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Abstract

Obtaining a high-quality clean image is the ultimate goal of photography. In prac-

tice, daily photography is often taken in dynamic environments with moving objects

as well as shaken cameras. The relative motion between the camera and the objects

during the exposure causes motion blur in images and videos, degrading the visual

quality. The degree of blur strength and the shape of motion trajectory varies by every

image and every pixel in dynamic environments. The locally-varying property makes

the removal of motion blur in images and videos severely ill-posed.

Rather than designing analytic solutions with physical modelings, using machine

learning-based approaches can serve as a practical solution for such a highly ill-posed

problem. Especially, deep-learning has been the recent standard in computer vision

literature. This dissertation introduces deep learning-based solutions for image and

video deblurring by tackling practical issues in various aspects.

First, a new way of constructing the datasets for dynamic scene deblurring task is

proposed. It is nontrivial to simultaneously obtain a pair of the blurry and the sharp

image that are temporally aligned. The lack of data prevents the supervised learn-

ing techniques to be developed as well as the evaluation of deblurring algorithms. By

mimicking the camera image pipeline with high-speed videos, realistic blurry images

could be synthesized. In contrast to the previous blur synthesis methods, the proposed

approach can reflect the natural complex local blur from and multiple moving objects,

varying depth, and occlusion at motion boundaries.

Second, based on the proposed datasets, a novel neural network architecture for

single-image deblurring task is presented. Adopting the coarse-to-fine approach that is

widely used in energy optimization-based methods for image deblurring, a multi-scale

neural network architecture is derived. Compared with the single-scale model with

similar complexity, the multi-scale model exhibits higher accuracy and faster speed.
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Third, a light-weight recurrent neural network model architecture for video deblur-

ring is proposed. In order to obtain a high-quality video from deblurring, it is important

to exploit the intrinsic information in the target frame as well as the temporal relation

between the neighboring frames. Taking benefits from both sides, the proposed intra-

frame iterative scheme applied to the RNNs achieves accuracy improvements without

increasing the number of model parameters.

Lastly, a novel loss function is proposed to better optimize the deblurring models.

Estimating a dynamic blur for a clean and sharp image without given motion infor-

mation is another ill-posed problem. While the goal of deblurring is to completely get

rid of motion blur, conventional loss functions fail to train neural networks to fulfill

the goal, leaving the trace of blur in the deblurred images. The proposed reblurring

loss functions are designed to better eliminate the motion blur and to produce sharper

images. Furthermore, the self-supervised learning process facilitates the adaptation of

the deblurring model at test-time.

With the proposed datasets, model architectures, and the loss functions, the deep

learning-based single-image and video deblurring methods are presented. Extensive

experimental results demonstrate the state-of-the-art performance both quantitatively

and qualitatively.
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Chapter 1

Introduction

Recording visual snapshots of memorable moments is one of the long-lasting human

desire. Before the cameras became popular, painting was the way to record the percep-

tion but it could take from minutes to several days to finish. With the advent of modern

cameras, imaging sensors shortened the capturing time enabling hand-held cameras to

capture our daily life. Still, if any scene changes happen during the exposure period,

the taken photography gets blurred with textures being less recognizable as shown in

Figure 1.1. Such motion blur is one of the most common artifacts in photography,

degrading the visual quality significantly. In order to remove the motion blur and to

recover the desired clean and sharp images, deblurring research has received much

attention in computer vision community.

Motion blur occurs due to the shakes of camera and motions of the objects. When

the blur is spatially uniform from translational camera shakes, a blurry image b can be

considered a convolved output from the unknown sharp image s and the corresponding

blur kernel k as

b = k ∗ s+ n, (1.1)

where n is the pixel-wise image noise. Finding both the blur kernel and the latent

sharp image simultaneously from the underdetermined system is already an ill-posed

1



Figure 1.1: Examples of motion-blurred images

problem. Casting the joint estimation of blur kernel and the sharp image as energy

optimization framework, image priors were designed from natural image statistics [26,

93] to mitigate the ill-posedness and to reflect the preference on the desired solutions.

However, in general, camera is shaken in 3D space along with rotational move-

ments, making the blur to be spatially non-uniform. Furthermore, freely moving ob-

jects complicates the blur trajectories and identifying the blur becomes more difficult.

To express locally varying blur, (1.1) can be rewritten as

B = KS+N, (1.2)

where B, S, N are the blurry and the sharp images and the noise in a vectorized form.

K is a sparse matrix whose rows are the blur kernel for each pixel. The solution space

for the spatially non-uniform blur is much larger than the spatially uniform case and

the problem becomes severely ill-posed.

To cope with the camera shakes in 3D space for static scenes, [32, 33, 37, 111,

116] modeled the camera translation and rotation. Allowing more generic motion than

camera shakes, [58, 40, 43] proposed dynamic motions by segmenting images from the

detected motion. To overcome the dependency in segmentation quality in the previous

works, [44] proposed a segmentation-free method by parameterizing the blur kernel as

locally linear motion vectors.
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Similarly to image deblurring research, early video deblurring methods assumed

the scenes to be static [9, 60, 12, 57, 85], focusing on the camera motion. Extending the

flexibility in motion modeling, [14, 5, 114] exploited the information from segmented

scene layers. Motion modeling was generalized in [45] by using the bidirectional op-

tical flow to estimate the pixel-wise blur kernels.

However, the previous approaches in image and video deblurring require the blur

trajectories to be modeled from the physical formulations. The freely moving objects

are hard to be modeled and parameterizing every feasible motion in a scene is ex-

tremely challenging. For such a highly ill-posed task, end-to-end learning methods

could avoid the difficulty in physical modeling.

The main goal of this dissertation is to improve the dynamic scene deblurring

by proposing deep learning-based approaches. To enable deep learning for deblurring

problem, several steps are proposed, tackling different components. First, a novel way

of constructing large-scale datasets for deblurring is proposed. Second, a convolution

neural network architecture for image deblurring is presented by taking the virtue of

the traditional optimization scheme in the deblurring task. Third, a recurrent neural

network architecture for video deblurring is proposed by exploiting the intra-frame

information as well as the inter-frame temporal relation. Lastly, a novel loss function

is introduced to better optimize the deblurring network models by noticing the char-

acteristics of clean images. The organization of the dissertation is described below

with the contributions and the summarized details. The overview of the dissertation is

summarized in Figure 1.2.

In Chapter 2, a way to generate deblurring datasets is introduced [72, 71]. A de-

blurring dataset requires a pair of blurry and the sharp image to capture the same

moment with the difference in blur magnitude. In normal imaging conditions, record-

ing exact the same scene with different conditions simultaneously is a nontrivial task.

In contrast, mimicking camera image pipeline from a high-speed video can mitigate

the problem. With consecutive frames being the slowly varying scenes, accumulat-
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Figure 1.2: Dissertation overview

ing them over time simulates the realistic motion blur generation process. Picking the

temporal center among the accumulated frames provides the corresponding sharp im-

age for the synthesized blurry image. Thus, capturing high-frame-rate videos leads to

deblurring dataset generation. Due to the lack of deblurring datasets, most previous

deblurring results were only evaluated qualitatively. The proposed GOPRO and REDS

datasets serve as test beds to benchmark deblurring algorithms [77, 76, 75] as well as

the training datasets for deep learning models.

In Chapter 3, a convolutional neural network architecture is proposed for image de-

blurring problem [72]. As neural networks and deep learning became popular tools for

computer vision tasks, convolutional networks are trained for deblurring task with the

datasets proposed in chapter 2. However, even with the same number of weights, the

achieved accuracy from training differs by the model architecture. To remove motion

blur from an image with neural networks, the receptive field should be wide enough

so that the scattered information along the blur trajectory could be handled. Simple

stacking of sequential layers increase the receptive field proportional to the network

depth. In order to increase the receptive field efficiently, traditional coarse-to-fine op-

timization scheme is adopted to build a multi-scale network architecture design. The

multi-scale architecture first deblurs the given image in a coarse scale where the blur
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magnitude is smaller. At the fine-scales, deblurring is performed by combining the in-

put at the corresponding fine scale and the coarse deblurred image. They complement

each other by providing the detailed texture and the reduced motion blur from the for-

mer process. The multi-scale networks not only perform better than the single-scale

model with a similar complexity but also run in faster speed.

In Chapter 4, recurrent neural networks are adopted for video deblurring with ad-

ditional operations [74]. Recurrent neural networks use the recurrence computation to

let the hidden state propagate the information from the past to future frames. Due to the

relevant information encoded in the hidden states, blur in the target frame can be better

removed. While the hidden states act as a key for performance improvements in RNNs,

they do not reflect the relation between the past and the current frames but only contain

the information extracted from the past frames. To complement the hidden states with

the relational information between the past and the current, the recurrence can be used

to inject additional information. Given a fixed input blurry frame, the recurrence is

reused to update the hidden states without moving forward in time. The hidden state is

updated in the intra-frame iterations multiple times before the final deblurred frame is

computed. Starting from a light-weight RNN cell, the proposed IFI-RNNs improve the

deblurring performance in fast speed. In order to additionally improve the deblurring

performance, the model is regularized at training time to favor more iterations only

when significant improvement is available. Moreover, the model employing multiple

cells exhibit further performance advances from the intra-frame iterations.

In Chapter 5, novel loss functions for deblurring are developed to predict sharper

images [73]. In general, L1 or L2 distance functions are the most widely used loss

functions to train neural networks in image restoration tasks. They optimize PSNR of

the restored images but tend to produce rather blurry images as they prefer to find the

average of possible solutions. Thus, applying them in deblurring task may yield im-

perfect removal of motion blur and partially leave the trace of blur. In order to better

remove motion blur in the images, different types of loss functions should be designed
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to train neural networks. Similarly to the ill-posedness in the deblurring task, syn-

thesizing a realistic motion blur from only a single sharp image is another ill-posed

problem as there could be infinitely many motion trajectories. In contrast, from an im-

perfectly deblurred image, it is possible to reconstruct the original blur by recognizing

and amplifying the remaining blur with a learned reblurring neural network. By notic-

ing the difference between the sharp and the incompletely deblurred images, a novel

class of loss functions is designed in both supervised and self-supervised forms. The

supervised reblurring loss compares the deblurred and the sharp images by trying to

find the remaining blur footprint and magnifying it. The self-supervised reblurring loss

inspects if an image is well deblurred by comparing it with its reblurred image. The

deblurring models trained from the reblurring loss provide sharper images with im-

proved perceptual quality. The self-supervised loss can further improve the perceptual

quality from test-time adaptation.

The conclusion of the dissertation is provided in Chapter 6 with the consolidated

contributions summary and the suggestions for future works.
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Chapter 2

Generating Datasets for Dynamic Scene Deblurring

2.1 Introduction

Non-uniform blind motion deblurring for general dynamic scenes is a challenging

computer vision problem. Motion blur occur not only from the camera shakes but

also from the free motion of multiple objects. Conventional image and video deblur-

ring methods tried to model the structure of blur by parameterizing the trajectory from

physical formulations. For static scenes, camera movements with translations and ro-

tations were considered to find the blur kernels [32, 37, 111]. Allowing more generic

motions, [58] first proposed a method to handle locally varying blur by dividing the

scene into multiple segments with motion variation. More smooth transition of blur

kernels were proposed in [33, 40] but they were limited in handling abrupt changes of

motion. In [43], dynamic scene deblurring was proposed so that the blur kernel, the

latent image, and the motion segmentation was jointly estimated, considering a set of

blur types. [44] generalized the approach and proposed segmentation-free method by

modeling the blur as pixel-wise locally linear motion vectors.

Typically, energy minimization frameworks are designed with the data terms and

the regularization terms to jointly find the latent sharp image and the spatially varying

blur kernel. With B and L as the vectorized blurry and the latent sharp images and K
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as the blur kernel matrix, the energy is formulated as

E = Edata(B,L,K) + Ereg(L,K). (2.1)

The data term encodes the likelihood of L convolved with K reconstructing B by

‖B−KL‖. To emphasize the object edges, ‖∇B−K∇L‖ is often used, too. As the

solution space satisfying low Edata is very large, Ereg adopts prior knowledge on L

and K for regularization. The energy terms are designed to follow the physical motion

modeling in dynamic scenes with carefully designed priors [58, 33, 40, 43, 44]. The

higher the degree of freedom in the motions in dynamic scenes, the more complex

the energy formulations become. Generalizing the energy formulations for natural dy-

namics with high degree of freedom is prohibitively complicated and computationally

expensive.

In contrast, letting a neural network model learn to deblur images can alleviate

the complexity in system designs. With the advent of deep learning in computer vi-

sion [51, 101, 34, 35], neural networks were applied to many computer vision tasks in-

cluding image restoration problems such as super-resolution [21] and denoising [125].

However, it has been difficult to apply such learning methods to image and video

deblurring problems due to the lack of available datasets. Furthermore, quantitative

benchmarks were limited as evaluation with sharp ground-truth was not available for

real blurry images.

To facilitate early learning methods and benchmarks of deblurring algorithms,

there were several attempts to synthesize motion blur. In [115] and [92], blur was

synthesized by convolving an image with a low-pass filter but they were limited to

spatially uniform cases. On the other hand, [50] used a robotic arm to replay cam-

era motion on the same scenes to capture both the sharp and the blurry images. To

prevent scene changes during the motion replay, printed photographs were attached

on a planar board instead of capturing real scenes. [114] proposed layered motion

models where the foreground and the background motions are different. Later, [54]
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recorded 6D camera trajectories using inertial sensors of a cell phone and applied

the non-uniform blur to internet-collected images. While these non-uniform blur syn-

thesis methods [50, 114, 54] generate spatially non-uniform blur, they have several

limitations. First, planar depths were assumed with single or double layers rather than

reflecting the true depth of scenes. Second, most of the motions were limited to camera

shakes without natural object motions. Third, they do not provide temporally center-

aligned pairs of the blurry and the sharp images, making the reference-based evaluation

with PSNR and SSIM to be less meaningful.

In this chapter, we propose to bring motion realism in dynamic scene blur synthesis

by using high-speed videos. The blurring process can be modeled by the continuous

integration of sharp images during the shutter exposure [105, 45, 47, 54]. We captured

a sequence of sharp frames of a dynamic scene with high-speed cameras and averaged

them to generate a blurry image. By mimicking the camera image pipeline, we propose

GOPRO dataset [72] with videos captured in 240 fps To make the motion blur even

more realistic in terms of temporal continuity, REDS dataset [71] is proposed with

frame-rate upsampled to 1920 fps. REDS dataset further involves additional plausible

artifacts combined with the motion blur to cast more challenging environments. Both

the GOPRO and the REDS datasets provide temporally aligned pairs of the blurry and

the sharp frames. The large-scale datasets enable not only the training of learning-

based deblurring and also the quantitative comparison of different algorithms [77].

2.2 GOPRO dataset

Instead of trying to physically designing the blur kernel [54] to convolve on a sharp

image, we choose to record the slowly varying sharp scenes to be integrated over time

for blur image generation.

When taking a photograph, the camera sensor receives the light during the expo-

sure and converts the collected signal into an RGB image. If the scene changes over
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time, the sensor signal changes are accumulated to generate motion blur. The sensor

stimulus at each moment can be considered a corresponding signal for the sharp image

captured at an instant exposure. The integrated signal is then transformed into pixel

values by nonlinear CRF (Camera Response Function). Thus, the blurring process can

be approximated by accumulating frames from a high-frame-rate video as

B = g

(
1

T

∫ T

t=0
Ŝ(t)dt

)
' g

(
1

M

M−1∑
i=0

g−1(S[i])

)
, (2.2)

by following the definition of definite integral. B is the blurry image, S[i] is the i-th

sharp frame in a video of length M and the recording duration T . The CRF g maps the

sRGB frame S[i] and the corresponding sensor signal Ŝ(t) at time t as S[i] = g(Ŝ(t)).

In practice, we only have the sRGB video frames while the original signal values and

the CRF are unknown.

It is known that non-uniform deblurring becomes significantly difficult when non-

linear CRF is involved, and nonlinearity should be taken into account. However, cur-

rently, there are no CRF estimation techniques available for an image with spatially

varying blur [102]. When the ground truth CRF is not given, a common practical

method is to approximate CRF as a gamma curve with γ = 2.2 as follows, since it

is known as an aproximated average of known CRFs [102].

g(x) = x1/γ . (2.3)

Thus, the sensor signal for the observed frame is obtained by Ŝ(T×i/M) = g−1(S[i])

with the inverse CRF g−1 and we can synthesize the blurry image B by using (2.2).

In Figure 2.1, our kernel-free blurry image is compared with a conventional syn-

thesized image with uniform blur kernel. Notably, the blur image generated by our

method exhibits realistic and spatially varying blurs caused by the moving person and

the static background while the conventional blur synthesized by convolution does not.

We used GOPRO4 Hero Black camera to generate GOPRO dataset. We took 240
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(a) Sharp (b) Blur from convolution (c) Blur from accumulation

Figure 2.1: Visual comparison of the blur by the synthesis method. In this case,
blur is mainly caused by the motion of person, leaving the background sharp. The blur
kernel is non-uniform and complex. However, when the blurry image is synthesized
by convolution with a uniform kernel, the background also gets blurred as if blur was
caused by camera shake. To model dynamic scene blur, our kernel-free method is
required. Our blur from accumulation accurately models the natural motion.

fps videos with the GOPRO camera and then averaged varying number (7 - 13) of

successive sharp frames to produce blurs of different strengths. For example, averaging

15 frames simulates a photo taken at 1/16 shutter speed. Notably, the sharp latent image

corresponding to each blurry one is defined as the mid-frame among the sharp frames

that are used to make the blurry image. Finally, GOPRO dataset is composed of 3214

pairs of blurry and sharp images at 1280x720 resolution. 2103 image pairs are for

training and the rest 1111 images are for testing. The proposed GOPRO dataset is

publicly available online 1.

2.3 REDS dataset

We go a step further from the GOPRO dataset generation method to bring more realism

in the blurry images and to improve the quality of the dataset. Our novel REDS dataset

is proposed with REalistic and Dynamic Scenes of 720× 1280 resolution high-quality

video frames collected by ourselves. It has 30000 frames (300 sequences of length

100) with various contents, locations, natural and handmade objects. Moreover, we

1https://seungjunnah.github.io/Datasets/gopro
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(a) REDS validation frames (b) REDS test frames

Figure 2.2: Visualization of the proposed REDS validation and test set frames.
REDS contains 240, 30, 30 sequences for training, validation, test, respectively. Each
sequence has 100 frame length.

organized the first example-based video deblurring and video super-resolution online

challenges which used the REDS dataset. The dataset employs 4 types of degradations

and corresponding competition tracks: motion blur, motion blur with compression ar-

tifacts, bicubic downscaling, and bicubic downscaling with motion blur. REDS dataset

is for training and benchmarking example-based deblurring and super-resolution meth-

ods. REDS is intended to complement the existing video deblurring and SR datasets

(see Fig. 2.3) to increase the content diversity and provide more realism in degradation,

especially, motion blur.

The detailed data generation process is described below. The high-speed videos are

recorded and the virtual frame rate in increased by interpolating the frames. Indepen-

dently, the camera response function is measured to make blur synthesis process more

realistic. After averaging the frames to simulate blur, additional artifacts are optionally

added to generate more practical degradations.

Recording: We manually recorded 300 RGB video clips, paying attention to the qual-

ity of each frame, diversity of source contents (scenes and locations) and dynamics
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(a) GOPRO dataset [72] (b) DVD dataset [97]

(c) Real blurry videos [15] (d) Vid4 dataset [63]

Figure 2.3: Visualization of the other popular video datasets. (a), (b), and (c) are
for deblurring and (d) is for super-resolution.

of various motion. We used the GoPro HERO6 Black camera to record videos of

1080 × 1920 resolution at 120 fps. In contrast to the previous datasets for deblur-

ring that captured videos in higher frame rate (240 fps) [72, 97], we choose slower

frame rate for better image quality. Note that most consumer-level high-speed cameras

don’t access all of the sensor array cells during the readout time and performs inter-

polation to fill in the missing values. Under the limited computational power of the

camera processors, decreasing the frame rate allows access to more sensor array ele-

ments, increasing the number of effective pixels per frame. Each frame remains sharp

when the shutter speed is fast, however, the number of effective pixels is still less than
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(d) Sharp (e) Blur (120 fps) (f) Blur (240 fps) (g) Blur (480 fps) (h) Blur (1920 fps)

(a) Sharp (b) Blur (120 fps) (c) Blur (1920 fps)

Figure 2.4: Visual comparison of the synthesized blur by the virtual frame rate
of video. Averaging frames at 120 or 240 fps could cause unnatural blurs with ghost
artifacts in case of large motion. The noted fps refers to the virtual frame rate of inter-
polated videos that are averaged to create blurry frames.

the full resolution. Also, noise or MPEG lossy compression could bring some visual

artifacts.

Frame interpolation: Motion blur occurs due to the dynamics during the camera ex-

posure and averaging the high-frame-rate video frames approximates the photograph

taken at a longer exposure [72]. When the frame rate is not high enough, simply av-

eraging frames may generate unnatural spikes or steps in the blur trajectory [112],

especially when the spatial resolution is high and the motion is fast. To fill in the

missing information between the frames, we employed a CNN trained to interpolate

frames [80]. We chose a learned CNN instead of using optical flow to handle nonlinear

motions and the warping artifacts. We increase the frame rate to virtual 1920 fps by

recursively interpolating the frames. The effect of interpolation in the quality of blur

is shown in Figure 2.4.

Calibration: When taking a picture, the sensor signal is converted to RGB pixels

by a nonlinear CRF. Instead of using a theoretical average of all CRFs as in GOPRO

dataset [72], to make REDS dataset, we calibrated the inverse CRF using [90] by using
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Figure 2.5: Calibrated inverse camera response function of GoPro HERO6 Black
for RGB channels. It differs from the linear or gamma function assumptions from the
previous datasets.

images captured at various exposures. As 8-bit sRGB representation saturates at value

255, the calibration could be inaccurate at higher pixel values (p > 250) when the

calibration images are over-exposed. Hence, we replace the inverse CRF at p > 250

by appending a linear function having a slope of the inverse CRF at p = 250. Here,

p denotes the RGB pixel value. We visualize the estimated CRF in Figure 2.5 and

compare with linear [97] and gamma function [72] that are used for synthesizing blur.

Blur synthesis: We average the 1920 fps video frames to produce virtual 24 fps blurry

video with duty cycle τ = 0.8. The averaging is done in the signal space to mimic

a camera imaging pipeline, using the estimated CRF and the inverse CRF. To further

increase the per-pixel quality of the data, we suppress the noise and artifacts by down-
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(a) Original (b) Blurry (c) Blurry & Compressed

(e) Blurry LR

(d) LR

(f) Original (g) Blurry (h) Blurry & Compressed (i) LR (j) Blurry LR

Figure 2.6: Visualization of the REDS dataset and the provided degradations. In
NTIRE 2019 video deblurring challenge, motion blurs (Track 1) and compressed video
(Track 2) data were provided. NTIRE 2019 video super-resolution challenge provided
the low-resolution of the sharp (Track 1) and the blurry (Track 2) frames.

scaling both the synthesized blurry frames and the recorded sharp frames by 2/3 to

720× 1280 resolution. We used OpenCV function resize bicubic interpolation as it

produces visually sharper results than MATLAB due to the different parameter values.

There are 300 sequences in total, and each sequence contains 100 pairs of the blurry

and sharp frame. We use those generated blurry videos as input for the NTIRE 2019

Video Deblurring Challenge Track 1: Clean.

Video compression: The above process was done to produce high-quality videos and

blurs without realistic artifacts such as noise and compression. To promote the devel-

opment of deblurring methods that apply to more realistic and common degradation,

we compress the frames by saving the videos in mp4 (MPEG-4 Part 14) format. We

used MATLAB VideoWriter to save the videos at 60% quality. Those compresed

blurry videos are introduced to the NTIRE 2019 Video Deblurring Challenge: Track 2

Compression artifacts.
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Downscaling: We also downscale the sharp and the blurry frames, respectively, to

promote the development of example-based video super-resolution algorithms. They

are employed in the NTIRE 2019 Video Super-Resolution Challenge: Track 1 Clean

and Track 2 Blur. We used MATLAB function imresize bicubic interpolation at

scale 4.

Diversity: We visited various countries, cities and towns, institutes and facilities,

theme parks, festivals, palaces and castles, tourist attractions, historical places, zoos,

stores, water parks, etc. to capture diverse scenes and objects. The contents include

people from various nationalities, crowds, handmade objects, buildings, structures,

artworks, furniture, vehicles, colorful textured clothes, and many other objects of dif-

ferent categories.

Partitions: After collecting and processing the REDS 300 video sequences, we com-

puted the PSNR between the blurry and sharp frames. We split the REDS 300 se-

quences of frames into the train, validation, test sets. We randomly generated partitions

of 240 train, 30 validation, and 30 test sequences until we achieved a good balance in

quality. Figure 2.2 visualizes part of the 30 sequences for validation and testing of the

REDS dataset.

Figure 2.6 shows an example of set of degraded images provided in REDS. The

proposed REDS dataset is available online 2.

The REDS dataset was used to encourage development of video deblurring and

super-resolution algorithms in NTIRE 2019 Challenges [77, 78]. REDS was further

employed in NTIRE 2020 Challenge to promote image deblurring, application on mo-

bile devices, and video deblurring [76]. In NTIRE 2021 Challenge, REDS was em-

ployed in developing image restoration algorithms for hybrid degradations such as

low-resolution and JPEG artifacts jointly with motion blur [75].

2https://seungjunnah.github.io/Datasets/reds
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2.4 Conclusion

In this chapter, we introduced the large-scale deblurring datasets for image and video

deblurring. The GOPRO and the REDS datasets contain realistic blur as well as the

ground truth sharp images that are temporally center-aligned with the pairs. They facil-

itate the training learning-based methods for deblurring and quantitative benchmarks

of deblurring algorithms as the standard benchmark datasets.
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Chapter 3

Deep Multi-Scale Convolutional Neural Networks for

Single Image Deblurring

3.1 Introduction

The goal of single image deblurring problem is to estimate the unknown sharp image

from a given blurry image. Earlier studies focused on handling the translational and

rotational camera shakes and more later works tried to handle general object motions

in dynamic environments. Most of these approaches are based on the blur model [111,

32, 37, 33] as (1.2). In practice, the blur kernel derived from the physical motion as

well as the latent sharp image has to be jointly estimated from a single blurry image.

Due to the lack of blur datasets with ground truth sharp images, the previous ap-

proaches developed energy-minimization methods as (2.1). For example, [43] assumed

locally uniform blur in image segments and [44] proposed segmentation-free method

by considering the blur to be locally linear. However, such blur kernel approximation

methods could be inaccuracey, especially in the cases of abrupt motion discontinuities

and occlusions. In the joint energy minimization frameworks, erroneous kernel esti-

mation affects the quality of the latent image, resulting in undesired ringing artifacts.

Recently, CNNs (Convolutional Neural Networks) have been applied in numer-
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(a) (b) (c)

Figure 3.1: (a) Input blurry image. (b) Result of Sun et al. [99]. (c) Our deblurred
result. Our results show clear object boundaries without artifacts.

ous computer vision problems including deblurring problem and showed promising

results [115, 92, 99, 10]. Since no pairs of real blurry image and ground truth sharp

image are available for supervised learning, they commonly used blurry images gen-

erated by convolving synthetic blur kernels. In [115, 92, 10], synthesized blur images

with uniform blur kernel are used for training. And, in [99], classification CNN is

trained to estimate locally linear blur kernels. Thus, CNN-based models are still suited

only to some specific types of blurs, and there are restrictions on more common spa-

tially varying blurs.

Therefore, the existing methods still have many problems before they could be

generalized and used in practice. These are mainly due to the use of simple and unre-

alistic blur kernel models. Thus, to solve those problems, in this chapter, we propose

a novel end-to-end deep learning approach for dynamic scene deblurring by using the

GOPRO dataset proposed in chapter 2.

First, we propose a multi-scale CNN that directly restores latent images without

assuming any restricted blur kernel model. Especially, the multi-scale architecture is

designed to mimic conventional coarse-to-fine optimization methods. Unlike other ap-

proaches, our method does not estimate explicit blur kernels. Accordingly, our method

is free from artifacts that arise from kernel estimation errors. Second, we train the pro-
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posed model with a multi-scale loss that is appropriate for coarse-to-fine architecture

that enhances convergence greatly. In addition, we further improve the results by em-

ploying adversarial loss [30]. Third, we propose a new realistic blurry image dataset

with ground truth sharp images. To obtain kernel model-free dataset for training, we

employ the dataset acquisition method introduced in [47]. As the blurring process can

be modeled by the integration of sharp images during shutter time [47, 60, 45], we

captured a sequence of sharp frames of a dynamic scene with a high-speed camera and

averaged them to generate a blurry image by considering gamma correction.

By training with the GOPRO dataset and adding proper augmentation, our model

can handle general local blur kernel implicitly. As the loss term optimizes the result

to resemble the ground truth, it even restores occluded regions where blur kernel is

extremely complex as shown in Figure 3.1. We trained our model with millions of

pairs of image patches and achieved significant improvements in dynamic scene de-

blurring. Extensive experimental results demonstrate that the performance of the pro-

posed method is far superior to those of the state-of-the-art dynamic scene deblurring

methods in both qualitative and quantitative evaluations.

3.1.1 Related Works

There are several approaches that employed CNNs for deblurring [115, 99, 92, 10].

Xu et al. [115] proposed an image deconvolution CNN to deblur a blurry image in

a non-blind setting. They built a network based on the separable kernel property that

the (inverse) blur kernel can be decomposed into a small number of significant filters.

Additionally, they incorporated the denoising network [24] to reduce visual artifacts

such as noise and color saturation by concatenating the module at the end of their

proposed network.

On the other hand, Schuler et al. [92] proposed a blind deblurring method with

CNN. Their proposed network mimics conventional optimization-based deblurring

methods and iterates the feature extraction, kernel estimation, and the latent image
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estimation steps in a coarse-to-fine manner. To obtain pairs of sharp and blurry images

for network training, they generated uniform blur kernels using a Gaussian process

and synthesized lots of blurry images by convolving them to the sharp images col-

lected from the ImageNet dataset [19]. However, they reported performance limits for

large blurs due to their suboptimal architecture.

Similarly to the work of Couzinie-Devy et al. [16], Sun et al. [99] proposed a

sequential deblurring approach. First, they generated pairs of blurry and sharp patches

with 73 candidate blur kernels. Next, they trained classification CNN to measure the

likelihood of a specific blur kernel of a local patch. And then smoothly varying blur

kernel is obtained by optimizing an energy model that is composed of the CNN likeli-

hoods and smoothness priors. Final latent image estimation is performed with conven-

tional optimization method [127].

Note that all these methods require an accurate kernel estimation step for restoring

the latent sharp image. In contrast, our proposed model is learned to produce the latent

image directly without estimating blur kernels.

In other computer vision tasks, several forms of coarse-to-fine architecture or

multi-scale architecture were applied [25, 23, 20, 66, 22]. However, not all multi-scale

CNNs are designed to produce optimal results, similarly to [92]. In depth estimation,

optical flow estimation, etc., networks usually produce outputs having smaller resolu-

tion compared to input image resolution [25, 23, 22]. These methods have difficulties

in handling long-range dependency even if multi-scale architecture is used.

Therefore, we make a multi-scale architecture that preserves fine-grained detail

information as well as long-range dependency from the coarser scales. Furthermore,

we make sure intermediate level networks help the final stage in an explicit way by

training network with multi-scale losses.
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3.1.2 Kernel-Free Learning for Dynamic Scene Deblurring

Conventionally, it has been essential to find blur kernel before estimating latent im-

age. CNN based methods were no exception [92, 99]. However, estimating kernel

involves several problems. First, assuming simple kernel convolution cannot model

several challenging cases such as occluded regions or depth variations. Second, kernel

estimation process is subtle and sensitive to noise and saturation, unless blur model is

carefully designed. Furthermore, incorrectly estimated kernels give rise to artifacts in

latent images. Third, finding spatially varying kernel for every pixel in dynamic scene

requires a huge amount of memory and computation.

Therefore, we adopt kernel-free methods in both the blur dataset and latent image

estimation. In blurry image generation, we used GOPRO dataset to follow and ap-

proximate camera imaging process, rather than assuming specific motions, instead of

finding or designing complex blur kernel. Note that the GOPRO dataset is composed

of blurry and sharp image pairs only, and that the local kernel information is implicitly

embedded in it. For latent image estimation, we do not assume blur sources and train

the model solely on our blurry and sharp image pairs. Thus, our proposed method does

not suffer from kernel-related problems in deblurring.

3.2 Proposed Method

In our model, finer scale image deblurring is aided by coarser scale features. To exploit

coarse and middle level information while preserving fine level information at the same

time, input and output to our network take the form of Gaussian pyramids. Note that

most of other coarse-to-fine networks take a single image as input and output.

3.2.1 Model Architecture

In addition to the multi-scale architecture, we employ a slightly modified version of

residual network structure [34] as a building block of our model. Using residual net-
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Figure 3.2: (a) Original residual network building block. (b) Modified building
block of our network. We did not use batch normalization layers since we trained the
models with mini-batch of size 2, which is smaller than usual for batch normalization.
We found removing rectified linear unit just before the block output is beneficial in
terms of performance, empirically.

work structure enables deeper architecture compared to a plain CNN. Also, as blurry

and sharp image pairs are similar in values, it is efficient to let parameters learn the

difference only. We found that removing the rectified linear unit after the shortcut con-

nection of the original residual building block boosts the convergence speed at training

time. We denote the modified building block as ResBlock. The original and our modi-

fied building block are compared in Figure 3.2.

By stacking enough number of convolution layers with ResBlocks, the receptive

field at each scale is expanded. Details are described in the following paragraphs. For

sake of consistency, we define scale levels in the order of decreasing resolution (i.e.

level 1 for finest scale). Unless denoted otherwise, we use total K = 3 scales. At
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Figure 3.3: The proposed multi-scale network architecture. Bk, Lk, Sk denote the
blurry, the latent, and the ground truth sharp images, respectively. Subscript k denotes
the k-th scale level in the Gaussian pyramid, which is downsampled to 1/2k scale. Our
model takes a blurry image pyramid as the input and outputs an estimated latent image
pyramid. Every intermediate scale output is trained to be sharp by multi-scale loss. At
test time, the deblurred image at the original scale is chosen as the final result.

training time, we set the resolution of the input and output Gaussian pyramid patches

to be {256× 256, 128× 128, 64× 64}. The scale ratio between consecutive scales is

0.5. For all convolution layers, we set the filter size to be 5× 5. As our model is fully

convolutional, at test time, the patch size may vary as the GPU memory allows. The

overall architecture is shown in Figure 3.3.

Coarsest level network

At the front of the network locates the coarsest level network. The first convolution

layer transforms 1/4 resolution, 64×64 size image into 64 feature maps. Then, 19 Res-

Blocks are stacked followed by last convolution layer that transforms the feature map

into input dimension. Every convolution layer preserves resolution with zero padding.

In total, there are 40 convolution layers. The number of convolution layers at each
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scale level is determined so that total model should have 120 convolution layers. Thus,

the coarsest level network has receptive field large enough to cover the whole patch. At

the end of the stage, the coarsest level latent sharp image is generated. Moreover, in-

formation from the coarsest level output is delivered to the next stage where finer scale

network is. To convert a coarsest output to fit the input size of the next finer scale, the

output patch passes an upconvolution [64] layer, while other multi-scale methods use

reshaping [25] or upsampling [20, 23, 66]. Since the sharp and blurry patches share

low-frequency information, learning suitable feature with upconvolution helps to re-

move redundancy. In our experiment, using upconvolution showed better performance

than upsampling. Then, the upconvolution feature is concatenated with the finer scale

blurry patch as an input.

Finer level network

Finer level networks basically have the same structure as in the coarsest level network.

However, the first convolution layer takes the sharp feature from the previous stage as

well as its own blurry input image, in a concatenated form. Every convolution filter

size is 5× 5 with the same number of feature maps as in the coarsest level. Except for

the last finest scale, there is an upconvolution layer before the next stage. At the finest

scale, the original resolution sharp image is restored.

3.2.2 Training

Our model is trained on the proposed GOPRO dataset. Among 3214 pairs, 2103 pairs

were used for training and remainings were used for the test. To prevent our network

from overfitting, several data augmentation techniques are involved. In terms of geo-

metric transformations, patches are randomly flipped horizontally and vertically, ro-

tated by 90 degrees. For color, RGB channels are randomly permuted. To take image

degradations into account, saturation in HSV colorspace is multiplied by a random

number within [0.5, 1.5]. Also, Gaussian random noise is added to blurry images. To
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make our network be robust against different strengths of noise, standard deviation

of noise is also randomly sampled from Gaussian distribution, N(0, (2/255)2). Then,

value outside [0, 1] is clipped. Finally, 0.5 is subtracted to set input and output value

range zero-centered, having range [-0.5, 0.5].

In optimizing the network parameters, we trained the model in a combination of

two losses, multi-scale content loss and adversarial loss.

Multi-scale content loss

Basically, the coarse-to-fine approach desires that every intermediate output becomes

the sharp image of the corresponding scale. Thus, we train our network so that inter-

mediate outputs should form a Gaussian pyramid of sharp images. MSE criterion is

applied to every level of pyramids. Hence, the loss function is defined as

Lcont =
1

2K

K∑
k=1

1

ckwkhk
‖Lk − Sk‖2, (3.1)

where Lk, Sk denote the model output and ground truth image at scale level k, respec-

tively. The loss at each scale is normalized by the number of channels ck, width wk,

and the height hk (i.e. the total number of elements).

Adversarial loss

Recently, adversarial networks are reported to generate sharp realistic images [30, 20,

88]. Following the architecture introduced in [88], we build discriminator as in Ta-

ble 3.1. Discriminator takes the output of the finest scale or the ground truth sharp

image as input and classifies if it is deblurred image or sharp image.

The adversarial loss is defined as

Ladv = E
S∼psharp(S)

[logD(S)] + E
B∼pblurry(B)

[log(1−D(G(B)))], (3.2)
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# Layer Weight dimension Stride

1 conv 32× 3× 5× 5 2

2 conv 64× 32× 5× 5 1

3 conv 64× 64× 5× 5 2

4 conv 128× 64× 5× 5 1

5 conv 128× 128× 5× 5 4

6 conv 256× 128× 5× 5 1

7 conv 256× 256× 5× 5 4

8 conv 512× 256× 5× 5 1

9 conv 512× 512× 4× 4 4

10 fc 512× 1× 1× 1 -

11 sigmoid - -

Table 3.1: Architecture details of the discriminator model. Every convolutional
layer is activated by the following LeakyReLU layer.

where G and D denote the generator, that is our multi-scale deblurring network in

Figure 3.3 and the discriminator (classifier), respectively. When training, G tries to

minimize the adversarial loss while D tries to maximize it.

Finally, by combining the multi-scale content loss and adversarial loss, the gen-

erator network and discriminator network is jointly trained. Thus, our final loss term

is

Ltotal = Lcont + λ× Ladv, (3.3)

where the weight constant λ = 1× 10−4.

We used ADAM [49] optimizer with a mini-batch size 2 for training. The learning

rate is adaptively tuned beginning from 5×10−5. After 3×105 iterations, the learning

rate is decreased to 1/10 of the previous learning rate. Total training takes 9 × 105

iterations to converge.
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3.3 Experiments

We implemented our model with torch7 library. All the following experiments were

performed in a desktop with i7-6700K CPU and NVIDIA GTX Titan X (Maxwell)

GPU.

3.3.1 Comparison on GOPRO Dataset

We evaluate the performance of our model in the proposed GOPRO dataset. Our test

dataset consists of 1111 pairs, which is approximately 1/3 of the total dataset. We

compare the results with those of the state-of-the-art methods [44, 99] in both qual-

itative and quantitative ways. Our results show significant improvement in terms of

image quality. Some deblurring results are shown in Figure 3.4. We notice from the

results of Sun et al. [99], deblurring is not successful on the regions where blurs are

nonlinearly shaped or located at the boundary of motion. Kim and Lee [44]’s results

also fail in cases where strong edges are not found. In contrast, our results are free

from those kernel-estimation related problems. Table 3.2 shows the quantitative eval-

uation results of the competing methods and ours with different scale level k in terms

of PSNR, SSIM over the test data. Also, the runtime is compared. We observe that our

system with K = 2 produces the best results in terms of both PSNR and SSIM, while

K = 3 is the fastest. In Figure 3.5 and 3.6, more comparisons on different scenes are

shown.

Metric [99] [44]
Ours

K = 1 K = 2 K = 3

PSNR 24.64 23.64 28.93 29.23 29.08

SSIM 0.8429 0.8239 0.9100 0.9162 0.9135

Runtime 20 min 1 hr 7.21 s 4.33 s 3.09 s

Table 3.2: Quantitative deblurring performance and running time comparison on
GOPRO dataset [72]. K denotes the number of scale levels.
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Figure 3.4: Test results on the GOPRO dataset [72]. From top to bottom: Blurry
images, results of Sun et al. [99], results of Kim and Lee [44], and results of the
proposed method.
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Blurry image

Ours

Sun et al. [99]

Kim and Lee [44]

Figure 3.5: Visual comparison with other methods on GOPRO dataset [72].
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Blurry image

Ours

Sun et al. [99]

Kim and Lee [44]

Figure 3.6: Visual comparison with other methods on GOPRO dataset [72].
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3.3.2 Comparison on Köhler Dataset

Köhler dataset [50] consists of 4 latent images and 12 differently blurred images for

each of them. The blurs are caused by replaying recorded 6D camera motion, assuming

linear CRF. We report the quantitative results on this dataset in Table 3.3. For compati-

bility with the Köhler dataset, our model is trained by setting CRF as identity function

in GOPRO dataset. We note that our system with K = 2 produces the best results in

PSNR, and the system K = 3 exhibits the best MSSIM result.

Metric [99] [44]
Ours

K = 1 K = 2 K = 3

PSNR 25.22 24.68 25.74 26.02 26.48

MSSIM 0.7735 0.7937 0.8042 0.8116 0.8079

Table 3.3: Quantitative comparison on Köhler dataset [50]. The dataset has its own
evaluation code, thus we report multi-scale SSIM instead of SSIM.

3.3.3 Comparison on Lai et al. [54] dataset

Lai et al. [54] generated synthetic dataset by convolving nonuniform blur kernels and

imposing several common degradations. They also recorded 6D camera trajectories to

generate blur kernels. However, their blurry images and sharp images are not tempo-

rally center-aligned as GOPRO dataset, making reference-based image quality metrics

such as PSNR and SSIM to be less correlated with the perceptual quality. Thus, we

show qualitative comparisons in Figure 3.7. Clearly, our results avoid ringing artifacts

while preserving details such as wave ripple.

In [54], the dataset also includes real blurry images. We present qualitative com-

parisons of deblurred results in Figure 3.8 and 3.9.
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Figure 3.7: Visual comparison of the deblurred results on Lai et al. dataset [54].
The top row shows results of Sun et al. [99] and the bottom row shows our results.

3.3.4 Comparison on Real Dynamic Scenes

Finally, we further present deblurring results on real dynamic scenes. The blurry scenes

are captured by a SONY RX100 M4 camera. The qualitative deblurring results of Kim

and Lee [44], Sun et al. [99] and ours are compared in Figure 3.10 and 3.11.

3.3.5 Effect of Adversarial Loss

In training our proposed models, we combined both the multi-scale content loss (MSE)

and the adversarial loss. We examine the effect of the adversarial loss term quantita-

tively and qualitatively. The PSNR and SSIM results from the training with and without

the adversarial loss are shown in table 3.4. From this results, we observe that adding

adversarial loss does not increases PSNR, but increases SSIM, which means that it

encourages to generate more natural and structure preserving images. Figure 3.12 and

3.13 show some qualitative comparisons between the results of our network trained

with Lcont and Lcont + λLadv.
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Blurry image

Ours

Sun et al. [99]

Kim and Lee [44]

Figure 3.8: Visual comparison with other methods on a real image in Lai
et al. dataset [54].
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Blurry image

Ours

Sun et al. [99]

Kim and Lee [44]

Figure 3.9: Visual comparison with other methods on a real image in Lai
et al. dataset [54].
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Blurry image

Ours

Sun et al. [99]

Kim and Lee [44]

Figure 3.10: Visual comparison with other methods on a real dynamic scene.
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Blurry image

Ours

Sun et al. [99]

Kim and Lee [44]

Figure 3.11: Visual comparison with other methods on a real dynamic scene.
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Blurry image

Deblurred image (MSE)

Deblurred image (MSE + Adversarial)

Figure 3.12: Visual comparison of results from our model trained with different
loss functions. The blurry image is from GOPRO dataset [72].
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Blurry image

Deblurred image (MSE)

Deblurred image (MSE + Adversarial)

Figure 3.13: Visual comparison of results from our model trained with different
loss functions. The blurry image is from GOPRO dataset [72].

40



Loss Lcont(MSE) Lcont + λLadv

PSNR 28.62 28.45

SSIM 0.9094 0.9170

Table 3.4: Quantitative deblurring performance comparison by the loss function
used to optimize our model (K = 3, λ = 1× 10−4). Evaluated on the GOPRO test
dataset assuming linear CRF.

3.4 Conclusion

In this chapter, we proposed a blind deblurring neural network for sharp image estima-

tion. Unlike previous studies, our model avoids problems related to kernel estimation.

The proposed model follows a coarse-to-fine approach and is trained in multi-scale

space. Experimental results show that our approach outperforms the state-of-the-art

methods in both qualitative and quantitative ways while being much faster.
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Chapter 4

Intra-Frame Iterative RNNs for Video Deblurring

4.1 Introduction

In contrast to the photographs that are meant to capture a single moment, videos are

essentially captured in dynamic environments with temporally varying contents. Cam-

eras are typically hand-held and are more likely to be shaken during shooting, and

fast moving objects can abruptly occur at any time. Considering the practical needs

in video recordings, we aim to develop a video deblurring method in addition to the

single image deblurring method presented in chapter 3.

In video deblurring, it is crucial to analyze the relevant information between con-

secutive frames as well as the information in the target frame. In recent deep neural

network based approaches, several designs of CNNs and RNNs are adopted to incor-

porate temporal information. Su et al. [97] introduced a 2-stage approach to handle

misplacement from large motions between frames and the fuse information between

the frames. A sequence of frames is spatially aligned to the middle frame by homog-

raphy or optical flow. Those frames are then fed into a CNN to get a deblurred middle

frame. On the other hand, Wieschollek et al. [112] and Kim et al. [46] proposed re-

current network architectures that can operate on arbitrary length videos. While [112]

used information from past frames by simply copying features, [46] presented a Dy-
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(a) Input blurry image Bt (b) Deblurred image Lt, IFI-RNN (C2H3-reg)

(c) Blurry (d) RDN [112] (e) DBN+OF [97]

(f) OVD [46] (g) IFI-RNN (C2H1) (h) IFI-RNN (C2H3-reg)

Figure 4.1: Deblurred result comparison with state-of-the-art methods. (g) Result
of our model with dual RNN cells without iteration. (h) Result of our 3-iteration model
with stochastic regularization.

namic Temporal Blending module on a fast RNN. The module blends the hidden state

from past frames and feature from the current frame to transfer the temporal informa-

tion through hidden states.

These neural network-based approaches mainly focus on how to adopt the related

information from the neighboring frames to restore the target frame and show sig-

nificant improvements. However, these methods try to handle temporal relation in a

single-step operation, which may not be optimal. Traditionally, the difficulty of es-

timating motion information or blur kernel from multiple frames was mitigated by

iterative estimation steps [121, 114, 45, 1, 84]. Furthermore, handling the neighbor
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frames with the alignment from optical flow [97] or heavy neural network [112] is

expensive in computation. Thus, to resolve these issues, temporal information transfer

method both fast and more optimal is required.

We set up a baseline model in a light and fast convolutional RNN architecture

that exploits the inter-frame information. Like [46], we deliver information from past

frames to the current frame in the form of hidden state. To let the propagated hidden

state fit to the target frame, we employ an iterative hidden state update scheme within

a single inter-frame time-step. We refer to this operation as intra-frame iterations. As

the intra-frame iteration is in the same form as inter-frame operation, no modification

of the architecture or additional parameters are required. Additionally, we investigate

and analyze the schemes of intra-frame recurrence by varying the composition of the

RNN cells. (i.e., single-cell and dual-cell methods) We experimentally show that the

proposed intra-frame recurrence scheme results in substantial improvements in the

restoration accuracy.

We train each model with a predefined intra-frame iteration number. On average,

more iterations bring performance improvements. However, not all frames are best

restored from the maximum number of iterations. As this is the case when more com-

putation induces degradation, we cast this as an imperfect optimization issue. We adopt

a stochastic strategy [106] to employ regularization effect to improve iterative models.

As the models with different iteration numbers share an architecture, we regard less

iteration models as parts of larger iteration models. During training, the number of

internal iterations is chosen randomly. However, our regularization loss term favors

fewer calculations. Several works have been reported that training a model with partial

computation paths at random improves accuracy [96, 108, 38, 31, 106]. We implement

the training by using a gating unit that decides iteration numbers. Note that our primary

goal is to improve performance by regularizing RNN cells. Therefore, we drop the gat-

ing function at inference and prevent the model from showing a stochastic or adaptive

behavior. The result of our regularized dual-cell method is displayed in Figure 4.1.
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Our contributions in this chapter is summarized as follows:

• We present a simple yet effective RNN-based video deblurring method that ex-

ploits both the intra-frame (internal) and inter-frame (external) recurrent schemes.

By updating the hidden state multiple times internally during a single time-step,

our model produces better results without modifying the architecture.

• We study various types of intra-frame iteration strategies. For recurrent networks

with different internal cell parameters, we investigate the effect of partial recur-

rence to investigate more optimal hidden state update strategy.

• Finally, we develop a single model that can be trained to handle various internal

recurrence paths (iterations). Our loss function is composed of a data term that

aims to minimize restoration error and a prior term that favors shorter compu-

tation path. We train our multi-path network in a stochastic way. Owing to the

regularization effect of the stochastic training that prevents the co-adaptation of

layers, the flexible intra-frame iterative model provides more improved deblur-

ring results.

• Through extensive empirical tests and evaluations, we demonstrate the superi-

ority of the proposed model over the current state-of-the-art methods in both

deblurring accuracy and computational efficiency.

4.2 Related Works

In this section, we describe previous works related to the proposed method.

Video Deblurring

In the early studies of video deblurring, the concept of lucky imaging was adopted

where sharp contents replaced the blurry ones in pixel [67] and patch [15] level. Later,

deconvolution based methods were widely studied where kernels are estimated from
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inter-frame relation. Temporal information was exploited to predict the global motion

and to generate a sharp panorama scene from a blurry video [60]. To handle differ-

ently blurred regions, Wulff and Black [114] studied layered blur model that segments

an image into layers and deconvolved each layer separately to improve the estima-

tion of both the blur kernels and the latent image. Kim et al. [45, 47] proposed a

segmentation-free dynamic video deblurring method where locally varying blur ker-

nels were approximated from bidirectional optical flows. These methods formulate the

problem as a non-convex energy minimization framework of which variables include

the local blur kernels and the latent images. Thus, many deconvolution algorithms for

deblurring [43, 44, 121, 45, 99] resolve this issue by iteratively optimizing the energy

function.

Recently, [72, 97] introduced video datasets that contain realistic blurry frames and

corresponding sharp ground-truth frames. As the frames in a video recorded by a high-

speed camera are sharp and slowly changing, the average of several subsequent frames

can mimic a blurry frame captured at a longer exposure. With the advent of realistic

blur datasets, there have been proposed a few deep learning-based methods for single

image [72] and video [97] deblurring. Similarly, Wieschollek et al. [112] synthesized

the training data by downsampling and interpolating 4k-8k resolution videos.

Su et al. [97] proposed a CNN-based algorithm called DBN. It takes a stack of 5

successive frames as an input and deblurs the middle frame among them. To handle

severely blurred frames, they also aligned their input frames with the optical flow as

a pre-processing. On the other hand, RDN [112] uses an encoder-decoder architecture

model that can process arbitrary length videos. RDN utilizes temporal skip connections

so that features extracted in the previous frames can directly propagate to the next

frame. In advance, OVD [46] proposed a recurrent network whose hidden state carries

the temporal information from the past time-steps. In the recurrent architecture, they

added a dynamic temporal blending module so that the hidden state from the previous

time-step is adapted to the current frame. Furthermore, Spatio-temporal Transformer
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Network [48] was applied to improve DBN and OVD by making use of long-range

pixel correspondences.

In this chapter, we aim to improve the deblurring quality using recurrent neural

networks by updating the hidden states to be more optimal for predicting the output.

In the viewpoint of making better use of hidden states, our work is closely related to

[46, 48]. However, we reuse existing parameters without introducing any extra module.

Burst Deblurring

Under low-light conditions, a burst of photographs is likely to be blurred due to hand

tremor. In [120, 9] the sparse prior of blur kernels and spatial gradient of latent im-

ages are investigated to obtain sharp images. On the other hand, some alignment-free

methods were suggested by posing a joint problem of multiple image registration and

deblurring [118, 12, 122].

Then, Delbracio and Sapiro [17, 18] presented a simple yet efficient burst deblur-

ring method without relying on kernel estimation and deconvolution. They utilized

spectral information in the Fourier domain where information from less blurred im-

ages is more weighted. Wieschollek et al. [113] further extended [17] by learning a

hybrid network that decides the weights for Fourier burst accumulation and the de-

convolution filter. Furthermore, a recently proposed permutation-invariant model by

Aittala and Durand [2] improved the restoration quality significantly in the presence

of noise, blur, and saturation. We also augment noise in the training process like [2, 72].

Stochastic Neural Network Training

Most of the neural networks are designed to process equally for every input. However,

training the networks as it is not always known to be optimal. Therefore, several ran-

domized training strategies have been proposed to regularize the optimization process.

The most classical types of stochastic regularization techniques are Dropout [36, 96]

and DropConnect [108]. While Dropout randomly deactivates the outputs of fully-
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connected layers, DropConnect disconnects the weights of the layer at training time.

They are known to prevent co-adaptation of features and regularize the network to

avoid overfitting.

In ResNets [34, 35], residual blocks contain shortcut connections where their in-

puts are directly headed to the output in parallel with convolution features. Veit et

al. [107] observed that this could be interpreted as an ensemble of exponentially many

shallower networks. In ResNets, surprisingly, removing or permuting several layers do

not cause catastrophic degradation. Furthermore, ResNets trained with random skips

of residual blocks showed ameliorated classification accuracy [38]. Similarly, Fractal-

Net [55] showed that drop-path training could also exhibit regularization effect.

Recently, more advanced stochastic training techniques were proposed, letting the

stochastic path to be chosen by the model itself. Graves [31] proposed an adaptive

computation time (ACT) algorithm where the number of recurrence steps between the

inputs is decided by the network with an estimated halting score, instead of using a

predefined fixed number of iterations. Figurnov et al. [27] extended the ACT to spatial

locations of ResNets [35] so that every pixel would have different network depth.

The most relevant study to ours is the work by Veit and Belonge [106]. They added

a gating unit in each block of the ResNet that could switch-off rather irrelevant layers.

To computationally benefit from the switching, the output from the gates should be

hard binary rather than being soft. The training of the hard gate is enabled by using the

back-propagation with Gumbel-SoftMax relaxation [39, 65]. In contrast to the previ-

ous methods focusing on acceleration with a moderate increase in error, they exhibit

improved accuracy compared to the original ResNet for image classification.

In our experiments, we find that several different numbers of intra-frame iterations

are beneficial in general. Hence, we conjecture that training a single generic model that

could operate in the variable number of intra-frame iterations is possible, regarding the

shared architecture between our models. We aim to benefit from regularization effect

through training our model in stochastic paths. To let our model decide the iteration
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(a) Recurrent cell architecture

(b) ResBlock [72, 61]

(c) RNN at t-th frame

Figure 4.2: The baseline architecture of the proposed IFI-RNN

number itself, we implement a stochastic gate function that determines if additional

iteration is to be used or not. To jointly train the gate as well as the main network,

we design a regularization loss term that favors less computation together with the

content (L2) loss. We adopt the Gumbel-Softmax trick [39, 65] that has been used in

[106] to route the model in a single prediction path that is discretely decided from the

iteration number. Our regularized models exceed their original models in deblurring

performance, both quantitatively and qualitatively.

4.3 Proposed Method

In this section, we describe how we develop our model. In section 4.3.1, we describe

our baseline RNN model and the formulation terminologies. In section 4.3.2, we ex-

plain the concept of our intra-frame iteration model and analyze possible iteration

strategies. Lastly, we describe more advanced training methods for our intra-frame

iteration RNN in section 4.3.3.
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(a) Training with fixed number of iterations (b) Stochastic training (single cell)

(c) Stochastic training (dual cell)

Figure 4.3: Training of IFI-RNN using different hidden state update schemes.

4.3.1 Recurrent Video Deblurring Networks

Let us denote the blurry video, ground-truth sharp video, and the predicted latent video

as B = {Bt}, S = {St}, L = {Lt} with the frame index t ∈ {1 . . . T}, respectively.

We construct our baseline architecture as a recurrent neural network so that tempo-

ral information can propagate over video frames like [46]. Then, our network operates

on the blurry input video by following recurrence operation.

(Lt,ht) = F (Bt,ht−1) ,

where F refers to our RNN cell. The cell consists of several components, FB, FR,

FL, Fh as shown in Figure 4.2. First, FB extracts the feature fBt from a blurry frame.

Then,FR produces the intermediate feature fBt that is used forFL andFh to estimate

the latent frame Lt and hidden state ht, respectively. ht is the hidden state that is

produced at t-th time-step and will be propagated to t + 1-th time-step. We initialize

h0 with zero.

The RNN cell consists of strided convolutions (FB) followed by ResBlocks [72,

61] without batch normalization (FR, Fh), and up-convolutions (FL).
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We train our baseline model with the L2 loss between the estimated latent video

and the ground-truth sharp video as

Lcontent =
1

TCHW

T∑
t=1

‖Lt − St‖22, (4.1)

where C, H , W denote the number of channels (3 for RGB color videos), height, and

the width of the training samples, respectively.

4.3.2 Intra-Frame Iteration Model

The most crucial part of RNNs against CNNs is the hidden state that brings the perfor-

mance gain as CNNs have no temporal connections. Therefore, it is essential to have

good hidden states so that they could better help to predict more accurate outputs at

the current frame as well as at the next frame. In this regard, we attempt to make better

use of hidden states by intra-frame iteration before passing it to the next RNN cell.

We implement this idea by utilizing our baseline RNN cell architecture. First, we

compute the initial hidden state ĥ0
t at a certain time step t from a blurry input Bt and

the previous hidden state ht−1 using our RNN cell. Then, we feedback ĥ0
t to the cell

again without changing Bt to update the hidden state. After updating the hidden state

for N iterations, we finally generate a latent output frame Lt at that time step with the

updated hidden state ĥNt . Note that the blur feature extractor FB and the latent frame

estimator FL are used only once despite the number of iterations.

The blur feature extraction part, FB, contains three convolutional layers without

nonlinear activations. It reduces the spatial resolution and effectively increases the

receptive field. Given an RGB input size h×w, it produces feature size 60×h/4×w/4.

Then, the extracted feature is concatenated with a hidden state of size 20×h/4×w/4,

producing a tensor of shape 80× h/4× w/4.

FR is a sequence of the following 6 residual blocks. It generates a feature map

having the same size as its input, 80 × h/4 × w/4. Each resblock consists of two
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convolutional layers with ReLU activation in between. Note that there are no batch-

normalization layers in the ResBlocks, following previous image deblurring [72] and

super-resolution [61] models.

With the calculated feature from FR, Fh and FL are located in parallel. Each of

them outputs the hidden state and the latent deblurred frame. Fh has 2 convolutional

layers with a single ResBlock in between. It preserves the resolution of the feature

to generate the hidden state of the next time-step. On the other hand, FL increases

the resolution and reduces the channels to reconstruct a deblurred frame. It uses a

convolution layer after two up-convolutions. In Table 4.1, we explain the exact kernels

and outputs of each layer.

Module layer kernel stride output size #parameters

input - - 3× h× w -

conv 5× 5 1 20× h× w 1520
FB conv 5× 5 2 40× h/2× w/2 20040

conv 5× 5 2 60× h/4× w/4 60060

hidden state - - 20× h/4× w/4 -
concat - - 80× h/4× w/4 -

FR ResBlock ×6 3× 3 1 80× h/4× w/4 692160

conv 3× 3 1 20× h/4× w/4 14420
Fh ResBlock 3× 3 1 20× h/4× w/4 7240

conv 3× 3 1 20× h/4× w/4 3620

up-conv 3× 3 2 40× h/2× w/2 28840
FL up-conv 3× 3 2 20× h× w 7220

conv 5× 5 1 3× h× w 1503

Table 4.1: Our IFI-RNN cell architecture details. Each component details are shown.
FB,FR,FL, andFh each has 0.08M, 0.69M, 0.03M, 0.04M parameters, respectively.
There are total 0.84M parameters in our single cell model.

Thus, our single cell method has 0.84M parameters. For dual cell method, we do

not need FL for the 1st cell, as we estimate the latent image in the 2nd cell only.
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Hence, our dual cell method only requires storage for 1.64M parameters. We compare

the model size with state-of-the-art methods in Table 4.2.

Model # parameters Storage (MB)

DBN [97] 15.3M 58.4
RDN [112] 16.4M 62.6
OVD [46] 0.90M 3.4

IFI-RNN (single cell) 0.84M 3.2
IFI-RNN (dual cell) 1.64M 6.2

Table 4.2: Model size comparison with other deep learning based methods. For RDN,
we refer to the model and source code provided by the authors of [112], which is differ-
ent from the paper. In the main paper and this supplementary material, the comparisons
are consistently done with the provided model.

We provide two different types of iteration: the single cell and the dual cell method.

In the single cell method, we use the same parameters to estimate both the initial

hidden state and the updated hidden state. On the other hand, in a dual cell method, we

use two RNN cells and use each of them for a different purpose. Only the second cell

is used to update the hidden states and predict latent frames. Although the dual cell

method requires more parameters than the single cell approach, it can bring significant

performance gain as different sets of parameters can dedicate to different roles. From

now on, we denote the single and dual cell models with prefix C1 and C2, respectively.

Also, we put a suffix H with the hidden state iterations. For example, C2H2 denotes

the dual cell model which updates its hidden state two times.

We describe the two intra-frame hidden state updating methods in Algorithm 1.

In an architectural viewpoint, our methods virtually increase the depth of RNN cell,

enlarging the receptive field and its capacity. In other words, our hidden states can be

better optimized by a virtually deeper model.

54



Algorithm 1 Deblurring with intra-frame hidden state update

1: procedure SINGLE CELL METHOD(Bt,ht−1)
2: fBt = FB (Bt)

3: ĥ0
t ← ht−1

4: for i = 1 . . . N do
5: f iR = FR

(
fBt , ĥ

i−1
t

)
6: ĥit = Fh (fR)

7: ht ← ĥNt
8: Lt = FL

(
fNR
)

9: return Lt,ht

1: procedure DUAL CELL METHOD(Bt,ht−1)
2: fBt,1 = FB,1 (Bt)

3: fBt,2 = FB,2 (Bt)

4: ĥ0
t = Fh,1 (FR,1 (fBt ,ht−1))

5: for i = 1 . . . N do
6: f iR,2 = FR,2

(
fBt,2, ĥ

i−1
t

)
7: ĥit = Fh,2

(
f iR,2

)
8: ht ← ĥNt
9: Lt = FL

(
fNR,2

)
10: return Lt,ht
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4.3.3 Regularization by Stochastic Training

The performance gains from iteration, however, become marginal for higher iteration

models. For example, the C1H4 model (single cell four iterations) does not perform

better than C1H3 model in Figure 4.5. We also observe that for each image, the best

performing model is not always the one with more iterations. Figure 4.4 shows the

number of images that are best restored by the single-cell method with different itera-

tions. Although many images prefer more iterations for better restoration, a nontrivial

amount of images favor lesser iterations. Since we use the same RNN cell for each

iteration, it is natural to conjecture that we can train a model that can deblur each in-

put frame with different iterations in a stochastic way. Therefore, we attempt to take

advantage of the regularization effect from using stochastic computational path for

training.

First, we add a gating unit g(·) ∈ {0, 1} that looks into the hidden state and decides

if the model will compute one more iteration or not. We calculate the score for iteration

by global average pooling [62] followed by two fully connected layers activated by

ReLU [51]. Then discrete binary sampling is done with the Gumbel-SoftMax trick [39,

65]. At the training time, when the gate is on, we update the hidden state once more.

Otherwise, we stop the iteration and return the deblurred frame. Second, we employ a

regularization term, that favors fewer iterations when the loss is already small enough.

We set a target average iteration ratio, τ = 0.75. Compared to the models with a fixed

iteration number, this loss prefers stopping the iteration with the probability of 1− τ .

We define the term as L2 loss between the average gate activation over a mini-batch

with iterations and τ ,

Lreg =
1

T

T∑
t=1

N∑
i=1

(
E
[
git
]
− τ
)2
,

where E [·] is an average operation, git = g
(
ĥit

)
at iteration i at time-step t, and N is

the maximum iteration threshold we set during training.

56



1 2 3 4
# Iterations

0

200

400

600

800

1000
# 

Im
ag

es
Optimal # iterations
Actual behavior of fixed_c1h4

Figure 4.4: Histogram showing the number of best restored images by the number
of iterations. Blue bars show the number of images that are best restored by the single-
cell method according to the iterations. Orange bar represents the total number of
images restored by C1H4 model. We used downsampled GOPRO test images [72].
Refer to section 4.4.1 for details.

Thus, our final loss term becomes

Ltotal = Lcontent + λ× Lreg,

with λ being the weight for the regularization term. Note that our primary purpose of

the stochastic training is to improve the results by regularizing the co-adaptation of

parameters, rather than making our model to show stochastic behavior. So, we remove

the gating unit after training so that the system provides the results of a specified

number of iterations.

The performances of regularized models are shown as dotted lines in Figure 4.5.

We add ’-reg’ suffix to our IFI-RNN models to refer models trained with regularization

like C2H3-reg.
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Figure 4.5: PSNR and the running time of our methods, evaluated on downsam-
pled GOPRO test set at resolution 960× 540. Refer to section 4.4.1 for details.

4.4 Experiments

4.4.1 Datasets

We have tested our algorithm (denoted as IFI-RNN) on the GOPRO dataset [72]. The

GOPRO dataset contains 2103 training samples from 22 sequences and 1111 evalua-

tion samples from 11 sequences. We generated blur and sharp image pairs from 240 fps

videos. Those high-speed video frames are averaged in a gamma-transformed domain

to mimic images taken in longer exposure time with nonlinear camera response func-

tion (CRF). To suppress the noise and video compression artifacts, we downsampled

the original video resolution from 1280× 720 to 960× 540 before averaging.

We also use a similar dataset from Su et al. [97]. This dataset also consists of paired

samples synthesized from 240 fps videos. It provides 61 sequences containing 5708

training pairs and 10 sequences including 1000 evaluation pairs. However, we do not
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evaluate with the method proposed by Köhler et al. [50] as [97]. Instead, we evaluate

PSNR and SSIM as is without post-processing such as alignment. In addition to the

original captured frames, they interpolate intermediate sharp frames from optical flow

estimation to generate smooth blur frames. The original and interpolated frames are

averaged altogether to synthesize blurs under linear CRF assumption.

To compare our method with previous methods, we use the test video sequences

from the above two datasets except for the first four frames and the last frame in each

video, as [46] does not provide the results for them. Also, we show the deblurring

results of real videos to demonstrate the generalization capability of our method.

4.4.2 Implementation details

We train our models on the GOPRO dataset [72] with ADAM optimizer [49] where

β1 = 0.9 and β2 = 0.999. We train each model for 500 epochs in total. Beginning

from the initial learning rate of 10−4, we anneal the learning rate by half after every

200 epochs. We set the regularization loss weight λ = 10. During training, we sample

12-frame 256×256 RGB patch sequences from the dataset to construct a mini-batch of

size 4. Random augmentations are applied to those samples with geometric transforms

including vertical and horizontal flips as well as 90o rotation. Also, we add zero-mean

Gaussian noise to blurry inputs, where its standard deviation is sampled from another

Gaussian distribution N
(
0, 22

)
to blurry inputs NVIDIA GTX 1080 Ti GPUs were

used for all of our experiments. We implemented our models with PyTorch 0.4.1 [87]

built with CUDA 9.2 and cuDNN 7.1. Our source code will be released publicly.

4.4.3 Comparisons on GOPRO [72] dataset

We evaluate our method and other methods on the downsampled GORPO dataset. We

report the evaluation results of all the comparing methods in terms of PSNR, SSIM

and the running time in Table 4.3. From these results, it is clear that the proposed

intra-frame iteration scheme and the stochastic training method improve the perfor-
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mance of our model significantly compared with the other state-of-the-art methods.

Furthermore, surprisingly, our method is much faster than the others, despite having

internal iterative operations. For visual comparison, please refer to Figure 4.1.

Method PSNR SSIM Speed (fps)

DBN+OF [97] 27.08 0.8429 1.72†

RDN [112] 25.19 0.7794 7.37
OVD [46] 26.82 0.8245 9.24

IFI-RNN (C1H1) 28.79 0.8647 61.2
IFI-RNN (C1H2) 29.03 0.8712 46.4
IFI-RNN (C1H3) 29.07 0.8730 36.5
IFI-RNN (C1H4) 29.06 0.8730 30.8

IFI-RNN (C1H4-reg) 29.16 0.8760 30.8

IFI-RNN (C2H1) 29.72 0.8884 42.0
IFI-RNN (C2H2) 29.72 0.8885 33.6
IFI-RNN (C2H3) 29.80 0.8900 28.8
IFI-RNN (C2H4) 29.82 0.8913 24.2

IFI-RNN (C2H3-reg) 29.97 0.8947 28.8
IFI-RNN (C2H4-reg) 29.93 0.8943 24.2

Table 4.3: Deblurring accuracy comparison on the downsampled GOPRO
dataset [72]. For our method IFI-RNN, C1 and C2 refer to single-cell and dual-cell
method, respectively. †Note that the above speed does not include the optical flow
estimation time for [97]. All running times were averaged from 10 runs on the test set.

4.4.4 Comparisons on [97] Dataset and Real Videos

We also compared the performances on the dataset presented in [97]. In this case,

we fine-tuned our pretrained models from the GOPRO dataset with the training sub-

set of [97]. In Table 4.4, our model also improves performance with iterations and

regularization for both C1 and C2 models. Furthermore, IFI-RNN C2 models show

state-of-the-art performance. In Figure 4.6, our IFI-RNN recovers the text and legs

more clearly from the blurry video frame. Also, our results on real videos also clarify

blurred textures in Figure 4.7. In many examples, our IFI-RNN shows sharper recon-

60



struction results especially on the fine textured area. We notice better reconstructed

faces in Fig. 4.8, 4.9, 4.11, 4.12. Also, our method shows lesser artifact in recover-

ing more easily readable text in Fig. 4.8, 4.10, 4.11. Fine-grained textures are more

recognizable in Fig. 4.9, 4.13.

Method PSNR SSIM

DBN+OF [97] 30.14 0.8913
RDN [112] 26.98 0.8076
OVD [46] 29.97 0.8696

IFI-RNN (C1H1) 30.07 0.8823
IFI-RNN (C1H4-reg) 30.10 0.8849

IFI-RNN (C2H1) 30.74 0.8974
IFI-RNN (C2H3-reg) 30.80 0.8991
IFI-RNN (C2H4-reg) 30.73 0.8976

Table 4.4: Deblurring accuracy comparison on the dataset from [97].

4.5 Conclusion

In this chapter, we proposed a method to ameliorate the recurrent network architec-

tures for video deblurring. By iteratively updating the hidden state to adapt to the target

frame, our method removes blurs in the video frames more effectively. Furthermore,

we train our model with a regularization term that could enhance prediction accuracy

through stochastic computation paths. Our method does not require additional param-

eters while being fast and accurate compared to other state-of-the-art methods.
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(a) Blur (b) Deblurred (Ours, IFI-RNN(C2H3-reg))

(c) Blur (d) RDN [112] (e) OVD [46] (f) DBN+OF [97] (g) IFI-RNN

Figure 4.6: Deblurred results on [97] dataset.

(a) Blur (b) Deblurred (Ours, IFI-RNN(C2H3-reg))

(c) Blur (d) RDN [112] (e) OVD [46] (f) DBN+OF [97] (g) IFI-RNN

Figure 4.7: Deblurred results of a real video.
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(a) Blur (b) Deblurred (Ours, IFI-RNN (C2H3-reg))

(c) Blur (d) RDN [112] (e) OVD [46] (f) DBN+OF [97] (g) IFI-RNN

Figure 4.8: Deblurring results of a real video.

(a) Blur (b) Deblurred (Ours, IFI-RNN (C2H3-reg))

(c) Blur (d) RDN [112] (e) OVD [46] (f) DBN+OF [97] (g) IFI-RNN

Figure 4.9: Deblurring results of a real video.
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(a) Blur (b) Deblurred (Ours, IFI-RNN (C2H3-reg))

(c) Blur (d) RDN [112] (e) OVD [46] (f) DBN+OF [97] (g) IFI-RNN

Figure 4.10: Deblurring results of a real video.

(a) Blur (b) Deblurred (Ours, IFI-RNN (C2H3-reg))

(c) Blur (d) RDN [112] (e) OVD [46] (f) DBN+OF [97] (g) IFI-RNN

Figure 4.11: Deblurring results of a real video.
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(a) Blur (b) Deblurred (Ours, IFI-RNN (C2H3-reg))

(c) Blur (d) RDN [112] (e) OVD [46] (f) DBN+OF [97] (g) IFI-RNN

Figure 4.12: Deblurring results of a real video.

(a) Blur (b) Deblurred (Ours, IFI-RNN (C2H3-reg))

(c) Blur (d) RDN [112] (e) OVD [46] (f) DBN+OF [97] (g) IFI-RNN

Figure 4.13: Deblurring results of a real video.
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Chapter 5

Learning Loss Functions for Image Deblurring

5.1 Introduction

In classical energy minimization-based methods for image deblurring, prior terms were

designed as well as the likelihood terms as (2.1). The prior terms have played key

roles in mitigating the ill-posedness of the problem and to encode the preferences on

sharp and clear images by using statistical properties [37, 111, 43, 44]. In recent deep

learning-based deblurring methods, on the other hand, priors are not widely used to

train neural networks. Instead of designing loss terms with the human knowledge-

driven priors, most of the learning process chooses to rely on supervision from large-

scale datasets by minimizing the distance between the output and the ground truth in

Euclidean space, e.g., L1 or L2, to maximize PSNR between the deblurred and the

reference sharp images.

With the advent of modern CNN architectures, state-of-the-art deblurring methods

focused on designing sophisticated neural network architectures [72, 103, 28, 117, 86]

for better model capacity and deblurring accuracy. Although learning from temporally

center-aligned blur-sharp image pairs can relieve the ill-posedness of deblurring, it is

not fully solved, yet. Still, most methods tend to suffer from blurry predictions due to

the inherent limitation [56, 68] of PSNR-oriented solutions for ill-posed problems.
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(a) Sharp / Blur (b) SRN (c) DeblurGANv2 (d) Ours

Figure 5.1: Comparison of the deblurred images and their reblurred counterparts.
For each image, we visualize the remaining blur kernel [13] at the center pixel visual-
ized on the right bottom side. Upper: The kernels from the previous methods implicate
the direction of the original blur. Lower: When the proposed reblurring module is ap-
plied, our result does not lose sharpness as we reconstruct the output that is hard to be
reblurred.

To complement the conventional learning objectives, several attempts such as the

perceptual [42] and the adversarial loss [56, 72, 52] have been made to improve the

visual quality and the sharpness of the model output. Nevertheless, the previous per-

ceptual losses may not be optimal for blur removal as the low-level structural proper-

ties such as blurriness are not explicitly considered in their formulations. Rather, they

originate from features learned for high-level tasks such as image classification and

real/fake image discrimination. As illustrated in Figure 5.1, results from the existing

deblurring methods are not as sharp as the ground-truth example but are still blurry to

a degree. Despite the reduced strength of blur in the deblurred images, we still observe

the directional motion information remaining.

The observation tells that applying the VGG and the adversarial loss together [53]

is not sufficient to obtain perceptually pleasing and sharp images across different ar-

chitectures [104, 53]. By finding the inherent limitation of the previous loss terms, we
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conjecture that eliminating the motion cues remaining in the deblurred images could

play an essential role in generating sharp and clean images. Starting from the moti-

vation, we introduce the concept of reblurring which amplifies the unremoved blur in

the given image. An ideally deblurred image should be sharp enough so that no notice-

able blur can be found from it to be amplified, i.e., clean images are hard to reblur. In

contrast, it is easier to predict the original shape of blur by recognizing the remaining

blur kernel if the motion blur is not sufficiently removed. In this chapter, we propose to

use the difference as a new optimization objective, designing reblurring loss for image

deblurring problem.

The reblurring loss is realized by jointly training a deblurring module and the

paired reblurring module. From a deblurred output, the reblurring module tries to make

the reblurred image as close to the original blurry image. By using the property that the

reblurred results should vary by the degree of input blur to be amplified, we construct

two types of loss functions.

During the joint training, supervised reblurring loss compares the amplified blurs

between the deblurred and the sharp image. Complementing the L1 intensity loss, the

supervised reblurring loss guides the deblurring module to focus on and eliminate the

remaining blur information. While the training method being similar to the adversarial

training of GANs [30], the purposes and effects of the adversary are different. Our

reblurring loss concentrates on the image blurriness regardless of the image realism

in the training process. Furthermore, we apply self-supervised reblurring loss at test-

time so that the deblurred image would be infeasible to be reblurred as sufficiently

sharp image would. The self-supervised reblurring loss lets the deblurring module to

adaptively optimize to each input without ground truth.

The reblurring loss functions provide additional optimization directives to the de-

blurring module and can be generally applied to any learning-based methods. With the

proposed approach, sharper images can be obtained without modifying the structure

of the deblurring module.
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Figure 5.2: Overview of the proposed reblurring and deblurring framework.

We summarize our contributions in this chapter as follows:

• Based on the observation that clean images are hard to reblur, we propose novel

loss functions for image deblurring. Our reblurring loss reflects the preference for

sharper images and contributes to visually pleasing deblurring results.

• At test-time, the reblurring loss can be implemented without a ground-truth image.

We perform test-time adaptive inference via self-supervised optimization to each

input.

• Our method is generally applicable to any learning-based methods and jointly with

other loss terms. Experiments show that the concept of reblurring loss consistently

contributes to achieving state-of-the-art visual sharpness as well as LPIPS and NIQE

across different model architectures.
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5.2 Related Works

Image Deblurring. In the classic energy optimization framework, the energy is for-

mulated by the likelihood and the prior term. Due to the large solution space of the

ill-posed dynamic scene deblurring problem, prior terms have been the essential el-

ement in alleviating the optimization ambiguity by encoding the preference on the

solutions. Sophisticated prior terms were carefully designed with human knowledge

on natural image statistics [58, 13, 37, 111, 100, 116, 43, 44, 83]. In the recent work

of Li et al. [59], learned prior, which is derived from a classifier discriminating blurry

and clean images, was also shown to be effective. Deep priors were also used for image

deconvolution problems [89, 79].

On the other hand, deep learning methods have benefited from learning on large-

scale datasets. The datasets consisting of realistic blur [72, 97, 82, 71, 28, 41, 94] align

the temporal center of the blurry and the sharp image pairs with high-speed cameras.

Learning from such temporally aligned datasets relieves the ill-posedness of deblurring

compared with the large solution space in the energy optimization framework. Thus,

more attention has been paid to designing CNN architectures and datasets than the loss

or solution preference.

In the early work, the alternating kernel and image estimation processes [13] are

implemented with CNNs [92]. In [99, 29], the spatially varying blur kernels are esti-

mated by assuming locally linear blur followed by non-blind deconvolution with them.

Later, end-to-end learning without explicit kernel estimation became prevalent. Mo-

tivated from the coarse-to-fine approach, multi-scale CNN was proposed in [72] to

expand the receptive field efficiently. Several studies have proposed scale-recurrent

architectures [104, 28] that share parameters across the scales. On the other hand,

[119, 98] sequentially stacked network modules. Recently, [86] proposed a multi-

temporal model that deblurs an image recursively. To handle spatially varying blur

kernels efficiently, spatially non-uniform operations were embedded [123, 117] in the

neural networks.

71



Perceptual Image Restoration. Conventional image restoration methods mainly op-

timize L1 or L2 objectives to achieve higher PSNR. However, such approaches suffer

from blurry and over-smoothed outputs [42, 126, 68]. The primary reason is that the

learned models predict an average of all possible solutions under the ill-posedness [56].

To deal with the issue, several studies utilize deep features of the pretrained VGG [95]

network that are more related to human perception [42, 56, 126]. Then, the following

methods can produce perceptually better results by minimizing the distance of output

and ground-truth images in the feature domain. Recent methods further introduce ad-

versarial training [30] so that outputs of the restoration models be indistinguishable

from real samples [72, 81, 52, 53].

Nevertheless, an inherent limitation of existing perceptual objectives is that they

are not task-specialized for image restoration. For example, the VGG features [95]

are learned for high-level visual recognition [91] while adversarial loss [30] only con-

tributes to reconstruct realistic images without considering the existence of motion

blur. Therefore, blindly optimizing those terms may not yield an optimal solution in

terms of image deblurring. In practice, we observed that those objectives still tend to

leave blur footprints unremoved, making it possible to estimate the original blur. Our

reblurring loss is explicitly designed to improve the perceptual quality of deblurred

images by reducing remaining blurriness and thus more suitable for the deblurring

task.

Image Blurring. As an image could be blurred in various directions and strength,

image blurring is another ill-posed problem. Thus intrinsic [3] or extrinsic [11, 8] in-

formation is often incorporated. In the case of a non-ideally sharp image, Bae et al. [3]

detected the small local blur kernel in the image to magnify the defocus blur for the

bokeh effect. On the other hand, [11] estimated the kernel by computing the optical

flow from the neighboring video frames. In a similar sense, [8] used multiple video

frames to synthesize blur. Without such blur or motion cue, there could be infinitely

many types of plausible blur applicable to an image. Thus, [124] used a generative
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#ResBlocks 4 8 16 32

Deblur PSNR wrt sharp GT 28.17 29.67 30.78 31.48
Reblur PSNR wrt blur GT 34.29 32.66 31.90 31.48

Table 5.1: Deblurring and reblurring PSNR (dB) by deblurring model capacity.
Both tasks are trained independently with L1 loss on the GOPRO [72] dataset. We note
that #ResBlocks varies for the deblur network only.

model to synthesize many realistic blurry images. Contrary to the above approaches,

[4] deliberately blurred an already blurry image in many ways to find the local blur

kernel. Our image reblurring concept is similar to [3] in the sense that intrinsic cue in

an image is used to amplify blur. Nonetheless, our main goal is to use reblurring to

provide a guide to deblurring model so that such blur cues would be removed.

5.3 Proposed Method

In this section, we describe a detailed concept of imge reblurring and how the reblur-

ring operation can be learned. The proposed reblurring loss can support the deblurring

modules to reconstruct perceptually favorable and sharp outputs. At training and test-

ing stages, we formulate the reblurring loss in supervised and self-supervised manner.

For simplicity, we refer to the blurry, the deblurred, and the sharp image as B, L, and

S, respectively.

5.3.1 Clean Images are Hard to Reblur

As shown in Figure 5.1, outputs from the existing deblurring methods still contain

undesired motion trajectories that are not completely removed from the input. Ideally,

a well-deblurred image should not contain any motion cues making reblurring to be

infeasible. To validate our motivation that clean images are hard to reblur, we first build

a reblurring moduleMR which amplifies the remaining blur from L. The module is

trained with the following blur reconstruction loss LBlur so that it would learn the
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inverse operation of deblurring as

LBlur = ‖MR(L)−B‖. (5.1)

We applyMR to the deblurred images from deblurring modules of varying capacities.

Table 5.1 shows that the higher the deblurring PSNR, the lower the reblurring PSNR

becomes. It demonstrates the better deblurred images are harder to reblur, justifying

our motivation.

In contrast to the non-ideally deblurred images,MR is not able to generate a mo-

tion blur from a sharp image S. For a high-quality clean image,MR should preserve

the sharpness. However, optimizing the blur reconstruction loss LBlur with S may fall

into learning the pixel average of all blur trajectories in the training dataset. In such a

case,MR will apply a radial blur without considering the input variety. To let the blur

domain ofMR be confined to the motion-incurred blur, we use sharp images to pe-

nalize such undesired operation. Specifically, we introduce a network-generated sharp

image Ŝ obtained by feeding a real sharp image S to the deblurring moduleMD, as

Ŝ =MD(S). We define sharpness preservation loss LSharp as follows:

LSharp = ‖MR(Ŝ)− Ŝ‖. (5.2)

We use pseudo-sharp image Ŝ instead of a real image S to make our reblurring module

focus on image sharpness and blurriness rather than image realism. While Ŝ andL only

differ by the sharpness, S and L also vary by their realism.

Combining two loss terms together, we train the reblurring moduleMR by opti-

mizing the joint loss LR:

LR = LBlur + LSharp. (5.3)

As zero-magnitude blur should remain unaltered from MR, the sharpness preserva-

tion loss can be considered a special case of the blur reconstruction loss. Figure 5.2a
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Figure 5.3: Image deblurring and reblurring illustrated from the perspective of
sharpness and realism. Training our modules with LReblur improves image sharpness
without considering the image realism. The image realism can be optionally handled
by adversarial loss LAdv.

illustrates the way our reblurring module is trained from LR.

5.3.2 Supervision from Reblurring Loss

The blurriness of images can be easily compared by amplifying the blur. Thus, we

propose a new optimization objective by processing the deblurred and the sharp image

with the proposed reblurring modelMR. To suppress remaining blur in the output L

of the deblurring CNNMD, our reblurring loss LReblur for image deblurring is defined

as follows:

LReblur = ‖MR(L)−MR(S)‖. (5.4)

Unlike the sharpness preservation term in (5.2), we do not use the pseudo-sharp

image Ŝ in our reblurring loss (5.4). As the quality of the pseudo-sharp image Ŝ de-

pends on the state of deblurring moduleMD, using Ŝ may make training unstable and

difficult to optimize, especially at the early stage. Thus we use a real sharp image S to

stabilize the training. Nevertheless, asMR is trained to focus on the sharpness from

(5.3), so does the reblurring loss LReblur.

Using our reblurring loss in (5.4), the deblurring moduleMD is trained to mini-
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mize the following objective LD:

LD = L1 + λ× LReblur, (5.5)

where L1 is a conventional L1 loss, and the hyperparameter λ is empirically set to 1.

Figure 5.2b shows how the deblurring model is trained with our proposed reblurring

loss.

For each training iterations, we alternately optimize two modules MD and MR

by LD and LR, respectively. While such a strategy may look similar to the adversarial

training [30], the optimization objectives are different. As the neural networks are well

known to easily discriminate real and fake images [109], the realism could serve as a

more salient feature than image blurriness. Thus, adversarial loss may overlook image

blurriness as L and S can already discriminated by realism difference. On the other

hand, our reblurring loss is explicitly designed to prefer sharp images regardless of

realism. Figure 5.3 conceptually compares the actual role of the proposed reblurring

loss LReblur and the existing adversarial loss LAdv.

5.3.3 Test-time Adaptation by Self-Supervision

B
L0

S
LN

Sharp

Blurry

Deblur

Test-time
Adaptation

Figure 5.4: The proposed self-supervised test-time adaptation. We repetitively find
the latent image that reblurs to the current deblurred image.
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Algorithm 2 Optimization process in test-time adaptation
1: procedure TEST-TIME ADAPTATION(B,MD,MR)
2: Test-time learning rate µ← 3× 10−6.
3: θD ←Weights ofMD.
4: L0 =MD(B).
5: for i = 0 . . . N − 1 do
6: Li∗ =MD (B).
7: Lself

reblur = ‖MR(MD(B))− Li∗‖.
8: Update θD by∇θDLself

Reblur and µ.
LN =MD (B).

9: LNAdapted =histogram matching(LN , L0
∗)

10: return LNAdapted

Supervised learning methods have the fixed model weights at testing time as the

training with ground truth is no longer available. Every image is treated equally re-

gardless of the scene content and the blur difficulty at test time. In contrast, providing

self-supervised loss can make a model adapt to each test input, improving the gen-

eralization ability. Thus, we use the proposed reblurring operation to enable a novel

self-supervised optimization without the need for ground truth.

During the training ofMD,MR delivers supervision from the reference by (5.4).

With the learned reblurring operation, we can further exploit the deblurred image L

is in high-quality in terms of shaprness without reference data. If L gets blurred by

passing toMR, we can consider it to be insufficiently deblurred as we have discussed

in Figure 5.1. A clean image should remain as itself due to the sharpness preservation

loss, LSharp. Thus, we construct the self-supervised reblurring loss that could serve as

a prior term encoding the preference on sharp images.

Lself
Reblur = ‖MR(L)− L∗‖, (5.6)

where L∗ denotes the image with the same value as L but the gradient does not back-

propagate in the optimization process. We minimize Lself
Reblur for each test data to obtain

the sharper image. Allowing gradient to flow throughL∗ can letL to fall into undesired
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local minima where both the L andMR(L) are blurry. Since Lself
Reblur only considers the

sharpness of an image, we keep the color consistency by matching the color histogram

between the test-time adapted image and the initially deblurred image. The detailed

process of test-time adaptation strategy is described in Algorithm 2 and conceptually

illustrated in Figure 5.4.

5.4 Experiments

We demonstrate the effectiveness of our reblurring loss by applying it to multiple

model architectures. We show the experimental results with a baseline residual U-

Net and the state-of-the-art image deblurring models, the sRGB version of SRN [104]

and DHN, our modified version of DMPHN [119]. For the reblurring module, we use

simple residual networks with 1 or 2 ResBlock(s) with 5× 5 convolution kernels. The

training and evaluation were done with the widely used GOPRO [72] and REDS [71]

datasets. The GOPRO dataset consists of 2103 training and 1111 test images with var-

ious dynamic motion blur. Similarly, the REDS dataset has 24000 training and 3000

validation data publicly available. On each dataset, every experiment was done un-

der the same training environment. We mainly compare LPIPS [126] and NIQE [70]

perceptual metrics.

5.4.1 Effect of Reblurring Loss

We implement the reblurring loss in varying degrees of emphasis on sharpness by

controlling the reblurring module capacity. For a more balanced quality between PSNR

and perceptual sharpness, we use 1 ResBlock for MR. To put more weight on the

perceptual quality, we allocate a larger capacity on MR by using 2 ResBlocks. For

notation simplicity, we denote the reblurring loss with k ResBlock(s) in the reblurring

module as LReblur, nk.

Table 5.2 and 5.3 each shows how the deblurring performance varies depending on
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Method LPIPS↓ NIQE↓ PSNR↑ SSIM↑

U-Net (L1 only) 0.1635 5.996 29.66 0.8874
+LReblur, n1 0.1365 5.629 29.58 0.8869
+LReblur, n2 0.1238 5.124 29.44 0.8824

SRN (L1 only) 0.1246 5.252 30.62 0.9078
+LReblur, n1 0.1140 5.136 30.74 0.9104
+LReblur, n2 0.1037 4.887 30.57 0.9074

DHN (L1 only) 0.1179 5.490 31.53 0.9207
+LReblur, n1 0.0975 5.472 31.53 0.9217
+LReblur, n2 0.0837 5.076 31.34 0.9177

Table 5.2: Perceptual metric improvements from the reblurring loss on GO-
PRO [72] dataset. The reblurring loss consistently improves LPIPS and NIQE over
standard L1 loss.

Method LPIPS↓ NIQE↓ PSNR↑ SSIM↑

U-Net (L1 only) 0.1486 3.649 30.80 0.8772
+LReblur, n1 0.1435 3.487 30.76 0.8776
+LReblur, n2 0.1252 2.918 30.46 0.8717

SRN (L1 only) 0.1148 3.392 31.89 0.8999
+LReblur, n1 0.1071 3.305 32.01 0.9044
+LReblur, n2 0.0947 2.875 31.82 0.9026

DHN (L1 only) 0.0942 3.288 32.65 0.9152
+LReblur, n1 0.0931 3.248 32.57 0.9143
+LReblur, n2 0.0805 2.830 32.44 0.9122

Table 5.3: Quantitative comparison on REDS [71] dataset by loss function. The
reblurring loss improves LPIPS and NIQE over standard L1 loss.

the training loss functions. With LReblur, n1, LPIPS and NIQE improves to a moderate

degree while PSNR and SSIM metrics remain at a similar level. Meanwhile, LReblur, n1

more aggressively optimizes the perceptual metrics. The perceptual metric improve-

ments are consistently witnessed with different architectures on both the GOPRO and

the REDS dataset.

79



(a) B (b) L1 (c) LVGG (d) LAdv (e) LReblur, n1 (f) LReblur, n2

Figure 5.5: Visual comparison of deblurred results by training loss function on
GOPRO dataset. Upper: SRN, Lower: U-Net.

5.4.2 Effect of Sharpness Preservation Loss

In training MR, we used both the blur reconstruction loss LBlur and the sharpness

preservation loss LSharp. The latter term LSharp plays an essential role in concentrating

only on the motion-driven blur in the given image and keeping sharp image sharp.

Table 5.4 presents the performance gains from using LSharp jointly with LBlur in terms

of the perceptual quality.

Table 5.4 also justifies the effectiveness of the pseudo-sharp image Ŝ in sharpness

preservation. We found the using with S for LSharp in addition to LBlur causes less

stable training than using Ŝ. Using the pseudo-sharp image confines the input distribu-

tion ofMR to the output domain ofMD. While the real sharp data S differ from the

deblurred image L in terms of realness, the pseudo-sharp image Ŝ only differs by the

sharpness. Thus the reblurring module can focus on the image sharpness without be-

ing distracted by other unintended properties. Furthermore, it leads the two loss terms

LBlur and LSharp to reside under the same objective, amplifying any noticeable blur and

keeping sharpness when blur is not found.
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Method LPIPS↓ NIQE↓ PSNR↑ SSIM↑

U-Net (LBlur only) 0.1301 5.132 29.47 0.8839
+LSharp with S 0.1410 5.307 29.15 0.8694
+LSharp with Ŝ 0.1238 5.124 29.44 0.8824

Table 5.4: The effect of the sharpness preservation in training our reblurring mod-
ule measured on GOPRO [72] dataset. In (5.2), using the pseudo-sharp image Ŝ
instead of the real one S leads to better deblurring performance. We note that the re-
blurring module is constructed using 2 ResBlocks.

Method LPIPS↓ NIQE↓ PSNR↑ SSIM↑

SRN (L1) 0.1246 5.252 30.62 0.9078
+0.001LAdv 0.1141 4.960 30.53 0.9068
+0.3LVGG 0.1037 4.945 30.60 0.9074
+LReblur, n2 0.1037 4.887 30.57 0.9074

Table 5.5: Comparison of reblurring loss and other perceptual losses on GO-
PRO [72] dataset applied to SRN.

5.4.3 Comparison with Other Perceptual Losses

The reblurringl loss provides a conceptually different learning objectives from the ad-

versarial and the perceptual losses and is designed to focus on the motion blur. Ta-

ble 5.5 compares the effectiveness of LReblur with adversarial loss LAdv, and the VGG

perceptual loss [42] by applying them to SRN [104] on GOPRO dataset. While our

method provides quantitatively better perceptual scores, the different perceptual losses

are oriented to varying goals and are not in essentially competing relation. They do not

necessarily conflict with each other and can be jointly applied in training to catch the

perceptual quality in varying aspects.

5.4.4 Effect of Test-time Adaptation

We conduct test-time adaptation with the proposed self-supervised reblurring loss,

Lself
Reblur to make the deblurred image even sharper. Figure 5.6 shows the test-time-

adapted result with SRN. Compared with the baseline trained with L1 loss, our results

exhibit improved trade-off relation between PSNR and the perceptual metrics, LPIPS
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Figure 5.6: Test-time adaption results using SRN on GOPRO [72] dataset. The
proposed self-supervised objective improves trade-off between the perceptual image
quality (LPIPS, NIQE) and PSNR compared with the baseline.

and NIQE. Table 5.6 and 5.7 provide detailed quantitative test-time adaptation results

on GOPRO and REDS dataset, respectively with various deblurring module architec-

tures.

5.4.5 Comparison with State-of-The-Art Methods

We have improved the perceptual quality of the deblurred images by training several

different model architectures. We compare the perceptual quality with the other state-

of-the-art methods in Figure 5.8. Especially, DeblurGAN-v2 was trained with the VGG

loss and the adversarial loss. Our results achieve visually sharper texture from the

reblurring loss and test-time adaptation.
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Method LPIPS↓ NIQE↓ PSNR↑ SSIM↑

U-Net (L1) 0.1635 5.996 29.66 0.8874
U-Net (L1 + LReblur, n1) 0.1365 5.629 29.58 0.8869

+ TTA step 5 0.1327 5.599 29.52 0.8878
U-Net (L1 + LReblur, n2) 0.1238 5.124 29.44 0.8824

+ TTA step 5 0.1187 5.000 29.42 0.8831

SRN (L1) 0.1246 5.252 30.62 0.9078
SRN (L1 + LReblur, n1) 0.1140 5.136 30.74 0.9104

+ TTA step 1 0.1129 5.125 30.74 0.9107
+ TTA step 2 0.1119 5.113 30.73 0.9108
+ TTA step 3 0.1112 5.101 30.70 0.9108
+ TTA step 4 0.1105 5.090 30.66 0.9105
+ TTA step 5 0.1101 5.079 30.60 0.9100

SRN (L1 + LReblur, n2) 0.1037 4.887 30.57 0.9074
+ TTA step 5 0.0983 4.730 30.44 0.9067

DHN (L1) 0.1179 5.490 31.53 0.9207
DHN (L1 + LReblur, n1) 0.0975 5.472 31.53 0.9217

+ TTA step 5 0.0940 5.343 31.32 0.9208
DHN (L1 + LReblur, n2) 0.0837 5.076 31.34 0.9177

+ TTA step 5 0.0805 4.948 31.28 0.9174

Table 5.6: Test-time adaptation results of various deblurring networks on GO-
PRO [72] dataset.

Method LPIPS↓ NIQE↓ PSNR↑ SSIM↑

U-Net (L1) 0.1486 3.649 30.80 0.8772
U-Net (L1 + LReblur, n2) 0.1252 2.918 30.46 0.8717

+ TTA step 5 0.1226 2.849 30.25 0.8701

SRN (L1) 0.1148 3.392 31.89 0.8999
SRN (L1 + LReblur, n2) 0.0947 2.875 31.82 0.9026

+ TTA step 5 0.0909 2.798 31.50 0.9008

DHN (L1) 0.0942 3.288 32.65 0.9152
DHN (L1 + LReblur, n2) 0.0805 2.830 32.44 0.9122

+ TTA step 5 0.0763 2.761 32.17 0.9110

Table 5.7: Test-time adaptation results of various deblurring methods on
REDS [71] dataset.
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(a) B (b) L1 (c) LReblur, n2 (d) + TTA step 5

Figure 5.7: Qualitative comparison between different training objectives and the
test-time adaptation. Patches are sampled from the REDS [71] dataset validation
split.

(a) Blurry input B (b) SE-Sharing [28] (c) DeblurGAN-v2 [53] (d) Ours (TTA step 5)

Figure 5.8: Qualitative comparison between state-of-the-art deblurring methods
on the GOPRO [72] dataset. Our approach uses the SRN [104] model as a baseline
architecture.
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(a) Blurry input B (b) L1 (c) LReblur, n2 (Ours) (d) + TTA step 5 (Ours)

Figure 5.9: Qualitative comparison of deblurring results on the real-world im-
ages [54] by different loss functions and test-time adaptation. The proposed test-
time adaptation greatly improves visual quality and sharpness of the deblurred images.

5.4.6 Real World Image Deblurring

While our method uses synthetic datasets [72, 71] for training, the trained models gen-

eralize to real blurry images. In Figure 5.9, we show deblurred results from Lai et al. [54]

dataset with DHN model. Compared with the baseline L1 loss, our reblurring loss

LReblur,n2 provides an improved deblurring quality. As the real test image could de-

viate from the training data distribution, a single forward inference may not produce

optimal results. With the self-supervised test-time adaptation, our deblurred images

reveal sharper and detailed textures.
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Method LPIPS↓ NIQE↓ PSNR↑ SSIM↑

SRN (L1 only) 0.1246 5.252 30.62 0.9078
+LVGG 0.1037 4.945 30.60 0.9074

+LVGG + LReblur, n2 0.0928 4.671 30.64 0.9079
+LAdv 0.1141 4.960 30.53 0.9068

+LAdv + LReblur, n2 0.1014 4.811 30.56 0.9075

DHN (L1 only) 0.1179 5.490 31.53 0.9207
+LVGG 0.0994 5.022 31.48 0.9195

+LVGG + LReblur, n2 0.0773 4.897 31.28 0.9161
+LAdv 0.0969 5.026 31.46 0.9188

+LAdv + LReblur, n2 0.0835 4.799 31.28 0.9162

Table 5.8: Results on GOPRO [72] dataset by adding reblurring loss to the other
preceptual losses.

Method LPIPS↓ NIQE↓ PSNR↑ SSIM↑

SRN (L1 only) 0.1148 3.392 31.89 0.8999
+LVGG 0.1000 3.256 31.86 0.9001

+LVGG + LReblur, n2 0.0868 2.835 31.83 0.9015

DHN (L1 only) 0.0942 3.288 32.65 0.9152
+LVGG 0.0812 3.171 32.61 0.9146

+LVGG + LReblur, n2 0.0723 2.821 32.48 0.9133

Table 5.9: Results on REDS [71] dataset by adding reblurring loss to the other
preceptual losses.

5.4.7 Combining Reblurring Loss with Other Perceptual Losses

we describe the different characteristics of the proposed reblurring loss and the other

perceptual losses. Thus, we can combine our reblurring loss with the other percep-

tual losses to take advantage in multiple perspectives. Our reblurring loss is a new

perceptual loss that is sensitive to blurriness of an image, a type of image structure-

level information while other perceptual losses such as VGG loss [42] and adversarial

loss [56] are more related to the high-level contexts. As VGG model [95] is trained to

recognize image classes, optimizing with VGG loss could make an image better recog-

nizable. In the GAN frameworks [30], it is well known that discriminators can easily

tell fake images from real images [109], being robust against JPEG compression and
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blurring. In the adversarial loss from the discriminator, the realism difference could be

more salient than other features such as blurriness.

With the perceptual loss functions designed with different objectives, combining

them could bring visual quality improvements in various aspects. Table 5.8 and 5.8

shows the effect of applying our reblurring loss jointly with the other perceptual losses

on GOPRO and REDS datasets. We omit the loss coefficients for simplicity. We used

weight 0.3 for the VGG lossLVGG and 0.001 for the adversarial loss,LAdv. We witness

LPIPS and NIQE further improves when our reblurring loss is combined with LVGG

or LAdv.

5.4.8 Perception vs. Distortion Trade-Off

We show the effect of test-time adaptation and show the trade-off relation between

the conventional distortion quality metric (PSNR, SSIM) and the perceptual metrics

(LPIPS, NIQE) compared with the baselines. It is known in image restoration literature

that the distortion error and the perceptual quality error are in trade-off relation [7, 6].

The relation is often witnessed by training a single model with different loss functions.

In most cases, to obtain a better perceptual quality from a single model architecture,

retraining with another loss from scratch is necessary. Our test-time adaptation from

self-supervised reblurring loss, in contrast, can provide the steps toward perceptual

quality without full retraining.

In Figure 5.10 and 5.11, we present the perception-distortion trade-off from our

test-time adaption. LPIPS and NIQE scores consistently improve from each adapta-

tion step in both SRN and DHN models. While PSNR is moderately sacrificed from

the adaptation, SSIM improves in the early steps as it more reflects the structural in-

formation. Our results show improved trade-off between the distortion and perception

metrics over the baseline models trained with L1 loss.
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Figure 5.10: Perception-distortion trade-off from test-time adaptation applied to
SRN model on GOPRO [72] dataset.

5.4.9 Visual Comparison of Loss Function

We visually validate the effect of reblurring loss compared with the other perceptual

losses. In Figure 5.12 and 5.13, we perform visual ablation by showing the deblurred

results from baseline L1 loss, our reblurring loss, and additional test-time adaptation.

For MD, we used DHN. For MR, 2 ResBlocks are used. Our final result reveals

sharper image structure and texture. In Figure 5.14 and 5.15, we compare the effect

of 3 different perceptual losses. The results from VGG loss, adversarial loss, and our

reblurring loss are shown. Our reblurring loss exhibits clearer edges and the face de-

tails than other perceptual losses.
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Figure 5.11: Perception-distortion trade-off from test-time adaptation applied to
DHN model on GOPRO [72] dataset.

5.4.10 Implementation Details

Model Architecture. In the main manuscript, we performed the experiments with

3 model architectures. We set our baseline model as a light-weight residual U-Net

architecture that runs in fast speed. The baseline model is used to design our reblurring

loss with pseudo-sharp images through ablation study in Table 5.4.

For reblurring operation, we use a simple residual networkMR without strides to

avoid deconvolution artifacts. The baseline U-Net and the reblurring module architec-

tures are shown in Figure 5.16. The detailed parameters for U-Net andMR are each

specified in Table 5.10 and 5.12.
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(a) Blur (b) Our deblurred image (TTA step 5)

(c) Blur B (d) L1 (e) L1 + LReblur, n2 (f) Ours (TTA step 5)

Figure 5.12: Visual comparison of deblurred results by reblurring loss and test-
time adaptation on REDS [71] dataset.

(a) Blur (b) Our deblurred image (TTA step 5)

(c) Blur B (d) L1 (e) L1 + LReblur, n2 (f) Ours (TTA step 5)

Figure 5.13: Visual comparison of deblurred results by reblurring loss and test-
time adaptation on REDS [71] dataset.
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(a) Blur (b) Our deblurred image (L1 + LReblur, n2)

(c) Blur B (d) L1 (e) L1 + LVGG (f) L1 + LAdv (g) L1 +LReblur, n2

Figure 5.14: Visual comparison of perceptual losses on REDS [71] dataset.

(a) Blur (b) Our deblurred image (L1 + LReblur, n2)

(c) Blur B (d) L1 (e) L1 + LVGG (f) L1 + LAdv (g) L1 +LReblur, n2

Figure 5.15: Visual comparison of perceptual losses on REDS [71] dataset.
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Figure 5.16: The baseline U-Net architecture and the reblurring module architec-
ture. We use the same reblurring module for all experiments except for the varying
number of ResBlocks.

In addition to the U-Net, experiments were conducted with state-of-the-art de-

blurring models based on SRN [103] and DMPHN [119]. SRN [104] was originally

designed to operate on grayscale images with a LSTM module. Later, the authors re-

leased the sRGB version code without LSTM, exhibiting an improved accuracy. We

adopted the revised SRN structure in our experiments.

The other model we chose is based on DMPHN (1-2-4-8) [119]. DMPHN per-

forms hierarchical residual refinement to produce the final output. The model consists

of convolutional layers with ReLU activations that are spatially shift-equivariant. In

[119], each level splits the image and performs convolutional operation on the divided
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# Layer description Output shape

Input 3×H ×W
1 5× 5 conv 64×H ×W
2 3× 3 conv 128×H/2×W/2
3 3× 3 conv 192×H/4×W/4

4-19 8 ResBlocks (3× 3) 192×H/4×W/4
20 3× 3 conv 128×H/2×W/2
21 3× 3 conv 64×H ×W
22 5× 5 conv 3×H ×W

Table 5.10: U-Net module specifics

Method LPIPS↓ NIQE↓ PSNR↑ SSIM↑

DMPHN (L1 only) 0.1184 5.542 31.42 0.9191
DHN (L1 only) 0.1179 5.490 31.53 0.9207

Table 5.11: DMPHN modification results on GOPRO [72] dataset. DHN without
patch-wise convolution brings improved accuracy.

patches. As the convolutional weights do not differ by the patches, the operations do

not necessarily have to be done patch-wise. Thus, we remove the multi-patch strategy

and perform the convolution on the whole given input without dividing the image into

patches. We refer to the modified model as DHN. As shown in Table 5.11, convolution

on the whole image instead of patch-wise convolution brings higher accuracy.

Metrics To quantitatively compare the deblurred images in the following sections, we

use PSNR, SSIM [110], LPIPS [126], and NIQE [70]. In the image deblurring liter-

ature, SSIM has been measured by MATLAB ssim function on sRGB images with

H×W×C. SSIM was originally developed for grayscale images and MATLAB ssim

function for a 3-dimensional tensor considers an image to be a 3D grayscale volume

image. Thus, most of the previous SSIM measures were not accurate, leading to higher

values. Instead, we measured all the SSIM for each channel separately and averaged

them. We used skimage.metrics.structural similarity function in the

scikit-image package for python to measure SSIM for multi-channel images.

Training For all the experiments, we performed the same training process for a fair
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# Layer description Output shape

Input 3×H ×W
1 5× 5 conv 64×H ×W

2-5 2 ResBlocks (5× 5) 64×H/4×W/4
6 5× 5 conv 3×H ×W

Table 5.12: Reblurring module specifics

comparison. On the GOPRO dataset [72], we trained each model for 4000 epochs. On

the REDS dataset [71], the models are trained for 200 epochs. Adam [49] optimizer is

used in all cases. When calculating distance between images with Lp norm, we always

set p = 1, using L1 distance. Starting from the initial learning rate 1 × 10−4, the

learning rate halves when training reaches 50%, 75%, and 90% of the total epochs. We

used PyTorch 1.7.1 with CUDA 11.0 to implement the deblurring methods. Mixed-

precision training [69] is employed to accelerate operations on RTX 2080 Ti GPUs.

5.4.11 Determining Reblurring Module Size

We describe how the reblurring module design and the size are determined. As our

reblurring loss LR is realized byMR, the reblurring module design plays an essential

role. As shown in Figure 5.16, the MR architecture is a simple ResNet. Table 5.13

shows the relation between the deblurring performance andMR size by changing the

number of ResBlocks.

For all deblurring moduleMD architectures, LPIPS was the best when the number

of ResBlocks, n = 2. NIQE showed good performance when 2 ≤ n ≤ 3. PSNR

and SSIM had tendency to decrease when n ≥ 1. For larger number of ResBlocks,

we witnessed sharper edges could be obtained but sometimes, cartoon artifacts with

over-strong edges were witnessed.

Considering the trade-off between the PSNR and the perceptual metrics, we chose

n ∈ {1, 2} in the following experiments. n = 1 finds balance between the PSNR and

LPIPS and n = 2 puts more weight on the perceptual quality.
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Method LPIPS↓ NIQE↓ PSNR↑ SSIM↑

U-Net (L1 only) 0.1635 5.996 29.66 0.8874
+LReblur, n1 0.1365 5.629 29.58 0.8869
+LReblur, n2 0.1238 5.124 29.44 0.8824
+LReblur, n3 0.1386 5.448 29.38 0.8819
+LReblur, n4 0.1415 5.513 29.25 0.8789

SRN (L1 only) 0.1246 5.252 30.62 0.9078
+LReblur, n1 0.1140 5.136 30.74 0.9104
+LReblur, n2 0.1037 4.887 30.57 0.9074
+LReblur, n3 0.1091 4.875 30.50 0.9060
+LReblur, n4 0.1155 5.041 30.53 0.9056

DHN (L1 only) 0.1179 5.490 31.53 0.9207
+LReblur, n1 0.0975 5.472 31.53 0.9217
+LReblur, n2 0.0837 5.076 31.34 0.9177
+LReblur, n3 0.0845 4.963 31.26 0.9159
+LReblur, n4 0.0861 5.041 31.19 0.9149

Table 5.13: The effect of reblurring loss on GOPRO [72] dataset by the reblurrimg
module size. Reblurring module size varies by the number of ResBlocks.

5.5 Conclusion

In this paper, we validate a new observation that clean sharp images are hard to re-

blur and develop new low-level perceptual loss. We construct reblurring loss that cares

for the image blurriness by jointly training a pair of deblurring and reblurring mod-

ules. The supervised reblurring loss provides an amplified view on motion blur while

the self-supervised loss inspects the blurriness from the learned reblurring module

weights. The self-supervision lets the deblurring module adapt to the new image at test

time without ground truth. By applying the loss terms to the state-of-the-art deblurring

architectures, we demonstrated our method consistently improves the the perceptual

sharpness of the deblurred images both quantitatively and visually.
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Chapter 6

Conclusion

In this dissertation, deep-learning based dynamnic scene deblurring methods are pro-

posed by addressing the problems of components in the learning process. The large-

scale datasets for training and evaluation are constructed, suitable neural network ar-

chitectures were designed for image and video deblurring, and the loss funciton is

jointly learned in the training procedure to facilitate deblurring in a higher-quality.

In Chapter 2, the first dynamic scene deblurring dataset, GOPRO is constructed

from high-speed videos. GOPRO provides the realistic blurry images as well as the

paired sharp images. By using the temporally center-aligned image pairs, neural net-

works models can be trained with supervision. Furthermore, an improved REDS dataset

is constructed by elevating the quality of the ground-truth sharp images as well as the

realism in motion blur. Other practically following artifacts such as compression and

low-resolution are jointly considered in the variations. Both GOPRO and REDS serve

as standard benchmarks in image and video deblurring field of research. They are

widely used for research and public competition series have been organized.

In Chapter 3, the first end-to-end neural network architecture for dynamic scene

deblurring is proposed. Adopting deep learning avoids the complex blur trajectory for-

mulation and let the neural network automatically find the deblurred image directly.

The model is trained with the GOPRO and the REDS datasets in end-to-end fash-
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ion without having to estimate the blur kernel explicitly. Henceforth, the deblurred

images do not suffer from the kernel-related errors such as ringing artifacts without

using handcrafted prior knowledge. Furthermore, the multi-scale architecture inspired

by the coarse-to-fine optimization effectively enlarges the receptive field, improving

both the inference time and the deblurring accuracy. The learned deblurring operation

generalizes to real blurry images.

In Chapter 4, recurrent neural networks with intra-frame iterations are proposed

for video deblurring. While the basic RNNs lets the hidden state propagate the in-

formation in the past frames to the future frames, intra-frame iterations tries to better

exploit the received knowledge. Intra-frame iteration reuses the recurrence relation on

the given target frame to update the initial hidden state. As the initial hidden state only

contains information from the past frames, recomputing the hidden state with the cur-

rent frame can better capture the information from both the past and current frames.

Henceforth, the proposed intra-frame iterations improve the deblurring performance

of recurrent networks without any additional parameters as the existing recurrence re-

lation is reused. In addition to the basic single-cell recurrent architecture, dual-cell

architecture is proposed with the second RNN cell specialized for updating the hidden

states. To further improve the training of intra-frame iterative architecture, stochastic

training is employed with regularization loss. The loss favors additional computations

only when significant content accuracy improvements are witnessed. Beginning from a

light-weight baseline, the proposed IFI-RNNs achieve state-of-the-art deblurring per-

formance as well as fast inference speed.

In Chapter 5, a novel loss function for deblurring is designed from the joint learn-

ing. A new observation is obtained that an imperfectly deblurred image still contains

partial blur information such that original blur can be reconstructed while a ground-

truth clean images don’t. Motivated from the new clue, a reblurring module is jointly

trained along with the deblurring module to make the deblurred images hard to reblur.

From the learned reblurring module, reblurring loss is designed in both supervised and
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self-supervised forms. The supervised reblurring loss compares the amplified blurs of

the deblurred and the sharp image. The self-supervised reblurring loss penalizes the

remaining blur trace by inspecting if the image is changed from reblurring. As the

self-supervised loss does not require ground-truth, it is used at test-time to let the de-

blurring module adapt to the given image. Experimental results demonstrate that the

models trained with reblurring losses exhibit sharper images with improved perceptual

quality.

While the proposed approaches investigates the training of deep neural networks

for deblurring, there still remains research issues.

• Photographies and videos are typically captured on hand-held devices in real

time where motion blur are prone to occur. Compared with the capturing speed,

state-of-the-art deblurring methods at current state requires execution at a work-

station with high-performance GPUs for a few seconds. In order for the deblur-

ring methods to be applicable in practice, the inference stage should be acceler-

ated. Often, neural networks are quantized and pruned to relieve the computation

burden but such techniques have not been much studied in image restoration

fields due to the sensitivity in the restoration accuracy. To address this practi-

cal issue, network acceleration techniques will be studied while preserving the

state-of-the-art deblurring accuracy as much as possible.

• Deep learning has shown impressive results in computer vision but often gener-

alization to unseen data is an issue. Collecting massive amount of data to better

train models could be a solution but this is not always possible. Specifically,

deblurring may require manual capturing of diverse scenes with multiple cam-

eras which is labor intensive. On the other hand, unsupervised learning could

relieve the data collection burden by using unpaired set of the blurry and the

sharp images. While the supervised and self-supervised learning has been inves-

tigated, unsupervised learning in a large scale can be considered a way for better

generalization to unseen types of views and blurs.
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국문초록

사진촬영의궁극적인목표는고품질의깨끗한영상을얻는것이다.현실적으로,

일상의사진은자주흔들린카메라와움직이는물체가있는동적환경에서찍는다.

노출시간중의카메라와피사체간의상대적인움직임은사진과동영상에서모션블

러를일으키며시각적인화질을저하시킨다.동적환경에서블러의세기와움직임의

모양은매이미지마다,그리고매픽셀마다다르다.국지적으로변화하는블러의성

질은사진과동영상에서의모션블러제거를심각하게풀기어려우며해답이하나로

정해지지않은,잘정의되지않은문제로만든다.

물리적인 움직임 모델링을 통해 해석적인 접근법을 설계하기보다는 머신러닝

기반의접근법은이러한잘정의되지않은문제를푸는보다현실적인답이될수있

다.특히딥러닝은최근컴퓨터비전학계에서표준적인기법이되어가고있다.본

학위논문은사진및비디오디블러링문제에대해딥러닝기반솔루션을도입하며

여러현실적인문제를다각적으로다룬다.

첫 번째로, 디블러링 문제를 다루기 위한 데이터셋을 취득하는 새로운 방법을

제안한다. 모션 블러가 있는 이미지와 깨끗한 이미지를 시간적으로 정렬된 상태로

동시에취득하는것은쉬운일이아니다.데이터가부족한경우디블러링알고리즘

들을평가하는것뿐만아니라지도학습기법을개발하는것도불가능해진다.그러

나고속비디오를사용하여카메라영상취득파이프라인을모방하면실제적인모션

블러이미지를합성하는것이가능하다.기존의블러합성기법들과달리제안하는

방법은 여러 움직이는 피사체들과 다양한 영상 깊이, 움직임 경계에서의 가리워짐

등으로인한자연스러운국소적블러의복잡도를반영할수있다.
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두번째로,제안된데이터셋에기반하여새로운단일영상디블러링을위한뉴럴

네트워크구조를제안한다.최적화기법기반이미지디블러링방식에서널리쓰이고

있는 점차적 미세화 접근법을 반영하여 다중규모 뉴럴 네트워크를 설계한다. 제안

된다중규모모델은비슷한복잡도를가진단일규모모델들보다높은복원정확도를

보인다.

세번째로,비디오디블러링을위한순환뉴럴네트워크모델구조를제안한다.

디블러링을통해고품질의비디오를얻기위해서는각프레임간의시간적인정보와

프레임내부적인정보를모두사용해야한다.제안하는내부프레임반복적연산구조

는두정보를효과적으로함께사용함으로써모델파라미터수를증가시키지않고도

디블러정확도를향상시킨다.

마지막으로, 새로운 디블러링 모델들을 보다 잘 최적화하기 위해 로스 함수를

제안한다. 깨끗하고 또렷한 사진 한 장으로부터 자연스러운 모션 블러를 만들어내

는것은블러를제거하는것과마찬가지로어려운문제이다.그러나통상사용하는

로스함수로얻은디블러링방법들은블러를완전히제거하지못하며디블러된이미

지의남아있는블러로부터원래의블러를재건할수있다.제안하는리블러링로스

함수는디블러링수행시모션블러를보다잘제거하도록설계되었다.이에나아가

제안한 자기지도학습 과정으로부터 테스트시 모델이 새로운 데이터에 적응하도록

할수있다.

이렇게 제안된 데이터셋, 모델 구조, 그리고 로스 함수를 통해 딥 러닝에 기반

하여단일영상및비디오디블러링기법들을제안한다.광범위한실험결과로부터

정량적및정성적으로최첨단디블러링성과를증명한다.

주요어:디블러링,동적영상,데이터셋,이미지,비디오,로스,딥러닝

학번: 2014-21661

116



감사의글

지난 학위기간 동안 저를 지도해 주신 이경무 교수님께 깊은 감사의 말씀을 드

립니다. 이경무 교수님은 연구하는 방법을 지도해 주셨을 뿐만 아니라 연구자로서

어떻게생각하고행동하는지,새로운변화를어떻게받아들여야하는지,그리고연

구자커뮤니티의일원으로살아가는모습도함께보여주셨습니다.대학원연구실이

라는한공간에서이렇게다방면으로지도를받을수있었던것은제게큰행운이라

고생각합니다.언제나연구에대한열정을갖고계신이경무교수님의모습이특히

기억에남고앞으로도연구활동을계속하면서가르침을되새기도록하겠습니다.

제가 신입생일 때 박사과정을 먼저 거쳐간 선배로서, 국제 무대에서 연구자로

서적극적으로활동하는모범을보여주신조민수,권준석교수님께감사합니다.처

음으로 참여했던 국제 학회에서 만났을 때 해주신 조언들이 박사과정을 시작하는

기반이되었습니다.또매주진행되는비전세미나때날카로운질문들로통찰력과

함께 어떻게 비판적인 시각을 연마해야 하는지 보여주신 이수찬 교수님께 감사합

니다. 그리고 제가 신입생으로 들어오던 해에 박사학위를 마치고 졸업하시던 김원

식,신영민선배들께감사합니다.함께있었던기간은짧지만친절히저를일원으로

맞아주셨고,특히김원식선배는식사시간까지아껴가며제질문에답해주셨던모

습이 기억에 남습니다. 특히 조민수, 이수찬, 김원식 선배에게 대학원 생활 전반에

대해많은조언과도움을받았습니다.

제가 deblurring 연구를 수행하는 데 도움을 주기 위해 수고를 아끼지 않았던

김태현선배에게감사합니다.기존연구를어떻게발전시켜나아갈지,소스코드관

리는 어떻게 해야 하는지 등 연구하는 방법을 체득하는 데 큰 도움을 주었습니다.

117



덕분에제가이후로도독자적인연구를수행할수있는기반을닦을수있었습니다.

안병주선배또한김태현선배와함께먼저 deblurring연구를수행한선례를보여주

어제가같은분야의연구를이어나가는데이정표가되었습니다.

그리고 뿌듯한 연구 결과인 EDSR을 함께 만들었던 동료들인 비, 상현이, 희원

이형에게 감사합니다. 개인적으로 EDSR을 통해 얻은 가장 큰 성과는 팀워크라고

생각합니다. 다함께 아이디어를 내고 역할을 나누어 실험하던 시간은 협력의 가치

를 느낄 수 있었던 값진 경험이었고 이후로도 적극적으로 공동연구를 진행하는 원

동력이되었습니다.

또 REDS데이터셋을만들때데이터촬영을위해힘써준성용이,석일이,경식

이, 상현이에게 감사합니다. 데이터 취득은 직접 다양한 장소에 가서 촬영을 해야

하는등다른알고리즘연구와달리수고롭고번거로운일입니다.때문에많은사람

들이기피하는일인데기꺼이함께데이터취득을위해많은노력과시간을들여준

동료들입니다.그리고 REDS데이터르기반으로한 NTIRE및 AIM국제워크샵및

대회운영에함께참여해준상현이,재린이,수영이에게감사합니다.해마다규모가

커지는국제행사관리는혼자관리하기어려운일인데좋은동료들이함께부담을

나눠주는도움을받아성공적으로운영할수있었습니다.

그리고박사과정기간중에해외에나가Microsoft Research에서 Sing Bing Kang

과, 그리고 Max-Planck Institute for Intelligent Systems에서 Andreas Geiger와 함께

일할 수 있는 기회를 가질 수 있었습니다. 대학원 생활동안 학교 뿐만 아니라 외

부기관에서서로다른방식의연구와조직문화를체험해볼수있는기회였습니다.

더불어 ETH Zürich의 Radu Timofte와함께 NTIRE및 AIM워크샵,챌린지를공동

운영하며협력할수있었던것또한개인으로서쉽게얻기힘든경험이었습니다.

제가 MSR인턴활동을위해미국에체류할때반겨주시고적응을위해도와주

었던선배들께감사합니다.유학생활중이던노준하선배는제가미국에처음도착

했을 때 집에 초대해 주시며 현지 생활에 필요한 정보를 알려주셨습니다. 김재철,

최종현 선배는 미국 회사 경험을 알려주시면서 회사 생활과 진로에 대한 조언을

해주셨습니다.또우리연구실에서석사학위를받고독일 MPI-IS에박사과정유학

중이던 Kamil은제가방문연구원으로독일에체류할때적응할수있도록도와주고
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여러사람들을소개해주었습니다.또김효진,권정현선배도학회에서만났을때를

포함하여종종해외회사생활및진로에대해깊게상담해주었습니다.

그리고연구실생활을하면서좋은동료이자친구가되어준선후배들에게감사

합니다.제가신입생일때신입생교육을해주시던때부터언제나따뜻하고친절한

모습을보여준해솔이형에게감사합니다.배려심,멋짐과함께이성적인면모와판

단력도 함께 가진 해솔이형은 대학원 생활 전반에 걸쳐 든든한 버팀목이 되어주었

습니다. 희수 형은 연구에 대한 열정과 헌신을 보여주어 연구 동기에 대한 자극을

받을 수 있었습니다. 제가 신입생으로 처음 만났을 때 희수 형이 막 해외 인턴을

마치고 돌아온 날부터 바로 밤새워 연구하던 모습이 기억에 남습니다. 유민누나와

승연이형도 오랜 시간동안 연구실 생활을 함께하면서 연구 분야는 달라도 서로의

생각을 교환하고 토론하는 시간을 보냈습니다. 연구에 매진하다 보면 자기 분야에

만 몰두하기 쉬운데 서로 다른 분야를 함께 이해하는 데 많은 도움을 받았습니다.

광모 형은 인간적인 여유과 놀라운 집중력을 동시에 보여주었고 이를 통해 연구에

성실히 임하면서도 지치지 않을 수 있도록 지속가능한 생활을 유지하고 있는지 스

스로를 되돌아볼 수 있었습니다. 장훈이형에게서는 끊임없는 노력을 통해 새로운

트렌드를파악하고비판적인시각을견지하는모습을볼수있었습니다.변화가빠

르고새로운연구가점점많아지는컴퓨터비전분야특성상연구자로서갖춰야할

중요한소양을배울수있어감사합니다.

그리고 언제나 따뜻한 인간미를 보여준 의영이형에게 감사합니다. 지홍이형도

어른스러움으로동생들을이끌어주었고여러좋은기회와연구환경을만들기위해

노력하는모습을보고연구외적인노력도중요하다는것을깨달을수있었습니다.

학부시절부터같은반동기였고지금까지연구실사람들중가장오래알고지낸친

구동우에게도감사합니다.그리고경식이도오랜시간동안열정과남다른패기를

가지고 치밀하게 연구하는 모습이 제게 큰 귀감이 되었습니다. 성용이는 연구실에

밝은 분위기를 가져올 뿐만 아니라 연구실 사람들과 함께 성장하며 연구를 수행

해 온 훌륭한 친구이자 동료로서 모두에게 긍정적으로 기여하였습니다. 비에게도

많은 고마움을 느낍니다. NTIRE 챌린지에 함께 참가하자고 먼저 제안해주었습니

다. 우리 팀의 NTIRE 챌린지 우승을 통해 많은 후속 연구가 이루어질 수 있었고
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귀한계기를만들어주어고맙습니다.그과정에서비는스스로적극적으로연구를

이끌어가며,분산된아이디어들을통합하는등제가함께하면서보고배울점이많

았습니다.준형이도집중적으로 super-resolution연구에임하여국제대회에서좋은

성적을거두었고제게좋은자극을주었습니다.

그리고 학부 졸업프로젝트 조교와 학생으로 처음 만난 이후로 지금까지 가장

많이 연구를 함께한 상현이에게 깊은 감사를 전합니다. 아이디어가 생겼을 때 주

저없이 논의할 수 있고 그렇게 만든 아이디어로 연구를 수행해나가는 과정을 함께

겪을수있는동료를가졌다는것이제박사과정에서의큰행운이라고생각합니다.

또한상현이는번뜩이는아이디어와빠른수행능력으로연구를보다수월하게만들

뿐만아니라새로운기법을도입하는데주저하지않아저를여러번기쁜마음으로

놀라게 해 주었습니다. 지금까지 지켜본 상현이는 개인으로서도 매우 뛰어날 뿐만

아니라 다른 사람에게 도움을 주는 데에도 능숙한 친구입니다. 지금까지 상현이와

함께한모든경험이자랑스럽습니다.

그리고희원이형에게도함께일하면서연구적으로뿐만아니라인격,끝없는인

내심과굳건한의지를보고배울수있었습니다.함께하는일들에서언제나희원이

형이깊은생각을하고있는것을느낄수있었고언제나유머를잃지않는모습에서

정신력과삶의지혜를느낄수있었습니다.

멀리 타향에서 와 연구실 생활을 하고 다시 박사 유학의 길을 떠난 Amin도 그

동안보여준배려심과성실함에감사합니다. Mohsen과 Reyhaneh도타향에까지찾

아와 연구에 임하는 적극적인 모습을 보여주었습니다. 함께 과제를 수행하면서 고

생한건운이,발표자료준비및여러행사에서미적감각을발휘해준석일이에게도

감사합니다.

수영이, 재영이, 재하, 강건이, 영욱이는 많은 사람들을 위해 연구실에 봉사해

주었습니다.수영이와재영이는본인연구를수행할뿐만아니라저를포함한다른

사람들이연구에집중할수있도록서버관리를맡아많은시간과수고를들였습니

다. 또한 서버 구매에도 많은 노동이 필요한데 재하와 강건이가 함께 많이 수고해

주었습니다. 그리고 대학원 생활을 하다 보면 의식적으로 노력하지 않으면 건강을

돌아보지않게되는경우가많은데영욱이는연구와동시에연구실건강증진을위
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해많이수고해주었습니다.

그리고 고맙게도 많은 후배들이 deblur 연구에 관심을 가지고 공동연구에 참여

해주었습니다.재하는인턴으로처음만났을때부터좋은연구능력을발휘해주었

고 좋은 아이디어가 있을 때 함께 연구를 하자고 제안해주었으며 적극적인 의지를

보여주고있습니다.재린이는연구에대한대단한열의로저에게자극을주었을뿐

만 아니라 제 연구에도 함께 참여하여 실험 결과 해석 등 많은 도움을 주었습니다.

또한군대에가서까지도연구를놓지않는등연구에대한남다른열정을보여주었

습니다.준규도연구를시작한지얼마되지않아서부터여러흥미로운아이디어를

내고능동적인태도로실험을주도하여저를여러차례놀라게해주었습니다.디블

러링 연산 가속화 연구를 위해 함께 노력을 기울이고 있는 지훈이, 정훈이, 채은이

에게도감사합니다.후속데이터작업을위해관심을가지고있고종종아이디어를

함께 논의한 현진이에게도 감사합니다. 이렇게 함께 할 훌륭한 동료가 많이 있는

환경에서연구할수있었다는것은쉽게가질수없는복이라생각하며모든동료들

에게감사합니다.

또한 직접적으로 같은 프로젝트에 참여하지 않더라도 곁에서 의욕적인 태도와

굳건한의지를놓지않는모습을보여주는홍석이에게도감사합니다.비슷한분야를

연구하는우석이,컴퓨터비전연구실의새로운미래를책임질도희,형진이,상민이,

서연님모두에게도큰기대와함께감사를전합니다.

마지막으로 언제나 곁에서 든든하게 지지해주고 지원을 아끼지 않으신 부모님

께감사드립니다.
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