.4.1 Motion estimation 70 4.4.2 Latent image restoration 72 4.4.3 Kernel re-initialization 73 4.5 Experiments 75 4.6 Summary 80 Chapter 5 Video Deblurring with Kernel-Parametrization 87 5.1 Introduction and Related Work 87 5.2 Generalized Video Deblurring 93 5.2.1 A new data model based on kernel-parametrization 94 5.2.2 A new optical flow constraint and temporal regularization 104 5.2.3 Spatial regularization 105 5.3 Optimization Framework 107 5.3.1 Sharp video restoration 108 5.3.2 Optical flows estimation 109 5.3.3 Defocus blur map estimation 110 5.4 Implementation Details 111 5.4.1 Initialization and duty cycle estimation 112 5.4.2 Occlusion detection and refinement 113 5.5 Motion Blur Dataset 114 5.5.1 Dataset generation 114 5.6 Experiments 116 5.7 Summary 120 Chapter 6 Conclusion 127 Bibliography 131 ๊ตญ๋ฌธ ์ดˆ๋ก 141Docto

    ๊ฐ€๋ฆฌ์–ด์ง์„ ๊ณ ๋ คํ•œ ์˜์ƒ ๋””๋ธ”๋Ÿฌ๋ง

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2014. 2. ์ด๊ฒฝ๋ฌด.In this thesis, a novel blur model that can deal with occlusion in the blurred image from a scene with depth discontinuities is proposed. Existing deblurring methods usually ignore the occlusion that occurs near the depth variations but it causes severe artifacts near the object boundary, which is a critical factor in deblurring. Based on the analysis about the blur kernel near the depth discontinuities for a two-layer image model, a new occlusion-aware blur model which can make use of the information of occluded regions is proposed. Proposed model jointly recovers the depth map, foreground mask and restored image with accurate object boundary from two blurred observations. Also, a highly accurate optimization method is provided based on MCMC. Comparative experimental results on synthetic and real blurred images demonstrate convincingly that proposed model gives satisfactory results.Abstract i Contents ii List of Figures v List of Tables vii 1 Introduction 1 1.1 Background and Research Issues . . . . . . . . . . . . . . . . . . . . 1 1.2 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Related work 4 2.1 Uniform Blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Non-Uniform Blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 Non-Uniform Blur from Camera Motion . . . . . . . . . . . . 5 2.2.2 Non-Uniform Blur with Depth Variations . . . . . . . . . . . 5 2.2.3 Non-Uniform Blur with Occlusions . . . . . . . . . . . . . . . 5 2.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 Analysis of Occlusion during Camera Motion 7 3.1 The Two-Layer Model of Latent Image . . . . . . . . . . . . . . . . . 7 3.2 The Two-Layer Image Transformation . . . . . . . . . . . . . . . . . 9 3.3 Occlusion-Aware Blur Model . . . . . . . . . . . . . . . . . . . . . . 10 4 Occlusion-Aware Motion Deblurring 14 4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2 Camera Pose Interpolation . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.4.1 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . 18 5 Discussion 21 6 Experiments 22 7 Conclusion 29 7.1 Summary of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 29 7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 7.2.1 Multi Layer Scenes . . . . . . . . . . . . . . . . . . . . . . . . 30 7.2.2 Projective Motion . . . . . . . . . . . . . . . . . . . . . . . . 30 7.2.3 Dynamic Scenes . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.2.4 Real-Time Deblurring and 3D Reconstruction . . . . . . . . . 31 Bibliography 32 ๊ตญ๋ฌธ์ดˆ๋ก 35 ๊ฐ์‚ฌ์˜ ๊ธ€ 36Maste

    New Datasets, Models, and Optimization

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021.8. ์†ํ˜„ํƒœ.์‚ฌ์ง„ ์ดฌ์˜์˜ ๊ถ๊ทน์ ์ธ ๋ชฉํ‘œ๋Š” ๊ณ ํ’ˆ์งˆ์˜ ๊นจ๋—ํ•œ ์˜์ƒ์„ ์–ป๋Š” ๊ฒƒ์ด๋‹ค. ํ˜„์‹ค์ ์œผ๋กœ, ์ผ์ƒ์˜ ์‚ฌ์ง„์€ ์ž์ฃผ ํ”๋“ค๋ฆฐ ์นด๋ฉ”๋ผ์™€ ์›€์ง์ด๋Š” ๋ฌผ์ฒด๊ฐ€ ์žˆ๋Š” ๋™์  ํ™˜๊ฒฝ์—์„œ ์ฐ๋Š”๋‹ค. ๋…ธ์ถœ์‹œ๊ฐ„ ์ค‘์˜ ์นด๋ฉ”๋ผ์™€ ํ”ผ์‚ฌ์ฒด๊ฐ„์˜ ์ƒ๋Œ€์ ์ธ ์›€์ง์ž„์€ ์‚ฌ์ง„๊ณผ ๋™์˜์ƒ์—์„œ ๋ชจ์…˜ ๋ธ”๋Ÿฌ๋ฅผ ์ผ์œผํ‚ค๋ฉฐ ์‹œ๊ฐ์ ์ธ ํ™”์งˆ์„ ์ €ํ•˜์‹œํ‚จ๋‹ค. ๋™์  ํ™˜๊ฒฝ์—์„œ ๋ธ”๋Ÿฌ์˜ ์„ธ๊ธฐ์™€ ์›€์ง์ž„์˜ ๋ชจ์–‘์€ ๋งค ์ด๋ฏธ์ง€๋งˆ๋‹ค, ๊ทธ๋ฆฌ๊ณ  ๋งค ํ”ฝ์…€๋งˆ๋‹ค ๋‹ค๋ฅด๋‹ค. ๊ตญ์ง€์ ์œผ๋กœ ๋ณ€ํ™”ํ•˜๋Š” ๋ธ”๋Ÿฌ์˜ ์„ฑ์งˆ์€ ์‚ฌ์ง„๊ณผ ๋™์˜์ƒ์—์„œ์˜ ๋ชจ์…˜ ๋ธ”๋Ÿฌ ์ œ๊ฑฐ๋ฅผ ์‹ฌ๊ฐํ•˜๊ฒŒ ํ’€๊ธฐ ์–ด๋ ค์šฐ๋ฉฐ ํ•ด๋‹ต์ด ํ•˜๋‚˜๋กœ ์ •ํ•ด์ง€์ง€ ์•Š์€, ์ž˜ ์ •์˜๋˜์ง€ ์•Š์€ ๋ฌธ์ œ๋กœ ๋งŒ๋“ ๋‹ค. ๋ฌผ๋ฆฌ์ ์ธ ์›€์ง์ž„ ๋ชจ๋ธ๋ง์„ ํ†ตํ•ด ํ•ด์„์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์„ค๊ณ„ํ•˜๊ธฐ๋ณด๋‹ค๋Š” ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜์˜ ์ ‘๊ทผ๋ฒ•์€ ์ด๋Ÿฌํ•œ ์ž˜ ์ •์˜๋˜์ง€ ์•Š์€ ๋ฌธ์ œ๋ฅผ ํ‘ธ๋Š” ๋ณด๋‹ค ํ˜„์‹ค์ ์ธ ๋‹ต์ด ๋  ์ˆ˜ ์žˆ๋‹ค. ํŠนํžˆ ๋”ฅ ๋Ÿฌ๋‹์€ ์ตœ๊ทผ ์ปดํ“จํ„ฐ ๋น„์ „ ํ•™๊ณ„์—์„œ ํ‘œ์ค€์ ์ธ ๊ธฐ๋ฒ•์ด ๋˜์–ด ๊ฐ€๊ณ  ์žˆ๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์€ ์‚ฌ์ง„ ๋ฐ ๋น„๋””์˜ค ๋””๋ธ”๋Ÿฌ๋ง ๋ฌธ์ œ์— ๋Œ€ํ•ด ๋”ฅ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์†”๋ฃจ์…˜์„ ๋„์ž…ํ•˜๋ฉฐ ์—ฌ๋Ÿฌ ํ˜„์‹ค์ ์ธ ๋ฌธ์ œ๋ฅผ ๋‹ค๊ฐ์ ์œผ๋กœ ๋‹ค๋ฃฌ๋‹ค. ์ฒซ ๋ฒˆ์งธ๋กœ, ๋””๋ธ”๋Ÿฌ๋ง ๋ฌธ์ œ๋ฅผ ๋‹ค๋ฃจ๊ธฐ ์œ„ํ•œ ๋ฐ์ดํ„ฐ์…‹์„ ์ทจ๋“ํ•˜๋Š” ์ƒˆ๋กœ์šด ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋ชจ์…˜ ๋ธ”๋Ÿฌ๊ฐ€ ์žˆ๋Š” ์ด๋ฏธ์ง€์™€ ๊นจ๋—ํ•œ ์ด๋ฏธ์ง€๋ฅผ ์‹œ๊ฐ„์ ์œผ๋กœ ์ •๋ ฌ๋œ ์ƒํƒœ๋กœ ๋™์‹œ์— ์ทจ๋“ํ•˜๋Š” ๊ฒƒ์€ ์‰ฌ์šด ์ผ์ด ์•„๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ๊ฐ€ ๋ถ€์กฑํ•œ ๊ฒฝ์šฐ ๋””๋ธ”๋Ÿฌ๋ง ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ฒƒ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ง€๋„ํ•™์Šต ๊ธฐ๋ฒ•์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ๋„ ๋ถˆ๊ฐ€๋Šฅํ•ด์ง„๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ณ ์† ๋น„๋””์˜ค๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์นด๋ฉ”๋ผ ์˜์ƒ ์ทจ๋“ ํŒŒ์ดํ”„๋ผ์ธ์„ ๋ชจ๋ฐฉํ•˜๋ฉด ์‹ค์ œ์ ์ธ ๋ชจ์…˜ ๋ธ”๋Ÿฌ ์ด๋ฏธ์ง€๋ฅผ ํ•ฉ์„ฑํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ๊ธฐ์กด์˜ ๋ธ”๋Ÿฌ ํ•ฉ์„ฑ ๊ธฐ๋ฒ•๋“ค๊ณผ ๋‹ฌ๋ฆฌ ์ œ์•ˆํ•˜๋Š” ๋ฐฉ๋ฒ•์€ ์—ฌ๋Ÿฌ ์›€์ง์ด๋Š” ํ”ผ์‚ฌ์ฒด๋“ค๊ณผ ๋‹ค์–‘ํ•œ ์˜์ƒ ๊นŠ์ด, ์›€์ง์ž„ ๊ฒฝ๊ณ„์—์„œ์˜ ๊ฐ€๋ฆฌ์›Œ์ง ๋“ฑ์œผ๋กœ ์ธํ•œ ์ž์—ฐ์Šค๋Ÿฌ์šด ๊ตญ์†Œ์  ๋ธ”๋Ÿฌ์˜ ๋ณต์žก๋„๋ฅผ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ๋‹ค. ๋‘ ๋ฒˆ์งธ๋กœ, ์ œ์•ˆ๋œ ๋ฐ์ดํ„ฐ์…‹์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ์ƒˆ๋กœ์šด ๋‹จ์ผ์˜์ƒ ๋””๋ธ”๋Ÿฌ๋ง์„ ์œ„ํ•œ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ์ตœ์ ํ™”๊ธฐ๋ฒ• ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€ ๋””๋ธ”๋Ÿฌ๋ง ๋ฐฉ์‹์—์„œ ๋„๋ฆฌ ์“ฐ์ด๊ณ  ์žˆ๋Š” ์ ์ฐจ์  ๋ฏธ์„ธํ™” ์ ‘๊ทผ๋ฒ•์„ ๋ฐ˜์˜ํ•˜์—ฌ ๋‹ค์ค‘๊ทœ๋ชจ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ๋ฅผ ์„ค๊ณ„ํ•œ๋‹ค. ์ œ์•ˆ๋œ ๋‹ค์ค‘๊ทœ๋ชจ ๋ชจ๋ธ์€ ๋น„์Šทํ•œ ๋ณต์žก๋„๋ฅผ ๊ฐ€์ง„ ๋‹จ์ผ๊ทœ๋ชจ ๋ชจ๋ธ๋“ค๋ณด๋‹ค ๋†’์€ ๋ณต์› ์ •ํ™•๋„๋ฅผ ๋ณด์ธ๋‹ค. ์„ธ ๋ฒˆ์งธ๋กœ, ๋น„๋””์˜ค ๋””๋ธ”๋Ÿฌ๋ง์„ ์œ„ํ•œ ์ˆœํ™˜ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ๋ชจ๋ธ ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๋””๋ธ”๋Ÿฌ๋ง์„ ํ†ตํ•ด ๊ณ ํ’ˆ์งˆ์˜ ๋น„๋””์˜ค๋ฅผ ์–ป๊ธฐ ์œ„ํ•ด์„œ๋Š” ๊ฐ ํ”„๋ ˆ์ž„๊ฐ„์˜ ์‹œ๊ฐ„์ ์ธ ์ •๋ณด์™€ ํ”„๋ ˆ์ž„ ๋‚ด๋ถ€์ ์ธ ์ •๋ณด๋ฅผ ๋ชจ๋‘ ์‚ฌ์šฉํ•ด์•ผ ํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋‚ด๋ถ€ํ”„๋ ˆ์ž„ ๋ฐ˜๋ณต์  ์—ฐ์‚ฐ๊ตฌ์กฐ๋Š” ๋‘ ์ •๋ณด๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ํ•จ๊ป˜ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ๋ชจ๋ธ ํŒŒ๋ผ๋ฏธํ„ฐ ์ˆ˜๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค์ง€ ์•Š๊ณ ๋„ ๋””๋ธ”๋Ÿฌ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚จ๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ์ƒˆ๋กœ์šด ๋””๋ธ”๋Ÿฌ๋ง ๋ชจ๋ธ๋“ค์„ ๋ณด๋‹ค ์ž˜ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•ด ๋กœ์Šค ํ•จ์ˆ˜๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ๊นจ๋—ํ•˜๊ณ  ๋˜๋ ทํ•œ ์‚ฌ์ง„ ํ•œ ์žฅ์œผ๋กœ๋ถ€ํ„ฐ ์ž์—ฐ์Šค๋Ÿฌ์šด ๋ชจ์…˜ ๋ธ”๋Ÿฌ๋ฅผ ๋งŒ๋“ค์–ด๋‚ด๋Š” ๊ฒƒ์€ ๋ธ”๋Ÿฌ๋ฅผ ์ œ๊ฑฐํ•˜๋Š” ๊ฒƒ๊ณผ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์–ด๋ ค์šด ๋ฌธ์ œ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ํ†ต์ƒ ์‚ฌ์šฉํ•˜๋Š” ๋กœ์Šค ํ•จ์ˆ˜๋กœ ์–ป์€ ๋””๋ธ”๋Ÿฌ๋ง ๋ฐฉ๋ฒ•๋“ค์€ ๋ธ”๋Ÿฌ๋ฅผ ์™„์ „ํžˆ ์ œ๊ฑฐํ•˜์ง€ ๋ชปํ•˜๋ฉฐ ๋””๋ธ”๋Ÿฌ๋œ ์ด๋ฏธ์ง€์˜ ๋‚จ์•„์žˆ๋Š” ๋ธ”๋Ÿฌ๋กœ๋ถ€ํ„ฐ ์›๋ž˜์˜ ๋ธ”๋Ÿฌ๋ฅผ ์žฌ๊ฑดํ•  ์ˆ˜ ์žˆ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋ฆฌ๋ธ”๋Ÿฌ๋ง ๋กœ์Šค ํ•จ์ˆ˜๋Š” ๋””๋ธ”๋Ÿฌ๋ง ์ˆ˜ํ–‰์‹œ ๋ชจ์…˜ ๋ธ”๋Ÿฌ๋ฅผ ๋ณด๋‹ค ์ž˜ ์ œ๊ฑฐํ•˜๋„๋ก ์„ค๊ณ„๋˜์—ˆ๋‹ค. ์ด์— ๋‚˜์•„๊ฐ€ ์ œ์•ˆํ•œ ์ž๊ธฐ์ง€๋„ํ•™์Šต ๊ณผ์ •์œผ๋กœ๋ถ€ํ„ฐ ํ…Œ์ŠคํŠธ์‹œ ๋ชจ๋ธ์ด ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ์— ์ ์‘ํ•˜๋„๋ก ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ ‡๊ฒŒ ์ œ์•ˆ๋œ ๋ฐ์ดํ„ฐ์…‹, ๋ชจ๋ธ ๊ตฌ์กฐ, ๊ทธ๋ฆฌ๊ณ  ๋กœ์Šค ํ•จ์ˆ˜๋ฅผ ํ†ตํ•ด ๋”ฅ ๋Ÿฌ๋‹์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ๋‹จ์ผ ์˜์ƒ ๋ฐ ๋น„๋””์˜ค ๋””๋ธ”๋Ÿฌ๋ง ๊ธฐ๋ฒ•๋“ค์„ ์ œ์•ˆํ•œ๋‹ค. ๊ด‘๋ฒ”์œ„ํ•œ ์‹คํ—˜ ๊ฒฐ๊ณผ๋กœ๋ถ€ํ„ฐ ์ •๋Ÿ‰์  ๋ฐ ์ •์„ฑ์ ์œผ๋กœ ์ตœ์ฒจ๋‹จ ๋””๋ธ”๋Ÿฌ๋ง ์„ฑ๊ณผ๋ฅผ ์ฆ๋ช…ํ•œ๋‹ค.Obtaining a high-quality clean image is the ultimate goal of photography. In practice, daily photography is often taken in dynamic environments with moving objects as well as shaken cameras. The relative motion between the camera and the objects during the exposure causes motion blur in images and videos, degrading the visual quality. The degree of blur strength and the shape of motion trajectory varies by every image and every pixel in dynamic environments. The locally-varying property makes the removal of motion blur in images and videos severely ill-posed. Rather than designing analytic solutions with physical modelings, using machine learning-based approaches can serve as a practical solution for such a highly ill-posed problem. Especially, deep-learning has been the recent standard in computer vision literature. This dissertation introduces deep learning-based solutions for image and video deblurring by tackling practical issues in various aspects. First, a new way of constructing the datasets for dynamic scene deblurring task is proposed. It is nontrivial to simultaneously obtain a pair of the blurry and the sharp image that are temporally aligned. The lack of data prevents the supervised learning techniques to be developed as well as the evaluation of deblurring algorithms. By mimicking the camera image pipeline with high-speed videos, realistic blurry images could be synthesized. In contrast to the previous blur synthesis methods, the proposed approach can reflect the natural complex local blur from and multiple moving objects, varying depth, and occlusion at motion boundaries. Second, based on the proposed datasets, a novel neural network architecture for single-image deblurring task is presented. Adopting the coarse-to-fine approach that is widely used in energy optimization-based methods for image deblurring, a multi-scale neural network architecture is derived. Compared with the single-scale model with similar complexity, the multi-scale model exhibits higher accuracy and faster speed. Third, a light-weight recurrent neural network model architecture for video deblurring is proposed. In order to obtain a high-quality video from deblurring, it is important to exploit the intrinsic information in the target frame as well as the temporal relation between the neighboring frames. Taking benefits from both sides, the proposed intra-frame iterative scheme applied to the RNNs achieves accuracy improvements without increasing the number of model parameters. Lastly, a novel loss function is proposed to better optimize the deblurring models. Estimating a dynamic blur for a clean and sharp image without given motion information is another ill-posed problem. While the goal of deblurring is to completely get rid of motion blur, conventional loss functions fail to train neural networks to fulfill the goal, leaving the trace of blur in the deblurred images. The proposed reblurring loss functions are designed to better eliminate the motion blur and to produce sharper images. Furthermore, the self-supervised learning process facilitates the adaptation of the deblurring model at test-time. With the proposed datasets, model architectures, and the loss functions, the deep learning-based single-image and video deblurring methods are presented. Extensive experimental results demonstrate the state-of-the-art performance both quantitatively and qualitatively.1 Introduction 1 2 Generating Datasets for Dynamic Scene Deblurring 7 2.1 Introduction 7 2.2 GOPRO dataset 9 2.3 REDS dataset 11 2.4 Conclusion 18 3 Deep Multi-Scale Convolutional Neural Networks for Single Image Deblurring 19 3.1 Introduction 19 3.1.1 Related Works 21 3.1.2 Kernel-Free Learning for Dynamic Scene Deblurring 23 3.2 Proposed Method 23 3.2.1 Model Architecture 23 3.2.2 Training 26 3.3 Experiments 29 3.3.1 Comparison on GOPRO Dataset 29 3.3.2 Comparison on Kohler Dataset 33 3.3.3 Comparison on Lai et al. [54] dataset 33 3.3.4 Comparison on Real Dynamic Scenes 34 3.3.5 Effect of Adversarial Loss 34 3.4 Conclusion 41 4 Intra-Frame Iterative RNNs for Video Deblurring 43 4.1 Introduction 43 4.2 Related Works 46 4.3 Proposed Method 50 4.3.1 Recurrent Video Deblurring Networks 51 4.3.2 Intra-Frame Iteration Model 52 4.3.3 Regularization by Stochastic Training 56 4.4 Experiments 58 4.4.1 Datasets 58 4.4.2 Implementation details 59 4.4.3 Comparisons on GOPRO [72] dataset 59 4.4.4 Comparisons on [97] Dataset and Real Videos 60 4.5 Conclusion 61 5 Learning Loss Functions for Image Deblurring 67 5.1 Introduction 67 5.2 Related Works 71 5.3 Proposed Method 73 5.3.1 Clean Images are Hard to Reblur 73 5.3.2 Supervision from Reblurring Loss 75 5.3.3 Test-time Adaptation by Self-Supervision 76 5.4 Experiments 78 5.4.1 Effect of Reblurring Loss 78 5.4.2 Effect of Sharpness Preservation Loss 80 5.4.3 Comparison with Other Perceptual Losses 81 5.4.4 Effect of Test-time Adaptation 81 5.4.5 Comparison with State-of-The-Art Methods 82 5.4.6 Real World Image Deblurring 85 5.4.7 Combining Reblurring Loss with Other Perceptual Losses 86 5.4.8 Perception vs. Distortion Trade-Off 87 5.4.9 Visual Comparison of Loss Function 88 5.4.10 Implementation Details 89 5.4.11 Determining Reblurring Module Size 94 5.5 Conclusion 95 6 Conclusion 97 ๊ตญ๋ฌธ ์ดˆ๋ก 115 ๊ฐ์‚ฌ์˜ ๊ธ€ 117๋ฐ•

    Model-based Optical Flow: Layers, Learning, and Geometry

    Get PDF
    The estimation of motion in video sequences establishes temporal correspondences between pixels and surfaces and allows reasoning about a scene using multiple frames. Despite being a focus of research for over three decades, computing motion, or optical flow, remains challenging due to a number of difficulties, including the treatment of motion discontinuities and occluded regions, and the integration of information from more than two frames. One reason for these issues is that most optical flow algorithms only reason about the motion of pixels on the image plane, while not taking the image formation pipeline or the 3D structure of the world into account. One approach to address this uses layered models, which represent the occlusion structure of a scene and provide an approximation to the geometry. The goal of this dissertation is to show ways to inject additional knowledge about the scene into layered methods, making them more robust, faster, and more accurate. First, this thesis demonstrates the modeling power of layers using the example of motion blur in videos, which is caused by fast motion relative to the exposure time of the camera. Layers segment the scene into regions that move coherently while preserving their occlusion relationships. The motion of each layer therefore directly determines its motion blur. At the same time, the layered model captures complex blur overlap effects at motion discontinuities. Using layers, we can thus formulate a generative model for blurred video sequences, and use this model to simultaneously deblur a video and compute accurate optical flow for highly dynamic scenes containing motion blur. Next, we consider the representation of the motion within layers. Since, in a layered model, important motion discontinuities are captured by the segmentation into layers, the flow within each layer varies smoothly and can be approximated using a low dimensional subspace. We show how this subspace can be learned from training data using principal component analysis (PCA), and that flow estimation using this subspace is computationally efficient. The combination of the layered model and the low-dimensional subspace gives the best of both worlds, sharp motion discontinuities from the layers and computational efficiency from the subspace. Lastly, we show how layered methods can be dramatically improved using simple semantics. Instead of treating all layers equally, a semantic segmentation divides the scene into its static parts and moving objects. Static parts of the scene constitute a large majority of what is shown in typical video sequences; yet, in such regions optical flow is fully constrained by the depth structure of the scene and the camera motion. After segmenting out moving objects, we consider only static regions, and explicitly reason about the structure of the scene and the camera motion, yielding much better optical flow estimates. Furthermore, computing the structure of the scene allows to better combine information from multiple frames, resulting in high accuracies even in occluded regions. For moving regions, we compute the flow using a generic optical flow method, and combine it with the flow computed for the static regions to obtain a full optical flow field. By combining layered models of the scene with reasoning about the dynamic behavior of the real, three-dimensional world, the methods presented herein push the envelope of optical flow computation in terms of robustness, speed, and accuracy, giving state-of-the-art results on benchmarks and pointing to important future research directions for the estimation of motion in natural scenes

    Nonrigid Surface Tracking, Analysis and Evaluation

    Get PDF
    • โ€ฆ
    corecore