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Abstract

Blurring artifacts are the most common flaws in photographs. To remove these

artifacts, many deblurring methods which restore sharp images from blurry ones

have been studied considerably in the field of computational photography. However,

state-of-the-art deblurring methods are based on a strong assumption that the cap-

tured scenes are static, and thus a great many things still remain to be done. In

particular, these conventional methods fail to deblur blurry images captured in dy-

namic environments which have spatially varying blurs caused by various sources

such as camera shake including out-of-plane motion, moving objects, depth varia-

tion, and so on. Therefore, the deblurring problem becomes more difficult and deeply

challenging for dynamic scenes.

Therefore, in this dissertation, addressing the deblurring problem of general dy-

namic scenes is a goal, and new solutions are introduced, that remove spatially

varying blurs in dynamic scenes unlike conventional methods built on the assump-

tion that the captured scenes are static. Three kinds of dynamic scene deblurring

methods are proposed to achieve this goal, and they are based on: (1) segmentation,

(2) sharp exemplar, (3) kernel-parametrization. The proposed approaches are intro-

duced from segment-wise to pixel-wise approaches, and pixel-wise varying general

blurs are handled in the end.

First, the segmentation-based deblurring method estimates the latent image,
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multiple different kernels, and associated segments jointly. With the aid of the joint

approach, segmentation-based method could achieve accurate blur kernel within

a segment, remove segment-wise varying blurs, and reduce artifacts at the motion

boundaries which are common in conventional approaches. Next, an exemplar -based

deblurring method is proposed, which utilizes a sharp exemplar to estimate highly ac-

curate blur kernel and overcomes the limitations of the segmentation-based method

that cannot handle small or texture-less segments. Lastly, the deblurring method

using kernel-parametrization approximates the locally varying kernel as linear using

motion flows. Thus the proposed method based on kernel-parametrization is gener-

ally applicable to remove pixel-wise varying blurs, and estimates the latent image

and motion flow at the same time.

With the proposed methods, significantly improved deblurring qualities are achieved,

and intensive experimental evaluations demonstrate the superiority of the proposed

methods in dynamic scene deblurring, in which state-of-the-art methods fail to de-

blur.

Key words: Blind deblurring, Non-uniform blur, Spatially varying blur, Dynamic

Scenes deblurring, Motion segmentation, Kernel-parametrization, Exemplar

Student number: 2011-30224
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Chapter 1

Introduction

During an exposure time, CCD and CMOS sensors integrate photons, and the col-

lected photons are converted to brightness values in digital images. Under low light

conditions, integration time can be increased up to several seconds to collect more

photons and obtain brighter images. However, motion blurs during the long expo-

sure period severely degrade images. As these blurs are most common artifact in

photographs and recent demands for clear images are very high, deblurring has be-

come a popular research topic in computational photography; these research efforts

aim to restore sharp photos on memorable days, and to improve the accuracy of

numerous computer vision applications.

In particular, blind deblurring is a method used to restore sharp images from

blurry ones caused by camera shake or moving object during shutter time. However,

the blind deblurring problem is difficult to solve because it is highly ill-posed. To

solve this problem, many researchers have studied the deblurring algorithms for the

latent image and blur kernel estimation, and recast the deblurring problem as an

energy minimization problem with data and regularization terms.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: A real image with locally varying blurs captured in a dynamic scene.

Specifically, uniform and shift-invariant blur from 2D translational camera shake

was handled in earlier works [16, 3, 17, 1, 6]. These were followed by work on the

more general case of camera shake in 3D space [5, 4, 18, 2, 6], and thus motion blurs

caused by camera shakes have been studied intensively under an assumption that the

captured scenes are static. However, blurs in real images captured in dynamic scenes

are locally different as shown in Fig. 1.1, since they are caused by co-existing different

sources such as camera shake, moving objects, and depth variation. Therefore, blur

kernels are also spatially varying, and the deblurring problem becomes more difficult

and very challenging. Notably, solution space of the unknown blur kernel becomes

very huge when the blur kernel changes spatially.

Therefore, the main goal of this dissertation is to remove spatially varying blurs

and achieves good deblurring results in dynamic scenes. To do so, several meth-

ods to solve the difficulties in dynamic scene deblurring problem are proposed, and
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Proposed methods Blur kernel applicability

• Deblurring method with segmentation • Low (segment-wise varying blurs)

• Deblurring method with exemplar • Mid (segment-wise varying blurs)

• Deblurring methods with kernel-parametrization • High (pixel-wise varying blurs)

Proposed methods Blur kernel applicablity

Segmentation-based method
Low (segment-wise rigid 

motion)

Exemplar-based method
Mid (segment-wise rigid 

motion)

Kernel-parametrization-based
methods

High (pixel-wise linear 
motion)

Figure 1.2: Summary of the methods proposed in this dissertation.

the three kinds of proposed methods are based on: (1) segmentation, (2) exemplar,

(3) kernel -parametrization. As shown in Fig. 1.2, proposed methods are introduced

from segment-wise approach to pixel-wise approach, and handle general pixel-wise

varying blurs in the end. In particular, proposed methods with segmentation and

exemplar assume that blurs are caused by segment-wise rigid motion, and thus es-

timate segment-wise varying kernels. Therefore, they can estimate accurate blur

kernel within a segment, but cannot handle pixel-wise varying blurs. Meanwhile,

proposed deblurring methods using kernel-parametrization assume pixel-wise vary-

ing blurs, thus estimate pixel-wise varying blur kernels using a piece-wise linear

kernel approximation. The structure of the dissertation, detailed introductions and

contributions of the proposed methods are summarized in the followings.

In Chapter 2, a segmentation-based deblurring approach is introduced [10]. As

moving objects and background have different motion blurs in dynamic scenes, accu-

rate (motion) segmentation is required for removing each distinct blur. Thus, using

a segment-wise rigid motion assumption, locally different motion blurs and their
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associated weights, and the latent sharp image are jointly estimated with a novel

energy model designed with the weighted sum of multiple blur data models. In this

framework, the local weights are determined adaptively and get high values when

the corresponding data models have high data fidelity. And, the weight information

is used for the segmentation of the motion blur. Moreover, non-local regularization of

weights are incorporated to produce more reliable segmentation results, and a convex

optimization-based method is used for minimizing the proposed energy model.

In Chapter 3, an exemplar -based deblurring method is proposed. As the segmentation-

based method proposed in Chapter 2, attempts to address dynamic scene deblurring

problem by handling segment-wise different blurs, it achieves good deblurring results

when segmentation succeeds. However, segmentation itself with a single image is very

difficult problem, and thus the segmentation-based method occasionally fails where

segments of the moving objects are small or texture-less. In contrast, in this chapter,

sharp exemplar image of the scene, which can be obtained from bracket sequence

imaging or a nearby video frame, to elevate the deblurring quality for dynamic scenes

by overcoming the limitations of the segmentation-based method, is utilized. The

key issue in utilizing sharp exemplars is to establish dense correspondences between

the sharp and blurred images in the presence of spatially-variant blurs. This prob-

lem is addressed with a new blur-aware optical flow estimation method that is based

on the notion that pixels which have similar motion will exhibit similar blur. In an

iterative process, the proposed method computes flows, aligns the sharp exemplar

to the blurred image according to this flow, uses the flow-aligned exemplar image

to facilitate the estimation of blur kernels, their associated image segments, and the

latent image.

In Chapter 4, a deblurring method using kernel -parametrization, which is gen-
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erally applicable to handle pixel-wise varying blurs, is proposed to deblur a single

blurry image [8]. Because our segmentation-based and exemplar-based methods esti-

mate segment-wise different blur kernel, they cannot handle pixel-wise varying blurs

in practice. Thus, in this chapter, a segmentation-free dynamic scene deblurring

method, which handles pixel-wise varying blurs unlike other conventional methods,

is studied. To be specific, the approximation technique of the local blur kernel as a

motion model is employed, and the problem is recast as to infer the latent image

and pixel-wise varying motion flows jointly in an energy minimization framework.

By doing so, various types of blur can be handled caused by camera shake includ-

ing out-of-plane motion, moving objects, depth variation, and so on. Moreover, to

overcome the limitation of the conventional blur constraint in the joint formulation,

which fail to deblur where edges are not significant, motion blur cues from image-

statistics are integrated into the proposed energy model. In addition, a higher order

regularizer is employed to reduce staircase-like artifacts among neighboring motion

flows on slanted surfaces. Moreover, an efficient solvers to minimize the proposed

non-convex energy function is presented.

Lastly, in Chapter 5, kernel -parametrization technique is naturally extended to

remove blurs in videos [19], and it improves deblurring qualities greatly using addi-

tional temporal information in videos. To handle spatially and temporally varying

blurs in dynamic videos caused by various sources, bidirectional optical flows are

inferred to handle motion blurs more accurately. Moreover, Gaussian blur maps are

estimated to remove optical blur from defocus in our new blur model. In doing so,

a single energy model is proposed, that jointly estimates optical flows, defocus blur

maps and latent frames. Moreover, a framework and efficient solvers to minimize

the proposed energy model is provided. To evaluate the performance of non-uniform
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deblurring methods objectively, a new realistic dataset with ground truths have been

constructed. Extensive experimental results on publicly available challenging video

data demonstrate that the proposed method produces qualitatively superior per-

formance than the state-of-the-art methods which often fail in either deblurring or

optical flow estimation.

Conclusion of the dissertation is given in Chapter 6 with a summary, and sug-

gestions for future works are also provided.



Chapter 2

Image Deblurring with

Segmentation

2.1 Introduction and Related Work

Blurring artifacts are among the most common flaws in photographs. Camera shake

or moving objects during the exposure time cause these artifacts under low light

conditions. To address this problem, single image deblurring methods which restore

a sharp image from a blurred image have been researched considerably in the field

of computer vision with the recent increased demand for clear images.

In general, the blind deblurring problem that restores the blurry image without

knowing the blur kernel is highly ill-posed. Therefore various energy models that are

composed of the regularization and data term have been proposed to find the sharp

image and the blur kernel jointly, in the form of

E(L,K) = Edata(L,K,B) + Ereg(L,K), (2.1)

7
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where L and B denote the vector form of the latent and blurred images, respectively.

The matrix K denotes the blur kernel whose row vector corresponds to the blur

kernel placed at each pixel location. The data term Edata measures the data fidelity

and the regularization term Ereg enforces the smoothness constraint to the latent

image as well as to the blur kernel.

Depending on the type of the blur kernel, blind deblurring approaches can be

categorized into two types. One is the uniform kernel approach which assumes shift

invariant blur kernel, and the other is the non-uniform approach which assumes

spatially varying blur kernel.

When the blur kernel is shift invariant and uniform over the entire image [16, 3], it

is possible to restore the latent image quickly with the aid of a fast Fourier transform

(FFT) and additional parallel processing [20, 17, 1]. However, the assumption of shift

invariant blur kernel does not hold good when there exists a rotational movement

of the camera or a moving object in the scene.

To alleviate these limitations of uniform motion blur assumption, several non-

uniform kernel based methods are proposed. In particular, recent approaches focus

on modeling the rotation of camera as well as translation [5, 4, 2], and they obtained

promising results in the deblurring of static scene.

However, problems still remain in more general settings where not only camera

shake but also moving objects exist. For example, in Fig. 2.1, restoring the image

with the uniform blur kernel that has been estimated from the moving bus raises a

severe artifacts in the background region (Fig. 2.1(b)). And also the uniform kernel

estimated from the background fails deblurring the bus (Fig. 2.1(c)). Note that even

the state-of-the-art non-uniform blur kernel method [2] which can deblur rotational

camera shake does not restore the moving bus either (Fig. 2.1(d)).
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Therefore the dynamic scene deblurring problem is deeply challenging. Thus

far, only a limited amount of research has been done on this problem [21, 22, 23].

However, many of these works are still in a nascent stage, and even the hardware-

assisted method has difficulties in handling dynamic scene deblurring problem [24].

Levin [21], for the first time, proposed a sequential two-stage approach to solve

this problem. She argued that moving objects and background should be handled

with different blur kernels to remove the artifacts from deblurring with an inaccu-

rate blur kernel. To begin with, she segmented blur motions by comparing likelihoods

with a set of given one dimensional box filters, then applied the Richardson-Lucy

deconvolution algorithm to each segmented region with its corresponding box filter.

For the first time, she approached this challenging problem with a simple and in-

tuitive way. However, the kernel for the segmentation is limited to the box filters

and thus the poor segmentation results could cause undesirable artifacts since the

segmentation-stage and the deblurring-stage are separated. Harmeling et al. [22]

proposed a method that restores overlapping patches of the blurred image. This ap-

proach could handle smoothly varying blur kernels but could not handle the abrupt

change of the blur kernel near the boundary of moving objects since they did not

segment the motion blurs. More recent work of Ji et al. [23] is based on the interpola-

tion of initially estimated kernels and showed much better results by reducing errors

from inaccurate blur kernels, but it also could not overcome the motion boundary

problems as in [22].
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Comparison of deblurring results. The green box illustrates the region used for blur
kernel estimation for each image. (a) Blurry image. (b)-(c) Results of Xu et al. [1]. (d) Result of
Whyte et al. [2]. (e)-(f) Our segmentation and deblurring results.
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In principle, the dynamic scene deblurring problem also requires the segmenta-

tion of differently blurred regions. Therefore, in this work, we address the problem

of estimating latent image as well as different blur motions and their implicit (soft)

segmentations. Note that, to the best of our knowledge, this work [10] is the first

dynamic scene deblurring approach that estimates these variables jointly. In our

framework, we propose a new energy model including multiple blur kernels and

their associated pixel-wise weights. The weight of a kernel takes high value he kernel

gives high data fidelity. At the same time, the blur kernels are estimated from the

pixels whose associated weights have high values. Therefore, locally varying weight

information allow us to segmentation the blur motions. In addition, we add non-local

regularization to the weight variables to enforce the smoothness in segmentation.

In this chapter, we introduce a more general and new deblurring framework that

can adaptively combine different blur models to estimate the spatially varying blur

kernels. Also, as illustrated in Fig. 2.1(e)-(f), we provide the segmentation of the

motion blur as well as better deblurring results. Note that since our framework is

general in nature, any blur models and optimization method can be incorporated.

We demonstrate the effectiveness of our new deblurring framework by the test results

on very challenging images on which conventional techniques break down.

2.2 Segmentation-based Dynamic Scene Deblurring Model

In our segmentation-based dynamic scene deblurring model, we assume the existence

of various blur motions. Therefore, find both blur kernels and their corresponding

blur regions should be estimated jointly. Moreover, we employ both the uniform

kernels, which are simple and fast, and the non-uniform kernels which can handle
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(a) (b) (c) (d) (e)

Figure 2.2: Multiple blur kernel models give a much better result without additional process to
remove ringing artifact. (a) A blurry image of static scene. (b) Deblurring result of Shan et al. [3].
(c) Our deblurring result with one uniform kernel. (d) Our segmentation-based deblurring result.
(e) Illustration of six weight variables. Slightly different blur kernels are estimated.

camera rotation.

As there are multiple blur kernels in a dynamic scene, each blurred pixel should

be restored from one of them and each kernel should be estimated from its related

pixels. For this, we introduce pixel-wise weight variables. A pixel-wise weight variable

is associated with a blur kernel and it gains high values on the pixels related with

the blur kernel. Therefore, the weight variables imply the segmentation of motion

blur, and the proposed energy model is given by,

E = Edata(L,W,A,B) + Ereg(L,W,A). (2.2)

The set A = {Kn} denotes a set of N blur kernels, and the set W = {Wn} means a

set of N weight variables where n = 1, 2, . . . , N . Weighting matrix Wn is associated

with the corresponding blur kernel Kn.

Compared with the conventional model in (2.1), our new energy model involves

additional weight variables and multiple blur kernels, so it becomes a more complex

and challenging model. In particular, the model in (2.1) is a special case of the

proposed model in (2.2), ours can also render reliable results even for static scenes.



2.2. SEGMENTATION-BASED DYNAMIC SCENE DEBLURRING MODEL 13

Note that even in the case of a static scene with only translational camera shake,

the captured real image may contain various blur motions because depth variation

or radial distortion may generate unexpected blur effects. Since the proposed model

employs multiple blur kernels, it could handle this problem complementary and

produce much better results than the conventional methods. In Fig. 2.2, similar but

slightly different six uniform blur kernels and their associated segments are jointly

estimated and a much clearer image with less ringing artifacts is obtained by our

method.

2.2.1 Adaptive blur model selection

To handle locally varying blurs, a data term that adaptively selects and fuses proper

blur models among candidate models is proposed. In doing so, we adopt a strategy

that chooses the locally (pixel-wise) best suited model by measuring the data fideli-

ties and gives a high value to the associated weight variable. At the same time, to

obtain correct blur kernels, it is required that each blur kernel is estimated from

pixels whose associated weight variable shows high values. In this way, the set W

segments the motion blurs by selecting the locally best suited data model. The data

term of the proposed new energy model is formulated by a weighted sum of the

multiple data models with some constraints as follows, and minimizing it is equal to

select locally best data model.

Edata(L,W,A,B) = λs

N∑
n=1

∑
∂∗

‖W
1
2
n � (∂∗KnL− ∂∗B)‖2 (2.3)

where N is the number of maximal blur models in the scene and λs is the parameter

adjusting the scale of our data term and the continuous weight vector is constrained
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to be (pixel-wise) Wn � 0 and
∑N

n=1 Wn = 1. The operator � means the element-

wise (Hadamard) product of two vectors and the operator ∂∗ ∈ {∂x, ∂y} denotes the

partial derivative in horizontal and vertical directions [17]. To reduce ringing arti-

facts, we also use gradient maps, but we do not use brightness map or second order

gradient maps unlike conventional methods [3, 17, 1]. Despite this, we can obtain

satisfying results by means of multiple blur models and reduce the computational

cost.

2.2.2 Regularization

As dynamic scene deblurring is a highly ill-posed problem, regularization enforcing

the smoothness of variables is necessary to obtain a reliable solution. In our energy

model, three primal variables are the latent image L, the set of blur kernel matrices A

and the set of the weight variables W, and each has different kinds of regularization

as

Ereg(L,W,A) = Ereg(L) + Ereg(W) + Ereg(A), (2.4)

and the details of which are described in the following sections.

2.2.2.1 Regularization for the latent image

We design the latent image to be sharp in edge regions and smooth in flat regions to

suppress noise. For this purpose many researchers have studied various priors of the

latent image and it is known that lp norm on the gradient map with 0.7 ≤ p ≤ 1 could

capture the statistics of natural images with heavy tailed distribution [25, 26, 5].

However, conventional optimization algorithms with sparse norm less than p < 1

are hard to optimize and require additional computational efforts. Thus, our model
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adopts the total variation model used in [1] as the prior of the latent image, as

follows:

Ereg(L) = |∇L|. (2.5)

2.2.2.2 Regularization for the weight variables

We assumed that a blurry object can be restored by one of the various blur models,

and the motion blur does not change abruptly except on the boundary of a moving

object. So, the locally varying weight variable should be segmented and we adopt

non local regularization for this purpose.

Non-local regularization is widely used in computer vision and have come into

the spotlight lately [27, 28]. The formulation incorporated in our deblurring model

is,

Ereg(W) =
N∑
n=1

∑
x,y∈N (x)

gs(x,y) · |Wn(x)−Wn(y)|, (2.6)

where N (x) denotes neighboring pixels of x and the function gs(x,y) is a non-local

similarity map which is used to define the mutual support between the pixels at

positions x and y. Similar to the work in [27] the non-local similarity map between

two neighboring pixels is defined as

gs(x,y) = e
−( ‖x−y‖

σD
)2 · e−(

L0(x)−L0(y)
σI

)2
, (2.7)

where the parameters σD and σI are used to adjust the slope of the non-local sim-

ilarity map and the given latent image L0 can be obtained from the initial of each

level in the coarse to fine approach or previous result in the iterative optimization

procedure. To reflect the properties of the weight variable Wn, with similar values
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between neighboring pixels but discontinuity on the boundary of moving objects,

it is necessary to use a model that could give sparsity on the difference of weights

between neighboring pixels. For this reason, our regularization of weight variables

is also based on the total variation. Note that, in contrast to the result from weight

regularization with only four neighbors, the result from regularization with dozens

of neighbors is much better in both motion blur segmentation and deblurring as

shown in Fig. 2.3.

2.2.2.3 Regularization for the blur kernels

As we use both uniform and non-uniform kernels in our blur models, two different

regularization models are required.

First, if the blur kernel matrix consists of uniform blur kernel, we use Tikhonov

regularization which is typically used in other methods of uniform blur kernel reg-

ularization due to its simplicity [20, 17, 1]. By using this regularization, we can

have a smooth kernel. The energy function for regularization on an uniform kernel

is formulated by

Ereg(Kn) = βs‖kn‖2, (2.8)

where kn is the uniform blur kernel corresponding to the kernel matrix Kn and the

parameter βs controls the influence of the regularization.

Secondly, for a non-uniform blur kernel Kn, we also use Tikhonov regularization

but in a different manner from the case of uniform blur kernel because a non-uniform

kernel is estimated in a different way. To be specific, similar to [5, 4], the non-uniform

kernel matrix Kn is made by restricting it to linear combinations of the several basis
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kernels as

Kn =

M∑
m=1

µm,nbm, (2.9)

where the vector bm is the mth basis kernel induced by a possible camera shake

and M denotes the total number of basis kernels. µm,n is the coefficient of basis

kernel bm which satisfies µm,n ≥ 0 and
∑M

m=1 µm,n = 1. Since the non-uniform

kernel is determined by µn = [µ1,n, µ2,n, · · · , µM,n]T , we regularize µn instead of

regularizing the kernel matrix Kn itself. Then the energy function for regularization

of the non-uniform kernel is formulated by

Ereg(Kn) = γs‖µn‖2, (2.10)

where the parameter γs adjusts the scale of regularization on µn.

2.3 Optimization

The proposed dynamic scene deblurring model introduced in the previous section

and the final objective function is as follows:

min
L,W,A

|∇L|+ βs

N∑
n=1

(uniform)

‖kn‖2 + γs

N∑
n=1

(non−uniform)

‖µn‖2+

λs

N∑
n=1

∑
∂∗

‖W
1
2
n � (∂∗KnL− ∂∗B)‖2 +

N∑
n=1

∑
x,y∈N (x)

gs(x,y)|Wn(x)−Wn(y)|,

(2.11)

where Wn(x) ≥ 0 and
∑N

n=1 Wn(x) = 1. Although our final objective model is

not a jointly convex function, three sub-problems with respect to L, W and A are
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convex. Therefore, instead of using complex optimization such as sampling based

technique for global optimum, we propose an iterative optimization method similar

to [17, 1, 3] for easier inference. By alternatively optimizing each subproblem in

an iterative process, we can efficiently estimate the L, W and A and can obtain

successful results. Each proposed subproblem can be modeled as a convex function,

and we adopt the first-order primal-dual algorithm [29] to solve each problem.

2.3.1 Sharp image restoration

Sharp image restoration methods are widely researched in both non-blind and blind

deblurring methods and some fast solutions are available with the aid of FFT. The

update procedure of L by the first-order primal-dual algorithm is


qm+1 = qm+σLSL

m

max(1,qm+σLSL
m)

Lm+1 = arg min
L

(L− (Lm − τLSTqm+1))2

2τL
+ λs

N∑
n=1

∑
∂∗

|W
1
2
n � (∂∗KnL− ∂∗B)‖2,

(2.12)

where m ≥ 0 means iteration number, q denotes the dual variable of L defined on

the vector space and S is a continuous linear operator that calculates the difference

between two pixels. The update steps σL and τL control the convergence rate as

defined in [29]. Initially, q0 = 0 and L0 = B. In particular, since the primal update

for L in (2.12) is a quadratic form, we have adopted the Landweber method [30] to

solve with FFT similar to [20].
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2.3.2 Weight estimation

The use of non-local regularization and constraints on weight variables makes it

hard to infer, but with the aid of convexity, we also adopt the first-order primal-

dual algorithm and the update step is given by,



rm+1
n,y (x) = min(gs(x,y),max(−gs(x,y), rmn,y(x) + σw(ZyW

m
n )(x))

Wm+1
n =Wm

n − τw(
∑
y

ZT
yrm+1

n,y + λs
∑
∂∗

(∂∗KnL− ∂∗B)� (∂∗KnL− ∂∗B))

Wm+1 = ΠW(Wm+1),

(2.13)

where rn,y is a dual variable defined on the vector space, and update steps σw and τw

control the convergence rate as defined in [29]. Zy is a continuous linear operator that

calculates the difference between two neighboring pixels at x and y. Since W has

some constraints, Wn(x) ≥ 0 and
∑N

n=1 Wn(x) = 1, the orthogonal projection ΠW

projects W onto the unit simplex [31]. This projection converges with N iterations

at most and the detail is in Algorithm 1.

Algorithm 1 The algorithm of projection onto unit simplex

1: T = {1, ..., N}

2: Wn(x)←Wn(x)− (
∑

n Wn(x)− 1)/|T |, if n ∈ T

3: T ← T − {n}, if Wn(x) < 0

4: Wn(x)← 0, if n /∈ T

5: Repeat steps 2-4 until
∑N

n=1 Wn(x) = 1, for all x.

For weight estimation, it is important to set proper initial value for W. The initial

weight map is designed so that at least one of the segments for uniform kernels can

cover the moving object. However since we don’t know the position and the size
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of it, we use many overlapping segments to cover it initially. If the moving object

occupies large part or has strong edges in an initial segment, then the blur kernel of

the moving object can be roughly estimated from that segment. Then, by iterations,

both the accuracies of the blur kernel and segment increase. An example of using 6

uniform blur kernels and 1 non-uniform blur kernel and their corresponding initial

weight maps is illustrated in Fig. 2.4. We observed empirically that different settings

of initial weight map do not change the results significantly. Thus, we used the same

initial segmentations as in Fig. 2.4 and set the initial values of 1/3 for each segment

for all experiments.



2.3. OPTIMIZATION 21

(a) (b)

(c) (d)

Figure 2.3: Comparison between conventional TV and non-local TV regularizations. (a) TV regu-
larization model. (b) Non-local TV (80 neighboring pixels) regularization model. (c)-(d) Deblurring
results with weight variables in (a) and (b) respectively.
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Figure 2.4: Weight initialization. (a) An example of the initial set-up of weight variables. The six columns on the left illustrate the initial weight
variables corresponding to six uniform models, and the right most column shows the initial weight variable corresponding to a non-uniform
model. (b) Change of a weight variable from coarse to fine level. The distribution of a weight variable gradually changes and finally fits on
the moving bus.
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2.3.3 Kernel estimation

The proposed method includes multiple blur models and a blur model could be ei-

ther uniform and non-uniform kernel. Therefore, we have to estimate both uniform

and non-uniform kernels. The blur kernel estimation methods for both approaches

have been widely studied in blind deblurring methods, but ours is somewhat differ-

ent because the proposed model includes additional weight variables. Since proper

initial value for blur kernel is also important, the method guiding the latent image

using prediction step [17, 1] is widely used. So, we adopt the predicted gradient

maps {px,py} defined in [17], instead of using latent image itself for accurate kernel

estimation.

2.3.3.1 Uniform kernel estimation

For L and W being fixed, our energy model for uniform kernel kn is quadratic and

the solution can be easily obtained. The quadratic objective function with some

constraints on the uniform kernel is given by

min
Kn

λs((PxKn − ∂xB)Tdiag(Wn)(PxKn − ∂xB)+

(PyKn − ∂yB)Tdiag(Wn)(PyKn − ∂yB)) + βs‖kn‖2.
(2.14)

Note that matrices Px and Py consist of px and py, respectively. To represent the

formulation as a quadratic form we introduce diag(Wn) which is a diagonal matrix

whose diagonal entries are diagonalized elements of Wn, and non-diagonal entires

are zeros. As this problem is convex, we can use any quadratic programming methods

to solve it, and we have adopted the Landweber method [30] to iteratively minimize

with FFT for reducing computations.
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2.3.3.2 Non-uniform kernel estimation

Since non-uniform kernel Kn is a weighted sum of M basis kernels and the blurry

image B is equal to KnL, we can derive an equation,

KnL = [b1L,b2L, · · · ,bML] · µn. (2.15)

Therefore, the minimization on the coefficient vector µn for non-uniform kernel is

given by

min
µn

λs(‖W
1
2
n � (Hxµn − ∂xB)‖2 + ‖W

1
2
n � (Hyµn − ∂yB)‖2) + γs‖µn‖2, (2.16)

where Hx and Hy are derived from Knpx = Hxµn and Knpy = Hyµn, respectively.

Since this energy function can also be represented as the quadratic form, we can find

an optimal ui by quadratic programming. To be specific, the quadratic programming

is formulated as

min
µn

1

2
µTnHµn + fTµn, (2.17)

where 
H = HT

x diag(Wn)Hx + HT
y diag(Wn)Hy + γs

λs
I,

f = HT
x diag(Wn)Bx + HT

y diag(Wn)By.

(2.18)

The minimization is performed by the interior point method and we can obtain the

non-uniform blur kernel matrix as Kn =
∑M

m=1µn(m)bm from (2.9).
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2.3.4 Overall procedure

In the previous sections, we introduce the efficient minimization methods for the

latent image, weights, and multiple blur kernels. However, there exist many unknown

variables in our model and the traditional iterative optimization is prone to be stuck

in local minimum. To alleviate this problem, we adopt coarse to fine approach like

most recent blind deconvolution algorithms [1, 17, 32], and the overall procedure of

our dynamic scene deblurring is in Algorithm 2.

Algorithm 2 The overall procedure of the proposed algorithm

Input: A blurry image B

Output: L, W = {Wn} and A = {Kn}

1: Build an image pyramid, which has 5 levels, with a scale factor of 0.5

2: for t = 1 to 3 do

3: Update blur kernels with the predicted gradient maps {px,py}. (Sec. 2.3.3)

4: for n = 1 to 30 do

5: Continuous optimization of the latent image. (Sec. 2.3.1)

6: Continuous optimization of the weights. (Sec. 2.3.2)

7: end for

8: end for

9: Propagate variables to the next pyramid level if exists.

10: Repeat steps 2-9 from coarse to fine pyramid level.

2.4 Experiments

Although many parameters are used for our segmentation-based deblurring method,

most of them are reliable and less sensitive to various blurry images except for the

parameter λs. Since we do not estimate the noise level and the blur strength of
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the input image, λs that adjusts the influence of data term should be tuned from

the statistics of the input image. It ranges from 50 to 500 and it has a low value

when the noise level is high or the blur is severe. The other parameters are fixed

and we use six uniform kernel models and one non-uniform kernel model, so N = 7

in all experiments. By setting N as large as possible, we can handle various kinds

of blur motions but it raises costs and thus we determined the number of models

empirically and fixed it. Note, however, that the numbers of segmented regions in

the final results in Fig. 2.5 are less than 7 and adaptive to each image. This is due

to our sparsity priors to the weight variables. The initial values of the seven weight

variables are set as illustrated in Fig. 2.4(a) and the value of each area is set 1
3 .

We use 80 neighbors of a pixel in a 9× 9 patch for non-local regularization and the

parameters are σD = 40, σI = 25
255 , βs = 10λs, γs = 1000λs.

The framework of our method in Algorithm 2 is designed for gray image restora-

tion. However, the estimated set of blur kernels from a gray image is also used for

deblurring the corresponding color image by applying the sharp image restoration

step introduced in Sec. 2.3.1 for each color channel.

In Fig. 2.5, the motion blur segmentation and deblurring results of real dynamic

scenes are shown. We observe that substantial improvements are achieved in the hair

of the running bull and the letter on the bus. Also we compared our results with

dynamic scenes to conventional methods. As shown in Fig. 2.6, there are serious

artifacts near the boundaries of moving objects in the results of other methods,

while our method gives relatively clean results with the aid of various blur models

and motion blur segmentations.

We also compared our deblurring results on static scenes with conventional meth-

ods in Fig. 2.7 and Fig. 2.8. The blurry input Picasso image in Fig. 2.7 is degraded
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by an uniform kernel. Although it is possible to obtain a sharp image with methods

based on uniform kernel, our model shows much better result in reducing ringing

artifacts and restoring details well. In addition, the blurry input used in Fig. 2.8 has

non-uniform blur motion which is generated by rotational camera shake. In this case,

one of seven blur models which corresponds to the non-uniform blur kernel gained al-

most all weights and still showed competitive result compared to the state-of-the-art

non-uniform kernel based methods.

In Fig. 2.9, our deblurring results for real images including defocus blurs are

shown. Since the propose method can handle not only motion blurs but also (Gaus-

sian or disc) defocus blurs, ours removes defocus blurs in the background clearly.

2.5 Summary

We proposed a novel single image deblurring framework that can handle multiple

moving objects in the scene as well as camera shake. By introducing multiple blur

models and their locally varying weight variables which favor the blur models giv-

ing better data fidelity, we could also obtain the segmented blur region as well as

restored image. We demonstrated the superiority of our method over conventional

methods in dynamic scene deblurring as well as in static scene cases. The future

challenges and remaining problems are determining the number of moving objects

via non-parametric methods. Since the number of moving objects is unknown in a

real image, we should set a large number of blur models. Another problem is the

run-time of our method. Due to multiple blur models and additional weight vari-

ables, computational costs increase. Thus, our future works will include developing

an efficient optimization method and parallel implementation using GPGPU.
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(a) (b) (c)

Figure 2.5: Deblurring results of real dynamic scenes. (a) Blurry images. (b)-(c) Results from our
segmentation-based approach.
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(a)

(b)

(c)

(d)

Figure 2.6: Comparison of dynamic scene deblurring results. (a) Blurry images of real dynamic
scenes. (b) Deblurring results of Whyte et al. [2]. (c) Deblurring results of Xu et al. [1]. Dashed
green boxes in the figures denote the regions used for estimating uniform blur kernels and used for
restoring the background regions. (d) Our segmentation-based deblurring results.
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(a) (b)

(c) (d)

Figure 2.7: Comparison of static scene deblurring. (a) Blurry Picasso image. (b) Result of Shan et
al. [3]. (c) Result of Xu et al. [1]. (d) Our segmentation-based deblurring result.
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(a) (b)

(c) (d)

Figure 2.8: Comparison of static scene deblurring. Magazine image is blurred by rotational camera
shake and requires non-uniform blur kernel to be restored. (a) Blurry Magazine image. (b) Result
of Hirsch et al. [4]. (c) Result of Gupta et al. [5]. (d) Our segmentation-based deblurring result.
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Figure 2.9: Other deblurring results. Top to bottom: Real blurry images including defocus blurs
and our deblurring results.



Chapter 3

Image Deblurring with

Exemplar

In the previous chapter, we introduced a segmentation-based dynamic scene de-

blurring method that jointly carries out deblurring and segmentation. Although the

proposed method achieves good results, the segmentation-based method requires

large and texture-rich segments to estimate accurate blur kernels. However, motion

blurs in real-world images, especially those captured with a long exposure time or

containing fast moving objects, are often large, non-linear and may vary abruptly

as indicated by the light streaks in Fig. 3.1. This makes it difficult to estimate

accurate blur kernels from a small and texture-less segment, and other state-of-the-

art dynamic scene deblurring methods may perform poorly because of poor kernel

approximation by a linear blur model or due to inaccurate segmentation.

Therefore, to facilitate more accurate kernel estimation for dynamic scenes, we

present a new method that takes as input a sharp exemplar image in addition to

the blurred photograph and overcome the limitations of our previous segmentation-

33
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Figure 3.1: A blurry image captured in low light conditions. The light streaks indicate the variety
of blur kernel shapes that may co-exist in a dynamic scene.

based deblurring method in this chapter. In practice, such image pairs are readily

obtainable from bracket sequences captured by common digital cameras, multi-view

image sets, image collections of a given object, and videos that contain lucky sharp

frames [12]. The core of our method is a proposed blur-aware flow estimation tech-

nique for establishing dense correspondences between the two images. Based on the

notion that pixels with similar motion exhibit similar blur, our method identifies and

iteratively refines groups of pixels that share a common motion and blur. Initially

these groups are determined by clustering of optical flows. Warping the sharp image

by these flows produces an exemplar that is used to assist in the estimation of blur

kernels, their associated image segments, and the latent image. In estimating these

quantities, the pixel groups are adjusted to better fit the estimated blurs, and the

resulting latent image is used to refine the optical flow estimates. In this way, the

estimated flow determines a sharp exemplar for enhancing deblurring results, while

the deblurring leads to refinements in the optical flow. This iterative process results
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in significant improvements for spatially-variant motion deblurring.

In contrast to Yuan et al.’s method for a uniformly blurred and non-blurred image

pair [20], as well as dynamic scene techniques that assume linear motion blur [33, 9],

our method is able to accommodate non-linear and spatially-varying motion blurs.

Moreover, the use of an exemplar leads to less sensitivity to segmentation quality in

comparison to conventional segmentation-based methods [34, 10], and also improves

latent image restoration in small segments that contain less edge information. Similar

to the work of HaCohen et al. [35], our method estimates dense correspondences

within the deblurring process. However, a major difference is that HaCohen et al.’s

method can handle only smooth and slowly varying blurs, while the proposed method

can deal with abruptly changing blurs in dynamic scenes through the segmentation

of differently blurred regions. In extensive experiments, we show that the proposed

method compares favorably to state-of-the-art deblurring methods on challenging

dynamic scenes.

3.1 Introduction and Related Work

Photographs captured under low-light conditions are commonly degraded by motion

blurs. These blurs may arise from camera shake during the exposure period, and from

objects moving in the scene. Even when the lighting conditions are good, there may

still be multiple moving objects that produce undesirable blurring effects within an

image. This problem has motivated considerable work on image deblurring.

Earlier work focused on removing relatively simple blurs that are uniform and

shift-invariant from 2D translational camera shake [16, 3, 17, 1].

In a different approach, a few methods utilize two or more blurry images to
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further constrain the deblurring problem [36, 37, 38]. Chen et al. [36] utilized two

uniformly blurred images of the same scene to restore a latent frame with the aid

of a robust cost function and kernel priors such as sparseness and continuity. Cai et

al. [37] proposed a multi-frame deblurring method based on sparseness of both the

blur kernels and the latent image. In contrast to these methods for uniform blur,

the work of Li et al. [38] handles spatially-varying blur produced from rotational

camera movement by estimating a homography between two consecutive images.

Also using additional images are methods for exemplar-based deblurring, which

utilize a sharp reference image to improve deblurring results. This was first done

by Yuan et al. [20], who restored a blurry image using a sharp but noisy reference

image taken with a short exposure. A manual procedure is employed to align the two

images. HaCohen et al. [35] later proposed a method that automatically estimates

dense correspondences between shared image components in the deblurring process.

Recent work by Pan et al. [13] utilized external sharp face exemplars to restore

blurry face images. They search for a sharp exemplar among the training samples

that corresponds to the given blurry photo, and restore the face image by utilizing

salient facial structures obtained from the exemplar.

These previous methods are not designed to handle motion blurs in dynamic

scenes, which may contain camera shake, moving objects, and depth variations all in

the same image. To deal with dynamic scenes, several methods specifically address

spatially-varying blurs from moving objects. Cho et al. [33] segmented an image

into multiple regions of homogeneous motions and estimated their corresponding

1D Gaussian blur kernels using multiple images. Moreover, Sun et al. [9] estimated

linearly approximated blur kernels using a convolutional neural network (CNN) and

recovered the latent image by applying a conventional non-blind deblurring method
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with the estimated linear kernels.

3.2 Method Overview

(a)

(b)

Figure 3.2: Effects of exemplar-based deblurring. (a) From left to right: non-blindly deblurred image
with the true non-linear kernel and with an approximated linear kernel. (b) From left to right: blurry
image, result of Xu et al. [6], and the result of our exemplar-based deblurring.

The linear kernel approximation used in conventional dynamic scene deblurring

methods [34, 9] are efficient ways to handle pixel-wise varying blur kernels, but

their kernel approximation errors lead to low-quality results when the kernels are

complex and highly non-linear as shown in Fig. 3.2 (a). To render a high-quality

image, our deblurring method estimates accurate segment-wise kernels without linear

approximation. However, segmentation itself is a difficult problem to solve, and thus

we mitigate segmentation errors by utilizing a non-blurred image in this chapter. By
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using an exemplar obtained from a non-blurred image, we can estimate blur kernels

and the latent image with greater accuracy, even when the image is less textured

and lacks strong edges for inferring kernels, as shown in Fig. 3.2 (b).

For exemplar-based deblurring to be effective, dense correspondences between

the blurred and non-blurred images are necessary. However, the previously pro-

posed blur-aware optical flow constraint in [15] is not valid when the motions are

not translational and the blur varies abruptly as reported in Chapter 4. Therefore,

we propose a new optical flow estimation method that handles locally varying blurs

to obtain dense correspondences and a useful exemplar. This exemplar is used to im-

prove estimation of spatially-variant blur kernels, their associated uniformly blurred

segments, and the latent image.

Estimating these highly related unknowns is difficult to accomplish simultane-

ously, so we propose an efficient multi-stage approach that solves for the unknowns

sequentially as described in the following sections. After identifying a sharp image,

the first stage deals with optical flow estimation between the blurred and non-blurred

image, and generates an aligned exemplar from the non-blurred image. In the next

stage, we deblur the blurry image with the help of the exemplar. Finally, the optical

flow is refined using the deblurring estimates. We repeat these steps several times

until convergence.

3.3 Stage I: Exemplar Acquisition

3.3.1 Sharp image acquisition and preprocessing

We commonly observe sharp images in bracket sequences and video. For the case

of a bracket sequence, a sharp short-exposure image is manually chosen. Although
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frame index, t Seq.1 Seq.2

𝜅𝑡

Figure 3.3: Magnitude of motion flows for measuring sharpness.

a short-exposure image is sharp, it may contain high noise and have different color

statistics compared to the long-exposure image. Therefore, we apply bilateral filter-

ing with fixed parameters to reduce noise in the sharp reference image as suggested

in [28]. Then, we transform the colors of the sharp image to be similar between cor-

responding points using the color transfer method of Hu et al. [39]. As it is known

that applying a non-linear color transfer function to a blurred image causes the blur

kernel to vary spatially [40], we adjust the colors of the non-blurred image only.

For a video, manual selection of a sharp frame is less practical. We could choose

a lucky sharp image by considering the magnitude of motion [12]. However, that

approach is intended for camera shake and may not be as effective for video of a

dynamic scene. In Chapter 4, bi-directional optical flows are used to determine the

blur kernel in video. Based on this, within a local temporal window (ten frames in

our implementation) we choose a sharp frame that has the smallest motion flows

according to the following metric:

κt =
∑
x

‖ut→t+1(x)‖+ ‖ut→t−1(x)‖, (3.1)

where t is the frame index, and ut→t+1 and ut→t−1 denote forward and backward
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optical flows respectively. Since it is difficult to estimate accurate optical flows among

blurry frames, we downsize the images to suppress blur and estimate optical flows

using a fast method [41]. The effectiveness of this metric in measuring sharpness is

shown for two examples in Fig. 3.3.

3.3.2 Exemplar from blur-aware optical flow estimation

To acquire an accurately aligned exemplar from the given non-blurred image in

Sec. 3.3.1, we need to estimate dense correspondences. In the work of Portz et

al. [15], a method for optical flow estimation between blurry images was proposed

based on a commutative law of shift-invariant kernels, where the brightness of cor-

responding points becomes constant after convolving the blur kernel of each image

to the other image. However, the commutative law does not hold when the motion

is not translational and the blur varies abruptly. So we present a new method that

estimates flows for the case of spatially-varying kernels. In our flow estimation, the

key idea is that pixels which have similar motions are assumed to be blurred sim-

ilarly. Based on this, we estimate locally rigid transformations (homographies) of

uniformly blurred segments. Specifically, the proposed method locally (pixel-wise)

chooses a homography/kernel pair among multiple candidates. This is solved as a

discrete labeling problem.

To obtain candidate homography/kernel pairs, we need several initialization

steps. First, we calculate the initial optical flow by applying a conventional method [7]

that can handle large displacements. We cluster the initial flow into sets of similar

translational motion by applying the k-means algorithm, with k=50 and with small

clusters less than 1000 pixels in size removed. For the resulting corresponding seg-

ments, we estimate an initial homography using RANSAC, and also a kernel using
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the method of [17]. The proposed discrete labeling model using these candidates is

formulated as:

E(WS) =
∑
n

∑
x

WS
n(x) ·min(|KS

nS(x)−B(x + un(x))|, τ)+

αe
∑
n

|∇WS
n|+ βe

∑
(n,m)

∑
(x,y)

G(x)WS
n(x)WS

m(y)|un(x)− um(y)|,
(3.2)

where x denotes the pixel location, and y indexes the four neighboring pixels of

x. Non-blurred and blurred images are S and B respectively. In addition, WS =

{WS
1 , . . . ,W

S
N} denotes a set of N binary indicators with pixel-wise constraints such

that
∑N

n=1 WS
n(x) = 1 and WS

n(x) ∈ {0, 1}. The candidate kernel matrix is KS
n, and

motion un is induced by the associated nth candidate homography. An edge map is

given by G(x) = exp(− (∇S(x))2
σG

), where σG = 15 is a fixed parameter. Parameters

αe and βe control the weights of the associated terms, and τ represents a threshold

for robustness against outliers.

In the proposed energy model, the first term denotes a new data term based

on an optical flow constraint that assumes constant brightness between the gener-

ated blurry image and real blurry image. The homography/kernel pair that gives a

lower data cost is favored in the proposed data term. As these are selected locally,

spatially-varying blurs can be handled. The second term represents the Potts model

for enforcing smoothness, in this case, similar labels among neighboring pixels. The

last term enforces optical flow to have similar values among neighboring pixels, and

is coupled with an edge map to allow discontinuities.

We solve the discrete energy minimization problem in (3.2) using the graph-cut

algorithm [42]. After discrete optimization, we can determine optical flow by assign-

ing the locally chosen motion model as u(x) =
∑

n WS
n(x)un(x), and obtain the
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(a) (b) (c) (d) (e) (f)

Figure 3.4: Comparison between intermediate and final results. (a) Input non-blurred image after
color correction. (b) Input blurry image. (c) Color coded initial flow from Xu et al. [7]. (d) Our
color coded blur-aware flow. (e) Exemplar from initial flow u. (f) Exemplar from blur-aware flow u.

sharp exemplar S̄ by warping the non-blurred image S backward with the obtained

flow u. In Fig. 3.4, we demonstrate that our blur-aware technique estimates accurate

optical flows in the presence of spatially-varying blurs, and preserves flow disconti-

nuities at the boundaries. As a result, the exemplar obtained from our blur-aware

flow is well aligned with the input blurry image as shown in Fig. 3.4 (e)-(f).

3.4 Stage II: Exemplar-based Deblurring

In the second stage, the other unknowns are estimated with the help of the sharp

exemplar and motion flow obtained in the previous stage. As in [10], we estimate on

the blurry image B a set of uniform blur kernels KB, their associated segments WB,

and the latent image L. Specifically, the blur kernels are represented by sparse kernel

matrices KB = {KB
1 , . . . ,K

B
N}, and WB = {WB

1 , . . . ,W
B
N} denotes a set of binary

maps where
∑

n WB
n (x) = 1 and WB

n (x) ∈ {0, 1}. In addition, to handle occluded

or invalid pixels in our model, we define an occlusion state indicator o(x) ∈ {0, 1},

and use it in the proposed model. If the corresponding point of a pixel at x is

occluded [43] or saturated [39], o(x) = 0. Otherwise, o(x) = 1.

The energy models for L, WB and KB are detailed in the following subsections.
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3.4.1 Exemplar-based latent image restoration

Our image restoration step is similar to the technique proposed in [10] except for the

incorporation of an exemplar term. With the use of an exemplar S̄, several problems

such as ringing artifacts and saturation due to inaccurately estimated kernels can

be addressed. The formulation of this step, with kernel matrices KB and segments

WB fixed, is given by

E(L) =
∑
x

|∇L(x)|+λe
∑
n

∑
∂∗

∑
x

WB
n (x)(∂∗K

B
n L(x)− ∂∗B(x))2+

ζe
∑
x

o(x)(L(x)− S̄(x))2,

(3.3)

where ∂∗ ∈ {∂o, ∂x, ∂y} denotes linear operators (identity matrix, horizontal deriva-

tive, and vertical derivative). Parameters λe and ζe control the weights of the coupled

terms.

The first term represents a prior for the latent image. We adopt a total variation

(TV) regularization that not only enforces sparsity on the latent image but also

allows for simple computation. The second term is an adaptive blur model based on

locally chosen blur kernels. The last term is the key term in the proposed exemplar-

based deblurring method. It favors copying the intensities and structures of the

reference image onto the corresponding pixels of the latent image. In areas of the

blurry image that are occluded or saturated in the reference image, this last term

drops out and the deblurring becomes a standard deconvolution with priors on the

latent image and kernel.

Computationally, the cost of minimizing (3.3) is higher when the number of labels

N is large. Thus, a large, sparse kernel matrix K where the mth row corresponds to
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the chosen kernel at the mth pixel is used in approximating (3.3):

E(L) ≈
∑
x

|∇L(x)|+ λe
∑
∂∗
‖∂∗KL− ∂∗B‖2 + ζe

∑
x

o(x)(L(x)− S̄(x))2. (3.4)

This energy model with respect to latent image L is convex, and thus any conven-

tional convex optimization technique can be used. We adopt the first-order primal-

dual algorithm [29] to estimate the latent image L, since it converges quickly.

3.4.2 Motion-aware segmentation

In the proposed method, multiple uniform blur kernels are estimated to restore the

latent image; thus, uniformly blurred regions should be identified while the latent

image L and kernel matrices KB are fixed. We adopted a non-local smoothness term

in Chapter 2, but we found it to be inefficient when the size of the segment is small

or when the intensities at the boundaries are not distinct.

To address this problem, we utilize parametric motion (homography) information

extracted during the first stage by assuming that pixels with similar motions are

blurred similarly. Our motion-aware segmentation model is given by

E(WB) =λe
∑
n

∑
∂∗

∑
x

WB
n (x)(∂∗K

B
n L(x)− ∂∗B(x))2+

λe
∑
n

∑
∂∗

∑
x

WB
n (x)o(x)(∂∗K

B
n S̄n(x)− ∂∗B(x))2+

µe
∑
n

∑
x

|∇WB
n (x)|+ ηe

∑
(n,m)

∑
(x,y)

T (x)WB
n (x)WB

m(y)|ūn(x)− ūm(y)|,

(3.5)

where ūn is induced by the inverse of the nth homography model from the first stage,
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and the warped non-blurred image by ūn is S̄n(x) = S(x+ūn(x)). Parameters µe and

ηe control the weights of the coupled terms. An edge map to allow discontinuities near

edges is expressed as T (x) = exp(− (∇L0(x))2

σT
), where σT = 15 is a fixed parameter

and L0 denotes an initial latent image in the iterative optimization framework.

In the first and second terms, our energy model chooses the locally (pixel-wise)

best-fit model by measuring the data fidelities, and WB
n (x) = 1 is assigned when

the cost of the associated blur model is low. Thus, WB
n represents the proper blur

model from among the candidate models. In the second term, the parametric motion

model is associated with the segmentation task; this term helps to extract segments

that are not only uniformly blurred but also moving rigidly. The third and last terms

are pairwise terms. The third term is the Potts model, and the last term enforces

motions to have similar values. As motion information is utilized in the second and

last terms, the proposed segmentation model is motion-aware. To minimize (3.5),

we use the graph-cut algorithm [42].

3.4.3 Robust kernel estimation

In conventional blind deblurring methods, robust kernel estimation requires strong

edge information in the latent image [17, 1, 6] to accurately estimate blur kernels in

less-textured and mid-frequency regions. Unlike conventional single-image deblurring

methods, a sharp image is employed in our formulation, which can compensate for

a lack of strong edges. The latent image L and segments WB are fixed to estimate
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blur kernels:

E(KB) = γe
∑
n

‖KB
n ‖2+λe

∑
n

∑
∂∗

∑
x

WB
n (x)(∂∗K

B
n L(x)− ∂∗B(x))2+

λe
∑
n

∑
∂∗

∑
x

WB
n (x)o(x)(∂∗K

B
n S̄n(x)− ∂∗B(x))2,

(3.6)

where KB
n is a vector representation of the nth uniform kernel and can be represented

as a sparse blur kernel matrix KB
n . Parameters γe and λe control the weights of their

associated terms. Note that warped non-blurred image S̄n using the nth homography

model is defined in Sec. 3.4.2.

The first term denotes the Tikhonov regularization used in [17, 20, 10]. It regu-

larizes the kernel and allows for fast optimization. The second term is the adaptive

blur model proposed in Chapter 2, which helps to estimate KB
n within a segment

where WB
n (x) = 1. The last term is a new term that utilizes the non-blurred image

in kernel estimation. Notably, our model estimates the kernels more robustly even

when L has less edge information, by taking advantage of the sharp image in the

last term as shown in Fig. 3.2 (b).

Since the proposed kernel model is convex with respect to KB
n , we can estimate

the segment-wise kernels rapidly by applying a slight variant of the fast kernel esti-

mation method used in [17]. In practice, we use an edge-enhanced and noise-reduced

latent image L, also known as a predicted gradient map [17], to facilitate accurate

kernel estimation and fast convergence.
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3.4.4 Unified energy model and optimization

The aforementioned energy models can be integrated into a single unified objective

function, given by

E(L,KB,WB) =
∑
x

|∇L(x)|+ ζe
∑
x

o(x)‖L(x)− S̄(x)‖2 + γe
∑
n

‖KB
n ‖2+

µe
∑
n

∑
x

|∇WB
n (x)|+ ηe

∑
(n,m)

∑
(x,y)

T (x)WB
n (x)WB

m(y)|ūn(x)− ūm(y)|+

λe
∑
n

∑
∂∗

∑
x

WB
n (x)((∂∗K

B
n L(x)− ∂∗B(x))2 + o(x)(∂∗K

B
n S̄n(x)− ∂∗B(x))2).

(3.7)

As this energy function is non-convex, the proposed energy model is minimized

through an iterative alternating optimization by solving for one of the variables

while fixing the others. Specifically, we minimize (3.4), (3.5), and (3.6) in an iterative

manner as in [10]. Although the alternating optimization method cannot guarantee

a globally optimal solution, each sub-problem can converge to a minimum.

3.5 Stage III: Post-processing and Refinement

Since the optical flow initially estimated with a conventional method and the ex-

emplar computed from it likely contain significant errors, they are refined using the

deblurring estimates from the previous stage. In our method, the optical flow is up-

dated at the original image scale, with the current flow used for initialization. The

updating model is based on total generalized variation regularization [44] to avoid a

piecewise constant solution that induces fronto-parallel artifacts and yields piecewise
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(a) (b) (c) (d)

Figure 3.5: Effect of iterations on deblurring. (a) A patch of the blurry input image. After (b) 1st
iteration, (c) 2nd iteration, and (d) 3rd iteration.

affine motions. The formulation of this stage is given by

min
u,v

∑
x

G(x) · (|∇u(x)− v(x)|+ ω1|∇v(x)|) + ω2 · ψ(S(x),L(x + u)), (3.8)

where the auxiliary vector v leads the second-order derivative of the flow u to be

constant. Parameters ω1 = 5 and ω2 = 2 control the weights of the second and last

terms. The data fidelity function ψ initially computes the 5x5 Ternary Census trans-

forms of two patches centered at S(x) and L(x + u(x)), and subsequently measures

the Hamming distance between the two patches. As the data function is non-convex,

the optimization technique used in [45], which transforms the original non-convex

function into a piecewise convex function, is adopted. The updated occlusion state

o(x) and optical flow are then used to refine the exemplar and parametric motion

models (homographies) with RANSAC, and the latent image is restored gradually

by iterating the deblurring and refinement processes until convergence, as shown in

Fig. 3.5.
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(a) (b) (d)(c)

Figure 3.6: Comparison with other dynamic scene deblurring methods. (a) A synthetically blurred
image and true kernels. (b) Result by [8]. (c) Result by [9]. (d) Our exemplar-based deblurred image
and kernels.

3.6 Experiments

Our method was implemented with empirically set parameters of αe = 30, βe = 15,

λe = 100, ζe = 0.2 ∗ λe, γe = 50/λe , µe = 10, and ηe = 10 for most of our

experiments. When the noise of a blurred image is high, we choose smaller λe to

reduce noise in the latent image. The exemplar-based deblurring of Sec. 3.4 and the

refinement step of Sec. 3.5 are iterated three times with grayscale inputs. Finally,

we restore the latent color image by minimizing (3.4) for each color channel. The

exemplar-based deblurring of Sec. 3.4 is conducted in a coarse-to-fine manner to

handle large blurs and promote fast convergence.

First, we compare our method with the segmentation-based deblurring method

in Chapter 2. For evaluation, several blurred and non-blurred image pairs from

synthetic datasets generated by the method in 5.5 are used, and PSNR values

are compared in Table. 3.1. As expected, the exemplar-based method outperforms

segmentation-based method.

Moreover, we evaluate on five blurred and non-blurred image pairs from the
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(a) (b) (c) (d) (e)

Figure 3.7: Comparison with previous segmentation-based method. (a) A real blurry image. (b)
Segmentation-based deblurring result [10]. (c) Our exemplar-based deblurring result. (d) Segmen-
tation from our previous segmentation-based method [10]. (e) Our exemplar-based segmentation
result.

(a) (e) (f)(b) (c) (d)

Figure 3.8: Comparison with segmentation-based video deblurring method. (a) A blurry image.
(b) An automatically chosen sharp image. (c) Deblurring result from [11]. (d) Our exemplar-based
deblurring result. (e) Our color-coded flow, u. (f) Our segmentation result.

SINTEL dataset [46] to measure flow accuracy. As shown in Table. 3.2, our exemplar-

based method achieves about a 9 percent gain in average end point error (EPE) over

the initial flow [7], and significantly outperforms the blur-aware flow method [15].

Notably, atmospheric effects (e.g. fog) are added in the SINTEL blurry images, we

do not provide deblurring results with SINTEL dataset.

Next, we qualitatively compare our method with approximation-based non-uniform

deblurring methods [8, 9] in Fig. 3.6. Since local kernels are modeled as linear in [8, 9],



3.6. EXPERIMENTS 51

Seq. Segmentation-based Exemplar-based

#1 20.25 26.48

#2 23.23 28.09

#3 22.46 26.22

#4 22.47 25.69

#5 22.20 23.26

#6 21.56 24.68

#7 23.54 25.73

#8 20.69 25.30

#9 20.35 25.03

#10 20.84 24.02

Avg. 21.76 25.45

Table 3.1: Quantitative comparisons with the previous segmentation-based method.
PSNR values are used for evaluating deblurring performance.

Xu et al. [7] Portz et al. [15] Exemplar-based

23.65 33.73 21.61

Table 3.2: Quantitative comparisons with the methods of Xu et al. [7] and Portz et
al. [15]. EPE values are used for evaluating optical flow accuracies.

they are unable to recover non-linear blurs, leading to severe artifacts. By contrast,

our method estimates different non-linear kernels accurately and restores the latent

image well.

In Fig. 3.7, we compare the proposed exemplar-based deblurring method with

our previous segmentation-based dynamic scene deblurring method in [10]. The real

blurry image contains spatially-varying blur from camera shake and a moving per-

son. In particular, the person moves rotationally, so the head, upper body, and lower

body move differently. Therefore the size of each uniformly blurred region is rela-
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tively small in the body. Since the method of [10] requires large segments to infer

accurate kernels, it fails to extract uniformly blurred small segments. Unlike [10],

our method utilizes an additional sharp reference image, and the proposed motion-

aware segmentation makes it possible to segment uniformly blurred small segments.

Our method restores the moving person much better as a result, as seen from the

person’s face and the letters on the shirt.

We also compare with the state-of-the-art segmentation-based video deblurring

method [11] in Fig. 3.8. For this comparison, we use a sharp and blurry image pair

chosen automatically from the dataset used in [11]. Though the chosen sharp image,

which is the sharpest frame available, is not especially clear, our method nevertheless

successfully restores the latent image. Unlike our method, the technique in [11] uses

more than ten frames to restore the same latent image, so our deblurring result is

a bit less clear than that of [11]. On the other hand, the method of [11] fails to

infer accurate segments at motion boundaries, and thus generates severe artifacts in

comparison to our result. Notice that our segmentation result in Fig. 3.8 (c) is very

similar to the color-coded optical flow in Fig. 3.8 (b), since our segmentation relies

on motion information in (3.5).

Next in Fig. 3.9, we compare with a real blurry image whose blurs are caused

by multiple moving objects as well as camera shake. Our technique outperforms

single-image deblurring methods designed to handle spatially varying blur, whose

results are in Fig. 3.9 (b)-(d). Since the source code of [47], which uses image pairs,

is not available, we compare in Fig. 3.9 (e) with the exemplar-based video deblurring

method of [12], which uses more than 50 consecutive images. Even though we use

only one image pair, our method restores the moving objects in Fig. 3.9 better,

and exhibits competitive deblurring results on the static background. Notably, our
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method produces better results in mid-frequency regions like the leaves, because the

proposed method is based on deconvolution, unlike the interpolation from multiple

frames in [12] which leads to smoothed results.

In Fig. 3.10, we show that promising results are obtained by applying our de-

blurring method to challenging blurry images. In general, moving people generate

spatially-varying blurs, and restoration of people is an important problem. The re-

sults demonstrate successful restoration of the moving people and removal of spa-

tially varying blurs in the images.

3.7 Summary

In this study, we introduced a novel exemplar-based dynamic scene deblurring

method that effectively handles non-uniform blurs with the use of a blurred and

non-blurred image pair. By estimating dense correspondences between the input

images, our method obtains accurately aligned exemplars which help in removing

spatially-varying blurs. We provided an efficient multi-stage framework to estimate

multiple unknowns and achieved significant deblurring improvements in comparison

to the state-of-the-art methods on challenging dynamic scenes.
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(a) (b) (c)

(d) (e) (f)

Figure 3.9: Qualitative comparisons. (a) A real blurry image containing moving objects. (b) Result
from the segmentation-based method[10]. (c) Result from [9]. (d) Result from [6]. (e) Result from
[12]. (f) Our exemplar-based deblurring result.
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Figure 3.10: Other deblurring results on challenging blurry images. Left to right: Blurry images and
deblurring results.
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Chapter 4

Image Deblurring with

Kernel-Parametrization

In the previous chapters, segmentation-based and exemplar-based dynamic scene de-

blurring approaches were introduced. Both approaches assume that blurs are caused

by segment-wise rigid motions, and thus estimate segment-wise different kernels.

Although the previous approaches can handle segment-wise varying blurs caused by

segment-wise rigid motions, but they restrict the types of blur kernels which can

be removed. Therefore these approaches cannot remove pixel-wise blurs by transla-

tional motion within a segment, but cannot handle pixel-wise varying blurs caused

by the non-rigid motion of moving objects.

To sum up, our previous dynamic scene deblurring methods require accurate

motion segmentation for specific types of motion blur. To mitigate this restriction,

in this chapter, we propose a deblurring method using kernel-parametrization to de-

blur dynamic scenes without segmentation and restricting the types of motion blur,

when the locally varying blur kernels can be approximated to 2D motion vectors.

57
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Although this restriction excludes non-linear motion, numerous types of motions can

be linearized in practical situations [34, 48, 21]. We observed that this assumption

holds for many real blurry images and that this approach works even when small

rotational camera shake exists, as shown in our experiments.

In the previous work of Dai et al. [48], the authors estimated motion flow via

the alpha channel [49] of the blurry image. However, they used a constraint that

is different from ours and applied implicit segmentation based on RANSAC. In

addition, the result depends on the accuracy of the given alpha channel. By contrast,

in this chapter, we propose a method that jointly estimates the latent image and

spatially varying motion (kernel) based on the conventional blur constraint that

the brightness of the blurred version of the latent image and that of the observed

blurry image are same. Using pixel-wise kernel estimation, we could handle spatially

varying blurs without accurate motion segmentation, and it was reported as the

first approach in [8] that solved the joint problem of motion (kernel) estimation and

latent image restoration for a single (non-uniformly) blurred image. Although this

approach could handle spatially varying blurs and estimate accurate motion flows

at the motion boundaries without using alpha mattes and segmentation results, it

could not handle blurs in texture-less regions since it relies on the simple conventional

blur constraint which is underconstrained. Therefore, strong and salient edges are

needed everywhere to estimate the spatially varying kernel, and it can fail in motion

estimation where the edges are weak and less-textured regions exist. Therefore, we

further utilize motion blur cues from image-statistics [21, 50] to enable accurate

motion (kernel) estimation even where strong edges are not localized, . Specifically,

image-statistics of differently blurred images are distinct, and thus it is possible to

calculate the likelihoods of candidate (linear) kernels. Therefore, we obtain motion
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blur cues by comparing likelihoods of specific kernels. We adaptively integrate these

blur cues into a new energy model to facilitate accurate motion estimation where

edges are not strong. Moreover, we employ a higher order regularization scheme [44]

which is well suited to estimate spatially varying motion flows and reduces the

staircasing artifacts. Accordingly, we can achieve significantly improved qualities in

both estimated motion (kernel), and the latent image. In addition, the proposed

method is embedded into the traditional coarse-to-fine framework to handle large

blur. Our finding is that small structures with distinct motion blur give rise to serious

artifacts in the coarse-to-fine framework. Thus, we also propose a novel method to

re-initialize the motion flow and reduce the error propagated in the coarse to fine

framework.

In our optimization framework, in which motion (kernel) estimation and the la-

tent image restoration are carried out simultaneously, we provide a practical and

efficient solution that iteratively minimizes the proposed non-convex energy model.

By optimizing the proposed energy function, we achieve significant improvements in

deblurring quality. Quantitative experimental results with synthetic datasets demon-

strate the significantly enhanced performance of the proposed method, and also ex-

perimental results on real challenging blurry images exhibit the superiority of the

proposed method compared with current state-of-the-art methods.

4.1 Introduction and Related Work

As blurs in dynamic scene vary locally, many state-of-the-art uniform and non-

uniform deblurring methods that handle blurs caused by global camera motion can-

not be applied to remove general and spatially varying blurs [16, 17, 1, 5, 2, 6].
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To address this problem, some researches have focused on deblurring dynamic

scenes and established approaches that commonly require accurate motion segmenta-

tion. Couzinie-Devy et al. extended the work of Levin in [34] by casting the problem

as a multi-label segmentation problem and estimating locally varying blur. However,

the method could not handle large blur because of the exponential increases in the

the number of candidate labels. This condition restricts the blur kernels to small

2D Gaussian or linear. In addition, we introduced a method that estimates the la-

tent image, multiple blur kernels and associated segments simultaneously. Similarly,

Schelten and Roth [54] also solved a joint problem of segmentation and deblurring

using a Bayesian model of localized image blur, which assigns segment-wise different

blur kernels.

In contrast, deblurring methods using kernel-parametrization can handle spa-

tially varying and abruptly changing blurs by approximating the pixel-wise varying

blur kernel. Dai and Wu [48] assumed locally linear blur kernel and parametrized

the linear kernel using the motion flow. They proposed a new blur constraint us-

ing alpha channel image and estimated linear blur kernel. However, this approach

requires computing accurate alpha mattes beforehand.

4.2 Preliminary

To handle spatially varying motion blurs, pixel-wise different kernel estimation is

required. However, the solution space of kernel is extremely huge when blur kernel

varies spatially, thus we need kernel approximation and parametrization to reduce

the solution problem. In this section, we give a brief introduction to the kernel

parametrization with motion flows to facilitate spatially varying kernel estimation
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Figure 4.1: Parametrized linear blur kernel ku(x) corresponding to a motion vector

u(x) = (u, v)T .

practically.

According to previous works [21, 34, 48, 8], it is verified that numerous types of

locally varying blur kernels can be parametrized with 2-dimensional motion vectors.

Although this restriction excludes non-linear motion, many types of motions can

be linearized in real situations. We observe that this assumption holds for many

real blurry images and that this approach works even when small rotational camera

shake exists, as shown in the experimental section. The blur kernel ku(x) at pixel

location x using 2-dimensional motion vector u(x) = (u, v)T can be written by,

ku(x)(x, y) =


1

‖u(x)‖δ(vx− uy), if x ≤ ‖u‖
2
, y ≤ ‖v‖

2

0, otherwise
, (4.1)

where δ denotes Kronecker delta and the point (x, y) denotes the location in 2-

dimensional kernel space. An illustration of our linear blur kernel which corresponds

to a linear motion vector u(x) is illustrated in Fig. 4.1.
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4.3 Proposed Method

To solve the dynamic scene deblurring problem, our non-uniform deblurring method

estimates motion flow to parametrize spatially varying blur kernel, and thus can

restore the sharp edges at the motion boundaries. However, it is difficult to estimate

the reliable kernel where the strong edges do not exist such as sand, grass, and leaves.

On the other hand, several statistics-based approaches [21, 50, 55] can provide blur

(motion) cues even where edges are not strong. However, these cues are unreliable

at the motion boundaries since these approaches assume locally uniform kernel.

Hence, we propose a novel variational deblurring model with robust regulariza-

tion that adaptively fuses reliable blur cues from image-statistics in order to estimate

accurate blur kernel and restore the latent image even where the edge information

is not sufficient. Extracting motion cues from image statistics, the new dynamic

scene deblurring energy model, and details of efficient optimization techniques are

described in the following subsections.

4.3.1 Image-statistics-guided motion

As we assume locally linear motion blur and the linear kernel can be parametrized

with motion [48, 8], we present a model that estimates spatially varying motion using

statistics-based information [50, 55]. Specifically, we propose to choose a pixel-wise

different motion from multiple motion candidates as in a typical discrete labeling

problem. The formulation is expressed as follows:

min
W

∑
i

∑
x

Wi(x)ξ(x,ui) + η
∑
i

∑
x

|∇Wi(x)|+ ν
∑
(i,j)

∑
(x,y)

Wi(x)Wj(y) · |ui − uj |,

(4.2)
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where y indexes the four neighboring pixels of pixel at x. In addition, W = {W1, . . . ,WN}

denotes a set of binary maps with pixel-wise constraints such that Wi(x) ∈ {0, 1},

and
∑N

i=1 Wi(x) = 1 where N denotes the number of candidate motions. The ith

candidate motion ui is determined by changing the motion length between 5 ≤ l ≤ 29

with an interval of two and the orientation between −90◦ ≤ θ < 90◦ with an in-

terval of 15◦. Parameters η and ν control weights of the associated terms. With a

specific kernel kui parameterized by ui, the data function in the first term using

image-statistics is defined as follows:

ξ(x,ui) = exp(−p({y5m(x)} | kui)), (4.3)

where a set {y5m} = {fm ∗ y5} represents filter responses of the image derivative

y5, and {fm} represents a set of orthogonal sine filters multiplied by a symmetric

window function. Notably, the directions of image derivative and propagation of

sine waves are equal to the direction of ui. We calculate the likelihood in the data

function 4.3 as suggested in the work [50], and the formulation is given as

p({y5m(x)} | kui) = ΠmN (y5m(x) | 0, sσ2km + σ2zm), (4.4)

where N denotes a normal distribution, and s controls the scale of the Gaussian

image prior. The blur spectrum σ2km, and noise spectrum σ2zm are defined as:σ
2
km =

∑
x |(kui ∗ fm)(x)|2

σ2zm = σ2n
∑

x |(∇ ∗ fm)(x)|2,
(4.5)

where σ2n denotes the variance of Gaussian noise in the blurry image, and ∇ is a

derivative filter in a particular direction (i.e. horizontal and vertical directions).
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In the proposed energy model in (4.2), the first term denotes a unary term based

on the image-statistics and favors a motion whose data cost is low. As these are

selected locally, spatially-varying blurs can be handled. The second term represents

the Potts model to enforce smoothness, in this case, same labels among neighboring

pixels. The last term favors similar motion values among neighboring pixels.

In practice, to shorten the running time during the discrete optimization step,

we reduce the number of labels by choosing the two dominant motion lengths at

each orientation. Notably, we can choose pixel-wise best motion candidate at each

orientation by simply comparing unary values, and the dominant motion length

means the length of the most frequently chosen motion candidate over the entire

image. In addition, we add zero motion (i.e. l = 0 and θ = 0) as a candidate motion

to handle unblurred region. The labeling function in (4.2) is a sub-modular, and we

solve the problem using the TRW-S algorithm [56]. After the discrete optimization,

we can determine image-statistics-guided motion by assigning the locally chosen

motion model as follows:

u0(x) =
N∑
i

Wi(x)ui. (4.6)

4.3.2 Adaptive variational deblurring model

The image-statistics-guided motion u0 is determined under the assumption that the

kernel is locally uniform; thus, u0 is inaccurate at the motion boundaries where blur

kernel varies abruptly. For example, image-statistics-guided motion at the bound-

aries of the moving car are inaccurate as shown in Fig. 4.3 (d). Moreover, as the

number of candidate kernels is limited, the image-statistics-based approach would

render artifacts during the deblurring process.

By contrast, a variational deblurring model [8] could estimate more accurate
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motions at the motion boundaries than the statistics-based approach while still

rendering poor results where the edges are not strong. Hence, it is natural to combine

both approaches, and we propose a variational deblurring model which adaptively

integrates the motion cue u0 from image statistics with a conventional deblurring

framework.

Furthermore, to solve the highly ill-posed dynamic scene deblurring problem, we

adopt total generalized variation (TGV) for higher order regularization of motion

to enforce smoothness and reduce the staircasing phenomenon among neighboring

pixels on a slanted surface in the proposed model.

4.3.2.1 Adaptive Blur Model

To overcome the limitations of the conventional blur model that requires strong

and significant edges everywhere, we propose a robust blur model that adaptively

fuses the conventional blur constraint and image-statistics-based motion u0 with a

confidence map. The formulation is given as

ρ(L,u) = λp
∑
∂∗

‖∂∗K(u)L− ∂∗B‖+
∑
x

c(x) ·min(τ, |u(x)− u0(x)|), (4.7)

where u, K, B, and L denote the motion, non-uniform blur kernel matrix, blurry

image, and the latent image, respectively. Notably, blur kernel K is a function of

motion u in the model, and a row vector of K corresponding to the pixel at x is

the discretized vector form of local kernel ku(x) in Fig. 4.1. The linear operators

∂∗ ∈ {∂o, ∂x, ∂y} denote linear filters such as identity matrix, and partial derivative

filters in the horizontal and vertical directions [17]. The parameter λp determines the

weight of the first term, and τ = 1 is a threshold. The locally adaptive confidence
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map is represented as c.

In the proposed model, the first term represents a data term based on a conven-

tional blur constraint (i.e. constancy between the blurry image and the convolved

latent image with the blur kernel). To enable abrupt changes in the blur kernel near

motion boundary, we propose a robust model in the data term that allows discon-

tinuities in the flow field. Thus, the proposed data term is based on L1 model for

facilitating abrupt changes in the blur kernel near motion boundary while preserving

discontinuities in the flow field. Although this robust L1 model was proposed before

to estimate the latent image in a non-blind deblurring process [1], this model has not

been used in the estimation of blur kernel, because of its computational difficulties.

The second term adaptively integrates statistics-based motion u0 with the vari-

ational model using the confidence map. The confidence map is coupled with a

robust function based on a truncated L1 norm. We define the confidence map at x

to determine whether u0(x) is reliable and it is formulated as follows,

c(x) = γp exp(−‖Px −Qx‖
σc

), (4.8)

where Px denotes the derivative distribution within a local (observed) image patch

centered at x and the derivative is calculated along a direction of u0. In addition,

Qx denotes the derivative distribution of a local image patch convolved with a lin-

ear kernel which is obtained by rotating the kernel parameterized by u0 through 90

degree angle. Thus, the derivative is calculated along a direction perpendicular to

u0. The parameters γp = 1 and σc = 2 control the weight and shape of the penalty

function. Based on the fact that blurring effects arise along the motion (kernel) di-

rection when the kernel is linear [21], distribution Qx becomes similar to Px when
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u0(x) is similar to the real motion. Hence, the confidence value c(x) gains high value

at x when u0(x) is reliable by calculating the statistical distance between two dis-

tributions.

4.3.2.2 Robust Regularization

Regularization for an ill-posed problem is important as it renders desirable results,

and in this work, we apply different regularizers for the motion (kernel) and the

latent image.

First, we regularize motion flows by means of a higher order regularization in-

stead of regularizing the kernel directly. By contrast, total variation (TV) model [57]

is employed in our previous work [8]. Although the TV model is effective in reducing

noise and is robust to outliers, it favors a constant flow filed and raises staircase

artifacts owing to its first-order regularization process. Notably, TGV regularization

outperforms other conventional priors in reducing staircasing artifacts while preserv-

ing the edges [58, 59, 60, 61]. Hence, we naturally employ TGV in our motion flow

estimation.

The general form of the the second-order TGV for regularizing motion u is given

by,

TGV 2(u) = min
v

∑
x

α1|∇u(x)− v(x)|+ α0|∇v(x)|, (4.9)

where an auxiliary vector field v is introduced to enforce second-order smoothness

for u as described in [44], and weighting parameters α0 and α1 control the weights

of the associated terms.

In addition, our TGV regularizer is coupled with edge-map because it is known
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that the additional edge information from the image renders much sharper and fine

edges in the flow field [45, 59, 62]. Thus, we couple an edge-map g to the general

form of TGV, and allow motion discontinuity at the image edges by preferring similar

intensities among neighboring pixels as follows:

min
u,v

∑
x

α1 · g(x)|∇u(x)− v(x)|+ α0|∇v(x)|, (4.10)

and our edge-map is given by,

g(x) = exp(−max((∇L0(x))2, (∇B(x))2)

σ2g
), (4.11)

where σg controls shape of the Gaussian penalty function and set to σg = 11/255

in our experiments. Similar to [8, 19], L0 represents an initial latent image in the

alternating and iterative optimization described in Sec. 4.4. Notably, higher order

regularization is utilized to infer accurate kernel, meaning that this is the first work

to use higher-order regularization for blur kernel estimation to the best of our knowl-

edge.

Next, we employ the TV model to regularize the latent image L. Although a

hyper-Laplacian prior and a sparse gradient prior fit the natural statistics of the

image gradient more correctly [26], we employ TV regularization in the proposed

regularizing model because it is easy to minimize while providing moderate sparsity.

Thus, the proposed regularization model for the latent image and flow field is

expressed as follows:

min
L,u,v

∑
x

|∇L(x)|+ α1 · g(x)|∇u(x)− v(x)|+ α0|∇v(x)|. (4.12)
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4.4 Optimization

The proposed dynamic scene deblurring model includes the adaptive data term and

robust regularizer, and our final energy function is given as follows:

E(L,u,v) = λp
∑
∂∗

‖∂∗K(u)L− ∂∗B‖+

∑
x

c(x) min(τ, |u(x)− u0(x)|) + |∇L(x)|+

∑
x

α1 · g(x)|∇u(x)− v(x)|+ α0|∇v(x)|.

(4.13)

The proposed final objective model in (4.13) is highly non-convex, and is very dif-

ficult to optimize. Thus, we divide the original problem into two easier subproblems,

and the proposed energy model is minimized through an iterative and alternating

optimization technique. To be specific, we restore the latent image L while fixing

the other variables u and v, and we estimate the motion flows u and the auxiliary

field v while fixing the latent image L.

Moreover, our approach is embedded into the traditional coarse-to-fine frame-

work [16, 32] to handle large motion blur. However, we found that it gives rise to

artifacts when applied to a dynamic scene, which has small structures with distinct

motion blurs. Thus, we introduce a re-initialization method to solve this problem.
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4.4.1 Motion estimation

For being the latent image L is fixed, the subproblem becomes motion (kernel)

estimation problem, and it yields,

min
u,v

λp
∑
∂∗

‖∂∗K(u)L− ∂∗B‖+

∑
x

c(x) min(τ, |u(x)− u0(x)|)+

∑
x

α1 · g(x)|∇u(x)− v(x)|+ α0|∇v(x)|.

(4.14)

Although our regularizers in the proposed model are convex, the data fidelity term

with respect to u is non-convex and it makes the optimization intractable. To handle

the non-convex data fidelity term, we employ the strategy used in [62, 27, 63] that

approximates the data fidelity term with a second-order Taylor expansion. Then,

we can apply the conventional convex optimization method [29] to minimize the

approximated convex function.

In doing so, we first define a non-convex data function ρu, and it is given by,

ρu(x,u(x)) = λp
∑
∂∗

|∂∗K(u)L(x)− ∂∗B(x)|+ c(x) ·min(τ, |u(x)− u0(x)|),

(4.15)

and we approximate ρu near an initial value û as follows:

ρu(x,u(x)) ≈ ρu(x, û(x)) + (u(x)− û(x))T∇ρu(x, û(x))

+
1

2
(u(x)− û(x))T∇2ρu(x, û(x))(u(x)− û(x)),

(4.16)

where ∇ρu denotes the first-order derivative and ∇2ρu denotes the Hessian matrix

whose non-diagonal elements are set to zero to guarantee convexity [62, 27, 63].

Thus, our motion estimation problem using the approximated convex function
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is formulated as follows:

min
u,v

∑
x

α1 · g(x)|∇u(x)− v(x)|+ α0|∇v(x)|+

∑
x

ρu(x, û(x)) + (u(x)− û(x))T∇ρu(x, û(x))+

∑
x

1

2
(u(x)− û(x))T∇2ρu(x, û(x))(u(x)− û(x)).

(4.17)

Finally, we apply the convex optimization technique in [29] to minimize the approx-

imated convex function, and derive the primal-dual update scheme as follows:



pn+1 = pn+σpα1G(∇un−vn)
max(1T , |pn+σpα1G(∇un−vn)|)

qn+1 = qn+σqα0∇vn
max(1T , |qn+σqα0∇vn|)

un+1 = un+τu(∇TGpn+1)−τu(∇ρu−û∇2ρu)

(1T+τu∇2ρu)

vn+1 = vn + τv(α0∇Tqn+1 + α1Gpn+1)

un+1 = 2un+1 − un

vn+1 = 2vn+1 − vn,

(4.18)

where n ≥ 0 denotes the iteration number, and initially u0 = u0 and v0 = v0

(primal variables are refined through an over-relaxation step as in [29]). In addition,

p and q are dual variables and we initially set the dual variables to zeros. The step

sizes, σp > 0, σq > 0, τu > 0, τv > 0, are determined by means of preconditioning

method as introduced in [64]. The linear operator G is a diagonal matrix given as

G = diag(g), and we run the process for 50 iterations (n = 50). Notably, division

operators used in the update steps denote the element-wise division.
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4.4.2 Latent image restoration

For being u and v are fixed, the subproblem becomes the latent image restoration

problem, and it is convex with respect to the latent image L as follows:

min
L
|∇L|+ λp

∑
∂∗

‖∂∗KL− ∂∗B‖. (4.19)

Although the proposed formulation is convex, it has some difficulties in minimization

since the model has L1 data fidelity term. Hence, we adopt a half-quadratic splitting

method used in [34] to minimize the model more efficiently, and the formulation with

additional auxiliary variables e∗ is given by,

min
L,f∗

|∇L|+
∑
∂∗

1

2θ
‖∂∗KL− ∂∗B + f∗‖2 + λp‖f∗‖. (4.20)

When θ approaches to a very small number (i.e. θ −→ 0), the solution of (4.20)

approaches that of its original TV-L1 model in (4.19). Using this decomposition, we

optimize f∗ and L iteratively with fixed θ, and it yields,

min
f∗

∑
∂∗

1

2θ
‖∂∗KL− ∂∗B + f∗‖2 + λp|f∗|,

min
L
|∇L|+

∑
∂∗

1

2θ
‖∂∗KL− ∂∗B + f∗‖2.

(4.21)

Hence, functions of L and f∗ become easy to solve, and each model is solved by [29]

in the alternating optimization manner. In the primal-dual update steps, primal

variables are estimated in an over-relaxation step, and the step sizes are determined

as σs > 0, τf > 0, σt > 0, and τL > 0 according to [29]. The iteration number m

is fixed (m = 30), and we repeat the alternating optimization of L and f∗ for five

times.
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First, the primal-dual update process for f∗ while L is fixed is as follows:

sm+1
∗ = sm∗ +σsf

m
∗

max(1T ,sm∗ +σsf
m
∗ )

fm+1
∗ = arg min

f

‖f− (fm∗ − τfsm+1
∗ )‖2

2τf
+

1

2θλp

∑
∂∗

‖∂∗KL− ∂∗B + f∗‖2

f
m+1
∗ = 2fm+1

∗ − f
m
∗ ,

(4.22)

where s∗ denote dual variables and we set these variables to zeros initially, and use

f
0
∗ = f0∗ for over-relaxation step.

Similarly, the primal-dual update scheme for L while f∗ is fixed is given by,

tm+1 = tm+σt∇Lm
max(1T ,tm+σt∇Lm)

Lm+1 = arg min
L

‖L− (Lm − τL∇T tm+1)‖2

2τL
+

1

2θλp

∑
∂∗

‖K∂∗L− ∂∗B + f∗‖2

L
m+1

= 2Lm+1 − L
m
,

(4.23)

where t denotes the dual variable and set as zero initially, and L
0
∗ = L0

∗ for over-

relaxation step.

4.4.3 Kernel re-initialization

The conventional coarse-to-fine approach is widely used in numerous vision applica-

tions and also has been shown to yield successful results in the deblurring of static

scene. This method can be used in dynamic scene deblurring, but it has limitations

that have not been observed in the restoration of a static scene.

For example, a small structure, such as a thin line, that has distinctive motion

blur, cannot be seen at the coarser level. Therefore, the motion flow of such small
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structure is estimated from its neighbors, which exhibit different motion, via regu-

larization. However, this process generates reconstruction error toward the finer level

when the small structure appears suddenly in the blurry image. Notably, a similar

artifact has been reported in other problems [65, 7].

Sparse reconstruction error may not reveal severe artifacts in removing blurs

caused by global camera motion, which is more serious in a local approach, such as

the method proposed in this work.

To mitigate this problem, we propose a novel kernel re-initialization method for

both motion flow and the latent image. The key idea is to detect the erroneous

region and deblur it using a deterministic filter [66], after which accurate motion

flow is estimated. Hence, we cast the problem of detecting the erroneous region as a

labeling problem, and it yields,

min
e

∑
x

e(x)(ε− |KL(x)−B(x)|) +
1

κ
|e(x)|, (4.24)

where the vector variable e denotes the pixel-wise binary indicator variable, e(x) ∈

{0, 1}, and the constant ε is a positive threshold value.

The first term introduced is the likelihood term that enforces e(x) to be one

when the reconstruction error, |KL(x) −B(x)|, is higher than ε. The second term

is a prior giving the sparsity on the variable e, as we assume reconstruction error

is sparse, and the parameter κ determines the weight of the sparse prior. Through

the continuous relaxation of e, we can obtain the approximated solution of (4.24)

quickly by adapting [29].

After detection of the erroneous region, we re-initialize the propagated motion of

this region to be zero, which denotes the impulse blur kernel. By applying sharp im-
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(a) (b)

(c) (d) (e)

Figure 4.2: Effect of kernel-reinitialization. (a) Estimated latent image in a coarse level. (b) Yellow
color denotes the detected erroneous region. (c) Cropped result in the coarse level. (d) Cropped
result in the finest level without the use of re-initialization. (e) Cropped result in the finest level
with the use of re-initialization.

age restoration in Sec. 4.4.2, we restore the small structure with distinct blur motion.

However, the newly restored small structure remains blurry because it is estimated

from the impulse blur kernel (i.e. zero motion). Thus, we apply a deterministic

filter [66] to deblur the erroneous region and to facilitate the fast convergence of

motion estimation. For this process, we use the prediction step introduced in [17].

Our re-initialization step is illustrated in Fig. 4.2. Notably an unseen thin line in

the coarse level of pyramid in is successfully restored using the proposed method.

4.5 Experiments
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Algorithm 3 Overview of the proposed method

Input: A blurry image B

Output: Latent image L and motion flow u

1: Estimate image-statistics-guided motion u0. (Sec. 4.3.1)

2: Build an image pyramid.

3: Resize and rescale u0 according to the size of the image in the pyramid.

4: Kernel re-initialization. (Sec. 4.4.3)

5: for iter = 1 to 3 do

6: Continuous optimization of motion flow u with fixed L. (Sec. 4.4.1)

7: Continuous optimization of latent image L with fixed u. (Sec. 4.4.2)

8: end for

9: Propagate variables to the next pyramid level if exists.

10: Repeat steps 3-9 from coarse to fine pyramid level.

In our experiments, we use fixed parameters for our experiments as {η = 0.02, η =

0.02, λp = 40, α0 = 1, α1 = 5, θ = 0.1
λp
, ε = 0.05, κ = 0.02}, and numerous ex-

periments are carried out to demonstrate the good performance of the proposed

method. To guide fast convergence and estimate large kernel (motion), we imple-

ment the proposed algorithm on the traditional coarse-to-fine framework . In the

coarse-to-fine framework, we build an image pyramid of 10 levels with a scale fac-

tor of 0.8. In addition, we rescale and resize image-statistics-guided motion u0 for

each pyramid level. Initially, we use u0 for initial motion flow u, and the blurry

image is used for initial latent image L. For easier minimization, we constrain the

horizontal motion values to have non-negative values, since our kernel is symmet-

ric (i.e. ku(x)(x, y) = ku(x)(−x,−y)). The overall flow of the proposed method is

summarized in algorithm 3.

Our current MATLAB code takes about 20 minutes to deblur a VGA image on
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Intel core i5, and it can be further reduced via optimized C and GPU. Although we

cannot guarantee a globally optimal solution by using the alternating optimization

method like other methods [17], each subproblem is easy to solve, and we’ve achieved

reliable solutions in our many experiments.

In Fig. 4.3, we compare the results with different settings of the proposed method

using a synthetic image. Although ours without utilizing motion cues (i.e. c(x) = 0 )

accurately estimates motion flows of the moving bus and restores the sharp edges at

the motion boundaries, flows at the static background region are inaccurate due to

the lack of strong edges. Hence it fails to restore the grass. By contrast, ours utilizing

motion cues u0 and the confidence map estimates accurate motion flows even where

edges are not strong, and successfully restores the grass as well the moving bus.

Additional comparisons with a real image are shown in Fig. 4.4. In the results,

state-of-the-art uniform kernel deblurring methods [] fail in deblurring due to the

differently moving car. Moreover, our segmentation-based method [10] for dynamic

scene deblurring raises artifacts near the segmentation boundaries. By contrast, our

methods with and without using motion cues u0 restore the edges at the motion

boundaries of the moving car. However, ours without using motion cues fails to esti-

mate the motion flow where edges are weak, thus loses small details in the sidewalk.

By contrast, ours using motion cues estimates accurate motion flows in these areas

and preserves details better.

In Fig. 4.6, deblurring results for camera shakes which includes rotational camera

movements are illustrated. Although the blurs caused by rotational camera shake are

locally non-linear, our linearly approximated kernel estimation method well restores

strong edges from both synthetic image in the top row and the real image in the

bottom row. These results demonstrate that our linear approximation is valid for
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small rotational camera shake to some degree.

In Fig. 4.5, we demonstrate the good performance of our robust regularization.

As a taxi moves forward, blur kernel varies spatially on the slanted surface of the taxi.

Therefore typical staircasing artifacts arise in that area due to the TV regularizer.

However, our higher order TGV regularizer effectively removes these artifacts and

estimates piecewise affine flow field on the slanted and planar surface of the taxi.

Notably, our segmentation-based method [10] in Fig. 4.5 (b) fails in segmentation

because it cannot handle spatially varying blurs by forward or backward motion of

moving objects. By contrast, ours can handle these blurs since it does not rely on

accurate segmentation for specific type of motion blur.

Next, to verify the deblurring performance quantitatively and compare with our

previous methods, several synthetic datasets generated by the method in 5.5 are

used for evaluation, and PSNR values are compared in Table. 4.1. Notably, using

the TGV regularization renders quantitatively better results than using the TV

regularization, and our deblurring model with both the robust TGV regularization

and motion cues significantly improves the deblurring quality.

In Fig. 4.7, deblurring results and estimated motion flows are illustrated for

challenging dynamic scenes. In qualitative analysis, the edges in deblurred images

are restored keenly, and the proposed method successfully removes the general non-

uniform blurs caused by differently moving objects, depth variation, and camera

shake as expected even at texture-less and homogeneous regions. Moreover, the

color codes of estimated motion flows are as accurate as we expected. Notably, the

motion flows in the the bottom rows are corresponding to the depth maps of the

latent images, meaning that our work can be further utilized to infer depth map

from a blurry single-image.
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Seq. segmentation exemplar parametrization parametrization parametrization

(TV only) (TGV only) (all)

#1 20.25 26.48 25.09 25.82 29.40

#2 23.23 28.09 25.37 26.29 30.60

#3 22.46 26.22 25.83 25.84 26.54

#4 22.47 25.69 25.56 25.64 25.95

#5 22.20 23.26 22.56 22.29 26.53

#6 21.56 24.68 22.71 23.06 23.09

#7 23.54 25.73 26.45 27.29 28.57

#8 20.69 25.30 25.10 25.07 26.18

#9 20.35 25.03 24.17 24.38 24.82

#10 20.84 24.02 21.57 22.53 23.08

Avg. 21.76 25.45 24.44 24.82 26.48

Table 4.1: Deblurring performance evaluations in terms of PSNR values.

Lastly, we compared our method using kernel-parametrization with the uniform

and non-uniform deblurring methods in various challenging situations. In Fig. 4.8

(a)-(b), comparison targets fail because of the differently moving multiple objects

which are too small to handle, but ours deblurs well. In Fig. 4.8 (c), [6] fails in

deblurring as depth discontinuity exist in the blurry image. Although it is possible

to deblur with segmentation based method, but our segmentation-based method [10]

also fails, because the background is too narrow to be segmented. Thus, conventional

methods provide unsatisfactory results. In Fig. 4.8 (d)-(e), although the causes of

locally varying blurs are specific forward motions which can not be handled in the

comparison targets, ours outperforms and restores the edges of characters, arrow,

and the taillight of the taxi to a significantly better degree.
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4.6 Summary

In this chapter, we proposed a novel deblurring method that removes locally vary-

ing general blurs in dynamic scenes based on the approximation technique of the

local blur kernel as a motion model. To estimate pixel-wise varying motion blur

(kernel) even where strong edges are missing, we proposed a new deblurring method

that adaptively combines blur cues from image-statistics with the conventional blur

constraint. We formulated a new variational energy model, and employed a higher or-

der regularizer into the proposed energy model to reduce staircasing artifacts among

neighboring motion flows on slanted surfaces. Moreover, we proposed efficient and

practical optimization techniques for minimizing the final non-convex energy model.

By minimizing the proposed model with our efficient solvers, we achieved significant

improvements in motion (kernel) estimation and deblurring qualities compared with

the state-of-the art methods.
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(e) (f)

(g) (h)

(a) (b)

(c) (d)

Figure 4.3: Effect of statistical motion cues. (a) Blurry image. (b) Confidence map.
(c) Color coded ground truth flow. (d) u0. (e) Flow without using u0. (f) Flow using
u0. (g) Deblurring result without using u0. (h) Deblurring result using u0.
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(a) (b)

(e) (f)

(g) (h)

(c) (d)

Figure 4.4: Qualitative comparisons. (a) Real Blurry image. (b) Result from [13]. (c)
Result from [6]. (d) Result from our segmentation-based method [10]. (e) Deblurring
result without motion cues. (f) Deblurring result with motion cues. (g) Flow result
without using motion cues. (h) Flow result with motion cues.
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(a)

(c) (d)

(b)

Figure 4.5: Robust regularization. (a) Real blurry image. (b) Segmentation result from
our segmentation-based deblurring method [10]. (c) Motion flow with TV regular-
ization (v = 0). (d) Motion flow with our TGV regularization.
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(a) (b)

Figure 4.6: Validity check over rotational camera shake. (a) Single blurry images from rotational
camera shakes. (b) Deblurring results using kernel-parametrization.
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(a) (b) (c) (d)

Figure 4.7: Deblurring and flow results. (a) Single blurry images of dynamic scenes. (b) Deblurring
results. (c) Cropped results. (d) Estimated motion flows.
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(a)

(b)

(c)

(d)

(e)

Figure 4.8: Other deblurring results on very challenging single blurry images. From left to right:
Blurry images, results from Xu et al [6], results by using segmentation [10], and results by using
kernel-parametrization.



Chapter 5

Video Deblurring with

Kernel-Parametrization

In the previous chapter, we introduced a single image deblurring method based

on kernel-parametrization that removes spatially varying blurs caused by various

sources using a linear kernel approximation. In this chapter, we naturally extend the

kernel-parameterization method to remove spatially and temporally varying blurs in

videos. To improve deblurring qualities, we adopt more accurate blur kernel approx-

imation model (i.e. piece-wise linear model using bi-directional optical flows) and

handle defocus blurs as well as motion blurs. Moreover, we further utilize temporal

information inherent among adjacent frames to render high quality videos.

5.1 Introduction and Related Work

In low-light conditions, motion blurs are caused by camera shake and object motions

during exposure time. In addition, fast moving objects in the scene cause blurring

87
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artifacts in a video even when the light conditions are acceptable. For decades, this

problem has motivated considerable works on deblurring and different approaches

have been sought depending on whether the captured scenes are static or dynamic.

Early works on a single image deblurring problem are based on assumptions that

the captured scene is static and has constant depth [17, 16, 5, 4, 3, 2] and they esti-

mated uniform or non-uniform blur kernel by camera shake. These approaches were

naturally extended to video deblurring methods. Cai et al. [37] proposed a decon-

volution method with multiple frames using sparsity of both blur kernels and clear

images to reduce errors from inaccurate registration and render high-quality latent

image. However, this approach removes only uniform blur caused by 2-dimensional

translational camera motion, and the proposed approach cannot handle non-uniform

blur from rotational camera motion around z-axis, which is the main cause of motion

blurs [2]. To solve this problem, Li et al. [38] adopted a method parameterizing spa-

tially varying motions with 3x3 homographies based on the previous work of Tai et

al. [67], and could handle non-uniform blurs by rotational camera shake. In the work

of Cho et al. [68], camera motion in 3-dimensional space was estimated without any

assistance of specialized hardware, and spatially varying blurs caused by projective

camera motion were obtained. Moreover, in the works of Paramanand et al. [69] and

Lee and Lee [70], spatially varying blurs by depth variation in a static scene were

estimated and removed.

However, these previous methods, which assume static scene, suffer from spa-

tially varying blurs from not only camera shake but also moving objects in a dynamic

scene. Because it is difficult to parameterize the pixel-wise varying blur kernel in the

dynamic scene with simple homography, kernel estimation becomes more challeng-

ing task. Therefore, several researchers have studied on removing blurs in dynamic
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(a) (b) (c)

Figure 5.1: (a) A blurry frame in a dynamic scene. (b) Our deblurring result. (c) Our color coded
optical flow estimation result.

scenes, which are grouped into two approaches: segmentation-based deblurring ap-

proach, and exemplar-based deblurring approach.

Segmentation-based approaches usually estimate multiple motions, kernels, and

associated segments. In the work of Cho et al. [33], a method that segments homoge-

neous motions and estimates segment-wise different (1-dimensional) Gaussian blur

kernels, was proposed. However, it cannot handle complex motions by rotational

camera shakes due to the limited capacity of Gaussian kernels. In the work of Bar

et al. [71], a layered model was proposed that segments images into foreground and

background layers, and estimates a linear blur kernel within the foreground layer.

By using the layered model, explicit occlusion handling is possible, but the kernel

is restricted to linear. To overcome these limitations, Wulff and Black [11] improved

the previous layered model of Bar et al. by estimating the different motions of both

foreground and background layers. However, these motions are restricted to affine

models and it is difficult to extend to multi-layered scenes because such task requires

depth order reasoning of the layers. To sum up, segmentation-based deblurring ap-

proaches have the advantage of removing blurs caused by moving objects in dynamic

scenes. However, segmentation itself is very difficult problem and remains still an
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challenging issue as reported in the previous chapter. Moreover, they fail to segment

complex motions like motions of people, because simple parametric motion models

used in [71, 11] cannot fit the complex motions accurately.

Exemplar-based approaches were proposed in the works of Matsushita et al. [72]

and Cho et al. [12]. These methods usually do not rely on accurate segmentation

and deconvolution. Instead, the latent frames are rendered by interpolating lucky

sharp frames that frequently exist in videos, thus avoiding severe ringing artifacts.

However, the work of Matsushita et al. [72] cannot remove blurs caused by moving

objects. In addition, the work of Cho et al. [12] allows only slow-moving objects

in dynamic scenes because it searches sharp patches corresponding to blurry patch

within a small window after registration with homography. Therefore, it cannot

handle fast moving objects which have distinct motions from those of backgrounds.

Moreover, since it does not use deconvolution with spatial priors but simple inter-

polation, it degrades mid-frequency textures such as grasses and trees, and renders

smooth results.

Besides motion, defocus from limited depth-of-field (DOF) of conventional digital

cameras also results in blurry effects in videos. Although shallow DOF is often used

to render aesthetic images and highlight the focused objects, frequent defocus or

misfocus of moving objects in video yields image degradation when the motion is

large and fast. Moreover, depth variation in the scene generates spatially varying

defocus blurs, making the estimation of defocus blur map is also a difficult problem.

Thus many researches have studied to estimate defocus blur kernel. Most of them

have approximated the kernel as Gaussian or disc model, thus the kernel estimation

problem becomes a parameter (e.g. standard deviation of Gaussian blur or disc

radius) estimation problem [73, 74, 55, 75].
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To magnify focus differences, Bae and Durand [73] estimated defocus blur map

at the edges first, and then propagated the results to other regions. However, the

estimated blur map is inaccurate where the blurs are strong, since it is image-based

approach and depends on the detected edges that can be localized. Similarly, Zhuo

and Sim [75] propagated the amount of blur at the edges to elsewhere, that obtained

by measuring the ratio between the gradients of the defocused input and re-blurred

input with a Gaussian kernel. To reduce reliance on strong edges in the defocused

image, Zhu et al. [55] utilized statistics of blur spectrum within the defocused image,

since statistical models could be applicable where there are no strong edges. Specif-

ically, local image statistics is used to measure the probability of defocus scale and

determine the locally varying defocus blur map in a single image. However, local

image statistics-based methods do not work when there are motion blurs as well as

defocus blurs within a single image; Motion blurs change local statistics and yield

much complex blurs combined with defocus blurs usually.

To alleviate the problems in previous works, we propose a new generalized video

deblurring method that can handle not only motion blur but also defocus blur which

further improves the deblurring quality significantly. Under an assumption that, the

complex non-linear blur kernel can be decomposed into motion and defocus blur

kernels, we estimate bidirectional optical flows to approximate pixel-wise varying

motion blur kernel, scales of Gaussian blurs to approximate defocus blur kernel,

and the latent frames jointly. Therefore, we can naturally handle coexisting blurs by

camera shake, moving objects with complex motions, depth variations, and defocus.

However, sharp frames are required to estimate accurate blur kernels, and accurate

kernels are necessary to restore sharp frames. This case is a typical chicken-and-egg

problem, and thus we simultaneously estimate unknown variables, latent frames, op-
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(a) (b) (c)

Figure 5.2: (a) Blurry frame from a dynamic scene. (b) Deblurring result by Cho et al.[12]. (c) Our
result.

tical flows, and defocus blur maps. Therefore, we propose a new single energy model

to solve our joint problem. We also provide a framework and efficient techniques

to optimize the model. The result of our system is shown in Fig.5.1, in which the

motion blurs of differently moving people and Gaussian blurs in the background are

successfully removed, and accurate optical flows are jointly estimated.

Finally, we provide a new realistic blur dataset with ground truth sharp frames

captured by a high-speed camera to overcome the lack of realistic ground truth

dataset in this field. Although there have been some evaluation datasets for de-

blurring problem, they are not appropriate to carry out meaningful evaluation for

the deblurring of spatially varying blurs. First, synthetically generated uniform blur

kernels and blurry images from sharp images were provided in the work of Levin et

al. [32]. Next, 6D camera motion in 3D space was recorded with a hardware-assisted

camera to represent blur from camera shake during exposure time in the work of

Köhler et al. [76]. Moreover, there have been some recent approaches to generate

synthetic dataset for the sake of machine learning algorithms. To benefit from large

training data, lots of blur kernels and blurry images were synthetically generated. In

the work of Xu et al. [77], more than 2500 blurry images are generated using decom-
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posable symmetric kernels. Schuler et al. [78] sampled naturally looking blur kernels

with Gaussian Process, and Sun et al. [9] used a set of linear kernels to synthesize

blurry images. However, all these datasets are generated under an assumption that

the scene is static and cannot capture infinitely many and complex blurs in real

world. Real blurs in dynamic scenes are complicated and spatially varying, so syn-

thesizing realistic dataset is a difficult problem. To solve this problem, we construct

a new blur dataset that provides pairs of realistically blurred videos and sharp videos

with the use of a high-speed camera.

Using the proposed dataset and real challenging videos as shown in Fig.5.2, we

demonstrate the significant improvements of the proposed deblurring method in both

quantitatively and qualitatively. Moreover, we show empirically that more accurate

optical flows are estimated by our method compared with the state-of-the-art optical

flow method that can handle blurry images.

5.2 Generalized Video Deblurring

Most conventional video deblurring methods suffer from the coexistence of various

motion blurs from dynamic scenes because the motions cannot be fully parameterized

using global or segment-wise blur models. To make things worse, frequent defocus

or misfocus of moving objects in dynamic scenes yields more complex (non-linear)

blurs combined with motion blurs.

To handle these joint motion and defocus blurs, we propose a new blur model that

estimates locally (pixel-wise) different blur kernels rather than global or segment-

wise kernel estimation. In this work, we propose a single energy model consists of

not only data and spatial regularization terms but also a temporal term and the
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proposed model is expressed as follows:

E = Edata + Etemporal + Espatial, (5.1)

and the detailed models of each term are given in the following subsections.

5.2.1 A new data model based on kernel-parametrization

(a) (b) (c) 

Figure 5.3: (a) Two light sources. (b) Light streak of the focused light source by camera motion.
(c) Light streak of the defocused light source by camera motion.

Motion blurs are generally caused by camera shake and moving objects, and

defocus blurs are mainly due to the aperture size, focal length, and the distance

between camera and focused object. When these two different blurs are combined,

they yield more complex blurs in real video. For example, Fig. 5.3 shows how different

the blurred images are when point light sources are captured by a single moving

camera with and without defocus blur. We observe that the light streak of the

defocused light source is much smoother and complex in comparison with that of

the focused one. Notably, the light streaks indicate the blur kernel shapes.

However, it is difficult to directly remove the complex blur in Fig. 5.3 (c). Thus, to

alleviate the problem, we assume that the combined blur kernel can be decomposed

into two different kernels, which are defocus blur kernel and motion blur kernel.
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Our assumption holds when the depth change in the scene during exposure period

is relatively small, and it is acceptable since we treat video of rather short exposure

time. Thus, the underlying blurring-procedure can be modeled as sequential process

of defocus blurring followed by motion blur as illustrated in Fig. 5.4.

Sharp 
frame

Defocus 
blur

Motion 
blur

Blurry 
frame

Figure 5.4: Blurring process underlying in the proposed method.

Therefore, under the assumption that the latent frames are blurred by defocus,

and subsequently blurred by motion, our blur model to handle combined blurs is

expressed as follows:

Bi(x) = (ki,x ⊗ gi,x ⊗ Li)(x), (5.2)

where Bi and Li denote the blurry frame and the latent frame at the ith frame,

respectively, and x denotes pixel location on 2D image domain. At x, the motion

blur kernel is denoted as ki,x and the defocus blur kernel is denoted as gi,x, and the

operator ⊗ means convolution.

Spatially varying defocus blur gi,x is approximated by using Gaussian or disc

model in conventional works [74, 55]. Therefore, the defocus blur maps are deter-

mined by simply estimating the standard deviations of Gaussian models or the radii

of disc models. In particular, local image statistics is widely used to estimate spa-

tially varying defocus blur map. Specifically, within a uniformly blurred patch, local

frequency spectrum provides information on the blur kernel and can be used to de-

termine the likelihood of specific blur kernel [55]; thus scales of defocus blurs can be



96CHAPTER 5. VIDEO DEBLURRING WITH KERNEL-PARAMETRIZATION

estimated by comparing the fidelities of the likelihood model. However, it is difficult

to apply this statistics-based technique when the blurry image has motion blurs in

addition to defocus blurs. In Fig. 5.5, we observe that the maximum likelihood (ML)

estimator used in [55] finds the optimal defocus blur kernel when a patch is blurred

by only defocus blur, however ML cannot estimate true defocus kernel when a blurry

patch contains motion blur as well as defocus blur. Therefore we cannot adopt local

image statistics to remove defocus blurs in dynamic scenes with severe motion blurs.

In this study, we approximate the pixel-wise varying defocus blur using Gaussian

model as shown in Fig. 5.6 (a), and determine the locally varying standard deviation

σi(x) of the Gaussian kernel gi,x.

Meanwhile, the motion blurs of each frame are usually approximated by global

motion models such as homographies and affine models in conventional video deblur-

ring works [71, 12, 38, 11]. However, these global motion models are only valid when

the motions are globally or segment-wise rigid, and thus cannot cope with general

and pixel-wise varying motion blurs in real dynamic scenes. By contrast, to deal with

pixel-wise varying motion blurs, we should approximate and parametrize the locally

different blur kernel, because the solution space of spatially varying kernel in video

is extremely large; the dimension of unknown kernel is W ×H×T ×w×h when the

size of image is W×H, length of the image sequence is T , and the size of local kernel

is w×h. Therefore, we approximate the motion blur kernel as piece-wise linear using

bidirectional optical flows by extending suggestions in previous works [48, 8, 15], and

our linearly approximated kernel is illustrated in Fig. 5.6 (b). Although our motion

blur kernel is based on simple approximation, our model is valid since we assume

that the videos have relatively short exposure time. The pixel-wise kernel ki,x using

bidirectional flows can be written by,
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ki,x(u, v) =

δ(uvi→i+1−vui→i+1)
2τi‖ui→i+1(x)‖ , if u ∈ [0, τiui→i+1], v ∈ [0, τivi→i+1]

δ(uvi→i−1−vui→i−1)
2τi‖ui→i−1(x)‖ , if u ∈ (0, τiui→i−1], v ∈ (0, τivi→i−1]

0, otherwise

, (5.3)

where (u, v) denotes a location in 2-dimensional kernel space, and ui→i+1(x) =

(ui→i+1, vi→i+1), and ui→i−1(x) = (ui→i−1, vi→i−1) denote pixel-wise bidirectional

optical flows at x on the ith frame. Camera duty cycle of the frame is τi and it

denotes relative exposure time as used in [38]. Kronecker delta is denoted as δ.

Now, the proposed data model that handles both motion and defocus blurs is

expressed as follows:

Edata(L,u,σ; B) = λv
∑
i

∑
∂∗

‖∂∗Ki(τi,ui→i+1,ui→i−1)Gi(σi)Li − ∂∗Bi‖2, (5.4)

where the row vector of the motion blur kernel matrix Ki, which corresponds to

the motion blur kernel at pixel x, is the discretized vector form of ki,x, and its

elements are non-negative and their sum is equal to one. Similarly, the row vector

of the defocus blur kernel matrix Gi is associated with gi,x and σi denotes the

scales (standard deviations of Gaussian kernel) of defocus blurs. Linear operator

∂∗ denotes the Toeplitz matrices corresponding to the partial (e.g., horizontal and

vertical) derivative filters. Parameter λv controls the weight of the data term, and

L, u, σ, and B denote the set of latent frames, optical flows, scales of defocus blurs

and blurry frames, respectively.



98CHAPTER 5. VIDEO DEBLURRING WITH KERNEL-PARAMETRIZATION

As we handle motion and defocus blurs simultaneously in the proposed model,

ours outperforms the state-of-the-art defocus blur map estimator [14] when there

exist both motion and defocus blurs s shown in Fig. 5.7. Even when the motion

blurs are not existing, we achieve competitive result as shown in Fig. 5.8 with the

aid of joint estimation of the latent frames. Moreover, using our pixel-wise motion

blur kernel approximation, we can easily manage multiple different motion blurs in

a single frame, unlike conventional methods. The superiority of our locally varying

kernel model is shown in Fig. 5.9. Our kernel model fits motion blurs from differently

moving objects and camera shake much better than the conventional homography-

based model.
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Figure 5.5: (a) A sharp patch. (b) A patch blurred by defocus blur only (Gaussian blur with standard
deviation 5). (c) A patch blurred by defocus blur (Gaussian blur with standard deviation 5) and
motion blur (linear kernel with length 11). (d) Comparisons of fidelities at the center of the blurry
patches by changing the scale of defocus blur. The ground truth scale of the defocus blur is 5 and
the arrows indicate peaks estimated by ML estimator.
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𝜏𝑖 =
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Figure 5.6: Defocus blur kernel and motion blur kernel. (a) Gaussian blur kernel with standard
deviation σi(x) at a pixel location x to handle blur from defocus. (b) Bidirectional optical flows
and corresponding piece-wise linear motion blur kernel at a pixel location x.
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(a) (b)

(c) (d)

0

3

scale

Figure 5.7: (a) A real blurry frame. (b) Our jointly estimated latent frame. (c) Defocus blur map
of Shi et al. [14]. (d) Our defocus blur map.
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(a) (b)

(c) (d)

Figure 5.8: (a) Partially blurred image which has sharp foreground and blurred background by
Gaussian blur. (b) Ground truth blur map. (c) Defocus blur map of Shi et al. [14]. (d) Our defocus
blur map.
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(c)

(a)

(b)

Figure 5.9: (a) A blurry frame of a video in dynamic scene. (b) Locally varying kernel using homog-
raphy. (c) Our pixel-wise varying motion blur kernel using bidirectional optical flows.
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5.2.2 A new optical flow constraint and temporal regularization

To remove locally varying motion blurs, we employ bidirectional optical flow model

in (5.4). However, for optical flow estimation, conventional optical flow constraints

such as brightness constancy and gradient constancy can not be utilized directly,

since such constraints are not valid between two blurry frames. Thus a blur-aware

optical flow estimation method from blurry images has been proposed by Portz et

al. [15], and this method is based on the commutative law of shift-invariant kernels

such that the brightness of the corresponding points is constant after convolving

the blur kernel of each image with the other image. However, the commutative law

does not hold when the motion is not translational and when the blur kernels vary

spatially. Therefore, this approach only works when the motion is very smooth.

To address this problem, we propose a new model that estimates optical flow

between two latent sharp frames to enable abrupt changes in motions and the blur

kernels. Specifically, our model is based on the conventional optical flow constraint

between latent frames, that is, brightness constancy. By doing so, we need not restrict

our motion blur kernels to be shift invariant, and the formulation of the proposed

model is given by,

Etemporal(L,u) = µ
∑
i

N∑
j=−N

∑
x

|Li(x)− Li+j(x + ui→i+j)|, (5.5)

where n denotes the index of neighboring frames of the frame at i, and the parameter

µ controls the weight. We apply the robust L1 norm for robustness against outliers

and occlusions.

Notably, a major difference between the proposed model and the conventional

optical flow estimation methods is that our method is a joint solution. That is, the
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(a) (b)

(c) (d)

Figure 5.10: (a) A real blurry frame. (b) Our jointly estimated latent frame. (c) Color coded optical
flow from [15]. (d) Our optical flow.

latent frames and optical flows should be solved simultaneously in our model. There-

fore, the proposed model in (5.5) restores the latent frames which are temporally

coherent among neighboring frames, and estimates optical flows between neighbor-

ing frames, jointly. Thus we can estimate accurate flows at the motion boundaries

as shown in Fig. 5.10. Notice that, our flows at the motion boundaries of moving car

is much clearer in comparison with the blur-aware flow estimation method by [15].

5.2.3 Spatial regularization

To alleviate the difficulties of highly ill-posed deblurring, optical flow estimation,

and defocus blur map estimation problems, it is important to adopt well-suited

spatial regularizers. In this work, we enforce spatial coherence to penalize spatial
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fluctuations while allowing discontinuities in latent frames, flow fields, and defocus

blur maps. With an assumption that spatial priors for the latent frames, optical

flows, and defocus blur maps are independent, we can formulate for the spatial

regularization as follows:

Espatial(L,u,σ) =
∑
i

|∇Li|+ νσ
∑
i

∑
x

ζi(x)|∇σi(x)|+

νu
∑
i

N∑
j=−N

∑
x

ζi(x)|∇ui→i+j(x)|),
(5.6)

where parameters νσ and νu control the weights of the second and third terms.

The first term in (5.6) denotes the spatial regularization term for the latent

frames. Although more sparse Lp norm (e.g. p = 0.8) fits the gradient statistics of

natural sharp images better [26, 79, 25], we use conventional total variation (TV)

based regularization [80, 10, 8], as TV model is computationally less expensive and

easy to minimize. The second and third terms enforce spatial smoothness for defocus

blur maps and optical flows, respectively. These regularizers are also based on TV

model, and coupled with an edge-map to preserve discontinuities at the edges in both

vector fields. Similar to the edge-map used in conventional optical flow estimation

method [63], our edge-map is expressed as follows:

ζi(x) = exp(−(
|∇L0

i (x)|2

vI
)), (5.7)

where the fixed parameter vI controls the weight of the edge-map, and L0
i is an

initial latent image in the iterative optimization framework in Sec. 5.3.
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5.3 Optimization Framework

Under the condition that the camera duty cycle τi is known, by combining Edata,

Etemporal, and Espatial, we have the final objective function as follows:

min
L,u,σ

λv
∑
i

∑
∂∗

‖∂∗Ki(ui→i+1,ui→i−1)Gi(σi)Li − ∂∗Bi‖2+

µ
∑
i

N∑
j=−N

∑
x

|Li(x)− Li+j(x + ui→i+j)|+

∑
i

|∇Li|+ νσ
∑
i

∑
x

ζi(x)|∇σi|+ νu
∑
i

N∑
j=−N

∑
x

ζi(x)|∇ui→i+j |).

(5.8)

Notably, in contrast with the work of Cho et al. [12] that performs multiple ap-

proaches sequentially, our model finds a solution by minimizing the proposed single

objective function in (5.8). However, because of its non-convexity, our model needs to

adopt a practical optimization method to obtain an approximated solution. There-

fore, we divide the original problem into several simple sub-problems and then use

conventional iterative and alternating optimization techniques [17, 8, 11] to minimize

the original non-convex objective function. In the following subsections, we introduce

efficient solvers and describe how to estimate unknowns L, u, and σ alternatively.
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5.3.1 Sharp video restoration

While the motion blur kernels, and the defocus blur kernels are fixed, the objective

function becomes convex with respect to L, and it can be expressed as follows:

min
L

λv
∑
i

∑
∂∗

‖∂∗KiGiLi − ∂∗Bi‖2 +
∑
i

|∇Li|+

µ
∑
i

N∑
j=−N

∑
x

|Li(x)− Li+j(x + ui→i+j)|.
(5.9)

To restore the latent frames L, we adopt the conventional convex optimization

method proposed in [29], and derive the primal-dual update scheme as follows:



sm+1 = sm+ηLALm

max(1T , abs(sm+ηLALm))

qm+1 = qm+ηLµDLm

max(1T , abs(qm+ηLµDLm))

Lm+1 = arg min
Lm+1

λv
∑
i

∑
∂∗

‖∂∗KiGiL
m+1
i − ∂∗Bi‖2+

‖Lm+1 − (Lm − εL(AT sm+1 + µDTqm+1))‖2

2εL
,

(5.10)

where m ≥ 0 indicates the iteration number, and Lm denotes concatenation of all

latent frames in a vector form. And s and q denote the dual variables. Parameters

ηL and εL denote the update steps. The linear operator A calculates the spatial

difference between neighboring pixels, and the operator D calculates the temporal

differences among neighboring frames using fixed optical flows. The last formulation

in (5.10) is to update and optimize the primal variable Lm+1, and we apply the

conjugate gradient method to minimize it, since it is a quadratic function. Notably,

division operators used in the update steps denote the element-wise division.
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5.3.2 Optical flows estimation

While the latent frames and the defocus blur kernels are fixed, the objective function

in (5.8) becomes motion estimation model. However, our motion estimation model

is non-convex, because the temporal coherence term Etemporal and the data term

Edata are non-convex. Thus, we denote those two terms as a non-convex function

ρu(.) to simplify as follows:

ρu(u) =µ
∑
i

N∑
j=−N

∑
x

|Li(x)− Li+j(x + ui→i+j)|+

λv
∑
i

∑
∂∗

‖∂∗Ki(ui→i+1,ui→i−1)GiLi − ∂∗Bi‖2,
(5.11)

and we convexify the non-convex function ρu(.) by applying the first-order Taylor

expansion to find the optimal optical flows u. Similar to the technique used in [8],

we linearize the function near an initial u0 in the iterative process as follows:

ρu(u) ≈ ρu(u0) +∇ρu(u0)
T (u− u0). (5.12)

In doing so, (5.8) can be approximated as a convex function w.r.t u for being fixed

G and L as follows:

min
u
ρu(u0) +∇ρu(u0)

T (u− u0) + νu
∑
i

N∑
j=−N

∑
x

ζi(x)|∇ui→i+j |. (5.13)

Now, we can apply the convex optimization technique in [29] to the approximated

convex function, and the primal-dual update process is expressed as follows:
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pm+1 = pm+ηu(νuWuAu)um

max(1T , abs(pm+ηu(νuWuAu)um))

um+1 = (um − εu(νuWuAu)Tpm+1)− εu∇ρu(u0),

(5.14)

where p denotes the dual variable of u. Weighting matrix Wu is diagonal, and

its sub-matrix associated with ui→i+j is defined as diag(ζi). The linear operator

Au calculates the spatial difference between four nearest neighboring pixels, and

parameters ηu and εu denote the update steps. Notice that, division operators in the

formulation denote the element-wise division.

5.3.3 Defocus blur map estimation

While the latent frames and the motion blur kernelsare fixed, we can estimate the

defocus blur maps. Because the data term is non-convex, an approximation tech-

nique is required to solve the sub-problem. Similar to our optical flows estimation

technique, we approximate and convexify the function using linearization.

First, we define a non-convex data function ρσ(.) and approximate it near an

initial σ0 as follows:

ρσ(σ) = λv
∑
i

∑
∂∗

‖∂∗KiGi(σi)Li − ∂∗Bi‖2

≈ ρσ(σ0) +∇ρσ(σ0)
T (σ − σ0),

(5.15)

and the approximated convex function for defocus blur map estimation is given by,

min
σ

ρσ(σ0) +∇ρσ(σ0)
T (σ − σ0) + νσ

∑
i

∑
x

ζi(x)|∇σi|. (5.16)
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Figure 5.11: Temporally consistent optical flows over three frames.

Similarly, (5.16) can be optimized by using [29], and the primal-dual update

formulation is given by,



rm+1 = rm+ησ(νσWσA)σm

max(1, abs(rm+ησ(νσWσA)σm))

σm+1 = (σm − εσ(νσWσA)T rm+1)− εσ∇ρσ(σ0),

(5.17)

where r denotes the dual variable of σ on the vector field. Weighting matrix Wσ is

diagonal, and its sub-matrix associated with σi is defined as diag(ζi). Parameters

ησ and εσ denote the update steps, and division operator means the element-wise

division.

5.4 Implementation Details

To handle large blurs and guide fast convergence, we implement our algorithm

on the conventional coarse-to-fine framework with empirically determined param-

eters. In the coarse-to-fine framework, we build image pyramid with 17 levels for

a high-definition (1280x720) video, and use the scale factor 0.9. Moreover, to re-
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duce the number of unknowns in optical flows, we only estimate ui→i+1 and ui→i−1.

For example, we approximate ui→i+2 using ui→i+1 and ui+1→i+2, since it satisfies

ui→i+2 = ui→i+1 + ui+1→i+2 as illustrated in Fig. 5.11. We can easily apply this for

n 6= 1.

The overall process of our algorithm is in Algorithm 4. Further details on initial-

ization, estimating the duty cycle τi and post-processing step that reduces artifacts

are given in the following subsections.

Algorithm 4 Overview of the proposed method

Input: Blurry frames B

Output: Latent frames L, optical flows u, and defocus blur maps σ

1: Initialize u, τi, and σ. (Sec. 5.4.1)

2: Build image pyramid.

3: Restore L with fixed u and σ. (Sec. 5.3.1)

4: Estimate u with fixed L and σ. (Sec. 5.3.2)

5: Estimate σ with fixed L and u. (Sec. 5.3.3)

6: Detect occlusion and perform post-processing. (Sec 5.4.2)

7: Propagate variables to the next pyramid level if exists.

8: Repeat steps 3-7 from coarse to fine pyramid level.

5.4.1 Initialization and duty cycle estimation

In this study, we assume that the camera duty cycle τi is known for every frame.

However, when we conduct deblurring with conventional datasets, which do not

provide exposure information, we apply the technique proposed in [12] to estimate

the duty cycle. Contrary to the original method [12], we use optical flows instead

of homographies to obtain initially approximated blur kernels. Therefore, we first
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(a) (b)

Figure 5.12: (a) Ground truth sharp frames. (b) Generated blurry frames. Spatially varying blurs
by object motions and camera shakes are synthesized realistically.

estimate flow fields from blurry images with [81], which runs in near real-time. We

then use them as initial flows and approximate the kernels to estimate the duty

cycle. Moreover, we use σi(x) = 0.25 for initial scale of defocus blur.

5.4.2 Occlusion detection and refinement

Our pixel-wise kernel estimation naturally results in approximation error and it

causes problems such as ringing artifacts. Specifically, our data model in (5.4), and

temporal coherence model in (5.5) are invalid at occluded regions.

To reduce such artifacts from kernel approximation errors and occlusions, we use
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spatio-temporal filtering as a post-processing:

Lm+1
i (x)=

1

Z(x)

N∑
j=−N

∑
y

wi,j(x,y) · Lmi+j(y), (5.18)

where y denotes a pixel in the 3x3 neighboring patch at location (x+ui→i+j) and Z

is the normalization factor (e.g. Z(x) =
∑N

j=−N
∑

ywi,j(x,y)). Notably, we enable

j = 0 in (5.18) for spatial filtering. Our occlusion-aware weight wi,j is defined as

follows:

wi,j(x,y) = oi,j(x,y) · exp(−‖Pi(x)− Pi+j(y)‖2

2σ2w
), (5.19)

where occlusion state oi,j(x,y) ∈ {0.01, 1} is determined by cross-checking forward

and backward flows similar to the occlusion detection technique used in [82]. The

5x5 patch Pi(x) is centered at x in frame i. The similarity control parameter σw is

fixed as σw = 25/255.

5.5 Motion Blur Dataset

Because conventional evaluation datasets for deblurring [32, 76] are generated under

static scene assumption, complex and spatially varying blurs in dynamic scenes are

not provided. Therefore, in this section, we provide a new method generating blur

dataset for the quantitative evaluation of non-uniform video deblurring algorithms

and later studies of learning-based deblurring approaches.

5.5.1 Dataset generation

As we assume motion blur kernels can be approximated by using bidirectional optical

flows in (5.3), we can generate blurry frames adversely by averaging consecutive
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sharp frames whose relative motions between two neighboring frames are smaller

than one pixel. In doing so, we use GOPRO Hero4 hand-held camera which supports

taking 240 fps video of 1280x720 resolution. Similar approach was introduced in [83],

which uses a high-speed camera to generate blurry images. However, they captured

only linearly moving objects with the fixed (static) camera.

Our captured videos include various dynamic scenes as well as static scenes. We

calculate the average of k successive frames to generate a single blurry frame. By

averaging k successive frames, realistic motion blurs from both moving objects and

the camera shake can be rendered in the blurry frame, and the 240/k fps blurry

video can be generated (i.e. 16 fps video is generated by averaging every 15 frames).

Notably, ground truth sharp frame is chosen to be the mid-frame used in averaging,

since we aim to restore the latent frame captured in the middle of exposure time as

shown in fig. 5.6. Thus the duty cycle is τi = 0.5, in our whole dataset. The videos

are recorded with caution so that the motions should be no greater than 1 pixel

between two neighboring frames to render more smooth and realistic blurry frame.

Our dataset mainly captured outdoor scenes to avoid flickering effect of fluores-

cent light which occurs when we capture indoor scenes with the high-speed camera.

We captured numerous scenes in both dynamic and static environments, and each

frame has HD (1280x720) size. In Fig. 5.12, some examples of our ground truth

frames and rendered blurry frames are shown. We can see that the generated blurs

are locally varying according to the depth changes and moving objects.



116CHAPTER 5. VIDEO DEBLURRINGWITHKERNEL-PARAMETRIZATION

5.6 Experiments

In this section, we empirically demonstrate the superiority of our method over con-

ventional methods.

In Table 5.2, our deblurring results are quantitatively evaluated with the pro-

posed motion blur dataset. For evaluation, we use fixed parameters and the values

are λv = 250, µ = 2, νu = νσ = 0.08λv, vI = ( 25
255)2, and N = 2. Since the

source codes of other video deblurring methods that can handle non-uniform blur

are not available, we quantitatively compare our method by changing settings in

terms of the PSNR and SSIM values. To demonstrate the good performance of the

proposed method in removing defocus blurs as well as motion blurs, we added dif-

ferent strengths of Gaussian blurs (σ = 1, 1.5, 2) to the original sharp videos before

averaging. Using these datasets including both motion and defocus blurs, we verify

that, the proposed approach improves the deblurring results significantly in terms

of PSNR and SSIM by removing defocus blurs as well as motion blurs.

Moreover, in Fig. 5.13, qualitative comparisons using our dataset are shown.

Ours restores the edges of buildings, letters, and moving persons, clearly. However,

we observe some failure cases in our results. In Fig. 5.14, we could not estimate

accurate motions of fast moving hand, and thus fail in deblurring. Notice that, it

is difficult to estimate motion flows of small structure with distinct motions in the

coarse-to-fine framework as in [7].

In Table. 5.1, we compare all the proposed methods. For evaluation, some se-

quences from our synthetic datasets are used, and we compare PSNR values of

selected 10 frames in the sequences. As expected, the proposed video deblurring

method outperforms our previously methods with the aid of accurate kernel estima-
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Seq. segmentation exemplar parametrization parametrization

(single) (video)

#1 20.25 26.48 29.40 30.55

#2 23.23 28.09 30.60 31.41

#3 22.46 26.22 26.54 33.61

#4 22.47 25.69 25.95 30.52

#5 22.20 23.26 26.53 23.62

#6 21.56 24.68 23.09 27.79

#7 23.54 25.73 28.57 34.78

#8 20.69 25.30 26.18 29.81

#9 20.35 25.03 24.82 29.07

#10 20.84 24.02 23.08 27.68

Avg. 21.76 25.45 26.48 29.88

Table 5.1: Deblurring performance evaluations in terms of PSNR values. Our methods
with segmentation, exemplar, and kernel-parametrization are compared.

tion and additional temporal information.

Next, we qualitatively compare our deblurring results with those of the state-of-

the-art exemplar-based method [12] with the videos used in their work. As shown

in Fig. 5.15, the captured scenes are dynamic and contain multiple moving objects.

The method [12] fails in restoring the moving objects, because the object motions

are large and distinct from the backgrounds. By contrast, our results show better

performances in deblurring moving objects and backgrounds. Notably, the exemplar-

based approach also fails in handling large blurs, as shown in Fig. 5.16, as the initially

estimated homographies in the largely blurred images are inaccurate. Moreover, this

approach renders excessively smooth results for mid-frequency textures such as trees,

since the method is based on interpolation without spatial prior for latent frames.
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(a) (b) (c) (d)

Figure 5.13: Comparative deblurring results using our blur dataset. (a) Ground truth sharp frames.
(b) Generated blurry frames including both motion and defocus blurs. (c) Deblurring results from
without handling defocus blurs. (d) Deblurring results handling defocus blurs.

(a) (b)

Figure 5.14: A failure case. (a) A blurry frame in the proposed dataset. (b) Our deblurring result.
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Table 5.2: Deblurring performance evaluations in terms of PSNR (SSIM). The matrix I denotes identity matrix.

(σ = 1.0) (σ = 1.5) (σ = 2.0)

Seq. ours (Gi = I) ours (full) ours (Gi = I) ours (full) ours (Gi = I)) ours (full)

#1 28.02 (0.8552) 27.97 (0.8608) 27.53 (0.8374) 27.85 (0.8473) 26.84 (0.8135) 27.25 (0.8250)

#2 26.62 (0.8407) 26.97 (0.8519) 25.18 (0.7809) 25.61 (0.7982) 23.91 (0.7160) 24.28 (0.7334)

#3 32.89 (0.9182) 34.07 (0.9353) 31.27 (0.8849) 32.49 (0.9063) 29.94 (0.8501) 30.75 (0.8680)

#4 36.77 (0.9684) 36.60 (0.9675) 36.50 (0.9665) 36.61 (0.9668) 36.12 (0.9639) 36.38 (0.9649)

#5 24.15 (0.7260) 24.01 (0.7306) 23.05 (0.6598) 24.29 (0.7252) 24.03 (0.6989) 24.18 (0.7077)

#6 27.04 (0.8577) 27.51 (0.8712) 25.18 (0.7880) 25.70 (0.8078) 23.80 (0.7187) 24.20 (0.7374)

#7 29.07 (0.8863) 29.62 (0.8986) 27.31 (0.8360) 27.93 (0.8529) 25.87 (0.7809) 26.35 (0.7973)

#8 27.93 (0.8828) 28.46 (0.8940) 26.05 (0.8320) 26.62 (0.8468) 24.52 (0.7768) 24.96 (0.7914)

#9 30.38 (0.8793) 30.90 (0.8919) 29.05 (0.8427) 29.79 (0.8593) 27.81 (0.8028) 28.43 (0.8188)

#10 29.13 (0.8843) 29.61 (0.8961) 27.61 (0.8432) 28.23 (0.8587) 26.25 (0.7982) 26.76 (0.8131)

#11 32.42 (0.9471) 32.77 (0.9519) 30.47 (0.9283) 31.64 (0.9383) 28.81 (0.9064) 29.74 (0.9171)

Avg. 29.49 (0.8769) 29.86 (0.8863) 28.11 (0.8363) 28.80 (0.8863) 27.08 (0.8023) 27.57 (0.8158)



120CHAPTER 5. VIDEO DEBLURRINGWITHKERNEL-PARAMETRIZATION

We also compare our method with the state-of-the-art segmentation-based de-

blurring approach [11]. The test video is shown in Fig. 5.17, which is a bilayer scene

used in their work. Although the bi-layer scene is a good example to verify the per-

formance of the layered model, inaccurate segmentation near the boundaries causes

serious artifacts in the restored frame. By contrast, since our method does not need

segmentation, ours restores the boundaries much better than the layered model.

In Fig. 5.18, we quantitatively compare the optical flow accuracies with [15] on

synthetic blurry images. As publicly available code of [15] cannot handle Gaussian

blur, we synthesized blurry frames which have motion blurs only. Although [15] was

proposed to handle blurry images in optical flow estimation, its assumption does not

hold in motion boundaries, which is very important for deblurring. Therefore, their

optical flow is inaccurate in the motion boundaries of moving objects. By contrast,

our model can cope with abrupt motion changes, and thus performs better than the

conventional model.

Moreover, we show the deblurring results with and without using the tempo-

ral coherence term in (5.5), and verify that our temporal coherence model clearly

restores edges and significantly reduces ringing artifacts near the edges in Fig. 5.19.

Finally, other deblurring results from numerous real videos are shown in Fig. 5.20.

Notice that, our model successfully restores the face which has highly non-uniform

blurs because the person moves rotationally (e.g. Fig. 5.20 (e)).

5.7 Summary

In this study, we introduced a novel method that removes general blurs in dynamic

scenes which conventional methods fail to. We inferred bidirectional optical flows
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to parametrize motion blur kernels, and estimated the scales of Gaussian blurs to

approximate defocus blur kernels. Therefore the proposed method could handle gen-

eral blurs, by estimating a pixel-wise different blur kernel. In addition, we proposed

a new single energy model that estimates optical flows, defocus blur maps and latent

frames, jointly. We also provided a framework and efficient solvers to minimize the

proposed energy function and it has been shown that our method yields superior

deblurring results to several state-of-the-art deblurring methods through intensive

experiments with real challenging blurred videos. Moreover, we provided the pub-

licly available benchmark dataset to evaluate the non-uniform deblurring methods

and we quantitatively evaluated the performance of the proposed method using the

proposed dataset.
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#032

#032

#036 #040 #032 #036 #040 #032 #036 #040

#014 #018 #022 #014 #018 #022 #014 #018 #022

#014

Figure 5.15: Left to right: Blurry frames of dynamic scenes, deblurring results of [12], and our
results.

Figure 5.16: Left to right: Blurry frame, deblurring result of [12], and ours.
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Figure 5.17: Comparison with segmentation-based approach. Left to right: Blurry frame, result of
[11], and ours.

(b) (c)

EPE = 23.3 EPE = 2.32

(a)
Figure 5.18: Left to right: Color coded ground truth optical flow between blurry images. Optical
flow estimation result of [15]. Our result.
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(a)

(b)

(c)

(a)

(b)

(c)

Figure 5.19: (a) A blurry frame of a video. (b) Our deblurring result without using Etemporal. (c)
Our deblurring result with Etemporal.
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(c)

(d)

(e)

(a)

(b)

Figure 5.20: Left to right: Numerous real blurry frames and our deblurring results.
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Chapter 6

Conclusion

In this dissertation, deblurring problems of dynamic scenes which include spatially

varying blurs caused by camera shake, object motions, and depth variations were

addressed. In particular, to solve this problem, several approaches were proposed

and removed spatially varying blurs in dynamic scenes unlike conventional methods

that were built on a static scene assumption. The proposed deblurring methods were

based on segmentation, exemplar, and kernel-parametrization.

• Deblurring with segmentation: As moving objects and background have dif-

ferent motion blurs in dynamic scenes, (motion) segmentation has been used to solve

dynamic scene deblurring problem, and a joint approach was proposed in this dis-

sertation to restore the sharp edges in the latent image. In particular, to handle

locally varying blurs, the weighted sum of multiple blur data models was proposed,

which jointly estimates the latent sharp image, different motion blurs, and their as-

sociated pixel-wise varying weights. As local weights are determined adaptively and

get high values when the corresponding data models have high data fidelities, the

127



128 CHAPTER 6. CONCLUSION

weight estimation process implies (soft) segmentation after all. Moreover, non-local

regularization for weights were employed to render more reliable segmentation re-

sults and our intensive experiments demonstrated the performance of the proposed

segmentation-based method.

•Deblurring with exemplar: Although our segmentation-based deblurring method

renders good results, it requires large and texture-rich segments to estimate accurate

blur kernels. However, motion blurs in real-world images, especially those captured

with a long exposure time or containing fast moving objects, are often large. Thus

this makes it difficult to estimate accurate blur kernels from a small and texture-less

segment, and other state-of-the-art dynamic scene deblurring methods may perform

poorly because of poor kernel approximation by inaccurate segmentation. Therefore,

to facilitate more accurate kernel estimation for dynamic scenes, a new method uti-

lizing a sharp exemplar image in addition to the blurred photograph was presented,

and the limitations of the previous segmentation-based approach were overcome.

The core of the exemplar-based method was a blur-aware flow estimation technique

for establishing dense correspondences between the two images based on the notion

that pixels with similar motion exhibit similar blur. Warping the sharp image by

these flows produces an exemplar that is used to assist in the estimation of blur

kernels, their associated image segments, and the latent image.

• Deblurring with kernel-parametrization: Previous segmentation-based and

exemplar-based methods could handle segment-wise varying blurs by segment-wise

rigid motions. However, they could not handle pixel-wise varying blurs in real dy-

namic scenes. Therefore, to handle pixel-wise varying blurs, locally varying blur
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kernel was approximated as linear and was parameterized with motion flows. Thus,

a new energy model that simultaneously estimates motion flow and the latent im-

age was proposed for the first time. A highly effective convex optimization-based

solution mitigating the computational difficulties of the proposed model was es-

tablished, and comparative experimental results on challenging real blurry images

demonstrated the efficiency of the proposed method.

Moreover, this image deblurring method with kernel-parametrization could be

naturally extended for video deblurring, and thus a video deblurring method which

could handle general blurs inherent in dynamic scenes was proposed using kernel-

parametrization. Specifically, to handle locally varying blurs in videos of dynamic

scenes, motion blur kernel was parameterized with bidirectional optical flows and

defocus blur kernel was approximated with Gaussian kernel. Thus, the proposed

energy model jointly estimated optical flows, defocus blur maps, and latent frames.

By minimizing the proposed energy function, significant improvements in remov-

ing blurs and estimating accurate optical flows among blurry frames were achieved.

Extensive experimental results demonstrated the superiority of the proposed video

deblurring method in real and challenging videos that state-of-the-art methods failed

in either deblurring or optical flow estimation.

Nevertheless, the proposed models have some limitations. Since they were im-

plemented on Matlab, it is time consuming, and more, needs large computational

resources. Thus, for further practical applications, reducing the running time by

code optimization and parallel implementation as well as efficient memory manage-

ment will be considered in future work. Moreover, the proposed deblurring methods
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assume that blur kernel is partially (segment-wise) uniform or locally linear. Thus,

proposed methods fail to deblur where blur kernel is locally difficult to approximate

as linear or parameterize with motion flows (i.e. occluded regions). To address this

problem, a learning-based dynamic scene deblurring method with a convolutional

neural network (CNN) can be considered using our realistic dataset captured with

the high-speed-camera, and the possibility of the learning-based approach will be

investigated in the future.
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국문초록

카메라 셔터가 열려있는 동안 카메라 혹은 물체의 움직임은 블러가 있는 흐릿한

영상을 만든다. 따라서 영상의 질을 확보하고 여러 가지 컴퓨터 비전 응용 문제의 전

처리로 활용하기 위해, 영상 내 블러를 제거하기 위한 많은 연구가 진행되었고, 특히

블러가 균일한 정적 환경에서의 디블러링 기법들이 다수 제안되었다. 그러나 카메라

모션, 움직이는 물체, 뎁스 변화 등 다양한 요인이 복합되어 있는 실제 동적 환경에서는

블러가 균일하지 않기 때문에 기존의 디블러링 기법으로는 동적 환경에서의 블러를

제거하기 어렵다.

본 학위 논문에서는 동적 환경에서 발생하는 균일하지 않은 블러를 제거하는 여러

가지 디블러링 알고리즘을 제시한다. 특히 동적 환경에서의 블러를 제거하기 위해서는,

국지적으로 모양이 다른 블러 커널을 정확하게 추정하는 것이 가장 중요한 부분이고,

이를위해영상분할(segmentation),표본영상(exemplar),그리고커널매개화(kernel-

parametrization)를활용하는세가지다른기법들을제안한다.제안하는기법들은비교

적큰세그먼트단위로변화하는커널을다루는기법부터픽셀단위로변화하는커널을

다루는 기법 순으로 소개 된다.

먼저, 영상 분할에 기반한 기법은, 영상 분할과 디블러링을 순차적으로 수행하는

기존의 기법들이 야기하는 모션 경계에서의 결함들을 제거하기 위해 영상 분할과 디블

러링 문제를 함께 해결하는 조인트 에너지 모델을 최초로 제안하고 이를 효율적으로

최적화 하는 방법을 연구한다. 다음으로, 선명한 표본 영상을 활용하는 기법은 비디오

혹은 브라켓 영상에서 쉽게 획득할 수 있는 선명한 영상을 이용하여 블러가 있는 영상
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을 디블러링 하는 기법으로, 영상 분할에 기반한 기법이 분할하는 세그먼트의 크기가

작거나 텍스처가 약한 영역에서 커널을 정확하게 추정할 수 없는 문제를 해결한다. 특

히, 선명한 영상과 흐릿한 영상 사이의 모션 정보를 디블러링에 활용함으로써, 더욱

우수한 디블러링 결과물을 얻을 수 있는 기법이다. 마지막으로, 커널 매개화에 기반한

디블러링기법은각픽셀마다서로다른모션을추정하고,이를이용하여커널을매개화

함으로써 궁극적으로는 동적환경에서 픽셀마다 변화하는 블러를 다룰 수 있도록 한다.

특히, 블러 커널을 선형 근사 함으로써 복잡한 커널 추정 문제를 단순화 하고, 제안하는

에너지 모델을 최적화 함으로써 흐릿한 단일 영상으로부터 선명한 영상과 모션 정보를

동시에 얻을 수 있다. 그리고, 단일 영상의 디블러링에 적용하는 커널 매개화 기법을

동영상 디블러링에 확장 적용하고, 더 나아가 동영상 내 존재하는 시/공간상의 정보를

함께 활용하면 매우 우수한 디블러링 결과물을 획득할 수 있을 뿐만 아니라, 블러가

있는 영상들 사이에서도 정확한 정합 관계를 추정할 수 있다.

제안한 알고리즘의 성능을 면밀히 평가하기 위하여 다양한 실험이 시행된다. 특히

본학위논문에서는고속카메라를이용하여새롭게제작한블러데이터셋을이용하여

제안하는 알고리즘들 간, 그리고 최신 기법과의 객관적인 성능 비교 결과가 제공되

고, 동적 환경에서 촬영한 실제의 영상들을 이용하여 다양한 기법들과 주관적인 화질

비교가 가능하도록 하였다.

주요어: 동적환경 디블러링, 비균일 디블러링, 영상 분할, 표본 영상, 커널 매개화

학번: 2011-30224
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