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Abstract

In this thesis, a novel blur model that can deal with occlusion in the blurred image
from a scene with depth discontinuities is proposed. Existing deblurring methods
usually ignore the occlusion that occurs near the depth variations but it causes
severe artifacts near the object boundary, which is a critical factor in deblurring.
Based on the analysis about the blur kernel near the depth discontinuities for a
two-layer image model, a new occlusion-aware blur model which can make use of
the information of occluded regions is proposed. Proposed model jointly recovers the
depth map, foreground mask and restored image with accurate object boundary from
two blurred observations. Also, a highly accurate optimization method is provided
based on MCMC. Comparative experimental results on synthetic and real blurred

images demonstrate convincingly that proposed model gives satisfactory results.

Key words: Image deblurring, Depth discontinuity, Occlusion, Blur model, Vision-

based 3D reconstruction, Markov chain Monte Carlo

Student number: 2012-20803
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Chapter 1

Introduction

Motion blur problem has been studied extensively for a long time and can be roughly
categorized into spatially invariant [2, 3] and spatially variant configurations [4, 5, 6].
In particular, spatially variant blur is usually motivated by the fact that blur is
caused by camera motion. State-of-the-art approaches estimate the camera motion
based on the assumption that the scene has no depth variation [4, 5, 6], but recently
the depth variation is considered to deal with more general cases [1, 7, 8] because it

is common in practice.

1.1 Background and Research Issues

However, the occlusion that occurs near the depth discontinuities during camera
motion is still ignored in the conventional methods. To be specific, motion blur from
camera motion is made by integration of all intermediate images that the camera
sees along the trajectory of camera motion. When there are depth discontinuities

in the static scene, in particular, the object closer to camera (foreground) moves
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(a) Blurred image 1 (b) Blurred image 2 (c) Deblurring result (d) Recovered a

Figure 1.1: Blurred images and deblurring results

more than farther object (background) in the image during camera motion. Then,
the background region which is exposed at the beginning of camera motion can
be occluded by the foreground object (i.e. occlusion). Also, the background region
occluded by the foreground object before can appear as the camera moves (i.e.
disocclusion).

If the occlusion is ignored, exact boundary of the object cannot be restored
which is a critical factor in deblurring. Moreover, when deblurring the image that
contains large occlusions (i.e. large blur), not only boundary but the overall result
image would have severe artifacts. Prior models can alleviate some artifacts, but

they cannot solve the problem radically.

1.2 Outline of the Thesis

In this thesis, a novel blur model that can deal with the occlusion as well as depth
variations is proposed for the first time, based on a two-layer image model (i.e.
foreground and background). The camera motion composed of 2D translations and
in-plane rotations is allowed, and two differently blurred images are required to

handle the occlusion. Using this model, the foreground mask, depth map and the
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restored image of each layer including the information of occluded region can be es-
timated simultaneously as shown in Fig. (1.1). Proposed model can also be applied
to 3D reconstruction from blurred images [1] which inevitably contains some occlu-
sions. Moreover, to deal with large blurs, which includes considerable occlusions, the
proposed occlusion-aware blur model is necessary.

In Chapter 2, related works and the contributions are summarized. Conventional
deblurring methods which handle depth variations or occlusions are introduced and
the difference with this thesis is presented. In Chapter 3, the generation process
of blur considering occlusion is analyzed and the new model is proposed with the
comparison to the traditional model. In Chapter 4, the deblurring process which
contains the problem statement, camera pose interpolation, objective function, and
the optimization method is introduced. In Chapter 5, assumptions about camera
poses are discussed. In Chapter 6, experimental results are shown. Finally, the thesis

is concluded in Chapter 7.



Chapter 2

Related work

Motion blur from camera motion has been studied for a long time. State-of-the-arts

are roughly categorized into spatially invariant and spatially variant configurations.

2.1 Uniform Blur

For spatially invariant blur, Fergus et al. [3] proposed a blind deconvolution method
using natural image statistics. Shan et al. [9] used carefully chosen regularization
term to reduce ringing artifacts. Cho and Lee [2] used an optimization technique that
makes kernel estimation faster. Xu et al. [10] used the spatial prior and the iterative
support detection (ISD) kernel refinement to restore pictures from significant motion

blur.
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2.2 Non-Uniform Blur

2.2.1 Non-Uniform Blur from Camera Motion

In practice, however, realistic camera motion includes in-plane rotation [11] and
the blur is spatially variant because of camera rotation. Whyte et al. [6] proposed a
model that can deal with rotational camera motion. Gupta et al. [4] proposed motion
density function to represent camera motion, and also handled in-plane translation
and rotation. Hirsch et al. [5] used efficient filter flow to reduce computational com-
plexity. Xu et al. [12] proposed a robust kernel estimation method based on the

sparse representation.

2.2.2 Non-Uniform Blur with Depth Variations

Although these methods solved spatially variant motion blur well, they were limited
to the scenes without depth variations. To address the problem of depth variations,
Xu and Jia [8] found depth dependent blur kernels using stereopsis for the case of
translational motion. Lee and Lee [1] and Paramanand and Rajagopalan [7] utilized
commutative property of convolution to estimate depth map. They restored the
image with depth variations using blur kernels from the depth map, and handled
in-plane rotations as well as in-plane translations. Paramanand and Rajagopalan

handled bilayer scenes. This thesis is motivated by these works.

2.2.3 Non-Uniform Blur with Occlusions

While depth variations were effectively handled by these methods, these previous
studies ignored the occlusion, which unavoidably occurs near the depth discontinu-

ities. The occlusion caused by depth discontinuities during camera motion has not
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been studied yet, but the occlusion caused by partial blur has been studied by Dai
and Wu [13]. They made use of image matting method with user interaction and
found the blur kernel from the mask. Several recent works utilize image matting to

resolve the blur problem [14, 15, 16].

2.3 Contributions

Proposed method can deal with the occlusion as well as depth variations. Both in-
plane translations and rotations of camera motion are allowed and user interaction
is not needed at all. It has significant advantages over previous methods that can
handle depth variations [1, 7] or occlusions [13]. First, the commutative property
of convolution used in [1, 7] cannot deal with the occlusion. This is because com-
mutativity does not hold near the depth discontinuities. Moreover, a blurred image
with depth discontinuities cannot even be represented by a convolution of the single
layer image and the blur kernel. Second, although occlusion is effectively handled by
the method in [13], it is limited to partial blur and translational motion. In other
words, neither foreground nor background should be blurred and rotational motion
should not be allowed. Furthermore, user interaction is required to find the initial

foreground mask.



Chapter 3

Analysis of Occlusion during

Camera Motion

In this chapter, based on the two-layer image model [13], the generation process of
motion blur from camera motion is analyzed for occlusion-aware blur model. The
two-layer model of clear image is explained in Section 3.1 and how the two-layer
image is projected when the camera moves is shown in Section 3.2. Finally, using
the result of Section 3.1 and Section 3.2, a new blur model considering occlusion is

proposed and then is compared with other models in Section 3.3.

3.1 The Two-Layer Model of Latent Image

When there are depth discontinuities in the scene, there occur occlusions and dis-
occlusions during camera motion near pixels at the boundary of foreground as illus-
trated in Fig. (3.1). These pixels have background (foreground) information at the

beginning of camera motion but after occlusion (disocclusion) occurs, they have the
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Figure 3.1: Illustration of the blur generation process from the scene with depth discontinuities.

Red areas represents occlusion and green areas represents disocclusion.

foreground (background) information. Thus, these pixels have both foreground and
background information at the same position. Such information cannot be captured
by the traditional single layer image model which expresses the blur as the convo-
lution of a single layer latent image and a spatially variant point spread function
(PSF). Therefore, a layered image model is required to consider the occlusion during
camera motion.

This thesis focuses on the case of two-layer, because it is common and represen-
tative in practice and can be generalized to the multiple layer model [13]. Then, the

latent image L can be modeled as

L=oF +(1—-a)B, (3.1)
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where F is the layer closer to the camera (clear foreground layer), B is the farther
layer (clear background layer), « is a clear foreground mask that represents where
the foreground object is, and 1 is a matrix of ones. The size of F', B, a and 1 are
same with that of L, and the pixel value of a is 1 at the pixels where the foreground

object is and 0 elsewhere.

3.2 The Two-Layer Image Transformation

Given a two-layer image model, how the image is projected during the camera ex-
posure time as the camera moves is analyzed. Let the unblurred frame when camera
shutter opens be the reference image. Then, the projected image is represented as a
transformation of the reference image, to model the blur as integration of them. No-
tably, the transformation should be able to represent the occlusion and disocclusion
which is mentioned earlier.

Assume that the relative camera pose (w.r.t the camera pose of the reference
image) at every time during the camera exposure period T is given, and camera
motion is composed of 2D translation and in-plane rotation. Then, how each pixel
of the reference image is projected to the image of a camera with pose P7 € SE(3)

at exposure time 7 € [0,7] can be calculated as follows:

(27,y7) = (K((PT)™') - X)),
(3.2)

1
X = EK_I : (xvyv 1)Ta

where (27, y7) is projected pixel point, h(-) is the dehomogenization function, such
that h((z,y,2)7) = (£, %), K is the camera intrinsic matrix, X is a 3D scene point

corresponding to pixel (z,y) at the reference image and d is the depth of the pixel.

In two-layer case, there are only two values that d can have. i.e. the depth
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of foreground dr and the depth of background dp. Let W and WF be the image
transformation function that map the pixels in the foreground and background of the
reference image to the corresponding pixels in the image of P7 via (2), respectively.
Notably, given P7, W}, and W} are functions of dr and dpg, respectively. Then, the
projected image L7 at time 7 can be expressed by a transformation of the reference
image as follows:

L7 = Wi(aF) + (1 — Wih(a))W(B). (3.3)

This equation means the projected image is composed of transformed foreground,
transformed background and transformed foreground mask. Foreground and its mask
are transformed by Wf. and background is transformed by Wg. Then, L™ has trans-
formed foreground value at the pixel where W}.(«) is 1 and transformed background
value where WJ, () is 0. Since foreground mask is also transformed same with fore-
ground, pixels at the background can be occluded or be disoccluded. Therefore,
Eq. (3.3) can represent the projected image as a transformation of the reference

image while considering occlusions.

3.3 Occlusion-Aware Blur Model

Now, the motion blur from camera motion can be modeled by integrating L™ during
the exposure time 7 € [0,7]. Then the blurred image I considering occlusions can

be represented as follows:
1 T
1= / WE(aF) + (1 — Wi(a)) W5 (B)dr. (3.4)
0

This is occlusion-aware blur model. It looks unfamiliar but by using matrix rep-

resentation, it can be expressed in a similar form to traditional blur models. Let
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us represent the image transformation function as the multiplication of a transfor-
mation matrix and a vector representation of the image. Then, Eq. (3.4) can be

expressed as follows:

x; =Kpxp + Kpxp = <KF KB> XF = KppXrs, (3.5)
Xp

where x;, xp and xp are the vector representations of I, F' and B. Kp is the
integration of the matrix that achieves operation of element-wise multiplication of
«, followed by the foreground transformation from camera motion, and Kp is the
integration of the matrix that operates the background transformation from camera
motion followed by element-wise multiplication of (1 — W} («)). In other words, Kp
and Kp are represented as follows:

/ Whdiag(x)dr,
(3.6)

Kp = T/ (E — diag(Wgx,))WEgdr,
0

where W7, and W7 are the matrix representations of Wy and Wy, respectively.
X, 18 the vector representation of o, and E is the identity matrix. The size of these
matrices is p by p where p is the number of pixels in the image.

This formulation is similar to the conventional spatially variant blur model which
represents the blur image as Kx;, (K is the spatially variant PSF matrix and xz, is
the vector representation of a single layer latent image). Thus, (K r K B) can be
considered as a spatially variant PSF. The difference is, in the conventional model,
PSF represents the pixels in the single layer reference image that influence a pixel in
the blurred image. While, in the proposed model, the element of Kr(Kpg) represents
the pixels in the foreground (background) layer of the reference image that influence

a pixel in the blurred image.
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For example, let us consider the (i,7) element of Kr(Kp). This element shows
how the jth pixel of xp(xp) influence to the ith pixel of blurred image. In other
words, the ith row of K5 corresponds to the PSF of ¢th pixel of blurred image
considering both foreground and background.

Fig. (3.2) shows the synthetic blurred images and their blur kernels from the
conventional blur model in [1, 7] and the proposed blur model. In synthetic blurred
images, conventional blur model (in (d)) does not represent the disocclusion of blue
background and the occlusion of green background while the proposed model (in
(e)) successfully represents it. It results from newly proposed PSF which considers
two layers. In most of the regions, the proposed PSF is made from one layer which
is same as the conventional model. On the other hand, in the region being exposed
(in (f)(g)) or being occluded (in (h)(i)) during the exposure time, the PSF is from
both the layers where whites are the pixels in F' indicated by Kp, blacks are the
pixels in B indicated by Kp, and grays are overlaps of whites and blacks. Notably,
PSF at the pixel being exposed is overlapped and PSF at the pixel being exposed

is separate.
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(b) (d)

® (2) (h) (1)

Figure 3.2: [llustration of the synthetic blurred images and their blur kernels from conventional blur

model and the proposed blur model. Camera is moving to the left. (a) F. (b) B. (¢) L (d) synthetic
blurred image from conventional blur model. (e) synthetic blurred image from the proposed blur
model. (f)(g)(h)(i) 1st row: close-up views of (e) near boundary of red box. 2nd row: conventional
PSF of the yellow-marked pixel in 1st row. 3rd row: proposed PSF of the yellow-marked pixel in
1st row, whites indicate PSF in F, blacks indicate PSF in B and grays indicate PSF in both. (f)&(g)

are disoccluded region (left side of red box) and (h)&(i) are occluded region (right side of red box).



Chapter 4

Occlusion-Aware Motion

Deblurring

In this chapter, how to deblur the image using the occlusion-aware blur model is
explained. However, solving all unknowns (F, B, o, dp,dp) in Eq. (3.4) based on one
blurred image observation I is severely under constrained. Moreover, even if «, dg
and dp are given, F' and B are not uniquely determined in the occluded or disoc-
cluded region. For example, assume that the foreground object is white and back-
ground object is black. Then in the blurred image, the region near the boundary of
the foreground object will be gray. In this case, same blurred image can be obtained if
the boundary of the foreground object is black and the occluded/disoccluded region
of the background is gray.

To solve this ill-posed problem, two blurred images which originate from the
same scene (i.e. same I’ and B) are used as observations. Since two blurred images
are blurred differently, the occluded region does not have the ill-posedness. Multiple

observations can be easily obtained in practice and have been used frequently in

14
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Background

Foreground

L (Reference image)

Figure 4.1: Illustration of the problem statement. Black arrows represent real blur generation pro-

cess. Red arrows represent the proposed synthetic blur generation process for deblurring.

other deblurring approaches [17, 1, 7, 18, 19].

In section 4.1, the problem situation which uses two blurred images as obser-
vation is explained. In section 4.2, camera poses are interpolated at a uniformly
sampled time during camera motion to make use of the occlusion-aware blur model
in this problem situation. In section 4.3, the objective function using the pro-
posed blur model with smoothness prior is proposed. Finally, the optimal values
of (F,B,a,dr,dp) are obtained by using Markov chain Monte Carlo (MCMC) in

section 4.4.
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4.1 Problem Statement

For this thesis, the situation that we have considered is illustrated in Fig. (4.1). Two
blurred observations are obtained by consecutively captured image frames. To be
specific, blurred image I; and I, are made by integration of images that the camera
sees from P; to P. and from P, to P, respectively. We are going to represent these
blurred images by the image at P.. To use this image as the reference image L for
both I; and I,, we consider the blurred image I; is made by the camera motion from
P, to Py, rather than from P; to P.. Since commutative property holds for addition,
the direction of camera motion does not affect the blur model, which consists of the
addition of intermediate images. Notably, by using same reference image for both
blurred images, the information that two blurred images are from same scene is

utilized.

4.2 Camera Pose Interpolation

The occlusion-aware model needs camera poses with respect to the camera pose of
the reference image during the exposure time to parameterize W and W5 as the
functions of dp and dp, respectively. In this framework, similar to [1], the camera
poses P;, P. and P, are obtained from the registration-based camera localization
algorithm. Let the ¢ be the reference camera. i.e. P, = E (4 by 4 identity matrix).
Then, P; and P, are the camera pose with respect to the camera pose of the reference
image (P.). Now, the intermediate camera poses of P; and P, from P, are obtained
by interpolations assuming the camera motion is smooth.

To interpolate the camera pose, we divide the exposure time into M intervals

uniformly, such that 7, = %z where i € {1,...,M}. Then, an intermediate camera
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pose P7 of P, at time 7; on the manifold of SE(3) is interpolated as follows:

Py — e { (17 ) 1outP}. (1)

where s € {l,r}. Note, the duration of the shutter period T is not needed in Eq. (4.1).

Using the intermediate camera poses with respect to the reference image (i.e.
P7'), the image transformation functions can be parameterized by dr and dp as
Eq. (3.2). Let the image transformation functions using P7 be W;’F and W:B for
F and B, respectively. Then, we can represent a final proposal function using the
image transformation functions and F', B, « of the reference image.

Notably, only relative camera pose with respect to the reference camera pose,
rather than the absolute camera pose, is needed for the proposed model. The as-
sumptions about the camera pose are not needed if we can obtain relative camera
pose (i.e. camera transformation) from other method such as [7]. We will discuss

this in detail in Chapter 5.

4.3 Objective Function

The final proposal function is

2
1 M
E(F, B,a,dp.dg) = | > [M (Z Wiip(aF) + (1 - w;ip<a>>w;iB<B>> - fs]
s€E =1
{t,r} 2
+ ) AxR(X),
Xe{F,B,a}

(4.2)

.-':'; ! _'\-\.I-.:I_ 'I_-li
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where R is the regularization term for F', B and «, such that

RX)=) > |X(x)-X(@)l (4.3)

T yeN(x)
where X € {F,B,a}. We set Ap = 0.0005, A\p = 0.0005 and A\, = 0.005 in the

experiments as the weights.

4.4 Optimization

For optimization, we use MCMC to efficiently explore the entire solution space
including the domain of (F, B, «,dp,dp). This approach is of critical importance
because all unknowns are highly correlated in the proposed method to deal with
the occlusion while each unknown is independent of other unknowns in the methods
which do not consider the occlusion [1, 7]. It is possible to heuristically optimize
the objective function by iteratively solving each unknown which can be formulated
as quadratic function [13]. However, this approach has a limitation that the user
interaction is required for a good initial value. Proposed approach, on the other
hand, can obtain optimal value without user interactions or other methods for good

initial value by using MCMC.

4.4.1 Markov chain Monte Carlo

Given a target probability distribution = o« exp{—FE}, the aim is to find the state

(F, B, o, dp, dp) where the probability is maximized. For { F\, B, a}, single-site Metropolis—

Hastings is used. In this framework, each pixel of F', B and « are updated individ-
ually, rather than updating every pixel in the image all at once. To be specific,
assume that /th state of each unknown is F!, B! and o! and that the jth compo-

nent is to be updated. Then the next state of the chain only differs from this state
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on the jth component. i.e. Xf“ = X!,i # j where X € {F,B,a}. To generate
the next state, we propose Y; from a proposal density gx (X Jl~, -) and let the next
state Y = (X!, ..., le'—p Y, le._H, - X;)) where p is the number of pixels. Then this

proposal is accepted according to the acceptance ratio a as follows:

) 1
(X!, )T gx (XL, Y

{E(Xl, -)T

a(X'Y) = min (1 (Y, )T qx (Y;, X1) )
| )

(4.4)

= min (1,exp B, .)} ' QX(%’X§)> )
ax (X}, Y)

where (X, ) and E(X,-) means the functions using the same values as previous
state except the X, and T is the temperature for simulated annealing. X is updated
in order of F', B and «, and then (j + 1)th component is updated. The order of j is
determined to row-wise or column-wise randomly in each iteration.

After all pixels are updated, d = {dp,dp} is updated. Assume that the /th state
is d' = {d%, dl3}. Then the proposal y is generated from a proposal density gq(d', -)

and is accepted by following acceptance ratio:

(4.5)

— min <1,exp{E(dl7 ) — By, -)} QdEZc/l; dl;) ‘
qa(d',y

We iterate above process N times decreasing T by cooling ratio C. i.e. Ty41 =
CT,.

In this experiment, ¢r(gp) is a mixture of gaussian of 5 neighboring pixels, g, is
a binary kernel such that ¢, (z,y) is 1 for y # x and 0 for y = x, and gq is a gaussian
kernel. o of the gr, ¢p is 0.05 x 255, and o of the gq decreases linearly from 0.1 to

0.01 during the iteration and the correlation is 0. Initial F, B are given by blurred

.-':'; ! _'\-\.I-.:I_ 'I_-li
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observations, initial « is given by 0 and initial depth is given randomly such that

dp > dp. Besides, N = 1500, C' = 0.993 and initial T = 2.
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Chapter 5

Discussion

In this chapter, more details about the assumptions of the proposed method are
given. This thesis makes several assumptions on the camera pose; camera intrin-
sic matrix, P;, P. and P, are given, and the camera motion is smooth. These are
required to estimate camera motion but many images available online do not pro-
vide a camera intrinsic matrix, and camera motion may not be smooth in practice.
However, if we can obtain the camera motion from other method such as [7], it is
possible to use the proposed approach without these assumptions. Since the main
issue of this work is dealing with the occlusion, and finding camera motion from

layered images is not perfect yet, these assumptions are used in this framework.
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Chapter 6

Experiments

We demonstrate the effectiveness of the proposed method by experimental results
on synthetic and real blurred images.

Figs. (6.1), (6.2) and (6.3) shows the results on synthetic blurred images and
Fig. (6.3) shows results on real blurred images. Boxes in (a) represents the cropped
region where red, green and blue boxes include the part of foreground, background,
and occluded/disoccluded region, respectively. Each layer is successfully restored
including the boundary of the foreground object (i.e. occluded/disoccluded region).
Notably, o can contain some homogeneous regions in background because it does
not affect the restored image. Also, B has smooth values where foreground object
exists because this region does not affect the data term of the objective function and
determined only by regularization term.

Fig. (6.5)-(6.9) compares the result of the proposed method to that of the con-
ventional methods on the blurred images from the scene with depth variations. The
method of Xu et al [12] fails to restore the image. The method of Lee and Lee [1]

restores foreground (red boxes) and background (green boxes) well, but contains

22
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o S S =

(a) Original image (b) Blurred image 1 (c) Blurred image 2 (d) Deblurring result

5 &

(e) Original a (f) Recovered a (g) Recovered aF (h) Recovered B

Figure 6.1: Person & background deblurring.

considerable artifacts at the boundary of the foreground object (blue boxes). On the
other hand, the proposed method successfully restore the boundary of the foreground
object as well as foreground and background. Peak signal-to-noise ratio(PSNR) for
synthetic images also shows that proposed method achieves improved results.

Fig. (6.10) shows close-up view of restored background at the object boundary.
Since the proposed method can make use of the information of occluded /disoccluded
region, the background region exposed at least once during camera motion can be
restored. Notably, the proposed method can restore the occluded/disoccluded region
even if both foreground and background are blurred.

In the experiments, we obtained the camera intrinsic matrix and the camera

poses by the method in [20].
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(a) Original image (c) Blurred image 2

(e) Original (f) Recovered a

‘\\\%\‘\“

(g) Recovered aF

Figure 6.2: Butterfly & background deblurring.

(e) Original « (f) Recovered a (g) Recovered aF (h) Recovered B

Figure 6.3: Flag & background deblurring.
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(a) Orlgmal 1mage (b) Blurred image 1 (c) Blurred image 2 (d) Deblurring result

n ﬂ \\\\%“‘\“
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Figure 6.4: Book & background deblurring.

(a) Xuetal [21] (b) Lee & Lee [10] (¢) Proposed method

Figure 6.5: Comparison of buddha & background deblurring.
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(a) Xu et al [21] (b) Lee & Lee [10] (c) Proposed method

Figure 6.6: Comparison of person & background deblurring.
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(a) Xu et al [21] (b) Lee & Lee [10] () Proposed method

Figure 6.7: Comparison of butterfly & background deblurring.
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(a) Xuetal [21 (b Lee & Lee [10] (c) Proposed method

Figure 6.8: Comparison of flag & background deblurring.
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(a) Xuetal [21] (b) Lee & Lee 10 (c) Proposed method

Figure 6.9: Comparison of book & background deblurring.
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Figure 6.10: Recovered background at the object boundary. (a) blurred image 1. (b) blurred image

2. (c) Lee and Lee [1]. (d) L from proposed method. (e¢) B from proposed method.



Chapter 7

Conclusion

7.1 Summary of the Thesis

In this thesis, a novel blur model is proposed to deal with the occlusion from the
blurred image with depth variations for the first time. This work is based on the
analysis that the blur kernels near the depth discontinuities are peculiar (separate
or overlapped PSF) which cannot be represented by the traditional blur model.
Foreground layer, background layer, foreground mask and depth map are estimated
from two blurred observations. By utilizing the information of occluded regions,
exact boundary of the object is restored. Since human evaluate the deblurring results
on clearness of the edge in the scene, the proposed method that gives exact and
clear boundary of the object is of critical importance. Also, the background region
exposed at least once during camera motion can be restored, which is impossible
in conventional methods. Experimental results on synthetic and real blurred images
demonstrate outstanding performance of our method. This method can contribute

not only to deblurring, but also to 3D reconstruction.
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7.2 Future Directions

7.2.1 Multi Layer Scenes

Proposed occlusion-aware motion deblurring method is focused on two-layer scenes.
However, the scene may not be two-layer in practical situations. Although proposed
method has contribution on finding exact edge in the blurred scene with depth
discontinuities, it should handle multi layer scenes to be a fully general deblur-
ring method. The key idea to deal with multi layer scenes is same with the case
of two-layer which represents every projected image during camera motion as the
transformation of the reference image. Remaining issue is how to make the formula-
tion of blur model easy to optimize or finding new optimize scheme that can obtain
the solution quickly and accurately. To detect depth discontinuities and using [1, 7]
except depth discontinuities can also be a effective solution. By dealing with multi
layer scenes, the proposed approach will be not only general deblurring method, but

also general 3D reconstruction method by finding exact depth map of the scene.

7.2.2 Projective Motion

The camera motion is restricted to in-plane translation and rotation in this method.
Although camera pose interpolation used in the proposed method can represent ev-
ery 3D camera motion, it requires more consideration about the occlusion in a layer
to deal with projective motion. If we represent the projected image during cam-
era motion by homography, not by warping each pixel, projective motion could be
handled. However, since homography needs more computational costs than current
image transformation function, optimization speed should be improved to deal with

projective motion.
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7.2.3 Dynamic Scenes

Proposed method does not deal with moving or deformable objects because it param-
eterize the blur kernel by the camera motion and the depth of the scene. Combining
a proposed framework to the case of moving object [21, 22] is one of the future
aspirations. If we combine the proposed method with [1, 7] by detecting depth dis-

continuities, it can be applied to detecting occlusion in the case of dynamic scenes.

7.2.4 Real-Time Deblurring and 3D Reconstruction

Real-time is one of the important issues in the filed of 3D reconstruction. To con-
tribute to 3D reconstruction, the proposed method should be faster. Current ap-
proach is slow because of sampling for optimization, but the sampling is needed
only near the depth discontinuities because layers and foreground mask is highly
correlated only in this region. In other regions, depth is independent of other un-
knowns and can be estimated quickly. Therefore, combining the proposed method

with [1, 7] can also be a solution for this problem.

In conclusion, detecting depth discontinuities and using [1, 7] except depth discon-
tinuities can solve a lot of current problems including multi layer scenes, projective
motion, dynamic scenes and the speed of the method. Thus, detecting depth discon-

tinuities and combining this with the proposed method is our main future direction.
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