223 research outputs found

    Collaborative Representation based Classification for Face Recognition

    Full text link
    By coding a query sample as a sparse linear combination of all training samples and then classifying it by evaluating which class leads to the minimal coding residual, sparse representation based classification (SRC) leads to interesting results for robust face recognition. It is widely believed that the l1- norm sparsity constraint on coding coefficients plays a key role in the success of SRC, while its use of all training samples to collaboratively represent the query sample is rather ignored. In this paper we discuss how SRC works, and show that the collaborative representation mechanism used in SRC is much more crucial to its success of face classification. The SRC is a special case of collaborative representation based classification (CRC), which has various instantiations by applying different norms to the coding residual and coding coefficient. More specifically, the l1 or l2 norm characterization of coding residual is related to the robustness of CRC to outlier facial pixels, while the l1 or l2 norm characterization of coding coefficient is related to the degree of discrimination of facial features. Extensive experiments were conducted to verify the face recognition accuracy and efficiency of CRC with different instantiations.Comment: It is a substantial revision of a previous conference paper (L. Zhang, M. Yang, et al. "Sparse Representation or Collaborative Representation: Which Helps Face Recognition?" in ICCV 2011

    Joint optimization of manifold learning and sparse representations for face and gesture analysis

    Get PDF
    Face and gesture understanding algorithms are powerful enablers in intelligent vision systems for surveillance, security, entertainment, and smart spaces. In the future, complex networks of sensors and cameras may disperse directions to lost tourists, perform directory lookups in the office lobby, or contact the proper authorities in case of an emergency. To be effective, these systems will need to embrace human subtleties while interacting with people in their natural conditions. Computer vision and machine learning techniques have recently become adept at solving face and gesture tasks using posed datasets in controlled conditions. However, spontaneous human behavior under unconstrained conditions, or in the wild, is more complex and is subject to considerable variability from one person to the next. Uncontrolled conditions such as lighting, resolution, noise, occlusions, pose, and temporal variations complicate the matter further. This thesis advances the field of face and gesture analysis by introducing a new machine learning framework based upon dimensionality reduction and sparse representations that is shown to be robust in posed as well as natural conditions. Dimensionality reduction methods take complex objects, such as facial images, and attempt to learn lower dimensional representations embedded in the higher dimensional data. These alternate feature spaces are computationally more efficient and often more discriminative. The performance of various dimensionality reduction methods on geometric and appearance based facial attributes are studied leading to robust facial pose and expression recognition models. The parsimonious nature of sparse representations (SR) has successfully been exploited for the development of highly accurate classifiers for various applications. Despite the successes of SR techniques, large dictionaries and high dimensional data can make these classifiers computationally demanding. Further, sparse classifiers are subject to the adverse effects of a phenomenon known as coefficient contamination, where for example variations in pose may affect identity and expression recognition. This thesis analyzes the interaction between dimensionality reduction and sparse representations to present a unified sparse representation classification framework that addresses both issues of computational complexity and coefficient contamination. Semi-supervised dimensionality reduction is shown to mitigate the coefficient contamination problems associated with SR classifiers. The combination of semi-supervised dimensionality reduction with SR systems forms the cornerstone for a new face and gesture framework called Manifold based Sparse Representations (MSR). MSR is shown to deliver state-of-the-art facial understanding capabilities. To demonstrate the applicability of MSR to new domains, MSR is expanded to include temporal dynamics. The joint optimization of dimensionality reduction and SRs for classification purposes is a relatively new field. The combination of both concepts into a single objective function produce a relation that is neither convex, nor directly solvable. This thesis studies this problem to introduce a new jointly optimized framework. This framework, termed LGE-KSVD, utilizes variants of Linear extension of Graph Embedding (LGE) along with modified K-SVD dictionary learning to jointly learn the dimensionality reduction matrix, sparse representation dictionary, sparse coefficients, and sparsity-based classifier. By injecting LGE concepts directly into the K-SVD learning procedure, this research removes the support constraints K-SVD imparts on dictionary element discovery. Results are shown for facial recognition, facial expression recognition, human activity analysis, and with the addition of a concept called active difference signatures, delivers robust gesture recognition from Kinect or similar depth cameras

    Robust single-sample face recognition by sparsity-driven sub-dictionary learning using deep features

    Get PDF
    Face recognition using a single reference image per subject is challenging, above all when referring to a large gallery of subjects. Furthermore, the problem hardness seriously increases when the images are acquired in unconstrained conditions. In this paper we address the challenging Single Sample Per Person (SSPP) problem considering large datasets of images acquired in the wild, thus possibly featuring illumination, pose, face expression, partial occlusions, and low-resolution hurdles. The proposed technique alternates a sparse dictionary learning technique based on the method of optimal direction and the iterative \u2113 0 -norm minimization algorithm called k-LIMAPS. It works on robust deep-learned features, provided that the image variability is extended by standard augmentation techniques. Experiments show the effectiveness of our method against the hardness introduced above: first, we report extensive experiments on the unconstrained LFW dataset when referring to large galleries up to 1680 subjects; second, we present experiments on very low-resolution test images up to 8 7 8 pixels; third, tests on the AR dataset are analyzed against specific disguises such as partial occlusions, facial expressions, and illumination problems. In all the three scenarios our method outperforms the state-of-the-art approaches adopting similar configurations

    New methods for deep dictionary learning and for image completion

    Get PDF
    Digital imaging plays an essential role in many aspects of our daily life. However due to the hardware limitations of the imaging devices, the image measurements are usually inpaired and require further processing to enhance the quality of the raw images in order to enable applications on the user side. Image enhancement aims to improve the information content within image measurements by exploiting the properties of the target image and the forward model of the imaging device. In this thesis, we aim to tackle two specific image enhancement problems, that is, single image super-resolution and image completion. First, we present a new Deep Analysis Dictionary Model (DeepAM) which consists of multiple layers of analysis dictionaries with associated soft-thresholding operators and a single layer of synthesis dictionary for single image super-resolution. To achieve an effective deep model, each analysis dictionary has been designed to be composed of an Information Preserving Analysis Dictionary (IPAD) which passes essential information from the input signal to output and a Clustering Analysis Dictionary (CAD) which generates discriminative feature representation. The parameters of the deep analysis dictionary model are optimized using a layer-wise learning strategy. We demonstrate that both the proposed deep dictionary design and the learning algorithm are effective. Simulation results show that the proposed method achieves comparable performance with Deep Neural Networks and other existing methods. We then generalize DeepAM to a Deep Convolutional Analysis Dictionary Model (DeepCAM) by learning convolutional dictionaries instead of unstructured dictionaries. The convolutional dictionary is more suitable for processing high-dimensional signals like images and has only a small number of free parameters. By exploiting the properties of a convolutional dictionary, we present an efficient convolutional analysis dictionary learning algorithm. The IPAD and the CAD parts are learned using variations of the proposed convolutional analysis dictionary learning algorithm. We demonstrate that DeepCAM is an effective multi-layer convolutional model and achieves better performance than DeepAM while using a smaller number of parameters. Finally, we present an image completion algorithm based on dense correspondence between the input image and an exemplar image retrieved from Internet which has been taken at a similar position. The dense correspondence which is estimated using a hierarchical PatchMatch algorithm is usually noisy and with a large occlusion area corresponding to the region to be completed. By modelling the dense correspondence as a smooth field, an Expectation-Maximization (EM) based method is presented to interpolate a smooth field over the occlusion area which is then used to transfer image content from the exemplar image to the input image. Color correction is further applied to diminish the possible color differences between the input image and the exemplar image. Numerical results demonstrate that the proposed image completion algorithm is able to achieve photo realistic image completion results.Open Acces

    Sparse Modeling for Image and Vision Processing

    Get PDF
    In recent years, a large amount of multi-disciplinary research has been conducted on sparse models and their applications. In statistics and machine learning, the sparsity principle is used to perform model selection---that is, automatically selecting a simple model among a large collection of them. In signal processing, sparse coding consists of representing data with linear combinations of a few dictionary elements. Subsequently, the corresponding tools have been widely adopted by several scientific communities such as neuroscience, bioinformatics, or computer vision. The goal of this monograph is to offer a self-contained view of sparse modeling for visual recognition and image processing. More specifically, we focus on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.Comment: 205 pages, to appear in Foundations and Trends in Computer Graphics and Visio
    • …
    corecore