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Abstract

Digital imaging plays an essential role in many aspects of our daily life. However due to

the hardware limitations of the imaging devices, the image measurements are usually

inpaired and require further processing to enhance the quality of the raw images in

order to enable applications on the user side. Image enhancement aims to improve

the information content within image measurements by exploiting the properties of the

target image and the forward model of the imaging device. In this thesis, we aim to

tackle two specific image enhancement problems, that is, single image super-resolution

and image completion.

First, we present a new Deep Analysis Dictionary Model (DeepAM) which consists of

multiple layers of analysis dictionaries with associated soft-thresholding operators and

a single layer of synthesis dictionary for single image super-resolution. To achieve an

effective deep model, each analysis dictionary has been designed to be composed of an

Information Preserving Analysis Dictionary (IPAD) which passes essential information

from the input signal to output and a Clustering Analysis Dictionary (CAD) which

generates discriminative feature representation. The parameters of the deep analysis

dictionary model are optimized using a layer-wise learning strategy. We demonstrate

that both the proposed deep dictionary design and the learning algorithm are effective.

Simulation results show that the proposed method achieves comparable performance

with Deep Neural Networks and other existing methods.

We then generalize DeepAM to a Deep Convolutional Analysis Dictionary Model

(DeepCAM) by learning convolutional dictionaries instead of unstructured dictionaries.

The convolutional dictionary is more suitable for processing high-dimensional signals
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like images and has only a small number of free parameters. By exploiting the proper-

ties of a convolutional dictionary, we present an efficient convolutional analysis dictio-

nary learning algorithm. The IPAD and the CAD parts are learned using variations

of the proposed convolutional analysis dictionary learning algorithm. We demonstrate

that DeepCAM is an effective multi-layer convolutional model and achieves better per-

formance than DeepAM while using a smaller number of parameters.

Finally, we present an image completion algorithm based on dense correspondence

between the input image and an exemplar image retrieved from Internet which has

been taken at a similar position. The dense correspondence which is estimated using

a hierarchical PatchMatch algorithm is usually noisy and with a large occlusion area

corresponding to the region to be completed. By modelling the dense correspondence

as a smooth field, an Expectation-Maximization (EM) based method is presented to

interpolate a smooth field over the occlusion area which is then used to transfer image

content from the exemplar image to the input image. Color correction is further applied

to diminish the possible color differences between the input image and the exemplar

image. Numerical results demonstrate that the proposed image completion algorithm

is able to achieve photo realistic image completion results.
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Chapter 1

Introduction

1.1 Motivations

Digital imaging devices play a pivotal role in connecting us with the real continuous

world through the sampled discretized measurements. They enable us to capture scenes

of the world into a form that we could further process and use as a tool to understand

the world. Digital imaging appears almost everywhere and has significantly improved

our quality of life in many aspects. It could be the digital camera on our mobile phone

that keeps beautiful moments for us, it could be the magnetic resonance imaging (MRI)

system in hospital that helps doctors diagnose diseases and save lives, it could be the

space telescope that assist scientists to look through space and time and unravel the

mystery of the universe.

Despite a broad range of applications, the quality of the acquired raw image mea-

surements is restrained by hardware limitations of optics and sensors. The raw image

measurements could be noisy, incomplete, distorted, or with insufficient resolution.

The contents within the raw images are sometimes too inpaired to be directly used by

the end users. It is therefore necessary and essential to enhance the quality of the raw

27
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Figure 1.1: Digital imaging and image enhancement. The imaging devices enable
us sense the continuous world into a discretized form, while there may contain insuffi-
cient/noisy information for us to fully understand the world. Image enhancement aims
to recover or improve the information in the acquired image measurements to restore
a better view of the real world.

images to facilitate its further use.

Image enhancement, which aims to recover or improve the information content within

the image measurements, is a classical inverse problem in signal processing and com-

puter vision. It serves as a tool to compensate the hardware limitations of the digital

imaging systems and aims to achieve high quality images for real applications. Ac-

cording to the type of distortion incurred, image enhancement can be further catego-

rized into image denoising, image completion, image deconvolution, and image super-

resolution. Fig. 1.1 illustrates the digital imaging process and the objective of image

enhancement.

Image enhancement has been intensively studied in the past decades. It has been

advancing and evolving along with the hardware advancement and the emerging of

new applications. There are two main categories of methods for tackling the image

enhancement problems: model-based approaches and learning-based (or data-driven)

approaches:

• Model-based algorithms are built from first principles and are established based

on our understanding of the forward model of the imaging system and the prior

model of the image signals to be recovered. The forward model describes the
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image formation process of the imaging device and shows how the image mea-

surements are related to the unknown high quality image. The prior model

depicts the characteristics of the unknown high quality image based on our un-

derstanding. When the forward model and the prior model can be well modelled

with proper mathematical formulations, a model-based method can lead to an

effective solution. However, sometimes the forward model and the prior model

are too difficult to be fully understood and expressed mathematically.

• Learning-based algorithms take an alternative direction by learning an inference

model which tries to estimate a high quality image based on the image measure-

ments from an external training dataset which contains sufficient high quality

image samples or pairs of high quality and observed image samples. Note that

an insightful understanding about the forward model and the prior model would

also be beneficial for the learning-based algorithms. The learning-based algo-

rithms usually require a training stage in which the parameters of the inference

model are determined with the objective of minimizing the discrepancy between

the enhanced image and the existing high quality image. The performance of

a learning-based algorithm is closely related to the quality and quantity of the

training dataset as well as the learning capability of the algorithm.

In this thesis, we are trying to push the boundaries of both the model-based direction

and the learning-based direction on two specific image enhancement problems: single

image super-resolution and image completion:

• We investigate a learning-based framework for single image super-resolution. In-

spired by the recent success of Deep Neural Networks and the recent efforts to

develop multi-layer dictionary models, we propose a Deep Analysis Dictionary

framework with unstructured dictionaries and convolutional dictionaries. The

proposed deep dictionary models lead to efficient and effective solutions for sin-
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gle image super-resolution, and have a higher interpretability compared to deep

neural networks.

• We take a model-based approach for image completion. Given an input image

and an exemplar image, the dense correspondence between these two images is

estimated and has a large occlusion area for the region to be completed. Based on

a smoothness prior, we propose an Expectation-Maximization (EM) based near-

est neighbour field (NNF) interpolation algorithm which interpolates a smooth

and accurate NNF over the occluded region. Given the interpolated NNF, the

exemplar content can be transferred from the exemplar image to the input image.

1.2 Outline of the Thesis

The remainder of this thesis is organised as follows:

In Chapter 2, we will first give an introduction to image enhancement, especially, image

super-resolution and image completion starting with the problem formation, followed

with discussions on the inherent difficulties and a review on the existing methods.

Sparse models and deep neural networks are two classes of algorithms for solving image

enhancement problems. The working principles and the different variations of sparse

models and deep neural networks will be then reviewed.

In Chapter 3, we propose a Deep Analysis Dictionary Model (DeepAM) framework for

single image super-resolution. An L-layer DeepAM consists of L layers of analysis dic-

tionaries with associated soft-thresholding operators and a layer of synthesis dictionary.

The forward model of DeepAM is a multi-layer matrix multiplications and element-

wise soft-thresholding operations. To achieve an effective image super-resolution, each

analysis dictionary is a combination of two sub-dictionaries: an Information Preserving

Analysis Dictionary (IPAD) and a Clustering Analysis Dictionary (CAD). The IPAD
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and soft-thresholding pair are designed to preserve essential information from the input,

and the CAD and soft-thresholding pair aim to generate a discriminative representa-

tion. The proposed DeepAM provides an interpretable multi-layer non-linear dictionary

model and could be helpful for the understanding of the workings of DNNs. We pro-

pose a layer-wise learning algorithm for learning the dictionaries and soft-thresholds in

DeepAM. Simulation results show that our proposed DeepAM method achieves com-

parable performance with Deep Neural Networks (DNNs) based method and other

existing methods.

In Chapter 4, we adapt the DeepAM framework from an unstructured dictionary model

to a convolutional dictionary model. When the input signal is high-dimensional, an

unstructured dictionary model requires a large number of parameters and has high

computational complexity. A convolutional dictionary represents the convolution be-

tween a set of convolutional filters and a vector. It is a structured dictionary and can

be expressed as a concatenation of Toeplitz matrices where each Toeplitz matrix corre-

sponds to a filter. When the filters have compact support, the convolutional dictionary

has a small number of parameters and requires a lower computational cost. We pro-

pose an efficient convolutional analysis dictionary learning algorithm by exploiting the

properties of a convolutional dictionary. We propose a Deep Convolutional Analysis

Dictionary Model (DeepCAM) framework which consists of multiple layers of convo-

lutional analysis dictionaries and the corresponding soft-thresholding operations and

a layer of convolutional synthesis dictionary. Based on the proposed convolutional

analysis dictionary learning algorithm, we propose a layer-wise learning algorithm for

learning the convolutional dictionaries and the soft-thresholds. Simulation results show

that the proposed DeepCAM achieves satisfactory results.

In Chapter 5, we propose an image completion algorithm based on dense correspon-

dence between the input image and an exemplar image retrieved from Internet. Con-

trary to traditional methods which register two images according to sparse correspon-
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dence, we propose a hierarchical PatchMatch method that progressively estimates a

dense correspondence, which is able to capture small deformations between images.

The estimated dense correspondence has usually large occlusion areas that correspond

to the regions to be completed. A nearest neighbor field (NNF) interpolation algo-

rithm interpolates a smooth and accurate NNF over the occluded region. Given the

calculated NNF, the correct image content from the exemplar image is transferred to

the input image. Finally, as there could be a color difference between the completed

content and the input image, a color correction algorithm is applied to remove the

visual artifacts. Numerical results show that our proposed image completion method

can achieve photo realistic image completion results.

Finally in Chapter 6, we conclude the thesis by summarizing the achievements and

providing possible future research directions.

1.3 Publications

The materials presented in this thesis have led to the following publications:

To be Submitted

• J.J. Huang and P.L. Dragotti, "Learning Deep Analysis Dictionary - Part I:

Unstructured Dictionary," To be submitted to: IEEE Transactions on Signal

Processing.

• J.J. Huang and P.L. Dragotti, "Learning Deep Analysis Dictionary - Part II:

Convolutional Dictionary," To be submitted to: IEEE Transactions on Signal

Processing.

Peer-reviewed Journal
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• J.J. Huang and P.L. Dragotti, "Photo Realistic Image Completion via Dense

Correspondence," IEEE Transactions on Image Processing, vol 27, no. 11, pp.

5234-5247, November 2018.

Peer-reviewed Conferences

• J.J. Huang, and P.L. Dragotti, "A Deep Dictionary Model to Preserve and Dis-

entangle Key Features in A signal," In Proc. IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP’2019), Brighton, United

Kingdom, April 2019

• J.J. Huang, and P.L. Dragotti, "A Deep Dictionary Model for Image Super-

Resolution," In Proc. IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP’2018), Calgary, Canada, April 2018.

Conference Abstract

• J.J. Huang, and P.L. Dragotti, "A Deep Analysis Dictionary Model," In Proc.

The Signal Processing with Adaptive Sparse Structured Representations workshop

(SPARS’2019), Toulouse, France, July 2019.



Chapter 2

Background

In this chapter, we first give an introduction to image enhancement focusing on image

super-resolution and image completion. The problem formulation and the inherent

difficulties will be discussed and analyzed, and the existing methods will then be pre-

sented. In the second part, the sparse signal model will be reviewed. The sparse signal

model is one of the most widely used tool for signal and image processing. It serves

as the lens for us to see the world from the sparsity and simplicity perspective. Based

on how signals are modelled, the synthesis, analysis and convolutional sparse model

will be discussed. Finally, we will review Deep Neural Networks (DNNs) including

the basics, the learning method and the variations. The forward model of a DNN is

a simple cascade of linear transforms and element-wise non-linearities. With a deep

structure, DNNs learn representations of different levels of abstraction and have been

applied in many signal and image processing applications.

2.1 Image Enhancement

In an imaging system, the acquired image may not be perfect due to hardware limi-

tations or the conditions under which the image is taken. The forward model of the

34
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imaging system can generally be formulated as:

y = Hx+ n, (2.1)

where H is a degradation matrix which approximates the imaging forward model as

a linear process, n is the possible additive noise, and y and x are the acquired image

and the desired high quality image, respectively.

Image enhancement aims to improve the information content of the acquired image

signals and computationally compensate for the imperfections. It is an inverse problem

with the objective of recovering a high quality image x from the observation y. An

inverse problem is well posed if the following three conditions are satisfied: (i) there

exists a solution for every observed signal, (ii) the solution is unique, and (iii) the

inverse of the degradation matrix is stable. However, image enhancement problems

are usually ill-posed. Consequently, it is not enough to make use only of the forward

model to solve the ill-posed inverse problem. A prior model describes the properties of

the desired solution. A stable solution can be achieved if a proper prior model can be

imposed to regularize the feasible solutions.

The image enhancement algorithms can be generally divided into model-based ap-

proaches and learning-based approaches according to how the prior model is estab-

lished:

• Model-based approaches are based on mathematically defined prior models in-

cluding smoothness, total variation, sparsity, low-rank and so on. The model-

based approaches require an accurate modelling of the forward model and the

prior information of the desired images. A prior model which can well represent

the properties of the signals of interests will lead to accurate estimations, while

an inappropriate choice of prior model will cause erroneous estimations. The

model-based approaches usually have the advantage of simplicity and can solve
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Figure 2.1: The forward model of a digital camera and image super-
resolution. The captured image is assumed to be the blurred and down-sampled
version of a high-resolution image. The objective of image super-resolution is to re-
cover a high-resolution image from the observed low-resolution image.

the problem using a small number of parameters. However, it may not be easy

to mathematically represent the forward model and the prior model well.

• Learning-based approaches exploit prior information from an external training

dataset which defines a prior manifold in the solution space or defines a one-to-

one mapping from the observed signal to the desired solution. When a pair-wise

training dataset is used, a learning-based method tries to learn the non-linear

inverse mapping y → x from a training dataset which consists of training data

pairs D = {(xi,yi)}Ni=1. The training dataset and the learning inference model

are two important factors of the learning-based methods. It is essential to have a

large training dataset with high quality training data. A learning-based inference

model should be able to generate a feature representation that is both informative

and discriminative for a robust estimation.

2.1.1 Image Super-Resolution

Digital cameras have become an indispensable part of our life for helping us capture

moments forever. Image super-resolution aims to improve the resolution of a captured
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image which is limited by the diffraction limit of the optical lenses and the density of

the digital image sensors. Fig. 2.1 illustrates the forward model of a digital camera

and the objective of image super-resolution. The upper part of Fig. 2.1 shows the

block diagram of a digital camera which consists of an optical lens that focus light

from a scene and digital image sensors, for example CCD sensors, that capture the

focused light into digital image. The high-frequency details of the acquired image is

limited by the optical lens which has a lens blur effect which is described by the Point

Spread Function (PSF). The spatial resolution of the acquired LR image is limited by

the density of the digital image sensors. The forward model of a digital camera can be

expressed as:

y = DBx, (2.2)

where x ∈ Rm is the vectorized high-resolution image, B ∈ Rm×m is the blurring

operator which models the optical lens, D ∈ Rn×m is the down-sampling operator with

n < m which models the sampling operation occurred on digital image sensors, and

y ∈ Rn is the vectorized acquired low-resolution image.

The blurring operator B usually has a large condition number. The down-sampling

operatorD is a fat binary matrix in which each row has an entry with value 1 and other

entries with value 0. With the blur and down-sampling operator DB, the observation

of a digital camera is a blurred and down-sampled version of a scene.

The goal of image super-resolution is to restore the original spatial resolution and

recover the missing high-frequency components from one or more blurred low-resolution

(LR) images. The recovered high-resolution (HR) image should be as close to the

ground-truth HR image as possible and should have sharp edges and natural looking

textures. In particular, single image super-resolution (SISR) aims to restore the HR

image from a single input LR image. Image super-resolution is an ill-posed inverse

problem as the size of LR observation is much smaller than the desired HR output.

Additional priors should be imposed to regularize the ill-posed problem. The prior
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information can be hand-designed priors such as smoothness, sparsity and low-rank,

and can also be learned priors which are inferred from an external training dataset.

Image super-resolution algorithms can be divided into patch-based methods and convolution-

based methods. Both patch-based and convolution-based methods can learn from an

external training dataset which contains LR and HR image pairs as training data.

As the number of HR pixels to be estimated is huge, it is difficult and computational

inefficient to estimate the HR image as a whole. Patch-based methods [1,2,7–11] divide

the LR image into small overlapping patches (e.g. 6 × 6 image regions) and infer a

HR patch for each LR patch. The HR image can then be reconstructed by combining

the estimated HR patches with patch overlapping. The method proposed by Zeyde et

al. [2] is a synthesis dictionary based method with a coupled LR and HR dictionary.

The LR dictionary is learned using K-SVD method [12] and has 1024 atoms, and

the HR dictionary is learned using least squares. It assumes that a LR patch and

its corresponding HR patch share the same sparse code which is retrieved using the

OMP method [13]. The input LR feature is the concatenation of the intensity, the

first-order derivatives, and the second-order derivatives of the LR data and is further

compressed using Principle Component Analysis (PCA). The ANR method [7] and

the A+ method [8] use the same feature representation as [2]. They apply a learned

LR synthesis dictionary for LR patch clustering and have a regression model for each

dictionary atom. The super-resolution algorithm finds the nearest neighbor atom for

each input LR signal and apply the corresponding regression model for HR signal

prediction. The dictionary has 1024 atoms and thus there are 1024 regression models.

The A+ method [8] represented state-of-the-art before the emergence of methods based

on deep convolutional neural networks.

Convolution-based methods [14–16] instead estimate all HR pixel values all together

and are based on convolutional models such as Convolutional Neural Networks (CNN).

The Super-Resolution Convolutional Neural Network (SRCNN) method [14] is the
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first method that used convolutional neural network for single image super-resolution.

SRCNN has 3 layers and uses 64 filters with spatial size 9 × 9, 32 filters with spatial

size 1 × 1 and 32 filters with spatial size 5 × 5 for layer 1, 2 and 3, respectively. It

takes the bicubic up-scaled image as input and is able to upscale the input LR image

without dividing the input image into patches. There are two main strategies in single

image super-resolution (SISR) using Convolutional Neural Networks, i.e. the early

upsampling approach [15, 17] and the late upsampling approach [18, 19]. The early

upsampling approach [15, 17] first upsamples the low-resolution (LR) image to the

same resolution as the desired high-resolution (HR) one through bicubic interpolation

and performs convolution on the upsampled image. The drawback of this approach is

that the computational complexity is high during testing as the feature maps are of the

same size as the HR image. The late upsampling approach [18,19] performs convolution

on the input LR image and applies a deconvolution layer or a sub-pixel convolution

layer at the last layer to predict all HR pixel values. The late upsampling approach has

lower computational cost than the early one. After the emerging of the CNN-based

image super-resolution algorithms, they become the dominant approaches for single

image super-resolution task. This is mainly due to an end-to-end model parameter

updating based on backpropagation algorithm [20] which enables an effective learning

for a flexible network structure from a large dataset.

2.1.2 Image Completion

Image completion [21] tries to meet the increasing demand of editing personal photos, in

particular by replacing an undesired image region (such as strangers, and construction

sites) with a natural looking background which should be as close as possible to the

real scene. The difficulty of this problem is directly related to the size of the Region-of-

Interest (ROI) or “hole” to be completed which is assumed to be specified by the users.

The larger the “hole”, the higher the probability the missing content is non-stationary
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Figure 2.2: An example of image completion. The objective of image completion
is to remove the image content in the input image (left) indicated by the mask image
(middle) and to fill it with a natural image background. The image completion result
should be natural looking and consistent with the original image.

and this fact makes the image completion problem harder.

Single image completion algorithms [3, 22–31] exploit the self-similarity of image re-

gions (usually small image patches) within the input image and cover the ROI with

similar image content. Impressive completion results are demonstrated by recent works

when ROI is relatively small and a sufficient number of repetitive patterns exists. The

main limitation of the single image based approaches is that the completion results

tend to deviate from the real scene and become less realistic as the size of ROI grows.

This happens because the self-similarity assumption is less satisfied. Recent single

image completion methods are mainly example based [3, 23, 24, 27, 28, 30, 31] rather

than diffusion based [32, 33]. The diffusion based methods [32, 33] fill in the missing

content on the input image by propagating information from the nearby regions with

a smoothness constraint. Therefore, when the size of the ROI is too large or when

the content of the missing region is non-static, diffusion based methods will not be

able to recover an realistic image content. The example based methods exploit redun-

dancy within the input image itself and transfer image patches from the image regions

outside the “hole” to the “hole” region. The central issue here is to establish accurate

patch correspondence in order to find similar patches within the input image. Fast

patch matching methods [25,26,34–36] play an important role in these algorithms. In

particular, PatchMatch [25, 26] is a patch-based fast algorithm for dense correspon-

dence estimation. The space-time completion method [23] searches similar patches and
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replaces the patches on the boundary of the “hole”. By iteratively searching and up-

dating, the “hole” gradually shrinks. The image melding method [3], which generates

natural looking results, further extends the search space of the generalized PatchMatch

method [26] with reflection, gain and bias. He and Sun [30] proposed to utilize the

statistics of the offsets between similar patches returned by PatchMatch to acceler-

ate the matching process. Since image completion can be considered as a multi-label

discrete optimization problem, other discrete optimization techniques, such as Graph

Cuts [37, 38] and Belief Propagation [39], are also employed to address the single im-

age completion problem. Pathak et al. [40] and Iizuka et al. [5] take the data driven

approach for image completion by learning from an external dataset using deep neural

networks.

Internet-based image completion algorithms [4,6,41–43] instead search for suitable im-

age content from existing similar images available on Internet and can, in this way, over-

come the limitations of the self-similarity assumption. An image is called an exemplar

image if it has been taken from a similar viewpoint as the input image but may differ

in camera parameters, illumination conditions, and with possible occlusions. With the

help of exemplar images from the Internet, suitable image regions can be transferred to

the input image, and under these conditions, accurate and photo realistic restoration

becomes possible. In the pioneering work of Hays and Efros [42], they proposed to

find images which are semantically similar to the input image and perform context

matching and blending using a graphical model. However, their retrieved images could

be taken from a distinct location and not satisfy our definition of exemplar image. The

resultant image may not be faithful to the real scene and the incorrect reconstructions

may lead to unrealistic images. There are many papers e.g. [4, 6, 41] that search and

apply exemplar images for image completion. Amirshahi and Kondo [41] proposed to

find a single homography correspondence between two images from obtained sparse

correspondence (i.e. the matched SIFT keypoints [44] between images) and transfer

patches with respect to the locations specified by the homography model. The limita-
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tion of the single homography model is that the relationship between matched SIFT

keypoints may not be well modeled if two images do not share the same camera center

or contain piece-wise planar scenes. Whyte et al. [6] use a geometrical registration and

a color registration for image completion. The geometrical registration is performed

using multiple planes to approximate matched SIFT keypoints correspondence. Affine

transformation is then applied to each color channel for color registration. A recent

work [4] proposed by Zhu et al. automatically finds 20 exemplar images from Inter-

net through SIFT keypoints matching with multiple homographies and line segments

matching. Each exemplar image is warped to the input image by a mesh-based warp-

ing which is assisted with both point and line constraints. A scoring algorithm helps

to select as completed image the one with the highest score. Moving from the single

homography model [41] to multiple homographies [4, 6], a more general scene corre-

spondence can be more accurately approximated. However, the sparse correspondence

they relied on is still a discretized representation of the continuous image structure and

may not be able to fully capture the correspondence between images.

2.2 Sparse Modelling

Occam’s razor [45] is one of the most influential principles in signal processing. It states

that "among competing representations that predict equally well, the one with the

fewest number of components should be selected". Based on concept of simplicity and

parsimony, sparse signal model describes a signal of interests as a sparse combination of

elementary signal components which are usually termed atoms. A dictionary is a matrix

which contains all the atoms. The dictionary is essential to the sparse signal model as it

defines the prototype signals. The dictionary can be divided into fixed dictionaries and

learned dictionaries. The commonly used fixed dictionaries include Discrete Fourier

Transform (DFT) matrix, wavelet transform [46, 47] and shearlet transform [48, 49].

These dictionaries usually have some optimized performance supported by theoretical
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analysis and are associated with fast implementations, but they may not be adapted

enough to a given set of signals. The learned dictionaries are trained using a set of

signal samples by imposing a sparse constraint over the sparse representation. The

learned dictionaries are more flexible and can adapt to the specific group of signal

samples and can usually give a sparser representation than the fixed dictionaries.

Depending on the way of modeling signals, the sparse signal model [50] can be divided

into synthesis or analysis model. In the following two subsections, we will briefly

introduce the synthesis model and the analysis model.

2.2.1 Synthesis Sparse Model

A synthesis sparse model [50] represents a signal x ∈ Rn (the subscript s represents

synthesis sparse model) using a sparse vector γs ∈ Rm with m ≥ n with respect to a

synthesis dictionaryD ∈ Rn×m. The sparse vector indicates that the input signal x is a

linear combination of a small number of atoms from the dictionary. Given a redundant

synthesis dictionary D, the sparse representation γs is the sparsest description (i.e.

the least number of non-zero coefficients) of the input signal x:

x = Dγs, (2.3)

where ‖γs‖0 = k � m and ‖ · ‖0 denotes the l0 pseudo-norm which counts the number

of non-zeros entries of a vector.

Fig. 2.3 shows an example of synthesis sparse signal model for image processing.

The signal x is a linear combination of 3 atoms which are indicated by the sparse

representation γs.

Sparse representation has been widely used in image processing, signal processing, and

machine learning. The sparse representation γs of a signal serves as a robust and dis-



44 Chapter 2. Background

Figure 2.3: A synthesis sparse signal model. The input signal x is approximated
using 3 atoms from the dictionary D. The sparse representation has only 3 non-zero
coefficients indicating the contribution from the corresponding activated atoms.

criminative representation. The signal components that cannot be well approximated

by a small number of atoms, for example noise, will be suppressed by the sparsity

constraint. The reconstructed signal using the obtained sparse representation will then

contain less noise components. Finding a sparse representation given an over-complete

dictionary and an input signal requires a non-linear operation. The linear non-separable

signals within the original space could be linear separable in the sparse coefficient space.

Therefore, the sparse representation possesses a stronger discriminative power and can

be applied to both regression and classification problems.

Synthesis Sparse Pursuit:

Sparse pursuit aims to find the sparsest representation γs of the input signal x with

respect to a given dictionary D. The sparse pursuit problem can be formulated as:

γs = arg min
γ
‖γ‖0, s.t. x = Dγ. (2.4)

Although the sparse representation is a robust and discriminative representation, sparse

pursuit is an NP-hard (Non-deterministic Polynomial-time Hard) problem in the case of
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arbitrary dictionaries. The constraint x = Dγ is an under-determined system and has

infinite number of solutions. The l0-norm further regularizes the solution to be sparse,

however, it is non-convex and makes the whole problem a non-convex optimization

problem.

In practice, sparse pursuit is solved using either greedy approaches [13,51,52] or convex

relaxation approaches [53–56].

The greedy algorithms [13, 51, 52] gradually find k non-zero coefficients based on the

correlation between the input signal and the atoms. For example, Orthogonal Matching

Pursuit (OMP) [13] finds at each iteration a sparse coefficient with the aim of reducing

the approximation error.

Convex relaxation algorithms approximate the non-convex problem in Eqn. (2.4) with

a convex one by relaxing the non-convex l0-norm to a convex l1-norm:

γs = arg min
γ
‖γ‖1, s.t. x = Dγ, (2.5)

where ‖ · ‖1 denotes the l1-norm with ‖γ‖1 =
∑m

j=1|γj|.

With augmented Lagrangian, the sparse pursuit problem can then be formulated as a

constrained minimization problem:

γs = arg min
γ

1

2
‖x−Dγ‖2

2 + λ‖γ‖1, (2.6)

where λ is the regularization parameter which balances between the l2-norm data fi-

delity term and the l1-norm sparse term.

It is of interest to point out that under certain conditions, the l1-norm minimiza-

tion problem defined in Eqn. (2.6) is equivalent to the original l0-norm minimization

problem in Eqn. (2.4) [54, 57]. The convex quadratic problem can be solved using

basis pursuit (BP) [54] algorithm or iterative algorithms, for example Iterative Soft-
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Thresholding Algorithm (ISTA) [55,56].

Synthesis Dictionary Learning:

Let us denote withX ∈ Rm×N a set of N training signal samples where each column is

a training signal sample. The dictionary learning problem requires a joint estimation of

the dictionaryD and the sparse coefficient matrix Γ, and can be formulated as follows:

arg min
D,Γ

∑
i

‖Γ:,i‖0, s.t. X = DΓ. (2.7)

The dictionary learning problem is a bi-linear matrix factorization problem with a

sparsity constraint on the sparse representation. The synthesis dictionary learning

algorithms [12, 58, 59] are usually based on an alternating minimization strategy and

iterate between a sparse coding stage and a dictionary update stage.

In the sparse coding stage, the sparse representations Γk of the training data X are

obtained through sparse pursuit with respect to the current dictionary Dk−1:

Γk = arg min
Γ

∑
i

‖Γ:,i‖0, s.t. X = Dk−1Γ. (2.8)

In the dictionary update stage, the dictionary is updated using the sparse coefficient

matrix and the training data pair (Γk,X):

Dk = arg min
D
‖X −DΓk‖2

F . (2.9)

The method of optimal directions (MOD) [58] computes the updated dictionary Dk as

Dk = XΓk† where Γk† is the Moore-Penrose pseudoinverse. The K-SVD method [12]

updates the dictionary atom by atom through a rank-1 approximation. For each atom,

K-SVD algorithm first finds the data which has non-zero coefficients over this atom
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and approximates the contribution of this pair of atom and sparse coefficient using

a rank-1 matrix which has a closed form solution using Singular Value Decomposi-

tion (SVD). The Simultaneous Codeword Optimization (SimCo) [59] algorithm also

iterates between a sparse coding stage which enforces a K-sparse constraint with hard-

thresholding and a dictionary update stage which updates all dictionary atoms at the

same time by performing dictionary update on manifold.

2.2.2 Analysis Sparse Model

Recently, the analysis sparse model [50,60–65] has attracted increasing research inter-

est. A redundant analysis dictionary Ω ∈ Rm×n contains m row atoms {ωTi ∈ R1×n}mi=1

with m > n. The expectation is that an input signal x ∈ Rn can be sparsely repre-

sented by a vector γa ∈ Rm (the subscript a represents analysis sparse model) with

respect to an analysis dictionary. That is, the analysis coefficients form a sparse vector

with many zero entries:

γa = Ωx with ‖γa‖0 = p < m. (2.10)

Fig. 2.4 shows an example of the analysis sparse signal model. Different from the

synthesis sparse signal model, both the non-zero coefficients and the zero coefficients

are informative for the representation of the input signal. With a proper analysis

dictionary, the row atoms corresponding to the non-zero coefficients represent a low-

dimensional subspace in which the input signal lies. This leads to a discriminative

sparse representation for the input signal. From another perspective, the row atoms

with zero coefficients define an orthogonal subspace of the input signal and therefore

define its signal subspace which can be used to remove noisy components in the input

signal.
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Figure 2.4: A analysis sparse signal model. The expectation is that the atoms of
the analysis dictionary Ω is able to sparsity the input signal. The sparse representation
γa should be able to fully represent the information within the input signal and is more
discriminative than the original signal.

Co-Sparse Analysis Model:

An analysis dictionary can be used to regularize the signal to be estimated. The row

atoms of the analysis dictionary define the directions in the signal subspace where only

a small portion of signals aligns to. Given an analysis dictionary learned from a set of

training samples, a signal sampled from the same distribution as the training samples

should be able to have sparse representation. An optimization problem with a sparsity

constraint on the analysis coefficient Ωx would favor the solution x that is within the

manifold the training samples belong to. The analysis sparse pursuit aims to find a

signal x̂ whose inner product with Ω is sparse and subject to a data fidelity constraint:

x̂ = arg min
x
‖Ωx‖0, s.t. y = Hx+ n, (2.11)

where H is a linear matrix that relates the measured signal and the ground-truth

signal, and n is a noise vector.

Let us define the co-support Λ of Ω and x as a set of l row atoms of Ω that x is

orthogonal to and define matrix ΩΛ as the sub-matrix of Ω constructed with atoms
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indicated by Λ. The variable l is referred to the co-sparsity of Ω and x. By definition,

the sub-matrix ΩΛ can annihilate the input signal x:

ΩΛx = 0. (2.12)

The sub-matrix ΩΛ defines the subspace that x is orthogonal to, therefore we can

retrieve the orthogonal complementary subspace that x belongs to. Let us assume the

linear matrix is an identity matrix i.e. H = I. The signal x̂ can therefore be recovered

from a noisy observation y when the oracle co-support Λ is known:

x̂ = (I−Ω†ΛΩΛ)y, (2.13)

where I is an identity matrix, Ω†Λ is the pseudo-inverse of ΩΛ, and the noisy signal is

assumed to be in the form y = x + n with n being a zero-mean i.i.d. Gaussian noise

vector.

The analysis sparse pursuit problem is difficult to solve. It requires a joint estimation

of the signal x̂ and the co-support Λ̂. Given a noisy observation y and an analysis

dictionary Ω, the analysis sparse pursuit [60] aims to simultaneously find the co-support

Λ̂ and estimate the signal x̂ such that ΩΛ̂x̂ = 0. The sparse pursuit problem for the

co-sparse analysis model can be formulated as:

{x̂, Λ̂} = arg min
x,Λ
‖x− y‖2

2,

s.t. ΩΛx = 0 and Rank(ΩΛ) = n− rs,
(2.14)

where the signal x is assumed to be within a subspace of Rn of dimension rs.

Greedy analysis pursuit algorithms [60, 66] iteratively estimate the entries of the co-

support set. Backward-Greedy algorithm [60] iteratively finds an atom that has the

minimum correlation with the x̂ estimated using Eqn. (2.13) and adds it into the co-
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support set. The Optimized-Backward-Greedy algorithm [60] replaces the minimum

correlation criterion and tries to find an atom that leads to the smallest decrease

in signal energy when used for signal recovery as in Eqn. (2.13). Greedy Analysis

Pursuit algorithm [66] iteratively removes an atom from the co-support set that has

the maximum correlation with the current estimated signal.

Analysis Sparse Model and Element-wise Thresholding:

The analysis coefficients Ωx is within the column space of the analysis dictionary. It

is a linear transform of the input signal and usually not sparse. With an augmented

Lagrangian, Eqn. (2.10) can be formulated into an unconstrained form which has a

closed-form solution using hard-thresholding:

γa = arg min
γ

1

2
‖γ −Ωx‖2

2 + λ‖γ‖0,

= Hλ(Ωx),

(2.15)

where λ is the regularization parameter, andHλ(·) is an element-wise hard-thresholding

operator with Hλ(a) = a1|a|>λ.

By relaxing the l0-norm to the l1-norm, the sparse representation of a signal with

respect to an analysis dictionary can be obtained by solving a l1-norm minimization

problem which has a closed-form solution using soft-thresholding:

γa = arg min
γ

1

2
‖γ −Ωx‖2

2 + λ‖γ‖1,

= Sλ(Ωx),

(2.16)

where λ is the regularization parameter, and Sλ(·) is an element-wise soft-thresholding

operator with Sλ(a) = sgn(a) max(|a| − λ, 0).

Hard-thresholding and the soft-thresholding are element-wise operations with low com-

putational complexity. The sparse representation γa can be obtained efficiently using
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a thresholding operation with threshold λ. However, the optimization problem in Eqn.

(2.15) and Eqn. (2.16) does not impose a reconstruction constraint. The sparse repre-

sentation γa may not be able to reconstruct the input signal. The quality of the sparse

representation depends on the choice of the regularization parameter λ.

Fig. 2.4 shows an example of the analysis sparse signal model. The expectation is

that the analysis coefficients γa are sparse, whilst preserving essential information for

reconstruction. To achieve that, the analysis dictionary should be redundant and have

a strong sparsifying ability. For example, when a signal x is within the span of a

subspace defined by a small number of row atoms, it can be well represented by these

group of atoms and all the other coefficients can be set to zero.

Analysis Dictionary Learning:

The analysis dictionary usually serves as a regularization term λ||Ωx||1 in the opti-

mization formulation and models the co-sparse prior which can be considered as an

extension of the Total Variation (TV) prior.

Alternating minimization strategy can also be applied for analysis dictionary learn-

ing [60, 64, 65, 67, 68]. Analysis K-SVD [60] algorithm iterates between an analysis

pursuit operation and a K-SVD dictionary update stage. Yaghoobi et al. [65] pro-

posed a uniformly-normalized tight frame constraint for learning analysis operators.

Analysis Simultaneous Codeword Optimization (ASimCO) algorithm [64] enforces a

k-sparse constraint on the sparse-coding stage and updates multiple dictionary atoms

simultaneously in the dictionary update stage. Sparsifying transform learning [67, 68]

proposed to constrain the analysis operator to be full rank and well-conditioned.

The GeOmetric Analysis Operator Learning (GOAL) algorithm [63,69] learns the anal-

ysis dictionary by employing an alternative optimization strategy. It performs dictio-

nary learning on manifolds by minimizing an objective function which promotes sparse
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representation and also imposes full rank and linear independence constraints.

2.2.3 Convolutional Sparse Model

The sparse signal models that are based on unstructured dictionaries cannot handle

high dimensional signals properly mainly due to the computational constraints on both

the sparse pursuit process and the dictionary learning process. When processing high

dimensional signals, the sparse representation methods usually divide the input signal

into overlapping low-dimensional signal segments (i.e. patches) and perform sparse

modelling on each low dimensional patch. This patch-based approach implicitly as-

sumes that each patch is independent from the other patches and ignores the interac-

tions between neighbouring patches. In the case of images, this may result in blocking

artifacts on the processed signal due to the partition process.

Convolutional sparse models use convolutional dictionary. The convolutional dictio-

nary makes the assumption that the filters are shift invariant and the statistics of the

signal are similar at different locations. The convolutional dictionary explicitly models

the interactions between the neighbouring signal segments through sharing dictionary

atoms and sparse representation coefficients. Compared to an unstructured dictio-

nary of the same size, the convolutional dictionary has a much smaller number of free

parameters.

Convolutional Synthesis Sparse Model:

In the convolutional synthesis sparse model, a global signal x ∈ Rn is represented as

follows:

x =
m∑
i=1

di ∗ γcs,i, s.t.
∑
i

‖γcs,i‖0 ≤ k, (2.17)
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(a) Convolutional synthesis dictionary with Toeplitz structure.

(b) Convolutional synthesis dictionary with circular structure.

Figure 2.5: Convolutional synthesis dictionary with Toeplitz structure and
circulant structure. A convolutional synthesis dictionary S(D, n) is a concatenation
of Toeplitz matrices. Each Toeplitz matrix corresponds to a convolutional filter.

where di is the i-th filter, and γcs,i is the corresponding i-th sparse vector (the subscript

cs represents convolutional synthesis sparse model).

In a convolutional model, the synthesis dictionary D = [d1, · · · ,dm] ∈ Rs×m is a

collection of all the filters. The global sparse representation γcs = [γcs,1; · · · ;γcs,m] is

the concatenation of the sparse vectors and is assumed to have a sparsity level k. The

convolutional filters are usually assumed to have compact support i.e. s� n. Different

from the unstructured case, the synthesis dictionary in a convolutional matrix and is

not necessary that it is over-complete.

A convolution can be represented by multiplying a signal with a Toeplitz matrix which

is a structured matrix with constant values along the diagonals:

di ∗ γsc,i = T(di, n)γsc,i, (2.18)
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where T(di, n) is a Toeplitz matrix with n rows which is constructed using di as follows:

T(di, n) =
n∑
j=1

di(j)TLj, (2.19)

where di(j) is the j-th coefficient of di, and TLj is an indicator matrix with 1s on the

j-th lower diagonal and 0s on other locations.

A convolutional synthesis dictionary is a concatenation of Toeplitz matrices in which

each Toeplitz matrix is constructed using a filter. When the convolution between the

filter and the input signal is assumed to be a circular convolution, each filter will lead

to a circulant matrix which is a special case of Toeplitz matrix and assumes periodic

boundary condition on the signals.

Fig. 2.5 shows two examples of the convolutional synthesis dictionary. In Fig. 2.5(a)

the convolutional synthesis dictionary is a concatenation of Toeplitz matrices. The

corresponding convolution operation is a discrete time convolution. In Fig. 2.5(b)

the convolutional synthesis dictionary is a concatenation of circulant matrices which

assume a circular convolution with periodic boundary condition. Circular convolution

is usually applied to achieve a fast convolution.

With a matrix form representation, the global signal x can be represented by a global

sparse representation γcs with respect to a convolutional synthesis dictionary S(D):

x =
m∑
i=1

T(di, n)γcs,i = S(D, n)γcs,

s.t. ‖γcs‖0 ≤ k,

(2.20)

where S(D, n) = [T(d1, n), · · · ,T(dm, n)] denotes the convolutional synthesis dictio-

nary which is a concatenation of Toeplitz matrices {T(di, n)}mi=1.

The Convolutional Sparse Coding (CSC) problem aims to find the global sparse repre-

sentation γcs of an input signal x with respect to the convolutional dictionary S(D, n)
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and can be expressed as:

γcs = arg min
γ
‖γ‖0, s.t. x = S(D, n)γ. (2.21)

With a convex relaxation, the CSC problem can be represented as a constrained l1

minimization problem:

γcs = arg min
γ

1

2
‖x− S(D)γ‖2

2 + λ‖γ‖1, (2.22)

where λ is the regularization parameter.

When the convolution is assumed to be circular, the convolutional dictionary can be

represented as circulant matrices which can be diagonalized by the Discrete Fourier

Transform (DFT) matrix. The l1-norm CSC problem is usually efficiently solved by

applying Alternating Direction Method of Multipliers (ADMM) [70]. The optimization

can be performed in the signal domain [71,72] or in the Fourier domain [73,74].

Convolutional Analysis Sparse Model:

The analysis sparse model can also be extended to the convolutional case. The analysis

coefficients γca are the result of convolving several filters with the input signal x ∈ Rn:

γca =[ω1 ∗ x; · · · ;ωm ∗ x],

=[T(ωT1 , n)x; · · · ; T(ωTm, n)x],

(2.23)

where ωTi ∈ Rs is the i-th filter with s� n, T(ωTi , n) is a Toeplitz matrix constructed

using the i-th filter and is defined as follows:

T(ωTi , n) =
n∑
j=1

ωi(j)TUj, (2.24)
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(a) Convolutional analysis
dictionary with Toeplitz
structure.

(b) Convolutional analy-
sis dictionary with circular
structure.

Figure 2.6: Convolutional analysis dictionary with Toeplitz structure and
circulant structure. A convolutional analysis dictionary H(Ω) is a concatenation of
Toeplitz matrices. Each Toeplitz matrix corresponds to a convolutional filter.
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where ωi(j) is the j-th coefficient of ωi, and TUj is an indicator matrix with 1s on the

j-th upper diagonal and 0s on other locations.

A convolutional analysis dictionary H(Ω, n) = [T(ωT1 , n); · · · ; T(ωTm, n)] is a concate-

nation of Toeplitz matrices along the column direction. When the convolution is a

circulant convolution, circulant matrix will be used to represent the convolution op-

eration. Fig. 2.6 shows two examples of convolutional analysis dictionary. In Fig.

2.6(a), convolutional analysis dictionary is a concatenation of Toeplitz matrices. In

Fig. 2.6(b), the convolutional analysis dictionary is a concatenation of circulant ma-

trices.

2.2.4 Convolutional Dictionary Learning:

When the convolutional dictionary is modelled as a concatenation of circulant matri-

ces, convolutional dictionary learning can be operated on Fourier domain as circulant

matrices can be diagonalized by the discrete Fourier transform (DFT) matrix.

Convolutional synthesis dictionary learning has attracted increasing research interests.

Bristow et al. [73] proposed a fast convolutional synthesis dictionary learning algorithm

which is based on Alternating Direction Method of Multipliers (ADMM) [70] and solves

the convolution sub-problem in Fourier domain. Wohlberg [75] proposed to accelerate

the convolutional synthesis sparse pursuit (i.e. convolutional sparse coding (CSC)) in

Fourier domain. The circular boundary condition which is implicitly imposed with

the use of Fourier domain operations may introduce reconstruction artifacts. Heide et

al. [74] proposed a flexible framework for solving CSC problem which allows proper

boundary conditions to be imposed rather than assuming a circular periodic boundary

condition. Chun et al. [76] proposed a block proximal gradient method for convolutional

dictionary learning which does not need hyper-parameter tuning.

Convolutional analysis dictionary learning has also started to attract more research
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interests. Pfister and Bresler [68] proposed a filter bank sparsifying transform learning

algorithm which is also based on Fourier domain representation and is able to learn a

sparsifying convolutional analysis dictionary. Chun et al. [77] proposed a convolutional

analysis operator learning framework which learns convolutional sparsifying regularizer.

2.3 Deep Neural Networks

Deep Neural Networks (DNNs) are architectures composed of multiple layers of lin-

ear transforms and non-linear operators. DNNs are highly non-linear and non-convex

systems due to the non-linear layers and the multi-layer structure. Therefore, it is dif-

ficult to directly optimize all the parameters of a DNN. The parameters of the DNNs

are usually optimized by backpropagation algorithm [20] which is based on gradient

descent algorithms and the chain rule of derivatives.

With the help of massive labeled training data and powerful Graphics Processing Units

(GPU), DNNs have achieved outstanding performance in many signal processing and

computer vision tasks. The success of DNNs comes from its ability to learn represen-

tation from raw data and the end-to-end optimization strategy. DNNs learn repre-

sentations from raw data and the feature representation at a deep layer is expressed

in terms of the simpler representations at the shallow layers. Therefore, DNNs pro-

gressively learn more complex concepts and the feature representations possess with

multiple levels of abstraction.

2.3.1 A Brief Introduction

The forward pass of a Deep Neural Network is a cascade of multiple layers of trans-

formations. Let us consider an L-layer DNN, we denote with θi the parameters of the

i-th layer and with xi the output of the i-th layer. The forward model of the i-th layer
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of a DNN is a function of the output xi−1 from the previous layer and the parameters

θi:

xi = fi(xi−1,θi). (2.25)

where fi(·, ·) is assumed to be differentiable with respect to its inputs.

Therefore, the forward pass of the L-layer DNN can be expressed as:

xL = fL (fL−1 (· · · f1 (x0,θ1) · · · ,θL−1) ,θL) . (2.26)

During the training stage, the parameters of a DNN Θ = {θi}Li=1 will be learned

from a set of training samples. A loss function L(·, ·) defines the distance between

the estimated signal xL and the ground-truth signal y. The learning objective is to

minimize the loss E over a set of paired training samples {x0,j,yj}Nj=1:

E =
1

N

N∑
j=1

L(xL,j,yj). (2.27)

Backpropagation:

Backpropagation algorithm [20] is usually applied for learning the parameters of Deep

Neural Networks. By exploiting the chain rule of derivatives, backpropagation algo-

rithm enables us to simultaneously update all parameters across layers given that we

have access to the derivatives of each parameter.

Given a set of paired training samples {x0,j,yj}Nj=1, the loss E can be evaluated with

the forward model of the DNN defined in Eqn. (2.26) and the loss function defined

in Eqn. (2.27). The gradient descent based optimization methods try to iteratively

update the parameters by stepping towards the negative direction of the gradient:

θti = θt−1
i − η ∂E

∂θi
, (2.28)
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Figure 2.7: The computation graph of a 2-layer neural network. In the graph,
X0 is the input signal, X1 and X2 are the representation at the 1-st layer and 2-nd
layer, θ1 and θ2 are the parameters of two layers, and E denotes the loss. The black
arrows stand for the forward pass and the red arrows stand for the backpropagation.

where η is the step size (i.e. the learning rate).

Fig. 2.7 shows an example of the computation graph of a 2-layer neural network

with both the forward pass and the backpropagation update. The backpropagation

algorithm exploits the chain rule of the partial derivatives. Let us denote with Xi =

[xi,1, · · · ,xi,N ] the matrix containing the outputs at the i-layer for all training samples.

The derivatives of the i-th layer parameter θi can be evaluated as follows:

∂E

∂θi
=

∂E

∂Xi

∂Xi

∂θi
, (2.29)

∂E

∂Xi

=
∂E

∂Xi+1

∂Xi+1

∂Xi

, (2.30)

where the derivative ∂Xi/∂θi and ∂Xi+1/∂Xi depend on the function fi(·, ·) and

fi+1(·, ·), respectively.

Activation Function:

Deep Neural Networks consist of linear and non-linear layers. The function of the non-

linear layers is to provide a non-linear mapping from the input signal to the desired

output signal. When there is no non-linear layers, the DNN is a deep linear network
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Figure 2.8: Rectified Linear Unit (ReLU) activation function.

which models a linear relationship from the input to the output. A deep linear net-

work has no advantage over a shallow linear model in terms of expressive power. For

computational consideration, the non-linear layers are usually characterized by acti-

vation functions which are usually element-wise operations and are (approximately)

differentiable.

The Rectified Linear Unit (ReLU) is one of the most popular activation functions used

in modern DNNs due to its simplicity and connections with sparse modelling. A ReLU

activation function will keep the input when the input is positive, and will output zero

otherwise:

ReLU(x) = max(x, 0). (2.31)

The ReLU activation function and its derivatives can be efficiently computed. In the

forward pass, only a comparison operation will be involved. The first derivative of the

ReLU activation function is 1 when the input is positive and 0 otherwise.

The ReLU activation function produces sparse feature representations which lead to a

better interpretation of the workings of DNNs. As a ReLU activation function output

0 or 1, it partitions the input space into two parts. The DNNs with ReLU activa-

tion functions (also known as a deep rectifier networks) partitions the signal space

into a number of linear regions in which a linear transform is applied for prediction.
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Figure 2.9: A 3-layer multilayer perceptron with ReLU activation function.

A non-zero coefficient can be interpreted as selecting (activating) a feature represen-

tation represented by a neuron. The ReLU activation function can be considered as

a one-sided soft-thresholding function. This leads to a connection with the l1-norm

minimization problem.

There are many variations of ReLU activation function including leaky ReLU which has

a slope α = 0.05 when the input is negative and parametric ReLU which has learnable

slope α. These modifications lead to improved performances.

2.3.2 Multilayer Perceptron

A Multilayer Perceptron (MLP) is a class of Artificial Neural Networks (ANNs) in

which every neuron is connected to all the neurons in its next layer. There is at

least one hidden layer (i.e. a layer of neurons with non-linear activation functions)

in MLP. The connections between a neuron and all the neurons in the next layer

can be represented by a vector where each value represents the weight. Therefore,

a weight matrix Wi ∈ Rdi−1×di can be used to model the relationship between the

neurons in the (i − 1)-th layer and the neurons in the i-th layer with di−1 and di

neurons, respectively. There is a layer of activation functions between two layers as

non-linearity. A bias vector bi is used to represent the parameters of the activation

functions for each neuron at layer i. Backpropagation algorithm [20] is usually applied

for learning all weight matrices and bias vectors in a MLP.
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Fig. 2.9 shows an example of a 3-layer MLP with ReLU activation functions. The

parameters of the i-th layer include a weight matrix Wi and a bias vector bi. The

weight matrix is the parameter of the linear layer, while the bias vector is the parameter

of the ReLU activation function. The forward pass of the i-th layer of MLP can be

expressed as follows:

xi = ReLU(Wixi−1 + bi). (2.32)

The forward model of the MLP shown in Fig. 2.9 can be expressed as:

y = W3ReLU(W2ReLU(W1x0 + b1) + b2). (2.33)

The MLP is usually referred to the "vanilla" neural networks. It has been widely used

for theoretical study of DNNs. MLP is also an important tool for many applications

where the input signal is low dimensional, such as simple classification or regression

problem, or reinforcement learning problem. When the input signal is high dimensional,

the number of parameters in a MLP would increase rapidly. This will result in a

system with a huge number of parameters which is both computationally and memory

inefficient.

2.3.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [78, 79] are a class of Deep Neural Networks

whose neurons are locally connected to the neurons in its next layer and share a small

set of filters as the connection weights. CNNs are usually composed of convolutional

layers, pooling layers, and fully connected layers. An example of convolutional neural

network is shown in Fig. 2.10.

A convolutional layer contains a set of filters and the corresponding activation functions.

Compared to a fully connected layer, a convolutional layer greatly reduces the number
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Figure 2.10: An example of Convolutional Neural Networks.

of parameters. Each filter will convolve with its feature representations output from

the previous layer and generate a feature representation which will pass through an

activation function for non-linear mapping. With the convolution operation, the feature

representations at two adjacent layers can be considered as being locally "connected".

There is a close connection between the convolutional sparse model and CNN [72],

since the operation of a convolution layer can be represented by multiplying the input

feature with a convolutional dictionary.

A pooling layer is associated with a sub-sampling operation. The pooling layers are

applied to reduce the spatial size of the feature representation and result in a reduction

on the amount of computation. The pooling layer is also essential to extract transla-

tional invariant features for the image recognition application. Typical sub-sampling

operations used in CNNs include max pooling and average pooling. The pooling op-

eration is applied to a small spatial region on the feature maps, for example a 2 × 2

region. For example, a max pooling computes the max value within every small spatial

region and retain the max value as the representation.



Chapter 3

Learning Deep Analysis Dictionary

Models

3.1 Introduction

Deep Neural Networks (DNNs) [80] are complex architectures composed of a cascade

of multiple linear and non-linear layers. Back-propagation algorithm [20] is usually

applied to optimize the parameters of the linear transforms and the non-linearities

within this highly non-linear and non-convex system. With the help of massive labeled

training data and powerful Graphics Processing Units (GPU), DNNs have achieved out-

standing performance in many signal processing and computer vision tasks. However,

there still lacks a clear understanding about the workings of DNNs. The optimized

DNNs are usually treated as black-box systems. Some natural questions are what are

the functions of the linear transform and the non-linearities and what is the role of the

“cascade” in DNNs.

Some recent works have tried to provide insights into the workings of DNNs. Bruna and

Mallat [81, 82] proposed a Scattering Convolutional Network (SCN) by replacing the

65
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learned filters with wavelet-like transforms. SCN provides feature representations which

are translation and rotation invariant. Zeiler and Fergus [83] proposed a deconvolution

technique to visualize the intermediate feature layers of a Convolutional Neural Network

(CNN) trained for image classification. The filters in the first layer are Gabor like, and

the deeper layer feature maps tend to be active only for certain objects. In [84], the

authors suggested that an auto-encoder partitions the low-dimensional data manifold

into cells and approximates each piece by a hyper-plane. The encoding capability limit

of a DNN is described by the upper bound of the number of cells. Montufar et al. [85]

have shown that the number of cells is exponentially larger than the degrees of freedom.

Giryes et al. [86] theoretically analyzed the fully connected DNN with i.i.d. random

Gaussian weights. They prove that a DNN with random Gaussian weights performs a

distance-preserving embedding of the data.

Contrary to DNNs, the sparse representation framework [87] is much more established.

Sparse representation over an over-complete dictionary can serve as an effective and

robust representation in both classification and regression problems. Building a deep

model using sparse representation over redundant synthesis dictionaries has facilitated

interpretations of DNNs. Rubinstein and Elad [61] proposed an Analysis-Synthesis

Thresholding (AST) model for image deblurring which consists of an analysis dictio-

nary, element-wise hard-thresholding operators and a synthesis dictionary. The AST

model can be interpreted as a fully connected DNN which is with one hidden layer and

uses hard-thresholding as non-linearity. The Double-Sparsity model [88] proposes to

learn a two-layer synthesis dictionary model. The first layer is a dictionary that mod-

els a fixed basis, while the second layer is a sparse dictionary with sparse atoms. The

effective dictionary is the multiplication between the basis dictionary and the sparse

dictionary. The Double-Sparsity model gives a more efficient and adaptive modeling

and enables learning large dictionary from high-dimensional data. A Multi-Layer Con-

volutional Sparse Coding (ML-CSC) model is proposed in [72, 89] and gives a new in-

terpretation on the working of the Convolutional Neural Networks (CNNs). The linear
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models in CNNs are interpreted as synthesis dictionaries with convolutional structure

and the function of the non-linearities is interpreted as a simplified sparse pursuit pro-

cedure. The ML-CSC model has multiple layers of synthesis dictionaries where the first

dictionary is non-sparse while the following dictionaries are sparse. Tariyal et al. [90]

proposed a greedy layer-wise deep dictionary learning method which performs syn-

thesis dictionary learning layer-by-layer. A parametric approach is proposed in [91] to

learn a deep dictionary for image classification tasks. The proposed dictionary learning

method contains a forward pass which performs sparse coding with the given synthesis

dictionaries and a backward pass which updates the dictionaries by gradient descent.

The contribution of this chapter is three-fold:

• We propose a Deep Analysis dictionary Model (DeepAM) framework which is

composed of multiple layers of analysis dictionaries with associated soft-thresholding

operators and a layer of synthesis dictionary. The forward model of DeepAM is a

cascade of matrix multiplication and soft-thresholding operations which is similar

to that of DNNs.

• We propose to characterize each analysis dictionary as a combination of two sub-

dictionaries: an Information Preserving Analysis Dictionary (IPAD) and a Clus-

tering Analysis Dictionary (CAD). The IPAD together with the soft-thresholding

operator preserves the key information of the input data, while the CAD with the

associated soft-thresholding operator generates a discriminative representation.

• We propose learning algorithms for DeepAM. To achieve the two different goals of

IPAD and CAD, different learning criteria have been proposed. We validate our

proposed DeepAM on single image super-resolution task. Simulation results show

that the proposed deep dictionary model achieves comparable performance with

a DNN which has the same structure but is optimized using back-propagation.

The rest of the chapter is organized as follows. Section 3.2 gives an overview of the pro-
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posed deep analysis dictionary model. Section 3.3 analyzes the proposed deep analysis

dictionary model and explains the rationals behind splitting each analysis dictionary

into an information preserving and a clustering sub-dictionary. Section 3.4 introduces

the learning algorithm for the deep analysis dictionary model. Section 3.5 presents

simulation results on single image super-resolution task and Section 3.6 draws conclu-

sions.

3.2 Overview

The motivation of this chapter is to build a deep dictionary model which is with

multiple layers of dictionary and has interpretable linear transform and non-linearity

in each layer. The single image super-resolution problem is taken as a case study for

validation.

3.2.1 Image Super-Resolution

In image super-resolution, the low-resolution (LR) image X is assumed to be the

blurred and down-sampled version of a high-resolution (HR) image Y . The task of

single image super-resolution (SISR) is to estimate a HR image Ŷ from an observed

LR image X. SISR is ill-posed as there is ambiguity when recovering the HR signals

from their low-dimensional observations.

Patch-based single image super-resolution is used as a sample application to validate

the proposed method. Instead of estimating the HR image as a whole, the patch-based

approaches [1, 2, 7–11] divide the LR image into overlapping patches and infer a HR

patch for each LR patch. The HR image can then be reconstructed using the estimated

HR patches by patch overlapping. The learning-based methods [1, 2, 7, 9–11, 14–16]

learn the inference model from an external training dataset which contains LR and HR
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Figure 3.1: A 3-layer deep analysis dictionary model. There are 3 layers of
analysis dictionaries {Ωi}3

i=1 with element-wise soft-thresholding operators {Sλi
(·)}3

i=1

and a layer of synthesis dictionary D. The output signal ŷ is obtained through a
cascade of matrix multiplications and soft-thresholding operations with input signal x.

image pairs as training data. The patch-based methods extract LR-HR patch pairs

{(x0
i ,yi)}

N
i=1 from the training dataset. The size of the LR patches and the HR patches

is assumed to be p × p and (s × p) × (s × p), respectively. The variable s represents

the up-scaling factor. To gain illumination invariant property, the mean value of each

patch is normally removed. For simplicity, let us denote d0 = p2 and dL+1 = (s× p)2.

By vectorizing the image patches into vectors and grouping the training vectors into a

matrix, we denote the input LR training data matrix as X 0 = [x0
1, · · · ,x0

N ] ∈ Rd0×N

and its corresponding ground-truth HR training data matrix as Y = [y1, · · · ,yN ] ∈

RdL+1×N .

3.2.2 Deep Analysis Dictionary Model

We propose a Deep Analysis dictionary Model (DeepAM) which is made of multiple

layers of analysis dictionary interleaved with soft-thresholding operations and a single

synthesis dictionary. In an L-layer DeepAM, there are L+ 1 dictionaries and L layers

that correspond to the non-linear operations. The first L dictionaries are analysis

dictionaries and are denoted as
{
Ωi ∈ Rdi×di−1

}L
i=1

with di ≥ di−1. The row atoms{
ωTi,j
}di
j=1

of the analysis dictionary Ωi are assumed to be of unit norm. The non-
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linear operator used in DeepAM is the element-wise soft-threshold {Sλi
(·)}Li=1

1 where

λi ∈ Rdi denotes the threshold vector at layer i. The dictionaryD in the last layer is a

synthesis dictionary and is designed to optimize the regression task at hand. Fig. 3.1

shows an example of a 3-layer deep analysis dictionary model for image super-resolution

task.

The forward model of an L-layer DeepAM can therefore be expressed as:

ŷ = DSλL

(
ΩLSλL−1

(
· · ·Ω2Sλ1

(
Ω1x

0
)
· · ·
))
, (3.1)

where x0 and ŷ is the input signal and the estimated output signal, respectively.

Let us denote with xi = Sλi
(Ωix

i−1) the output of the i-th layer. This means that

the input signal xi−1 is multiplied with the analysis dictionary Ωi and then passed

through the element-wise soft-thresholding operator Sλi
(·). The thresholded output

signal xi will be a sparse signal and is expected to be better for predicting the ground-

truth signal y than xi−1. After L layers of analysis dictionaries and thresholding, xL

is transformed to the HR signal domain via the synthesis dictionary. Note that the

input LR signal lives in a lower dimensional space when compared to the target HR

signal. It is essential for an inference model to be able to non-linearly transform the

input data to a higher dimensional space. This is to be jointly achieved by the analysis

dictionaries and the associated soft-thresholding operators.

The proposed DeepAM framework is closely related to Deep Neural Networks (DNNs)

with Rectified Linear Unit (ReLU) non-linearity2. As ReLU can be considered as the

one-sided version of soft-thresholding, there exists an equivalence between a layer of

analysis dictionary with soft-thresholding and a layer of Neural Networks with ReLU:

Ωi+1Sλi

(
Ωix

i−1
)

= ΩHC
i+1ReLU(ΩVC

i xi−1,λVC
i ), (3.2)

1Soft-thresholding is defined as Sλ(a) = sgn(a)max(|a| − λ, 0).
2ReLU is defined as ReLU(a, λ) = max(a− λ, 0).
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where ΩHC
i+1 = [Ωi+1,−Ωi+1], ΩVC

i = [Ωi;−Ωi] and λVC
i = [λi;λi]. The superscripts

HC and VC stand for horizontal concatenate and vertical concatenate, respectively.

From Eqn. (3.2), a layer of analysis dictionary and soft-thresholding operation with n

atoms can be represented with a layer of Neural Networks with ReLU and 2n neurons.

For data which is symmetrically distributed around the origin, DeepAM with soft-

thresholding can be more efficient than DNNs with ReLU. This observation will be

validated numerically in Section 3.5.

The learning problem for DeepAM can be formulated as learning the parameters that

minimize the mean squared error between the ground-truth data and the estimations:

min
θ

∥∥Y −DSλL

(
· · ·Ω2Sλ1

(
Ω1X 0

)
· · ·
)∥∥2

F
, (3.3)

where θ =
{
D, {Ωi}Li=1 , {λi}

L
i=1

}
denotes all the parameters of the L-layer DeepAM.

Optimizing Eqn. (3.3) directly can be very difficult as it involves non-convex matrix

factorization and learning parameters of the non-linear operators. Standard tools for

optimizing DNNs can be utilized, for example back-propagation algorithm [20]. How-

ever this would lead to effective but difficult to interpret results.

Our objective instead is to build a deep dictionary model with a higher interpretability

through understanding the purpose of different components in the model. The analysis

dictionary and threshold pairs play a key role in DeepAM as they determine the way

effective features are generated. The synthesis dictionary instead can be learned using

least squares once all the analysis dictionaries and thresholds are fixed. We propose a

layer-wise learning strategy to learn the pair of analysis dictionary and soft-thresholding

operators. In this way, we can obtain a system where the purpose of every component

is easier to interpret.
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Figure 3.2: In image super-resolution, the input data spans a low-dimensional subspace
V within the HR data space O. The objective is to estimate the unknown HR signal
yi based on the input LR signal xHi. The dashed line represents the residual signal
ri = yi − xHi which is orthogonal to the subspace spanned by the input data.

3.3 Analyzing the Deep Analysis Dictionary Model

To justify our approach, we begin by considering a 1-layer DeepAM system:

ŷi = DSλ1(Ω1x
0
i ), (3.4)

where x0
i ∈ Rd0 is one of the elements of X , ŷi ∈ Rd2 with d2 > d0 and Ω1 ∈ Rd1×d0 .

We assume, for the sake of argument, that the degradation model is linear. That is,

there exists a degradation matrix H ∈ Rd0×d2 such that x0
i = Hyi. Denote xHi =

H†x0
i ∈ Rd2 as the projection of the LR signal x0 onto the HR signal space with the

pseudo-inverse matrix H† = HT (HHT )−1.

As shown in Fig. 3.2, the LR signal xHi lies in a low-dimensional subspace V ⊂ O of

the ground-truth HR data space O. A linear operation will not be able to recover the

components that are orthogonal to V (i.e. the dashed line in Fig. 3.2). It is therefore

imperative to design the analysis dictionary Ω1 and the non-linear soft-thresholding
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Figure 3.3: The analysis and soft-thresholding partitions the input data subspace
V . There are two pairs of analysis atom and soft-thresholding operator. After soft-
thresholding, the data in the gray region is with 1 zero coefficient and the data in the
convex polyhedron U (i.e. the black region) is with all zero coefficients.

operation Sλ1(·) in a way that facilitates the recovery of the information of y in V ⊥.

When we multiply x0 with Ω1, the analysis dictionary atoms
{
ωT1,j

}d1
j=1

project the

input LR data onto specific directions. After soft-thresholding, the resulting signal

x1 = Sλ1(Ω1x
0) is sparse and the end result is a partitioning of V as shown in Fig.

3.3. The analysis and soft-thresholding pairs partition the input data space into pieces

(convex polyhedrons). Within each piece, the input data employs a linear transform for

prediction. All the linear transforms are jointly determined by the synthesis dictionary

D.

We note that if we assume that all thresholds are large, there is a convex polyhedron

U in which all input data will be set to zeros by the analysis and the thresholding

operations, that is, Sλ1(Ω1x
0) = 0, ∀x0 ∈ U (see the central black region in Fig. 3.3).

Therefore, the corresponding estimation ŷ will be zero, and the information of the data

within the convex polyhedron U will then be completely lost. This may lead to a large

mean squared error for prediction.

This suggests that not all thresholds should be too large. The problem can be resolved

if there is a set of analysis dictionary atoms with small thresholds. If we assume that
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the signal subspace V has dimension K, then in order not to lose essential information

there should be at least K pairs of analysis dictionary atoms and soft-thresholds for

information preservation. These K analysis dictionary atoms are associated with K

small soft-thresholds and are able to fully represent the input data space. Therefore

the K pairs of analysis dictionary atoms and soft-thresholds together with the corre-

sponding synthesis dictionary atoms provide a baseline estimation for the input data.

The remaining analysis dictionary atoms can instead be associated with large thresh-

olds. The outcome of these analysis and thresholding operations is a clustering of the

input data. That is, the data within the same cluster has the same sparsity pattern

and shares a linear model for prediction. The corresponding synthesis atoms then help

recover the signal components within the orthogonal subspace V ⊥.

Based on the above analysis, we propose to divide an analysis dictionary Ω into two

sub-dictionaries Ω = [ΩI; ΩC], and similarly divide each threshold vector into two

parts λ = [λI;λC]. The Information Preserving Analysis Dictionary (IPAD) ΩI with

its thresholds λI aims at passing key information of the input signal to the next layer.

The Clustering Analysis Dictionary (CAD) ΩC with its threshold λC is to facilitate

the separation of key feature in the signal. The CAD and thresholding operators

provide a highly non-linear prediction. Fig. 3.4 shows an analysis dictionary and the

soft-thresholding operation with the partition of the IPAD part and the CAD part.

In a multi-layer DeepAM, we adopt the same information preserving and clustering

strategy. As depicted in Fig. 3.5, the analysis dictionary at each layer is composed

of an IPAD part and a CAD part. The IPADs and thresholds {(ΩIi,λIi)}Li=1 create

a channel which transmits the information of the input signal to the CAD in each

intermediate layer and to the final estimation. The feature representation xLI generated

by the last layer of IPAD and its thresholds should be able to well represent signal

components of the HR signal which are within the input data subspace. The CADs

and thresholds {(ΩCi,λCi)}Li=1 are the main source of non-linearity in DeepAM. The
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Figure 3.4: The analysis dictionary Ω is designed to consist of an information preserving
analysis dictionary ΩI and a clustering analysis dictionary ΩC. The soft-thresholds
corresponding to ΩC are much higher than those used for ΩI and result in a sparser
representation.

feature representation xLC generated by the last layer of CAD should be able to well

represent the signal components of y which are orthogonal to the input data subspace.

Therefore, the function of CAD and its thresholds can be interpreted as identifying

the data with large energy in the subspace orthogonal to the input data subspace. A

deep layer of CAD takes the feature representation generated by the IPAD and CAD

of the previous layer as input and can generate a non-linear feature representation that

cannot be attained by a single layer soft-thresholding with the same number of atoms.

Therefore a DeepAM with deeper layers is expected to outperform a shallower one.

3.4 Learning a Deep Analysis Dictionary Model

In this section, we introduce the proposed learning algorithm for DeepAM. In view of

the distinctive goals of the two pairs of sub-dictionary and thresholds, different learning

criteria have been proposed for learning the IPAD and threshold pair and the CAD

and threshold pair.
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Figure 3.5: Two consecutive layers in DeepAM. The IPAD and threshold pairs
create an information flow channel from input to output, and the CAD and threshold
pairs combine information from the previous layer and generate a feature representation
that can well represent the residual part.

3.4.1 Basic Analysis Dictionary Learning Algorithm

The IPAD and the CAD have different functions but also share some common learning

objectives. There are four basic objectives for learning an analysis dictionary: (1) its

atoms span a subspace of its input data space; (2) it is able to sparsify the input data;

(3) there are no pairs of row atoms that are linearly dependent; (4) the row atoms are

of unit norm.

Our proposed learning algorithm is an extension of the GeOmetric Analysis Operator

Learning (GOAL) algorithm [63, 69] and we denote it as GOAL+. The four learning

objectives can be attained by using corresponding constraints. The IPAD and the CAD

are learned using modified versions of GOAL+ algorithm.

For simplicity, let us denote the analysis dictionary to be learned as Ω ∈ Rm×n, the

j-th atom of Ω as ωTj and the training data as X = [x1, · · · ,xN ] ∈ Rn×N . We assume

that the row atoms of Ω span a K dimensional subspace V ∈ Rn. Let us denote with

W ∈ Rn×K the orthogonal basis of V , and with WN ∈ Rn×(n−K) the orthogonal basis

of the orthogonal complement V ⊥.

The first learning objective is that the learned analysis dictionary Ω should span only
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the subspace V . There are two main reasons for this requirement. First, the analysis

dictionary Ω which spans V can fully preserve the information of the input data that

is within V . Second, if an atom ωT belongs to V ⊥, it is an unnecessary atom. This is

because the coefficients ωTX will be zero since V ⊥ is in the null-space of X . We apply

a logarithm determinant (log-det) term h (Ω) to impose the information preservation

constraint:

h (Ω) = − 1

K logK
log det

(
1

m
W TΩTΩW

)
. (3.5)

Together with the unit norm constraint, the feasible set of the analysis dictionary Ω

is defined as Θ = Smn−1 ∩W⊥
N with Sn−1 being the unit sphere in Rn and W⊥

N being

the orthogonal complement of WN . The feasible set Θ restricts the learned atoms

in Ω to be of unit norm and excludes the contributions from WN . Eqn. (3.5) is

a generalization of the log-det constraint term applied in GOAL [63, 69]. Here, W

defines a low-dimensional subspace of the input data space whose size K could be

much smaller than the dimension of the input signal n as moving towards a deeper

layer, while W in GOAL method [63, 69] defines a much larger subspace and is with

k = n or k = n− 1.

We achieve the constraint ΩT ∈ Θ by performing orthogonal projection onto the tan-

gent space TΩ(Θ) of the manifold Θ at location Ω. For a row atom ωT , the operation

of the orthogonal projection onto the tangent space Tω(Θ) can be represented by the

projection matrix Pω:

Pω = In −Q†ωQω, (3.6)

where In ∈ Rn×n is the identity matrix, and Qω = [2ωT ;W T
N ] ∈ R(n−k+1)×n.

Sparsifying ability is essential for both IPAD and CAD. When the input data is noisy,

it is beneficial to apply a mild non-linear operation to the IPAD coefficients as a form

of denoising. The function of CADs is to identify the data in Y with large energy

in the subspace orthogonal to the input data space. The sparsifying ability enables
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Algorithm 1: GOAL+ Algorithm
1 Input: Training data, row number of the dictionary;
2 Initialize: Initialized Ω(0), t = 0;
3 while halting criterion false do
4 t← t+ 1 ;
5 Compute gradient of the objective function ∇f(Ω(t));
6 Orthogonal project ∇f(Ω(t)) onto the tangent space of manifold Θ at Ω(t):

G .
= ΠT

Ω(t) (Θ)(∇f(Ω(t)));
7 Find new search direction H(t) = −G + β(t)TH(t−1) ;
8 Update Ω(t+1) along the search direction H(t) using backtracking line

search.
9 end

10 Output: Learned analysis dictionary Ω.

the analysis and the thresholding operation to select only a specific group of data.

The sparsifying constraint is imposed by using a log-square function which is a good

approximation of the l0 norm:

g(Ω) =
1

Nm log(1 + ν)

N∑
i=1

m∑
j=1

log
(
1 + ν(ωTj xi)

2
)
, (3.7)

where ν is a tunable parameter which controls the sparsifying ability of the learned

dictionary.

Linearly dependent row atoms (e.g. ωTi = ±ωTj ) are undesirable in the learned dic-

tionary. A logarithm barrier term l (Ω) is used to penalize linearly dependent row

atoms:

l (Ω) = − 1

m (m− 1)

∑
1≤i<j≤m

log
(

1−
(
ωTi ωj

)2
)
. (3.8)

Combining the information preservation constraint in Eqn. (3.5), feasible set constraint

in Eqn. (3.6), sparsifying constraint in Eqn. (3.7), and linearly dependent penalty term

in Eqn. (3.8), the objective function of GOAL+ algorithm is formulated as:

Ω = arg min
ΩT∈Θ

f(Ω), (3.9)
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where f(Ω) = g(Ω)+κh(Ω)+υl(Ω) with κ and υ being the regularization parameters.

The objective function defined in Eqn. (3.9) is optimized using a geometric conjugate

gradient descent method [63, 92]. The analysis dictionary learning algorithm GOAL+

is summarized in Algorithm 1. At iteration t, the gradient of the objective function

∇f(Ω(t)) is computed and orthogonal projected on the tangent space of the manifold

Θ at location Ω(t). The orthogonal projection of ∇f(Ω) onto the tangent space TΩ(Θ)

can be expressed as ΠTΩ(Θ)(∇f(Ω)) = [Pω1∇f(ω1), · · · ,PωdIi
∇f(ωdIi)]. Let us denote

G .
= ΠT

Ω(t) (Θ)(∇f(Ω(t))), the search direction can be set as H(t) = −G. In practice,

the search direction is a combination of G and the previous search direction TH(t−1) .

The updated analysis dictionary Ω(t+1) is then obtained by gradient descent with back-

tracking line search along the search direction H(t). The halting condition is when the

analysis dictionary converges or when a pre-defined maximum number of iterations

is reached. In summary, our optimization approach is similar to that in GOAL [63]

except the orthogonal projection step as described in Eqn. (3.6) which represents the

constraint introduced by the feasible set Θ. For a more detailed treatment of the geo-

metric conjugate gradient descent we refer to [63, 92]. Now that the overall objectives

of GOAL+ have been introduced, we can focus on how to tailor the optimization Eqn.

(3.9) to achieve the objectives of IPAD and CAD respectively.

3.4.2 IPAD and Thresholds Pair Learning

The function of the IPAD and threshold pair (ΩIi,λIi) is to pass key information of

the input data X 0 to a deeper layer. The learned IPADs create a channel that enables

the information flow from the input signal to the estimated output signal.
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IPAD Learning

The training data for learning ΩIi is the i-th layer input training data X i−1 (the (i−1)-

th layer training data is obtained as X i = Sλi
(ΩiX i−1) for i ≥ 1). Let us denote the

rank of the first layer input training data X 0 as k0 = rk(X 0) where rk(·) outputs the

rank of a matrix. The IPAD ΩIi ∈ RdIi×di−1 is assumed to have dIi ≥ rk(X 0) atoms to

ensure that the learned IPAD can well represent the input data subspace.

By setting the training data as X i−1, the i-th layer analysis dictionary ΩIi can be

learned using GOAL+. The orthonormal basis W ∈ Rdi−1×k0 is set to be an arbitrary

basis of X i−1 that corresponds to the signal subspace of X 0. The orthogonal basis

WN ∈ Rdi−1×(di−1−k0) is set to span the orthogonal complement of the subspace spanned

by W .

Learning the Thresholds for IPAD

Given a learned IPAD ΩIi, the analysis coefficients αi = ΩIix
i−1 contain sufficient

information of xi−1. When αi is a redundant representation or when the input data

xi−1 is noisy, applying a proper thresholding operation to αi can further enhance the

robustness of the representation. We propose to apply soft-thresholding with small

thresholds to the IPAD analysis coefficients as z = SλIi(ΩIix
i−1) and interpret the

soft-thresholding operation as a form of denoising.

There are related works in the literature about thresholding for redundant represen-

tations [93–95]. Elad [93] shows that simple shrinkage is effective for redundant rep-

resentation and interpretes the simple shrinkage as the first iteration for solving Basis

Pursuit Denoising (BPDN) problems. Raphan and Simoncelli [94] proposed a denois-

ing scheme for redundant representations based on Stein’s Unbiased Risk Estimator.

Lin and Lee [95] proposed a Bayesian framework for finding the optimal l1-norm regu-

larization.
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Let us consider a weighed l1-norm regularized minimization problem:

min
z

1

2
||x−ΩTz||22 +

m∑
j=1

λj|zj|, (3.10)

where zj is the j-th coefficient of the sparse vector z, and λj is the corresponding

regularization parameter.

Selecting the soft-threshold λIi is equivalent to finding suitable regularization param-

eters in Eqn. (3.10) as the soft-thresholding operation Sλ(Ωx) can be interpreted as

the first iteration of the Iterative Soft-Thresholding Algorithm (ISTA) [55] for solving

Eqn. (3.10):

z(1) = Sλ
(
z(0) + Ω

(
x−ΩTz(0)

))
, (3.11)

where the initial sparse code z(0) = 0.

Lin and Lee [95] proposed a method to choose the optimal regularization parameters

based on a Bayesian analysis. They assume that the data x is with additive i.i.d. zero

mean Gaussian noise with variance σ2:

P (x|ΩT , z, σ2) =
1

(2πσ)n/2
exp

(
− 1

2σ2

∥∥x−ΩTz
∥∥2

2

)
, (3.12)

and assume a Laplacian distribution prior for the sparse code z with parameters λ:

P (z|λ) =
m∏
j=1

λj
2

exp (−λj|zj|) . (3.13)

Empirically, we have found that the prior distribution P (z) can be well characterized

by an i.i.d. zero-mean Laplacian distribution. Based on the analysis in [95], the optimal

regularization parameters for Eqn. (3.10) can be set as inversely proportional to the
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variance of the Laplacian distribution:

λ ∝
[

1

σ1

, · · · , 1

σm

]T
, (3.14)

where σj is the variance of the Laplacian distribution for the j-th sparse code zj.

From Eqn. (3.14), the soft-threshold associated with IPAD ΩIi is:

λIi = ρI

[
1

σ1

,
1

σ2

, · · · , 1

σdIi

]T
, (3.15)

where ρI is a scaling parameter, and the variance σj of the j-th coefficient can be

estimated using the obtained IPAD ΩIi and its input data (i.e. σj is the mean absolute

value of the inner product between the j-th atom of ΩIi and the input data).

There is only a free parameter ρ to be determined. It can be obtained by solving a

1-dimensional search problem. The optimization problem for ρ is therefore formulated

as:

ρ̂I = arg min
ρ∈D

∥∥Y −GSρλ (ΩIiX i−1
)∥∥2

F
, (3.16)

where λ = [1/σ1, 1/σ2, · · · , 1/σdIi ]
T , G = YZT (ZZT )−1 with Z = Sρλ(ΩIiX i−1), and

D is a discrete set of values.

The obtained pair (ΩIi,λIi) should be able to preserve the important information within

the input signal and give no worse performance when compared to a linear model

without any non-linearity.

3.4.3 Learning CAD and Threshold Pairs

The function of the clustering analysis dictionary and threshold pair (ΩCi,λCi) is to

sparsify its input data and identify the data with large residual energy. The CAD and

threshold pairs at shallow layers provide low-level feature representations for the CADs
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at deeper layers.

CAD Learning

Different from IPAD, learning CAD ΩCi requires supervision from both the input

training data X i−1 and the ground-truth training data Y .

Let us denote with Y i = DiX i−1 the middle resolution data and with E i = Y−Y i the

residual data whereDi ∈ RdL+1×di is the synthesis dictionary of layer i which minimizes

the mean squared error of the residual data and can be obtained by solving:

Di = arg min
D
||DX i−1 −Y ||2F . (3.17)

It has a closed-form solution given by:

Di = YX i−1T
(
X i−1X i−1T

)−1

. (3.18)

The learning objective for CAD ΩCi is that its atoms should be able to project X i−1

onto directions where the data with large residual has responses with large magnitude.

To achieve that, we propose to first learn an analysis dictionary Ψi ∈ RdCi×dL+1 in

the ground-truth data domain which is able to simultaneously sparsify the middle

resolution data Y i and the residual data E i. That is, the atoms of Ψi are able to

identify the data in Y i with large residual energy. The i-th layer CAD is then re-

parameterized as:

ΩCi = ΨiDi. (3.19)

As a result, the learned CAD ΩCi will have the same identification ability as Ψi since

ΩCix
i−1
j = Ψiy

i
j.

We propose a consistent constraint for learning the analysis dictionary Ψi. Each anal-
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ysis atom ψT
l is enforced to be able to jointly sparsify Y i and E i:

p(Ψ) = c
N∑
j=1

dCi∑
l=1

log

(
1 + ν

((
ψT
l y

i
j)

2 − (ψT
l e

i
j

)2
)2
)
, (3.20)

where c = 1/NdC1 log(1 + ν), and ν is a tunable parameter.

The objective function for learning the analysis dictionary Ψi can be formulated as:

Ψi = arg min
ΨT∈Θ

f(Ψ), (3.21)

where f(Ψ) = g(Ψ)+κh(Ψ)+υl(Ψ)+µp(Ψ) with κ, υ and µ being the regularization

parameters. Here, g(·), h(·) and l(·) are those defined in Eqn. (3.7), Eqn. (3.5) and

Eqn. (3.8), respectively.

The input training data is set to (X i−1,Y). Let us denote the rank of Y as kL = rk(Y).

The orthogonal basisW ∈ RdL+1×kL is set to be an arbitrary basis of the signal subspace

of Y . The orthonormal basis WN ∈ RdL+1×(dL+1−kL) is set to be a basis spanning the

orthogonal complement to the subspace spanned by W .

The objective function in Eqn. (3.21) is optimized using GOAL+ algorithm. With the

learned analysis dictionary Ψi, the i-th layer CAD is obtained as in Eqn. (3.19).

Learning the Thresholds for CAD

The thresholds for CAD are crucial to the performance of DeepAM as the CAD and

threshold pair is the main source of non-linearity in DeepAM. The atoms of the learned

CAD project the input data onto directions where the data with large residual will have

responses with large magnitude. After soft-thresholding, the coefficients should be as

sparse as possible to achieve a strong discriminative power.
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We propose to set the CAD thresholds in the form of:

λCi = ρC [σ1, σ2, · · · , σdCi
] , (3.22)

where ρC is a scaling parameter, and σj is the variance of the Laplacian distribution

for the j-th atom.

As discussed in previous section, the analysis coefficients can be well modelled by

Laplacian distributions. By setting the CAD thresholds proportional to the variance

of the analysis coefficients, the proportion of data that has been set to zero for each pair

of atom and threshold will be the same. When the synthesis dictionary is applied for

reconstruction, the synthesis atoms corresponding to the CAD atoms will be activated

with a similar frequency.

With this simplification, the CAD thresholds can be learned in an efficient way. The

scaling parameter ρC can be obtained using the same strategy as in Eqn. (3.16) by

solving a 1-dimensional search problem. We will show that the learned CAD thresholds

lead to an effective system in Section 3.5 simulation results.

3.4.4 Synthesis Dictionary Learning

The deep analysis dictionary learning can be considered as a layer-wise representation

learning process in which the input data X 0 is consistently non-linearly transformed to

a high dimensional feature representation X L with good descriptive and discriminative

properties. The synthesis dictionary D models the linear transformation from X L to

the desired HR counterpart Y . Similar to Eqn. (3.18), the synthesis dictionary is

learned using least squares:

D = YX LT
(
X LX LT

)−1

. (3.23)
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Algorithm 2: DeepAM Learning Algorithm
1 Input: Training data pair (X 0,Y), the number of layers L, and the structure

of DeepAM;
2 for i← 1 to L do
3 Learning ΩIi using GOAL+ with training data X i−1 and objective function

Eqn. (3.9);
4 Learning ΩCi using GOAL+ with training data (X i−1,Y) and objective

function Eqn. (3.21);
5 Learning thresholds λIi and λCi;
6 Ωi ← [ΩIi; ΩCi], λi ← [λIi;λCi];
7 Update input training data as X i = Sλi

(ΩiX i−1);
8 end
9 Learning the synthesis dictionary D as in Eqn. (3.23).

10 Output: Learned DeepAM
{
{Ωi,λi}Li=1 ,D

}
.

3.4.5 DeepAM Learning Algorithm

The overall learning algorithm for DeepAM is summarized in Algorithm 2. We adopt

a layer-wise learning strategy for DeepAM. At each layer, two sub-dictionaries IPAD

and CAD are independently learned and then combined to form the analysis dictionary,

and the thresholds for IPAD and CAD are obtained with two different strategies. In

this way, each pair of analysis dictionary and soft-thresholding operations consists of

two pairs of linear transform and non-linear operation with different functionalities.

Finally, the synthesis dictionary is learned using least squares.

3.5 Simulation Results

In this section, we report the implementation details and numerical results of our

proposed DeepAM method and compare our proposed method with Deep Neural Net-

works learned using back-propagation [20] and with other single image super-resolution

algorithms.
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Parameters ν κ υ µ

IPAD 100× di−1 dIi 0.01× dIi —
CAD 100× di−1 0.01× dCi 0.01× dCi 10

Table 3.1: Parameters setting of GOAL+ algorithm for learning the i-th layer IPAD
ΩIi ∈ RdIi×di−1 and CAD ΩCi ∈ RdCi×di−1 .

3.5.1 Implementation Details

We use the standard 91 training images [1] as training dataset and use Set5 [1] and

Set14 [2] as the testing dataset. The Peak Signal-to-Noise Ratio (PSNR)3 is used as

the evaluation metric. The color images have been converted from RGB color space to

YCbCr color space and image super-resolution is only applied to the luminance compo-

nent. The low-resolution (LR) images are obtained by down-sampling the ground-truth

high-resolution (HR) images by a factor s = 2 using Matlab function imresize. The size

of the low-resolution patches is set to p = 6 for the purpose of better visualization and

easier interpretation. The size of the high-resolution patches is then 12× 12. Around

N = 3× 105 LR-HR patch pairs have been collected for training. During testing, full

patch overlapping is applied to reconstruct the HR images.

Table 3.1 shows the parameters setting of GOAL+ algorithm for learning the i-th layer

Information Preserving Analysis Dictionary (IPAD) and Clustering Analysis Dictio-

nary (CAD). A grid search has been used to find the regularization parameters in the

objection functions in Eqn. (3.9) and Eqn. (3.21). Both the IPAD and the CAD are ini-

tialized with i.i.d. Gaussian random entries. We apply batch training for GOAL+ algo-

rithm. The training data has been divided into batches with the size of Nb = 104. Dur-

ing training, the GOAL+ algorithm is sequentially applied to batches until the learned

dictionary converges. For each batch, τ = 100 iterations of conjugate gradient descent

is performed to update the dictionary. The discrete set D used for searching the scaling

parameter of the thresholds is set to be D = [· · · , 10−2, 2×10−2, · · · , 10−1, 2×10−1, · · · ].

3PSNR=10 log( 2552√
MSE

), where MSE is the mean squared error between the ground-truth HR
image and the estimated HR image



88 Chapter 3. Learning Deep Analysis Dictionary Models

(a) Ω1 ∈ R36×100. (b) λ1 ∈ R100 and the percentage of data
preserved after thresholding.

(c) D ∈ R100×144.

Figure 3.6: An example of a learned 1-layer DeepAM. Each atom is displayed
as a 2D patch. The atoms within blue box are the clustering atoms. In Ω1, the first
40 atoms are the information preserving atoms and the remaining 60 atoms are the
clustering atoms.

3.5.2 Visualization of the Learned DeepAM

In this section, we will show and analyze the learned DeepAM with the implementation

details as described in the previous section.

Figure 3.6 shows an example of a learned 1-layer DeepAM. It contains an analysis

dictionary Ω1, thresholds λ1 and a synthesis dictionary D. Each atom is displayed

in a 2D patch in which black and white corresponds to the smallest and the largest

value, respectively. The number of the information preserving atoms is set to be 40

which is larger than the rank of the input data. The thresholds depicted in Figure
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(a) Ω1 ∈ R36×100. (b) λ1 ∈ R100 and the percentage of data
preserved after thresholding.

(c) D ∈ R100×144.

Figure 3.7: The 1-layer DeepAM further fine-tuned using backpropagation.
The dictionary atoms seem more localized. The thresholds are in general larger than
those in Fig. 3.6(b).

3.6(b) show a clear bimodal behaviour. The first 40 thresholds are close to zero,

while the remaining 60 thresholds are relatively large. After thresholding, almost

all coefficients corresponding to IPAD are non-zeros, and the percentage of non-zero

coefficients of different CAD atoms are similar and are around 8%. This indicates

that modelling the distribution of the analysis coefficients as a Laplacian distribution

is a good approximation. The atoms within blue box are the clustering atoms. The

atoms in IPAD shown in Figure 3.6(a) seem like the LR versions of their corresponding

synthesis atoms in Figure 3.6(c). The CAD atoms look like directional filters and are

more localized. There is little low-frequency information. The corresponding synthesis

atoms are correlated to the CAD atoms, however, they are not the HR counterpart.



90 Chapter 3. Learning Deep Analysis Dictionary Models

The inner product between the HR projection of a CAD atom and its corresponding

synthesis atom 〈H†ω,d〉 is nearly zero. This shows that the synthesis atoms which

correspond to the CAD part are nearly orthogonal to the LR data subspace.

Back-propagation [20] can be used to further update the parameters in our learned

DeepAM. The back-propagation update is implemented using Pytorch with Adam op-

timizer [96], batch size 1024, initial learning rate 10−3, learning rate decay step 20, and

decay rate 0.1. The parameter setting has been tuned to achieve the best performance.

Figure 3.7 shows the 1-layer DeepAM after updating using back-propagation [20]. With

back-propagation, the performance of DeepAM has a rapid improvement with the first

5 epochs and converges within 20 epochs. After back-propagation update, the average

PSNR evaluated on Set 5 has improved by approximately 0.3 dB. We can find that the

different characteristics of the IPAD part and the CAD part remain on the updated

DeepAM. There are subtle differences on the updated dictionaries. In general, the IPAD

atoms have no visible change, while the CAD atoms have become more localized. The

thresholds continue to have a bimodal behaviour. There is only a slight change on the

percentage of non-zero coefficients of different atoms.

Figure 3.8 shows the dictionaries within a learned 2-layer DeepAM including two anal-

ysis dictionaries Ω1, Ω2 and a synthesis dictionary D. The first analysis dictionary

Ω1 is similar to that in Figure 3.6(a), while its CAD part mainly contains directional

filters due to a smaller number of clustering atoms. The second analysis dictionary Ω2

is shown in Figure 3.8(b) and is a sparse dictionary where the sparse atoms can be con-

sidered as indicating a weighted combination of the first layer analysis dictionary atoms

if the soft-thresholding operation is neglected. The effective dictionary Ω21 = Ω2Ω1

shown in Figure 3.8(c) can partially show the effective atoms applied to the input LR

data whose IPAD part is similar to those in Ω1 and CAD part contains more localized

atoms when compared to those in Ω1. Similar observations can be found in a deeper

analysis dictionary in DeepAM. The synthesis dictionary has similar characteristics as
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(a) Ω1 ∈ R36×64. (b) Ω2 ∈ R64×144.

(c) Ω2Ω1 ∈ R36×144. (d) D ∈ R144×144.

Figure 3.8: An example of a learned 2-layer DeepAM. Each atom is displayed
as a 2D patch. The atoms within blue box are the clustering atoms.

the one in the 1-layer DeepAM.

Figure 3.9 shows the dictionaries of the back-propagation updated 2-layer DeepAM.

The back-propagation slightly updates the dictionaries and converges within 20 epochs.

The average PSNR evaluated on Set 5 has been rapidly improved 0.2 dB with the first

5 epochs and achieved a 0.3 dB improvement after convergence. We can find similar

observations on the updated dictionaries of the 2-layer DeepAM as those in the 1-layer

DeepAM. After back-propagation, there is still a clear difference between the IPAD

atoms and the CAD atoms. The IPAD atoms did not change significantly, while the
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(a) Ω1 ∈ R36×64. (b) Ω2 ∈ R64×144.

(c) Ω2Ω1 ∈ R36×144. (d) D ∈ R144×144.

Figure 3.9: The dictionaries of the 2-layer DeepAM further fine-tuned using
backpropagation.

CAD atoms in Ω1 and the effective dictionary Ω21 have become more localized.

3.5.3 Comparison with Deep Neural Networks

In this section, we compare our proposed DeepAM method with Deep Neural Networks

(DNNs). The number of IPAD atoms in each layer is set to be 35 which is the rank of

the input LR data since a DeepAM with more CAD atoms provides better performance

when the input data is noiseless. For comparison, DNNs are learned with the same

training data using gradient descent with back-propagation. Let us denote DNN-R and
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Figure 3.10: The percentage of data preserved after thresholding for the atoms in 3
different layers of the 3-layer DeepAM in Table 3.2.

DNN-S as the DNN with ReLU as non-linearity and soft-thresholding as non-linearity,

respectively. The forward model of DNN-S is the same as our DeepAM method. The

implementation of DNNs is based on Pytorch with Adam optimizer [96], batch size

1024, initial learning rate 5 × 10−3, learning rate decay step 50, and decay rate 0.1.

The total number of epochs for training is 250. The parameter setting has been tuned

to achieve to the best performance. The parameters of the DNNs are initialized using

the default method in Pytorch.

Table 3.2 reports the average PSNR (dB) of DNN-R method, DNN-S method and

the proposed DeepAM method evaluated on Set 5 [1] and Set14 [2]. There are three

different model sizes which are corresponding to DNNs with 1 hidden layer, 2 hidden

layers and 3 hidden layers where the number of neurons in each layer is fixed to be 256.

With a deeper model, the performance of our proposed DeepAM method improves even

when the size of the final feature representation is the same. This indicates that the

depth of DeepAM is important for the final performance. The feature representation

at a shallow layer provides useful information for a deeper layer and helps the final

prediction made in the last layer. Figure 3.10 further shows the percentage of non-zero
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coefficients for each atom in 3 different layers of the 3-layer DeepAM in Table 3.2. We

can find that the percentage of non-zero coefficients have a bilateral phenomenon in all

three layers which is the same as that shown in Figure 3.6(b). After thresholding, the

percentage of non-zero coefficients corresponding to CAD atoms are almost the same

in each layer. The percentage of non-zero coefficients for CAD atoms in layer 1, 2 and

3 is around 9%, 14% and 22%, respectively. This means the feature representation

becomes more non-sparse with the increase of layers. A denser signal representation

is helpful for modelling more complex signals which require more synthesis atoms for

a good reconstruction quality. This could be the reason for an improved performance

with the increase of depth.

Our proposed DeepAM method achieves a similar average PSNR when compared to

the DNN-R method over different model sizes. The DNN-S method achieves the high-

est average PSNR which is around 0.3 dB and 0.2 dB higher than that of our proposed

DeepAM method when evaluated in Set 5 and Set 14, respectively. The slightly lower

performance of DeepAM when compared to DNN-S should be an acceptable and rea-

sonable result since DeepAM does not utilize joint optimization as DNNs and the

thresholds are set according to simple principles. On the other hand, the simulation

result validates the effectiveness of our proposed DeepAM method and shows that the

simultaneous information preserving and clustering idea could be a good interpreta-

tion of the workings of DNNs. It also indicates that our DeepAM method can be

further improved. The better performance of DNN-S also suggests that DNNs with

soft-thresholding as non-linearity can be more effective for image enhancement appli-

cations.

As shown in the previous section, back-propagation can be used to further improve the

learned DeepAM. Figure 3.11 shows average PSNR of the 3-layer DeepAM in Table 3.2

which is updated using back-propagation and the performance of the baseline DNN-S.

The performance of DeepAM has been improved significantly and outperforms DNN-S
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Figure 3.11: The average PSNR (dB) of the DeepAM updated using back-propagation
evaluated on Set 5 [1].

within 15 epoches. The converged performance of DeepAM is around 0.1 dB higher

than that of DNN-S. The result shows that the parameters of DeepAM are not far

from the converged parameters. It also suggests that the DeepAM learning algorithm

has the potential to be a good initialization method for DNNs.

3.5.4 Comparison with Single Image Super-Resolution Meth-

ods

In this section, we will compare our proposed DeepAM method with some existing

single image super-resolution methods including Bicubic interpolation, sparse coding

(SC) based method [2], Anchored Neighbor Regression (ANR) method [7], Adjusted

Anchored Neighborhood Regression (A+) method [8], and Super-Resolution Convolu-

tional Neural Network (SRCNN) method [14].

In Table 3.3, DeepAMbp and DeepAM represents the 3-layer DeepAM (the model size

is 36× 256× 256× 256× 64) that is with and without back-propagation, respectively.

The input data is the intensity of the LR image patches. Instead of predicting 12× 12

HR for each input LR 6 × 6 patch, the output of DeepAM is the central 8 × 8 HR
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(a) Input LR image.

(b) DeepAM (PSNR = 33.34 dB).

(c) DeepAMbp (PSNR = 33.71 dB).

Figure 3.12: The input LR and the reconstructed HR image of DeepAM and
DeepAMbp.

patch since the input LR patch does not contain sufficient information to predict the

boundary pixels. DeepAM achieves a comparable performance to the existing methods.
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Its average PSNR is around 0.3 dB higher than that of the SC method and the ANR

method, while it is around 0.2 dB lower than that of the A+ method and is around 0.1

dB lower than that of the SRCNN method. DeepAMbp achieves the highest average

PSNR. Figure 3.12 shows an example of the input LR image and the reconstructed HR

images using DeepAM and DeepAMbp.

3.6 Summary

In this chapter, we proposed a Deep Analysis Dictionary Model (DeepAM) framework

which consists of multiple layers of analysis dictionary and soft-thresholding operators

and a layer of synthesis dictionary. Each analysis dictionary has been designed to con-

tain two sub-dictionaries: an Information Preserving Analysis Dictionary (IPAD) and

a Clustering Analysis Dictionary (CAD). The IPAD and threshold pairs are to pass

key information from input to deeper layers. The function of the CAD and thresh-

old pairs is to facilitate discrimination of key features. We proposed an extension of

GOAL method [63] to perform dictionary learning for both the IPAD and the CAD.

The thresholds have been efficiently set according to simple principles, while lead-

ing to effective models. Simulation results show that our proposed DeepAM achieves

comparable performance with DNNs and other existing single image super-resolution

methods.



Chapter 4

Learning Deep Convolutional Analysis

Dictionary Models

4.1 Introduction

Convolutional dictionary learning has attracted increasing interests in signal and image

processing communities as it leads to a more elegant framework for high-dimensional

signal analysis. The convolutional dictionary [68, 71–77, 89, 97–100] is a global model

and takes the high-dimensional signal as input for joint sparse representation and

processing, whereas traditional patch-based approaches [1,2,12,60,63,101,102] usually

divide the high-dimensional signal into overlapping low-dimensional patches, perform

sparse representation on each patch independently, and estimate the high-dimensional

output signal through patch averaging.

A convolutional dictionary models the convolution between a set of convolutional filters

and a signal. It is a structured dictionary and can be represented as a concatenation of

Toeplitz matrices where each Toeplitz matrix is constructed using the taps of a filter.

The convolutional dictionaries make the assumption that the filters are shift invariant

100
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and with compact support. Therefore, a convolutional dictionary is effective for pro-

cessing high-dimensional signals while also restraining the number of free parameters.

To achieve efficient convolutional dictionary learning, the convolutional dictionary is

usually modelled as a concatenation of circulant matrices [68, 73–77] by assuming a

periodic boundary condition on the signals. As all circulant matrices share the same

set of eigenvectors which is the discrete Fourier transform (DFT) matrix, a circular

convolution can be therefore represented as a multiplication in Fourier domain and

can be efficiently implemented using Fast Fourier Transform (FFT). However, using

a circulant matrix to approximate a general Toeplitz matrix may lead to boundary

artifacts [74, 103,104] especially when the boundary region is large.

A multi-layer convolutional dictionary model is able to represent multiple levels of

abstraction of the input signal. Due to the associativity property of convolution, mul-

tiplying two convolutional dictionaries results in a convolutional dictionary whose cor-

responding filters are the convolution of two set of filters and have support size that

is larger than the original filters. In the Multi-Layer Convolutional Sparse Coding

(ML-CSC) model in [89, 99, 105], there are multiple layers of convolutional synthesis

dictionaries. By increasing the number of layers, the global dictionary which is the mul-

tiplication of the convolutional dictionaries is able to represent more complex structures

with simple convolutional filters. The ML-CSC model [99] provides theoretical insights

on the conditions for success layered sparse pursuit and uses it as a way to interpret

the forward pass of Deep Neural Networks (DNNs) as a layered sparse pursuit.

Convolutional Neural Networks (CNNs) [78,79,106] have been widely used in processing

images and achieve state-of-the-art performances in many applications. A CNN consists

of a cascade of convolution operations and element-wise non-linear operations. The

Rectified Linear Unit (ReLU) activation function is one of the most popular non-linear

operators used in DNNs. With the multi-layer convolution structure, a deeper layer

in a CNN receives information from a corresponding wider region on the input signal.
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The ReLU operator provides a non-linear transformation to convolution representation

and leads to a sparse feature representation. The parameters of a CNN are usually

optimized using the backpropagation algorithm [20] with stochastic gradient descent.

As a consequence of that it may be difficult to interpret the functions of each learned

convolutional kernel and its corresponding non-linear operator.

In this chapter, we propose a Deep Convolutional Analysis Dictionary Model (Deep-

CAM) which consists of multiple layers of convolutional analysis dictionaries and soft-

thresholding operations and a layer of convolutional synthesis dictionary. The motiva-

tion is to use DeepCAM as a tool to interpret the workings of CNNs from the sparse

representation perspective. Single image super-resolution [15, 17–19] is used a sample

application to validate the propose model design. The input low-resolution image is

used as the input of DeepCAM without being partitioned into patches. At each layer of

DeepCAM, the input signal is multiplied with a convolutional analysis dictionary and

then passed through soft-thresholding operators as a non-linear transformation. At the

last layer, the convolutional synthesis dictionary is used to predict the high-resolution

image.

The contribution of this chapter is two-fold:

• We propose a Deep Convolutional Analysis Dictionary Model (DeepCAM) for

single image super-resolution. The proposed architecture is made of multiple lay-

ers of convolutional analysis dictionary and soft-thresholding and a single layer of

convolutional synthesis dictionary. At each layer, the convolutional analysis dic-

tionary and the soft-thresholding operation are designed to achieve simultaneous

information preservation and discriminative representation generation.

• We propose a convolutional analysis dictionary learning method by explicitly

modelling the convolutional dictionary with a Toeplitz structure. By exploiting

the properties of Toeplitz matrices, the convolutional analysis dictionary can be
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efficiently learned from a set of training samples. Simulation results on single

image super-resolution are used to validate our proposed DeepCAM and convo-

lutional dictionary learning method.

The rest of the chapter is organized as follows. Section 4.2 introduces convolutional

analysis dictionary. In Section 4.5, we propose an efficient convolutional analysis dictio-

nary learning algorithm by exploiting the properties of a convolution dictionary. Sec-

tion 4.4 presents the proposed Deep Convolutional Analysis Dictionary Model (Deep-

CAM) and the learning algorithm. Section 4.6 presents simulation results on single

image super-resolution task and Section 4.7 draws conclusions.

4.2 Convolutional Analysis Dictionary

An analysis dictionary Ω ∈ Rm×n contains m row atoms {ωTi ∈ Rn}mi=1 and is usu-

ally assumed to be over-complete with m ≥ n. Given a signal of interests α ∈ Rn,

the analysis dictionary Ω should be able to sparsify α while preserving its essential

information. That is, the analysis coefficients Ωα are sparse but still contain sufficient

information for further processing.

The focus of this paper is on learning convolutional analysis dictionaries which model

the convolution between a signal and a set of filters. The filters’ taps depend on the rows

of the analysis dictionary. In what follows, we first show how we build our convolutional

analysis dictionary from a unstructured analysis dictionary. We then study strategies

to learn a convolutional analysis dictionary from a set of training samples.

The convolution can be represented as a multiplication with a Toeplitz matrix. Let us

assume that the input signal is 1-dimensional for simplicity. The convolution between
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an atom ωi ∈ Rn and an input signal x ∈ Rl with l > n can be expressed as:

ωi ∗ x = T(ωTi , l)x, (4.1)

where ∗ denotes the convolution operator, and T(ωTi , l) is a Toeplitz matrix with l

columns which is constructed using ωi as follows:

T(ωTi , l) =
l∑

j=1

ωi(j)Tj, (4.2)

where ωi(j) is the j-th coefficient of ωi, and Tj ∈ Rp×l with p = l−n+1 is an indicator

matrix with 1s on the j-th upper diagonal and 0s on other locations.

Given an analysis dictionary Ω ∈ Rm×n and an input signal x ∈ Rl, their convolution

can be expressed as a matrix multiplication where Ω is converted to a convolutional

analysis dictionary H(Ω, l) which can be represented as a concatenation of Toeplitz

matrices along the column direction:

H(Ω, l) = [T(ωT1 , l); · · · ; T(ωTm, l)]. (4.3)

Instead of assuming a circulant structure, we model the convolutional operation with a

Toeplitz matrix. The represented convolution operation will be performed only within

the input signal. That is, convolutional operation is performed without padding at the

boundaries.

Fig. 4.1 shows an example of how we build a convolutional analysis dictionaryH(Ω, l)

which is in a form of a concatenation of m Toeplitz matrices {T(ωTi , l)}mi=1 from the

unstructured analysis dictionary Ω ∈ Rm×n with m = 4, n = 5 and l = 12. Note that

the analysis dictionary Ω in Fig. 4.1(a) is not over-complete, while the convolutional

analysis dictionary H(Ω, l) has more rows than columns.
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(a) An analysis dictionary Ω. (b) The convolutional analysis
dictionary H(Ω, l).

Figure 4.1: An analysis dictionary and the corresponding convolutional dic-
tionary. A convolutional analysis dictionary H(Ω, l) with l = 12 is a concatenation
of m = 4 Toeplitz matrices {T(ωTi , l)}mi=1.

The above description of convolutional analysis dictionary applies to 1-dimensional

input signals, but it can be extended to multi-dimensional signals, like for example

images. A convolutional analysis dictionary will then be in the form of a concatenation

of doubly block Toeplitz matrices (i.e. a matrix with block Toeplitz structure where

each block is a Toeplitz matrix). Similar to Eqn. (4.2), the doubly block Toeplitz

structure can be represented with corresponding indicator matrices. Fig. 4.2(a) shows

an example of 2-dimensional convolution between a 6 × 6 image region and a 3 × 3

filter and Fig. 4.2(b) shows the corresponding convolutional analysis dictionary.
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(a) The convolution operation between a
6× 6 image region and a 3× 3 filter.

(b) The corresponding Toeplitz matrix.

Figure 4.2: A example of convolution between a 2-dimensional convolutional
filter with 2-dimensional data and the convolution can be represented by a
doubly block Toeplitz matrix.

4.3 Learning Convolutional Analysis Dictionaries

In this section, we propose an efficient convolutional analysis dictionary learning algo-

rithm by exploiting the properties of the Toeplitz structure within the dictionary.

For simplicity, let us assume that the input data is made of 1-dimensional vectors.

Therefore, the convolutional analysis dictionary is a concatenation of Toeplitz matri-

ces as we discussed in Section ??. The proposed learning algorithm can be easily

extended to the multi-dimensional case where the convolutional analysis dictionary is

a concatenation of doubly block Toeplitz matrices.

Let us assume that convolution is performed between an analysis dictionary Ω ∈ Rm×n

and an input signal x ∈ Rl with l > n. Therefore, the convolutional analysis dictionary

H(Ω, l) will be of size q× l with q = m(l−n+1). Given thatH(Ω, l) is built using Ω,

it has the same number of free parameters as Ω despite H(Ω, l) being a much bigger

matrix. This means that if we were to optimizeH(Ω, l) directly we would end up with

a computationally inefficient approach.
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Figure 4.3: Convolution expressed using right dual matrix. Convolution can
be represented as multiplying with a Toeplitz matrix or multiplying with a right dual
matrix. The right dual matrix is not a sparse matrix.

Symbol Ω H(Ω, l) T(ωTi , l) R(uSi, n) US UN V PS Pω

Size m× n pm× l p× l p× n l ×K l × (l −K) pm×K l × l n× n

Table 4.1: A list of symbols and their dimensions. For simplicity, in the table we denote
p = l − n+ 1 with l� n.

We mitigate this issue by first observing that as we have assumed that the convolutional

filters are with compact support n � l, the convolutional analysis dictionary H(Ω, l)

has many zero entries. It is therefore inefficient to evaluate H(Ω, l)x by directly

multiplyingH(Ω, l) with x. As illustrated in Fig. 4.3, with the commutativity property

of convolution (i.e. a ∗b = b ∗a), the matrix multiplication between a Toeplitz matrix

T(ωTi , l) ∈ Rp×l with p = l − n + 1 and an input vector x ∈ Rl can be efficiently

implemented as:

T(ωTi , l)x = R(xj, n)ωi, (4.4)

where R(x, n) ∈ Rp×n is the right dual matrix of T(ωTi , l) and is defined as:

R(x, n) =
L∑
j=1

x(j)Rj, (4.5)

where x(j) is the j-th coefficient of x, and Rj ∈ Rp×n is an indicator matrix with 1s

on the j-th skew-diagonal and 0s on other locations. Note that the right dual matrix

R(x, n) is a matrix without non-zero entries and has n� l columns.
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Secondly, whenever possible, we will pose the optimization problem using Ω whilst

imposing the constraints associated with the structured matrix H(Ω, l) as the actual

analysis dictionary learning problem.

We want the convolutional analysis dictionary H(Ω, l) to satisfy four properties: (i)

its row atoms span the input data space; (ii) it is able to sparsify the input data; (iii)

the row atoms are of unit norm; (iv) there are no pairs of row atoms in Ω that are

linearly dependent.

Different from the unstructured analysis dictionary learning case, we propose to use two

sets of input training data with different sizes. Let us denote the super-patch training

data as X S = [xS1,xS2, · · · ,xSN1 ] ∈ Rl×N1 and denote the small patch training data

as X = [x1,x2, · · · ,xN2 ] ∈ Rn×N2 . Both the super-patch and small patch training

datasets are extracted from an external training dataset. The super-patch training data

will be used to impose the property (i) which is a global property of the convolutional

dictionary. The small patch training data will be used to impose property (ii).

The first learning objective is that the convolutional analysis dictionaryH(Ω, l) should

be able to span the input data space in order to preserve the information within the

input super-patch training data X S. The super-patch training dataset defines the

subspace covered by the input data. Let us denote with US ∈ Rl×K the orthogonal

basis covering the signal subspace of the input super-patch data X S where we assume

that this subspace has dimension K, we also denote with UN ∈ Rl×(l−K) the orthogonal

basis of the orthogonal complement to the signal subspace of X S. These two bases will

be used to impose that the row space of the learned convolutional analysis dictionary

spans the input data space while being orthogonal to the null-space of X S. The

information preservation constraint can be interpreted as a rank constraint on the

convolutional analysis dictionary which is usually achieved by imposing a logarithm
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determinant constraint:

h(H(Ω, l)) = − 1

K logK
log det

(
1

q
UT
SH(Ω, l)TH(Ω, l)US

)
. (4.6)

The size of the convolutional analysis dictionary can be huge, especially when the input

data is multi-dimensional. Therefore it would be computationally inefficient to evaluate

Eqn. (4.6) and its first order derivative directly. By exploiting the properties of the

convolutional analysis dictionary, we propose an efficient reformulation of Eqn. (4.6)

which is based on the analysis dictionary Ω.

With the definition of the right dual matrix, the multiplication between H(Ω, l) and

the j-th orthogonal basis element uSj can be expressed as:

H(Ω, l)uSj = vec
(
R(uSj, n)ΩT

)
, (4.7)

where vec(·) denotes the vectorization operation vec(A) : Rm1×···×mDa → R
∏Da

k=1mk , the

vectorization operation for 2-dimensional signal can be expressed as:

vec(A) =
n∑
i=1

ei ⊗Aei, (4.8)

where ei is the i-th canonical basis vector of Rn, that is, ei = [0, · · · , 0, 1, 0, · · · , 0]T ∈

Rn (with 1 on the i-th location), and ⊗ denotes the Kroneckers product.

The information preservation constraint in Eqn. (4.6) can therefore be reformulated

and expressed based on the analysis dictionary Ω as:

h(Ω) = − 1

K logK
log det

(
1

q
V TV

)
, (4.9)

where V = [vi, · · · ,vK ] with vi = vec(R(uSi, n)ΩT ).
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The gradient of h(Ω) can be expressed as:

∂

∂Ω
h(Ω) = − 2

K log(K)

(
K∑
i=1

ΩΣSi

)
Σ−1
V , (4.10)

where ΣSi = R(uSi, n)TR(uSi, n) and ΣV = V TV .

With the information preservation constraint in Eqn. (4.9), the learned H(Ω, l) is

constrained to span the signal subspace defined by US. However, we still need to

exclude the null-space components of the training data from H(Ω, l). Specifically, the

Toeplitz matrix T(ωTi , l) should not be within the subspace spanned by UN to avoid

a zero response when multiplying with X S.

Therefore we define the feasible set of the convolutional analysis dictionary H(Ω, l) as

ΘH = Sql−1 ∩ U⊥N with Sl−1 being the unit sphere in Rl and U⊥N being the orthogonal

complement of UN . The unit sphere constraint ensure that the unit norm condition is

satisfied. The feasible set ΘH is defined in Rl, while we wish to have a feasible set for

Ω which is defined in Rn with n� l and can be more efficiently implemented.

The operation of orthogonal projection onto the complementary subspace of UN can

be represented by the projection matrix PS ∈ Rl×l given by:

PS = Il −UT
N

†
UT
N , (4.11)

where Il ∈ Rl×l is the identity matrix and UT
N
† is the pseudo-inverse of UT

N .

The orthogonal projection operation is achieved by multiplying the convolutional anal-

ysis dictionary with the projection matrix. The projection is applied on the rows

of H(Ω, l). With the definition of the right dual matrix, the orthogonal projection

operation can be expressed in terms of the analysis dictionary atom ωTi as:

PST(ωTi , l)
T = [R(pS1, n)ωi, · · · ,R(pSl, n)ωi]

T , (4.12)
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where pTSj denotes the j-th row of PS.

We note that, after the projection, the Toeplitz structure within T(ωTi , l)P
T
S may not

be preserved and needs to be imposed again. The Toeplitz matrix closest to T(ωTi , l)P
T
S

can be obtained by averaging over the diagonal elements. The orthogonal projection

operation and the averaging operation can be jointly represented and applied to the

atoms of the analysis dictionary. Let us define a vector pj whose inner product with

ωi equals the average value of the j-th diagonal elements of T(ωTi , l)P
T
S , it can be

expressed as:

pTj =
1

n

j+n−1∑
k=j

rTSk,k−j+1, (4.13)

where rTSk,i denotes the i-th row of R(pSk, n).

The matrix P = [p1, · · · ,pn]T ∈ Rn×n therefore represents simultaneously the orthog-

onal projection operation and the averaging operation. Let us denote the feasible set

of the analysis dictionary Ω as ΘΩ = Smn−1 ∩W⊥
N where Smn−1 represents unit sphere

in Rn andW⊥
N represents the orthogonal complementary subspace of the null-space of

X . The operation of the orthogonal projection onto the tangent space Tω(ΘΩ) can be

represented by a projection matrix Pω:

Pω = P
(
In −Q†ωQω

)
, (4.14)

where In ∈ Rn×n is the identity matrix, and Qω = [2ωT ;W T
N ] ∈ R(n−k+1)×n.

The sparsifying property of the convolutional analysis dictionary H(Ω, l) over the

super-patch training data can be achieved by imposing the sparsifying property of the

analysis dictionary Ω over the small patch training data. The rationale is that the

row atoms of the convolutional analysis dictionary only operate on local regions of the

input signal as illustrated in Eqn. (4.4) and Fig. 4.3. Similar to [63, 69, 107], the

sparsifying constraint is imposed by using a log-square function which promotes the
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analysis dictionary atoms to sparsify the small patch training data:

g(Ω) =
1

N2m log(1 + ν)

N2∑
i=1

m∑
j=1

log
(
1 + ν(ωTj xi)

2
)
, (4.15)

where ν is a tunable parameter which controls the sparsifying ability of the learned

dictionary.

The linearly dependent penalty and the unit norm constraint can also be imposed

on the analysis dictionary Ω. Linearly dependent row atoms (e.g. ωTi = ±ωTj ) are

penalized by using a logarithm barrier term l (Ω):

l (Ω) = − 1

m (m− 1)

∑
1≤i<j≤m

log
(

1−
(
ωTi ωj

)2
)
. (4.16)

We observe that, by exploiting the Toeplitz structure, we have been able to impose

the desired proprieties of a convolutional analysis dictionary by imposing constraints

on the lower-dimensional analysis dictionary Ω. This will reduce computational costs

and memory requirements.

Combining the information preservation constraint in Eqn. (4.9), feasible set constraint

in Eqn. (4.14), sparsifying constraint in Eqn. (4.15), and linearly dependent penalty

term in Eqn. (4.16), the objective function for the convolutional analysis dictionary

problem can be expressed as:

Ω = arg min
ΩT∈ΘΩ

f(Ω), (4.17)

where f(Ω) = g(Ω)+κh(Ω)+υl(Ω) with κ and υ being the regularization parameters.

The proposed convolutional analysis dictionary learning algorithm ConvGOAL+ is

summarized in Algorithm 3. The objective function in Eqn. (4.17) is optimized

using a geometric conjugate gradient descent method. For a more detailed introduction
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Algorithm 3: ConvGOAL+ Algorithm
1 Input: the number of convolutional filters m, the support size n, training data
X S ∈ Rl×N1 and X ∈ Rn×N1 ;

2 Initialize: Initialized Ω(0) ∈ Rm×n, t = 0;
3 Find the orthogonal basis US and UN for the input data subspace of X S and

its orthogonal complementary subspace, respectively;
4 Find the orthogonal basis WN for the orthogonal complementary subspace of
X ;

5 while halting criterion false do
6 t← t+ 1 ;
7 Compute gradient of the objective function ∇f(Ω(t));
8 Orthogonal project ∇f(Ω(t)) onto the tangent space of manifold ΘΩ at Ω(t);
9 Update Ω(t+1) along the search direction using backtracking line search.

10 end
11 Output: Learned analysis dictionary Ω.

about geometric conjugate gradient descent, we refer to [63,92,107].

4.4 Deep Convolutional Analysis Dictionary Model

In this section, we propose a Deep Convolutional Analysis Dictionary Model (Deep-

CAM) which consists of multiple layers of analysis dictionary and soft-thresholding

operations and a single layer of synthesis dictionary. DeepCAM is a convolutional

extension of the Deep Analysis dictionary Model (DeepAM) [107]. Different from

DeepAM which is patch-based, DeepCAM performs convolution operation and element-

wise soft-thresholding at image level on all layers without dividing the input image into

patches.

When it comes to Single Image Super-Resolution (SISR), Convolutional Neural Net-

works are designed using two main strategies: the early upsampling approach [15, 17]

and the late upsampling approach [18, 19]. The early upsampling approach [15, 17]

first upsamples the low-resolution (LR) image to the same resolution as the desired

high-resolution (HR) image through bicubic interpolation and then performs convolu-

tion on the upsampled image. The drawback of this approach is that this leads to a



114 Chapter 4. Learning Deep Convolutional Analysis Dictionary Models

large number of model parameters and a high computational complexity during test-

ing as the feature maps are of the same size as the HR image. The late upsampling

approach [18, 19] performs convolution on the input LR image and applies a deconvo-

lution layer [18] or a sub-pixel convolution layer [19] at the last layer to predict the

HR image. The late upsampling approach has smaller number of parameters and lower

computational cost than the early upsampling one.

SISR is used as a sample application to validate our proposed design. We utilize a

similar strategy as the late upsampling approach. The LR image is used as input

to DeepCAM without bicubic interpolation. At each layer, the convolution and soft-

thresholding operations are applied to the corresponding input signal. For SISR with

up-sampling factor s, the synthesis dictionary consists of s2 atoms. The convolution

between the synthesis dictionary and its input signal yields s2 output channels which

correspond to s2 sub-sampled version of the HR image. The final predicted HR image

can then be obtained by reshaping and combing the s2 output channels.

The parameters of a L-layer DeepCAM include L layers of analysis dictionary and

soft-thresholds pair {(Ωi,λi)}Li=1 and a single synthesis layer modelled with dictionary

D. The atoms of the dictionaries represent filters. Let us denote with di the number of

filters at the i-th layer, denote with pi×pi the spatial support size of the convolutional

filters, and denote with ni = p2
i di−1 the support size of the i-th layer filter. Therefore,

the size of the parameters can be denoted with the analysis dictionary {Ωi ∈ Rdi×ni}Li=1,

the soft-thresholds {λi ∈ Rdi}Li=1 and the synthesis dictionary D ∈ RdL+1×nL+1 . There

are dL+1 = s2 output channels at the last layer and each output channel corresponds

to a sub-sampled version of the HR image.

Fig. 4.4 shows an example of the forward model of a 2-layer DeepCAM for 2× im-

age super-resolution. The input LR image denoted with X0 passes through multiple

layers of convolution with the analysis dictionary and soft-thresholding. There are 4

synthesised HR sub-images Ŷ which are obtained by convolving the last layer analysis
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feature maps with the synthesis dictionary D and will be rearranged to generate the

final predicted HR image according to the sampling pattern.

Let us denote withXi−1 ∈ RWi−1×Hi−1×di−1 the input signal at the i-th layer, and denote

with ωTi,j ∈ Rp2i di−1 the j-th atom of Ωi. The convolution and soft-thresholding opera-

tions corresponding to the j-th atom and threshold pair (ωi,j,λi(j)) can be expressed

as:

Fi,j = mat(ωi,j) ∗Xi−1,

Xi,j = Sλi(j)(Fi,j),

(4.18)

where mat(·) represents the operation which reshapes a vector of length p2
i di−1 to a

tensor with size pi × pi × di−1, Fi,j ∈ RWi×Hi is the convolution result, Sλ(·) denotes

the element-wise soft-thresholding operation with threshold λ, and Xi,j ∈ RWi×Hi is

the sparse representation after thresholding.

Fig. 4.5 illustrates the convolution and the soft-thresholding operation described in

Eqn. (4.18). The convolution linearly transforms the input signal Xi−1 to a 2-D

representation Fi,j. An element-wise soft-thresholding operation is then applied to

every element on Fi,j and generates a sparse 2-D representation Xi,j.

By stacking the di sparse 2-D representation {Xi,j}dij=1, the i-th layer output signal

can be represented as Xi ∈ RWi×Hi×di . For simplicity, let us denote the i-th layer

convolution and soft-thresholding operation as:

Xi = S(Ωi ∗Xi−1,λi). (4.19)

When the convolution of Ωi andXi−1 is represented by a convolutional analysis dictio-

naryH(Ωi, l) with l = Wi−1Hi−1di−1, the convolution and soft-thresholding operations
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Figure 4.5: The convolution and soft-thresholding operation corresponding
to the atom and threshold pair (ωi,j,λi(j)). The input signal Xi−1 is of size
Hi−1 × Wi−1 × di−1. The atom ωi,j ∈ Rp2i di−1 represents a convolutional filter with
spatial support size pi×pi and di−1 channels. The convolution of ωi,j and Xi−1 results
in a matrix Fi,j of size Wi ×Hi. An element-wise soft-thresholding operation Sλi(j)(·)
is applied to every element of Fi,j and results in Xi,j.

can be represented as follows:

Xi = mat (Sλi⊗1 (H(Ωi, l)vec(Xi−1))) , (4.20)

where 1 is a all ones vector of size WiHi, and ⊗ is the Kronecker product.

The forward model of a L-layer DeepCAM is a cascade of convolution and soft-

thresholding operations and can be expressed as:

Ŷ = D ∗ S ((· · · S (Ω1 ∗X0,λ1) · · · ) ,λL) , (4.21)

where Ŷ denotes the estimated dL+1 HR images.

The analysis dictionary and soft-threshold pairs should be able to generate feature

representations that contain the essential information of the input LR image while

being sufficiently discriminative to predict the missing high frequency information in

the LR image.
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4.5 Learning A Deep Convolutional Analysis Dictio-

nary Model

In this section, we will introduce the proposed learning algorithm for learning both the

convolutional analysis dictionary and the soft-thresholds in DeepCAM.

We adopt a joint Information Preserving and Clustering strategy for multi-layer anal-

ysis dictionary model construction as proposed in DeepAM [107]. At each layer, the

analysis dictionary Ωi has been divided into two sub-dictionaries: an Information Pre-

serving Analysis Dictionary (IPAD) ΩIi and a Clustering Analysis Dictionary (CAD)

ΩCi. The IPAD and soft-threshold pair (ΩIi,λIi) will generate feature maps that can

preserve the information from the input image. The CAD and soft-threshold pair

(ΩCi,λCi) will generate feature maps with strong discriminative power that can facili-

tate the prediction of the HR image. To achieve this goal, there should be a sufficient

number of IPAD and CAD atoms.

4.5.1 Learning IPAD and Threshold Pair

The Information Preserving Analysis Dictionary (IPAD) and soft-threshold pair are

used to preserve the essential information within the input image. The IPAD will be

learned using the proposed convolutional analysis dictionary learning method. The

thresholds will be set according to the method used in DeepAM [107].

A multi-layer convolutional analysis dictionary naturally possesses a multi-scale prop-

erty. The product of two convolutional dictionaries leads to a convolutional dictionary

whose equivalent filters are given by the convolution of the filters in the two dictionaries

due to the associativity property of convolution (i.e. a ∗ (b ∗ c) = (a ∗ b) ∗ c).

Let us denote withHi the i-th layer convolutional analysis dictionary constructed using

convolutional filters with patch size pi. The effective convolutional analysis dictionary
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H(i) =HiHi−1 · · ·H1 has filters with spatial patch size:

peff,i =
i∑

j=1

pj − (i− 1). (4.22)

An example of a two-layer convolutional analysis dictionary is shown in Fig. 4.6. The

effective dictionary H(i) has an effective patch size that increases with the number of

layers and can achieve a large patch size even with convolutional analysis dictionaries

of filters with small patch size.

When the support size of a convolutional analysis dictionary is small, its row atoms can

only receive local information from the whole input signal. With an increased effective

patch size, the row atoms of the convolutional analysis dictionary at a deeper layer will

receive information from a larger segment of the input signal.

For each spatial location at the synthesised HR images Ŷ , there is a corresponding

super-patch region on each layer which contributes all the information for predicting

a HR pixel. Let us denote pS,i as the super-patch size at the i-th layer. It can be

expressed in terms of the patch size of the convolutional filters:

pS,i = pL+1 +
L∑
j=i

(pj − 1). (4.23)

Fig. 4.7 shows the super-patches at different layers for a 2-layer DeepCAM. Note that

the super-patch size at a shallower layer is larger than that in a deeper layer.

In the proposed convolutional analysis dictionary learning method ConvGOAL+, there

are two sets of training data: the super-patch training data X S and the small patch

training data X . The super-patch data X S is used to impose the rank constraint.

The small patch data X has the same support as the filters and is used to impose the

sparsifying and linear independent constraints.



120 Chapter 4. Learning Deep Convolutional Analysis Dictionary Models

Figure 4.6: Effective convolutional analysis dictionary. With a two-layer convolu-
tional analysis dictionary, the effective convolutional analysis dictionaryH(2) =H2H1

is still a convolutional analysis dictionary and with support size n2 + n1 − 1.

The patch size of the super-patch training data for convolutional analysis dictionary

learning should be no smaller than pS,i. Otherwise, we can not ensure that the learned

convolutional analysis dictionary will be able to utilize all information within the super-

patch for predicting the corresponding HR pixel values.

At the i-th layer, let us define the support size of the super-patch training data as

Si = p2
S,idi−1. The super-patch training data, the small patch training dataset and

the ground-truth training dataset are denoted as X i−1
S ∈ RSi×N1 , X i−1 ∈ Rni×N2 and

Y ∈ Rs2×N2 , respectively.

Let us denote dIi as the number of atoms in ΩIi. With ΩIi ∈ RdIi×ni , we will have

H(ΩIi, Si) ∈ RdIi(pS,i−pi+1)2×Si . From the degree of freedom perspective, there should

be at least S1 = p2
S,1d0 rows in H(ΩIi, Si) to ensure that information from X 0

S will be

preserved. This leads to:

dIi ≥
p2
S,1d0

(pS,i − pi + 1)2
. (4.24)

Eqn. (4.24) indicates that there should be more atoms for information preservation in

a deeper layer of a DeepCAM. For example, when d0 = 1, p1 = 2, p2 = 3, and p3 = 4

in a 2-layer DeepCAM, there should be at least 2 atoms in the 1-st layer, and 4 atoms

in the 2-nd layer for information preservation.
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Figure 4.7: Super-patches at different layers in a 2-layer DeepCAM. A syn-
thesised pixel value corresponds to a super-patch on the i-th layer with patch size pS,i.
In this example, the convolutional filters are with size p1 = 2, p2 = 3, and p3 = 4. The
super-patch size at layer 1, 2, and 3 is 7, 6, and 4, respectively.

Given dIi atoms, the super-patch training data X i−1
S and the small patch training

data X i−1, the IPAD ΩIi is learned using ConvGOAL+ algorithm. The convolutional

analysis dictionary H(ΩIi, Si) will be able to preserve essential information from the

input LR image.

The soft-thresholds λIi should be set properly. As in [107], the inner product between

an analysis atom ωi,j and the small patch training samplesX i−1 can be well modelled by

a Laplacian distribution with diversity σj. The sparse representation after thresholding

can be modelled as the solution to a l1-norm regularized minimization problem with

regularization parameter λIi. With a Bayesian analysis, the soft-thresholds associated

with IPAD ΩIi can be set being inversely proportional to the diversities [107]:

λIi = ρI

[
1

σ1

,
1

σ2

, · · · , 1

σdIi

]T
, (4.25)

where ρI is a scaling parameter, and the diversity σj of the j-th coefficient can be

estimated using the obtained IPAD ΩIi and the small patch training data X i−1.

The free parameter ρI can be determined by solving a 1-dimensional search problem.
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The optimization problem for ρI is therefore formulated as:

ρI = arg min
ρ∈D

∥∥Y −GSρλ⊗1

(
H(ΩIi, Si)vec(X i−1

S )
)∥∥2

F
, (4.26)

where λ = [1/σ1, 1/σ2, · · · , 1/σdIi ]
T , 1 is an all ones vector of size (pS,i − pi + 1)2, ⊗

is the Kronecker product, G = YZT (ZZT )−1 with Z = Sρλ⊗1

(
H(ΩIi, Si)vec(X i−1

S )
)
,

and D is a discrete set of values.

The obtained IPAD and threshold pair (ΩIi,λIi) should be able to preserve the essential

information within the input image and give no worse performance when compared to

a linear convolution without non-linearities.

4.5.2 Learning CAD and Threshold Pair

The function of a Clustering Analysis Dictionary (CAD) is to perform a linear transfor-

mation to its input signal such that the responses are highly correlated to the amount

of residual energy. Soft-thresholding which is used as a non-linearity sets to zero the

data with relatively small responses. The signals with large residual energy will then

be identified.

The number of atoms in ΩCi is essential to the performance of DeepCAM. Similar to the

discussions in Section 4.5.1, with dCi atoms in ΩCi, the size of the convolutional analysis

dictionaryH(ΩCi, Si) will be dCi(pS,i−pi+1)2×Si. For each super-patch region on the

LR image, the number of coefficients for discriminative feature representation should

not decrease over layers. That is, we would like to have more atoms in H(ΩCi, Si)

than those in H(ΩCi−1, Si−1). Therefore, the number of CAD atoms should meet the

condition:

dCi ≥ dCi−1
(pS,i−1 − pi−1 + 1)2

(pS,i − pi + 1)2
. (4.27)

Different from the unstructured deep dictionary model, it is not straightforward to set
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the dictionary sizes. Eqn. (4.24) and Eqn. (4.27) provide a guideline on how to set

the number of atoms in order to generate representations that are both information

preserving and discriminative.

Let us denote with Y i ∈ Rs2p2i×N2 the corresponding HR patch training data of X i−1.

A synthesis dictionary Di ∈ Rs2p2i×ni can be learned to map X i−1 to Y i by solving:

Di = arg min
D
||DX i−1 −Y i||2F . (4.28)

It has a closed-form solution:

Di = Y iX i−1T
(
X i−1X i−1T

)−1

. (4.29)

GivenDi, we define the middle resolution (MR) and the residual data as Ŷ
i

= DiX i−1

and E i = Y i − Ŷ
i
, respectively. The MR data is a linear transformation of the in-

put small patch training data. The residual data contains the information about the

residual energy.

We propose to learn an analysis dictionary Ψi ∈ RdCi×s2p2i in the ground-truth data

domain. If Ψi is able to simultaneously sparsify the middle resolution data Ŷ
i
and the

residual data E i, the atoms within the learned Ψi will then be able to identify the data

in Ŷ
i
with large residual energy and the i-th layer CAD is then re-parameterized as:

ΩCi = ΨiDi. (4.30)

An additional consistent constraint proposed in [107] is applied to impose the simul-

taneous sparsifying property. Each analysis atom ψT
k is enforced to be able to jointly
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sparsify Ŷ
i
and E i:

p(Ψ) = c

N2∑
j=1

dCi∑
k=1

log

(
1 + ν

((
ψT
k ŷ

i
j)

2 − (ψT
k e

i
j

)2
)2
)
, (4.31)

where c = 1/N2dCi log(1 + ν), and ν is a tunable parameter.

The objective function for learning the analysis dictionary Ψi can then be formulated

as:

Ψi = arg min
ΨT∈Θ

f(Ψ), (4.32)

where f(Ψ) = g(Ψ)+κh(Ψ)+υl(Ψ)+µp(Ψ) with κ, υ and µ being the regularization

parameters. The functions g(·), h(·) and l(·) are those defined in Eqn. (4.15), Eqn.

(4.9) and Eqn. (4.16), respectively.

The objective function in Eqn. (4.32) is optimized using ConvGOAL+ algorithm.

With the learned analysis dictionary Ψi, the i-th layer CAD is then obtained as in

Eqn. (4.30).

As proposed in DeepAM [107], it is both effective and efficient to set CAD soft-

thresholds being proportional to the diversity of the analysis coefficients. The CAD

soft-thresholds are therefore defined as follows:

λCi = ρC [σ1, σ2, · · · , σdCi
] , (4.33)

where ρC is a scaling parameter, and σj is the diversity of the Laplacian distribution

for the j-th atom.

The free parameter ρC can be learned using a similar approach to the one used to solve

Eqn. (??). As the analysis coefficients can be well modelled by Laplacian distributions,

the proportion of data that has been set to zero for each pair of atom and threshold
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will be the same. The optimization problem for ρC is formulated as:

ρC = arg min
ρ∈D

∥∥Y −GS[λI ;ρλ⊗1]

(
H([ΩIi; ΩCi], Si)vec(X i−1

S )
)∥∥2

F
, (4.34)

where λ = [σ1, σ2, · · · , σdCi
]T , 1 is a all ones vector of size (pS,i−pi+ 1)2, ⊗ is the Kro-

necker product, G = YZT (ZZT )−1 with Z = S[λI ;ρλ⊗1]

(
H([ΩIi; ΩCi], Si)vec(X i−1

S )
)
,

and D is a discrete set of values.

4.5.3 Synthesis Dictionary Learning

At the last layer, the synthesis dictionary D ∈ Rs2×nL+1 will transform the L-th layer

deep convolutional representation X L ∈ RnL+1×N2 to the ground-truth training data

Y ∈ Rs2×N2 . The synthesis dictionary can be learned using least squares:

D = YX LT
(
X LX LT

)−1

. (4.35)

By convolving the learned synthesis dictionary with the L-th layer feature maps, there

will result in s2 estimated HR images which can be reshaped and combined to form

the final estimated HR image.

4.5.4 DeepCAM Learning Algorithm

The overall learning algorithm for DeepCAM is summarized in Algorithm 4. We

adopt a layer-wise learning strategy for DeepCAM. At each layer, the IPAD and the

CAD are sequentially learned using ConvGOAL+ algorithm with different objective

functions. The soft-thresholds are then learned using Eqn. (4.26) and Eqn. (4.34).

The learned analysis dictionary and the soft-thresholds are the concatenation of the

IPAD part and the CAD part. After all the analysis dictionaries and soft-thresholds
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Algorithm 4: DeepCAM Learning Algorithm
1 Input: Training data pair (X 0

S,Y), the number of layers L, the number of
filters, and the filter size;

2 for i← 1 to L do
3 Learning ΩIi using ConvGOAL+ with training data (X i−1

S ,X i−1) and
objective function Eqn. (4.17);

4 Learning ΩCi using ConvGOAL+ with training data (X i−1
S ,X i−1,Y) and

objective function Eqn. (4.32);
5 Learning thresholds λIi and λCi;
6 Ωi ← [ΩIi; ΩCi], λi ← [λIi;λCi];
7 Update the super-patch training data as X i

S = S(Ωi ∗X i−1
S ,λi);

8 Extract the small patch training data X i from X i
S;

9 end
10 Learning the synthesis dictionary D as in Eqn. (4.35).

11 Output: Learned DeepCAM
{
{Ωi,λi}Li=1 ,D

}
.

have been learned, the synthesis dictionary is learned using least squares.

4.6 Simulation Results

In this section, we report the implementation details and numerical results of our

proposed DeepCAMmethod and compare our proposed method with other single image

super-resolution algorithms.

4.6.1 Implementation Details

The standard 91 training images [1] are used as the training dataset and the Set5 [1]

and the Set14 [2] are used as the testing datasets. The color images have been converted

from the RGB color space to the YCbCr color space. Image super-resolution is only

performed on the luminance channel Y. The low-resolution (LR) images are generated

by down-sampling the high-resolution (HR) image with the Matlab function imresize.
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Parameters ν κ υ µ

IPAD 10× ni 100× dIi 0.01× dIi —
CAD 10× ni 0.1× dCi 0.01× dCi 100

Table 4.2: Parameters setting of GOAL+ algorithm for learning the i-th layer IPAD
ΩIi ∈ RdIi×ni and CAD ΩCi ∈ RdCi×ni .

The Peak Signal-to-Noise Ratio (PSNR)1 is used as the evaluation metric.

Table 4.2 shows the parameters setting of ConvGOAL+ algorithm for learning the i-

th layer Information Preserving Analysis Dictionary (IPAD) and Clustering Analysis

Dictionary (CAD). Both the IPAD and the CAD are initialized with i.i.d. Gaussian

random entries. We apply batch training for ConvGOAL+ algorithm. The training

data has been equally divided into Nb = 10 batches. During training, the ConvGOAL+

algorithm is sequentially applied to batches until the learned dictionary converges or

all batches have been used for training. The spatial size of the super-patches pS,i used

for training is set to the minimum value as indicated by Eqn. (4.23) for the purpose of

minimizing the training computational complexity. The number of IPAD atoms is set

to dIi = dmin+1 where dmin is the minimum integer defined in Eqn. (4.24). The number

of CAD atoms is then set to dCi = di − dIi with a pre-defined total number of channel

di. For each batch, τ = 100 iterations of conjugate gradient descent is performed to

update the dictionary. The discrete set D used for searching the scaling parameter of

the thresholds is set to be D = [· · · , 10−2, 2× 10−2, · · · , 10−1, 2× 10−1, · · · ].

4.6.2 Analysis of the Learned DeepCAM

In this section, we will analyze the learned DeepCAM in terms of the number of layers,

learned soft-thresholds, extracted feature maps.

Table 4.3 shows the PSNR (dB) of the learned DeepCAM with different number of

layers evaluated on Set5 [2]. For DeepCAM with different number of layers, the spatial

1PSNR=10 log( 2552√
MSE

), where MSE is the mean squared error between the ground-truth HR
image and the estimated HR image



128 Chapter 4. Learning Deep Convolutional Analysis Dictionary Models

Layer Number 1 2 3
Filter Number [64] [16,64] [9,25,64]

baby 38.03 38.21 38.30
bird 39.74 40.19 40.60

butterfly 31.70 31.99 32.17
head 35.54 35.58 35.61

woman 34.76 34.83 34.84
Average 35.95 36.16 36.30

Table 4.3: PSNR (dB) of DeepCAM with different number of layers. For all DeepCAM,
the spatial filter size at all layers is 3× 3. The maximum number of filters at the last
layer is set to 64. [d1, d2] denotes that there are d1 filters at the first layer, and d2 filter
at the second layer.

filter size at all layers is set to 3×3 and the maximum number of filters at the last layer

is set to 64. The effective filter size for the DeepCAM with 1, 2, and 3 layers is therefore

5, 7, and 9, respectively. We can find that the DeepCAM with more layers achieves

higher average PSNR. From 1 layer to 2 layers, there is around 0.2 dB improvement

on the average PSNR. Especially, the PSNR of the testing image "bird" has been

improved by around 0.5 dB. With 3 layers, further improvements can be observed

on all testing images. The simulation results indicate that the proposed IPAD and

CAD design of the DeepCAM can lead to a successful deep model and the proposed

learning algorithms for both convolutional analysis dictionary and soft-thresholds is

effective. The improved performance of DeepCAM with more layers can be due to

two reasons. First, a deeper model has more non-linear layers and is therefore with

a stronger expressive power. Second, different from the unstructured deep dictionary

model, a deeper convolutional dictionary model has an increased effective filter size

which helps include more information for prediction and therefore improves prediction

performance.

Fig. 4.8 shows the soft-thresholds of a 3-layer DeepCAM with 9, 25 and 64 filters at

layer 1, 2 and 3, respectively. We can observe that the soft-thresholds have a bimodal

behaviour. That is, the thresholds corresponding to IPAD are relatively small, while

the thresholds corresponding to CAD are relatively large. The small soft-thresholds
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(a) Layer 1 soft-thresholds. (b) Layer 2 soft-thresholds.

(c) Layer 3 soft-thresholds.

Figure 4.8: The soft-thresholds in layer 1, 2 and 3 of DeepCAM. There is a bimodal
behaviour on the thresholds. The thresholds correspond to IPAD are relatively small,
while the thresholds correspond to CAD are relatively large.

of IPAD help preserve information from the input image. The large soft-thresholds in

CAD help generate the features that could effectively identify input image regions with

large estimation error. Another observation is that the amplitude of the soft-thresholds

decreases over layers. This will lead to denser representations at a deeper layer which

can represent more complex signals.

Due to different learning objectives of IPAD and CAD, their resultant feature maps

contains different information. Fig. 4.9 shows the first layer feature maps of a 3-layer

DeepCAM. The first 2 feature maps correspond to IPAD. We can find that these two

feature maps, especially, the feature map in Fig. 4.9(b) represent detailed structural

information of the input LR image. The feature maps in Fig.4.9(c) - 4.9(d) correspond

to CAD and have zero responses on most regions due to relatively large soft-thresholds.

There contains different directional edges corresponding to regions that require non-

linear estimations. A combination of these feature maps from both IPAD and CAD
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(a) (b)

(c) (d)

Figure 4.9: The first layer feature maps of DeepCAM. The feature maps in 4.9(a) -
4.9(b) corresponding to IPAD and contain detailed structural information about the
input LR image. The feature maps in 4.9(c) - 4.9(d) corresponding to CAD. They
contains directional edges.

forms an informative and discriminative feature representation for predicting the HR

image.

4.6.3 Comparison with Single Image Super-Resolution Meth-

ods

In this section, we compare our proposed DeepCAM method with the DeepAM method

[107] and some existing single image super-resolution methods including bicubic inter-

polation, sparse coding (SC) based method [2], Anchored Neighbor Regression (ANR)

method [7], Adjusted Anchored Neighborhood Regression (A+) method [8], and Super-
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Method SC [2] ANR [7] A+ [8] SRCNN [14] DeepAM DeepCAM
Parameters 65,536 1,064,896 1,064,896 8,128 156,672 34,740

Table 4.4: Number of free parameters in different single image super-resolution meth-
ods.

Resolution Convolutional Neural Network (SRCNN) method [14].

The SC-based method [2], Anchored Neighbor Regression (ANR) method [7], Adjusted

Anchored Neighborhood Regression (A+) method [8] are patch-based single image

super-resolution method. SC method [2] is based on synthesis sparse representation

and has a LR synthesis dictionary with 1024 atoms and a corresponding HR synthesis

dictionary. The input feature is the compressed 1-st and 2-nd order derivatives of the

image patch and is obtained using Principal Component Analysis (PCA). The ANR

method and A+ method [7, 8] are based on clustering and assign each cluster a linear

regression model. They use the same feature as in [2] while require a huge number of

free parameters. The SRCNN method [14] is a convolutional neural network method

with 2 convolutional layers of 64 and 32 filters. The spatial filter size is 9 × 9, 1 × 1

and 5× 5, respectively.

DeepCAM used for comparison is a 3-layer DeepCAM. For the convolutional analysis

dictionary, the spatial filter size is 3× 3 at all layers and the filter number is 9, 25, 100

for layer 1, 2 and 3, respectively. The convolutional synthesis dictionary is with spatial

filter size 5× 5. Therefore, the effective filter size of DeepCAM is 11× 11.

Table 4.4 shows the number of free parameters in different single image super-resolution

methods. The SC method requires a relatively small number of parameters which

mainly comes from two synthesis dictionaries. The ANR method [7] and the A+

method [8] have around 1 million free parameters because there are 1024 regressors

with size of 36 × 28. The SRCNN method [14] has the least number of parameters,

while there are more parameters in its improved versions which has more layers, more

filters and with larger filter size. The DeepAM has more around 160,000 parameters.
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(a) LR image. (b) CNN-BP40 (PSNR = 29.18 dB).

(c) CNN-BP80 (PSNR = 28.02 dB). (d) DeepCAM (PSNR = 29.65 dB).

Figure 4.10: Examples of reconstructed HR images by different methods. DeepCAM
achieves the better result than the backpropagation trained CNN. A region with char-
acters on the reconstructed image have been marked using red rectangle and zoomed
in.
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(a) CNN-BP80. (b) CNN-BP40.

(c) DeepCAM. (d) DeepCAMbp.

Figure 4.11: Visualize the 2D surface of minima obtained by different methods. The
sharpness of minimizers correlates well with generalization error. A wider, and flatter
minimizer usually has better generalization ability. The minimizers of DeepCAM and
DeepCAMbp are flatter and wider than that of CNN-BP40 and CNN-BP80.

This is because the dictionaries are not structured and there are 3 layers of analysis

dictionaries. The proposed DeepCAM has only around 35,000 free parameters since

each structured convolutional dictionary shares a small number of free parameters

though it has a huge size.

We denote CNN-BPDS as the deep neural network with the same structure as Deep-

CAM and trained using backpropagation with learning rate decay step DS and total

5 × DS epochs for training. The implementation of DNNs is based on Pytorch with

Adam optimizer [96], batch size 1, initial learning rate 1 × 10−3, and decay rate 0.1.

The training data has been arranged into 36× 36 and 72× 72 patch pairs.

Table 4.5 shows the evaluation results of different methods on Set5. DeepCAM achieves
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around 0.5 dB higher PSNR than SC method and ANR method, and has similar

performance as SRCNN method and DeepAM, while has around 0.2 dB lower PSNR

than that of A+ method. The parameters setting of CNN-BP40 has been tuned to

achieve the best performance on Set5. CNN-BP80 and CNN-BP40 have been used for

comparison and achieves around 0.1 dB and 0.2 dB higher PSNR than DeepCAM.

DeepCAMbp represents the backpropagation fine-tuned DeepCAM with with Adam

optimizer [96], batch size 1, initial learning rate 1 × 10−4, and with total 20 epochs.

DeepCAMbp achieves an improved performance than DeepCAM. It average PSNR is

comparable to that of A+ method and CNN-BP.

Table 4.6 shows the evaluation results of different single image super-resolution meth-

ods on Set14. Similar results can be observed as in Table 4.5. The average PSNR of

DeepCAM is around 0.3 dB higher than that of SC method and ANR method, while it

is around 0.15 dB lower than that of A+ method. DeepCAM achieves similar perfor-

mance as SRCNN method, DeepAM and CNN-BP40. DeepCAMbp achieves improved

performance as DeepCAM.

It is interesting to note that DeepCAM significantly outperforms CNN-BP40 and CNN-BP80

on "ppt3" and "zebra" which contain sharp edges with small scales. Especially, Deep-

CAM achieves around 0.4 dB and 1.6 dB higher PSNR on "ppt3" than CNN-BP40 and

CNN-BP80, respectively. Figure 4.10 shows the input LR image and the reconstructed

HR images of the testing image "ppt3" using CNN-BP80 and DeepCAM method. We

can find that CNN-BP80 cannot well reconstruct the characters. A possible reason is

that CNN-BP has a weaker generalization ability on the unseen testing data.

Li et al. [108] proposes a visualization method to visualize the loss surface landscape

around the minimizer of a deep model. The sharpness of the loss surface landscape

of a minimizer is well correlated to the generalization ability. That is, a wider and

flatter minimizer has better generalization ability. From Figure 4.11, we can find that

CNN-BP80 has the sharpest and the most narrow 2D loss surface, CNN-BP40 has a



4.7. Summary 137

wider and flatter one while is still less wider than that of DeepCAM. We can also find

that performing backpropagation fine-tuning on DeepCAM does not change much on

the 2D loss surface. The visualization in Figure 4.11 correlates well with the simulation

results in Table 4.6. The reason that DeepCAM possesses a stronger generalization

ability could due to our information preserving and clustering design which encodes a

general rule for image super-resolution.

4.7 Summary

In this chapter, we proposed a convolutional analysis dictionary learning algorithm

by exploiting the properties of the Toeplitz structure within the convolution matrices.

The proposed algorithm can impose the global rank property on learned convolutional

analysis dictionaries while performing learning on the low-dimensional signals. We

then proposed a Deep Convolutional Analysis Dictionary Model (DeepCAM) frame-

work which consists of multiple layers of convolutional analysis dictionary and soft-

threshold pairs and a single layer of convolutional synthesis dictionary. Similar to the

DeepAM, the convolutional analysis dictionaries are designed to be made of an informa-

tion preserving analysis dictionary (IPAD) and a clustering analysis dictionary (CAD).

The IPAD preserves the information from the input image, while the CAD generates

discriminative feature maps for image super-resolution. Simulation results show that

our proposed DeepCAM achieves comparable performance with other existing single

image super-resolution methods.



Chapter 5

Photo Realistic Image Completion via

Dense Correspondences

5.1 Introduction

In this chapter, we propose to tackle the Internet-based image completion problem

using a robustly estimated dense correspondence. The advantage of utilizing dense

correspondence for image completion is two-fold. First, dense correspondence gives

us a complete landscape of the correspondence between images, which captures some

local deformations that might be missed by sparse correspondence. With the dense

correspondence, the Internet-based image completion problem becomes a surface fit-

ting problem with a segment of the original surface missing. Therefore, our objective

becomes finding a surface which is consistent with the acquired correspondence out-

side the “hole” region under a smoothness constraint. Second, dense correspondence

provides a rich set of color correspondence between the input image and the retrieved

exemplar image. This helps remove color discrepancy on the completed region. This

is in contrast with the color correspondence provided by sparse correspondence which

is usually not sufficient for robust color correction.

138
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A hierarchical framework is proposed to progressively achieve image completion based

on dense correspondence. The hierarchical structured PatchMatch imposes smoothness

constraint on the estimated dense correspondence. However, the obtained dense corre-

spondence is usually noisy and contains outliers. We propose to use an Expectation-

Maximization (EM) based approach with kernel ridge regression to jointly denoise the

obtained correspondence and interpolate the correspondence in the “hole” region at

each hierarchical level. Within the hierarchical framework, the EM model parameters

of the current level are used to initialize the parameters of the next level and this leads

to a faster convergence. At the final level, a completed image is obtained by transferring

image content with respect to the interpolated dense correspondence and performing

color correction to remove the possible color differences between two images.

The rest of the chapter is organized as follows. Section 5.2 gives an overview of our pro-

posed image completion method. Section 5.3 introduces the proposed image completion

using dense correspondence framework, and Section 5.4 describes color correction based

on estimated dense correspondence. Section 5.5 presents the results of our extensive

experimental work and Section 5.6 draws conclusions.

5.2 Overview

Our algorithm makes the same assumptions as other Internet-based image completion

algorithms [4, 6, 41]. Specifically, we assume that there are many images on Internet

similar to the image that needs to be completed and some similar exemplar images

are already available in that we rely on existing searching engines to find exemplar

images. This is particularly true for images of famous landmarks. Moreover, we assume

that a region-of-interest (ROI) is given by the user indicating a region that requires

completion.

The overview of the proposed image completion method is illustrated in Fig. 5.1. The
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required ROI is a rectangle region rather than a detailed contour. However, we are

not trying to replace the whole ROI but only the occluded part. Gaussian image pyra-

mids are built for both the input image and the retrieved exemplar image. We then

progressively estimate dense correspondence from coarse-to-fine pyramid levels. An

Expectation-Maximization (EM) algorithm jointly performs inliers/outliers estimation

and dense correspondence interpolation (Fig. 5.1 (c)) to obtain a smooth dense corre-

spondence over the “hole” region. The current level dense correspondence and model

parameters of the EM algorithm will be passed to the next pyramid level. The “hole”

can then be filled using the image content from the exemplar image. More precisely, the

interpolated dense correspondence indicates the correct pixel location on the exemplar

image of a pixel on the input image. By transferring the corresponding pixel values

from the exemplar image, the undesired image content in the input image can be re-

placed (Fig. 5.1 (d)). However, it is very likely that the color between the input image

and the retrieved exemplar image is incompatible (for example, in Fig. 5.1 (a) and

(b)). Based on the established dense correspondence, our color correction algorithm is

applied to fit a smooth B-spline color transfer function for each color channel in RGB

color space. It corrects the color differences and improves visual quality as shown in

Fig. 5.1 (e).

5.3 Image Completion using Dense correspondence

Let us denote the input image with I1 and the exemplar image with E1. We generate

from I1 an image pyramid with decreasing resolutions {Ik}Kk=1, scaled down by a factor

2k−1. Similarly, an image pyramid {Ek}Kk=1 is generated from E1.

The kth level nearest neighbor field (NNF) Fk relates every image patch on Ik with

its nearest neighbor (NN) patch on Ek. As the same scene on Ik and Ek may differ

in viewpoint, we assume there are D = 4 degrees of freedom for the NN patch, i.e.
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position (u, v), scale s, and orientation θ. Thus, Fk has the same size as Ik and has 4

matching parameters at each location. We denote with Ikr (p) the (2r + 1) × (2r + 1)

patch centered at p = (x, y) on Ik, with Fk(p) the matching parameter (u, v, s, θ) of

the NN patch for patch Ikr (p), and with Ekr (Fk(p)) the NN patch on Ek at location

(u, v) with patch radius s× r, and orientation θ.

5.3.1 Basic PatchMatch

In this section, we briefly review PatchMatch and the variations we have introduced

to make it more suitable to our problem. For a detailed description of the classical

PatchMatch, please refer to [25,26].

There are three key steps in PatchMatch, i.e. random initialization, neighboring prop-

agation, and random search. As natural images are highly structured, good matching

parameters in a randomly initialized NNF can be propagated to its spatial neighbors

with minor adjustment. For example, a patch I1
r (p) can update its matching parameter

F1(p) by using those of its spatial neighbors Ψp :

F1(p) = arg min
F1(pi )

{
S
(
F1(pi)

)
|pi ∈ p ∪Ψp

}
, (5.1)

where S(F1(pi)) is the matching cost between I1
r (p) and E1

r (F1(pi) + ω) with ω being

the affine adjustment.

Propagation is specified by how the spatial neighbors Ψp is defined. There are two

kinds of propagation in PatchMatch [25], i.e. type 1: Ψp = {p− 1h,p− 1v} and

type 2: Ψp = {p+ 1h,p+ 1v}, where 1h = (1, 0) and 1v = (0, 1). Bailer et al. [109]

proposed that propagation should be performed in two more directions (i.e. type 3:

Ψp = {p− 1h,p+ 1v} and type 4: Ψp = {p+ 1h,p− 1v}) so that good matching

parameters can be propagated to any position on the input image. This is the strategy
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adopted in this chapter.

After propagation has been performed at each position, random search is applied to

avoid matching parameters being trapped in local minima. For a location p, a small

number of matching parameters will be randomly sampled near F1(p) in the parameter

space within a predefined maximum random search range. The sampling radius shrinks

by 2 until the range is smaller than 1. If one of them can provide lower matching

cost, F1(p) will be updated with it. The problem of the random search in classical

PatchMatch is that random search is intensively applied in every location with the same

sampling radius. This introduces a huge number of ineffective computation, since a

non-adaptive sampling radius will generate many irrelevant matching parameters with

high matching costs. In Section 5.3.4, we propose an adaptive random search which

adaptively selects candidate matching parameters based on their estimated reliability.

5.3.2 Feature Representation and Distance Metric

In optical flow estimation, two images are temporally adjacent and have no obvious

color difference. However, in our setting the exemplar images are normally different

from the input image in viewpoint, illumination and color condition.

The commonly used patch feature descriptors in optical flow include RGB, inten-

sity invariant color representation, gradients, SIFT descriptor [44], and Census trans-

form [110]. Matching patches using RGB will result in very noisy NNF as RGB is

vulnerable to the aforementioned image variations. SIFT descriptor can provide better

performance, however, this is a computationally expensive solution as a huge number of

patches need to be evaluated in PatchMatch. Census transform is a binary descriptor

and is robust to illumination changes. The advantage of binary descriptors [111–113] is

that a patch is represented by a binary string and matching is easy to compute, since

Hamming distance instead of l2 distance is applied for feature distance evaluation.
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We utilize BRIEF descriptor [112] as feature representation. It is one of the most

widespread binary descriptors and has comparable performance with floating-point

descriptors [114]. Census transform [110] is a special case of BRIEF. According to

BRIEF descriptor [112], a small number of binary tests with randomly generated test

locations can yield good discrimination power. A binary test τ for a patch is defined

as:

τ(c,p, q) =


1 if c(p) < c(q),

0 otherwise,

(5.2)

where c represents one of the feature channels, p and q are two positions on the patch.

In order to gain color invariant property, RGB color image is converted to CIE La∗b∗

color space where L is the illuminance channel, and a∗ and b∗ are chrominance channels.

Two gradient channels ∇xL and ∇yL have also been included to account for edges.

Therefore the final feature channel is C = (L, a∗, b∗,∇xL,∇yL).

There are nb binary tests that are generated {τ(ci,pi, qi)}nb
i=1. For each binary test

τ(c,p, q), c is randomly selected from feature channel set C, and p and q are randomly

sampled from discrete locations on a (2r + 1) × (2r + 1) patch. After the nb binary

tests are determined, all the patches will use these tests to construct the BRIEF de-

scriptor. The BRIEF descriptor of a patch can be expressed as a binary string being

the binarization of
∑nb

i=1 2i−1τ(ci,pi, qi). Thus, the distance metric S(·) in Eqn. (5.1)

measures the Hamming distance between the BRIEF descriptors of two patches.

5.3.3 Nearest Neighbor Field Interpolation

NNF interpolation is necessary to produce a smooth and accurate NNF over the oc-

cluded region. With the basic PatchMatch using BRIEF descriptor, the acquired NNF
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(a) Estimated NNF. (b) Reconstructed image based on estimated
NNF.

Figure 5.2: (a) An example of the estimated nearest neighbour field. (b) The recon-
structed image based on the estimated NNF. The estimated NNF is noisy and with
a large region with occlusions. The quality of the NNF can be reflected in the recon-
structed image.

is still relatively noisy and with a large outlier region in the occluded part (see Fig. 5.2

for an example). Only with a well refined NNF, the corresponding pixel values on the

exemplar image can be faithfully transferred to the input image.

We apply an Expectation-Maximization (EM) approach similar to [115–117] to jointly

estimate inliers/outliers in the observed NNF and interpolate NNF within ROI using

kernel ridge regression. There are two reasons for that. First, traditional approaches,

such as affine transform, and thin-plate spline model, are vulnerable to noise and

outliers. The EM algorithm can be used to identify the noisy data and outliers from

the observed data. In turn, a reliable NNF interpolation model can be constructed using

only the inlier data points. Second, the kernel ridge regression can flexibly adapt to

the variations in NNF. In this way, the flexibility gained through dense correspondence

is preserved.

Likelihood Formulation

We assume that there are N matched pixel-wise correspondences {
(
pi,Fk(pi)

)
}Ni=1

within the ROI of pyramid level k. To simplify notation, we denote (xi,yi) = (pi,Fk(pi))
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for i = 1, 2, ..., N , with X = (x1, ...,xN)T ∈ RN×2 and Y = (y1, ...,yN)T ∈ RN×D.

The NNF generated by PatchMatch is assumed to be a mixture of Gaussian distributed

inliers and uniformly distributed outliers. Moreover the components of the NNF are

assumed to be independent. An indicator zi ∈ {0, 1} is defined for each data pair

(xi,yi) to indicate it being an inlier (zi = 1) or an outlier (zi = 0). The fitting error

of inliers are assumed to follow a Gaussian distribution N (0,Σ) with zero mean and

variance Σ ∈ RD×D. The outliers are the data pairs which cannot be well described

by NNF interpolation function f . We assume the outliers are uniformly distributed

among the parameter space. Under the above assumptions, the likelihood function is

given as follows:

p(Y|X,θ) =
N∏
i=1

∑
zi

p(yi, zi|xi,θ) =
N∏
i=1

(
γ

exp (−di)√
det(2πΣ)

+
1− γ
V

)
,

where model parameter θ = {f , γ,Σ}, di = 1
2

(yi − f(xi))
T Σ−1 (yi − f(xi)), γ rep-

resents the percentage of inliers, det(·) is the determinant of a matrix, and V is the

volume of the NNF parameter space.

The underlying interpolation function should be smooth. Let us assume a smooth

prior on the NNF interpolation function as p(f) ∝ exp
(
−λ

2
φ(f)

)
where φ(f) is a

smoothness function, and λ is a regularization parameter. With the likelihood defined

in Eqn. (5.3), the smooth prior on f , and assuming a uniform prior on parameter γ and

Σ, the posterior distribution of the model parameter can be estimated via Bayes rule

as p(θ|X,Y) ∝ p(Y|X,θ)p(f). The optimal model parameter θ∗ is then estimated

from a Maximum A Posteriori (MAP) of θ:

θ∗ = arg max
θ
p(Y|X,θ)p(f). (5.3)
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EM Algorithm

Let us define pi = p(zi = 1|xi,yi,θ) and P =
∑N

i=1 pi. Replacing Eqn. (5.3) into Eqn.

(5.3), taking a negative logarithm of it and removing the terms independent of θ yields

the negative log-likelihood function:

Q(θ) =
N∑
i=1

pidi +
DP

2
ln det(Σ)− P ln γ − (N − P ) ln(1− γ) +

λ

2
φ(f).

We apply an EM algorithm to iteratively estimate model parameter θ = {f , γ,Σ}.

At iteration t + 1, the EM algorithm iterates between an Expectation step (E-step),

which computes the posteriori probability of the latent variable p(zi|xi,yi,θt) using the

parameter θt = {ft, γt,Σt} from previous iteration, and a Maximization step (M-step),

which estimates a new parameter θt+1 that minimizes the negative log-likelihood Q(θ).

During the E-step, the posteriori probability of the latent variable zi can be estimated

using Bayes rule with the model parameter θt:

pi =
γt exp (−di,t)

γt exp (−di,t) + 1−γt
V

√
det(2πΣt)

, (5.4)

where di,t = 1
2

(yi − ft(xi))T Σ−1
t (yi − ft(xi)). In the M-step, model parameter is

updated so as to minimize the negative log-likelihood. To exclude the influence of the

outliers, we binarize the posteriori probability such that pi = 1 if pi > ϕ (ϕ = 0.5),

pi = 0 otherwise. We take the derivative of Eqn. (5.4) with respect to γ and Σ,

respectively, and set them to zero. The updated parameters are then given by:


γt+1 = tr(P)

N
,

Σt+1(i, i) = (Y(:,i)−Z(:,i))TP(Y(:,i)−Z(:,i))
tr(P)

,

(5.5)
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where P = diag(p1, ..., pN) is a N × N diagonal matrix with diagonal values specified

by p1, ..., pN , Y(:, i) is the ith column of Y, tr(·) returns the trace of a matrix, and

Z = (f t(x1), ...,ft(xN))T ∈ RN×D are the estimated NNF using ft.

We group the terms in Eqn. (5.4) related to the NNF interpolation function f and

define an energy function E(f) function as:

E(f) =
1

2

N∑
i=1

pi (yi − f(xi))
T Σ−1 (yi − f(xi)) +

λ

2
φ(f). (5.6)

Eqn. (5.6) is a special form of Tikhonov regularization. The interpolation function

ft+1 is updated by minimizing the energy function E(f) with respect to f . Let the

smoothness function be defined as φ(f) = ||f ||2H where H is a reproducing kernel

Hilbert space (RKHS). The reproducing kernel is selected as Gaussian. According

to the representer theorem [118], the NNF interpolation function f is in the form of

weighted sum of kernel products:

f(x) =
N∑
n=1

k(x,xn)wn, (5.7)

where k(a, b) = exp
(
− ||a−b||

2

β

)
is a Gaussian reproducing kernel with filter range

defined by β, and wn ∈ RD is the weight associated with k(·,xn).

The norm in RKHSH can be expressed as ||f ||2H = W̃TKW̃ with W̃ =
(
wT

1 , ...,w
T
N

)T ∈

RND×1 being the coefficient column vector and K ∈ RND×ND being a N × N block

matrix where the (i, j)th block has size D×D and its entries are with value k(xi,xj).

By replacing f in Eqn. (5.6) with the form in Eqn. (5.7), the energy function can be

expressed in matrix form as follows:

E(f) =
1

2

(
Ỹ −KW̃

)T

P̃
(
Ỹ −KW̃

)
+
λ

2
W̃TKW̃, (5.8)

where Ỹ =
(
yT

1 , ...,y
T
N

)T ∈ RND×1 is a column vector, P̃ = P ⊗ Σ−1 with ⊗ being
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Kronecker product.

Taking the derivative of Eqn. (5.8) with respect to W̃ and setting it to zero leads to

the following expression for the coefficient matrix W̃:

W̃ = (K + λP̃
−1

)−1Ỹ. (5.9)

Though a closed form solution exists for W̃, it is too expensive to compute the inverse

of (K + λP̃
−1

) which can be decomposed into D matrix inverses of size N × N . In

order to reduce the computational complexity, a fast approximation method [116,119]

suggests that we can use a subset of the observed data as control points {x̃m}Mm=1

with M � N and this reduces the size of the matrix to M × M . With this fast

approximation, the computational complexity is reduced from O(N3) to O(M3). The

NNF interpolation function is then only represented by M kernel products:

f(x) =
M∑
m=1

k(x, x̃m)wm. (5.10)

By usingM control points {x̃m}Mm=1, the coefficient matrix W̃ ∈ RMD×1 are determined

using the closed form expression:

W̃ = (ŨTP̃IŨ + λQ̃)
−1

ŨTP̃IỸ, (5.11)

where Ũ ∈ RND×MD is an N ×M block matrix with the (i, j)th block being a D ×D

matrix whose entries are with value k(xi, x̃j), P̃I = P ⊗ ID (ID is a D × D identity

matrix), and Q̃ = Q⊗Σ with Q ∈ RM×M being the intra Gram matrix and Q(i, j) =

k(x̃i, x̃j).

The NNF interpolation function f is thus defined by the selected M control points

{x̃m}Mm=1 as well as the coefficient matrix W̃. If the control points are fixed through
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the EM algorithm, the NNF interpolation function f is solely determined by W̃. The

interpolation function ft+1 at iteration t + 1 is thus obtained through Eqn. (5.11) by

using the covariance matrix Σt+1 from Eqn. (5.5) and the updated probability matrix

P. One may argue that it is only necessary to find the interpolation function for

position parameters (u, v). This can save half computation. However, the other two

parameters (s, θ) provide important information for posteriori probability estimation

and a well estimated probability matrix P leads to a faster convergence of the EM

algorithm.

The stopping criterion of the EM algorithm is activated when the negative log-likelihood

converges or the maximum iteration TEM has been reached.

5.3.4 Hierarchical PatchMatch with NNF Interpolation

We propose to progressively estimate a smooth NNF within the ROI using a hierarchical

PatchMatch and interpolate an accurate NNF over the occluded region. The flow

diagram of the hierarchical PatchMatch is shown in Fig. 5.3. The two main reasons

for using the hierarchical framework are as follows:

• First, the basic PatchMatch generally produces noisy NNF as its objective is

to find nearest neighbor patches rather than a smooth NNF. The coarse-to-fine

scheme can impose smoothness constraint on NNF. With a fixed patch size, a

patch in a higher pyramid level has relatively larger spatial range and imposes

stronger spatial smoothness constraints. Proceeding to lower pyramid levels,

the NNF is refined with a relatively smaller patch size and has higher matching

accuracy. The lower level NNF is initialized by up-sampling previous level NNF.

Good matching parameters can be passed through the hierarchy, while erroneous

matching parameters are unlikely to be retained on NNF at different pyramid

levels.
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• Second, NNF interpolation can benefit from the hierarchical PatchMatch. From

Eqn. (5.11), the estimation of P and Σ is essential to obtain a reliable W̃ which

corresponds to a smooth and accurate NNF. The selection of control points can

also affect the quality of NNF interpolation. As the overall problem is non-convex,

a good initialization plays a key role in the EM algorithm. The EM algorithm

can have a “warm” start by using the model parameters of the previous level for

initialization. This gives a faster convergence. Moreover, the control points can

be selected based on their probability of being inliers using the model parameters

estimated in the previous level. A better control points selection scheme will

improve NNF interpolation accuracy and make full use of the limited number of

control points.

With the (k+ 1)th level NNF Fk+1, the kth level NNF Fk is initialized by up-sampling

Fk by a factor 2. The spatial range of Fk has been doubled compared to Fk+1, while the

scale and the rotation range are kept the same. In order to faithfully pass the matching

parameters between different pyramid levels, the up-sampling method applied is the

nearest neighbor interpolation:

F k(2p− (i, j)) = (2u, 2v, s, θ), (5.12)

where Fk+1(p) = (u, v, s, θ), and i, j = {0, 1}.

The complexity of PatchMatch algorithm is proportional to the number of checked

matching parameters from neighboring patches and randomly sampled parameters.

With the initialized NNF Fk, propagation and random search are performed in a way

similar to the one described in Section 5.3.1. With the existence of the ROI, only the

pixels in ROI will be processed. Moreover two approaches are proposed to reduce the

complexity of random search. First, random search can be performed in an adaptive

way. Once the interpolation function of the previous level is successfully estimated,

it can be used to predict a reference NNF Fkref to guide the random search. For a
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randomly generated parameter Fkrnd(p) around Fk(p), if it is too far from the reference

NNF (i.e. ∃i ∈ {1, 2, ..., D} : drnd (i) > τrnd (i) where drnd =
∣∣Fkrnd(p)−Fkref(p)

∣∣
and τrnd ∈ RD is the adaptive search threshold), it will unlikely be a good candidate

and thus is abandoned. This leads to an early termination for the unreliable matching

parameters and saves computation. Second, random search is conducted for the patches

with edges which are determined via Canny edge detection. A random search is then

performed only on patches which contains pixels with edge value larger than a threshold

τedge. For the patches extracted from smooth region, random search would have a

high probability of introducing wrong matching parameters which have even lower

matching cost than the correct one. This can reduce complexity as well as avoid

incorrect matching parameters being adopted.

The model parameters at level k are initialized using the model parameters from level

k + 1. Instead of using the exact value of Σ at previous level, it is re-scaled by

a factor κ > 1 for initialization to avoid being trapped in a local minimum. The

random selection of control points directly affects the results of the NNF interpolation

algorithm. If outliers are picked as control points, the NNF interpolation could become

less effective. When the EM algorithm of the previous level produces a reliable NNF

interpolation function, the probability pi of a data pair being inlier at current level can

be predicted from Eqn. (5.4). Control points are selected from the data pairs with

inlier probability pi > ρ.

5.3.5 Image Completion

A smooth NNF F over the occluded region can be obtained through our proposed

hierarchical PatchMatch and NNF interpolation:

F = WUT, (5.13)
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Algorithm 5: Image Completion via Dense Correspondence
1 Input: Input image I1 with a ROI, exemplar image E1;
2 Build image pyramids {Ik}Kk=1 and {Ek}Kk=1;
3 Randomly initialize the coarsest level NNF FK ;
4 for i← 1 to L do
5 Perform PatchMatch between IK+1−i and EK+1−i within ROI;
6 Interpolate NNF within ROI using the EM algorithm in Section 5.3.3;
7 if i < K then
8 Initialize the next level NNF FK−i and EM algorithm model parameter

θK−i;
9 end

10 end
11 Perform image completion to I1as in Section 5.3.4.
12 Output: Completed image Ic.

where W = (w1, ...,wM) ∈ RD×M is the interpolation coefficient matrix, and U ∈

RN×M is the inter Gram matrix with U(i, j) = k(xi, x̃j) and x̃j being the control

points from pyramid level 1.

Let us define a mask M within the ROI which has value 1 on the locations with

pi ≥ τp and value 0 otherwise. As the BRIEF descriptor is robust to small occlusions,

the boundary of M may still contain image content that needs to be replaced. To

include all the occluded image region, the maskM is eroded a few times. Let denote

with Mi the region with mask value i for i = 0, 1. The mask region M0 indicates

the image content on the input image which should be replaced. Every pixel p ∈ M0

on the input image is replaced by the corresponding pixel value on location E1(F(p))

from the exemplar image. The completed input image is denoted by Ic.

Algorithm 5 summarizes our proposed image completion method based on dense

correspondence.
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5.4 Color Correction

Though images are taken near the same landmark, different camera parameters, shoot-

ing time, and shooting angles could result in significant color difference between the

input image and the selected exemplar images. In order to have a visually pleasant

result, color correction needs to be performed.

Different from the color transfer methods [120,121] where color correspondences are not

available, pixel-wise color correspondences D = {(xci, yci)}|M1|
i=1 have been established

by the computed dense correspondence F1 within M1 with (xci, yci) being the corre-

sponding color values on input image and exemplar image. A global color correction

model can be used to minimize the color differences in a way similar to NRDC [122].

For each RGB color channel, a color transfer curve can be fitted using color correspon-

dence D and applied to Ic within M0. The color transfer curve fc is modeled as a

piece-wise cubic spline with L knots:

fc(x) =
L∑
i=1

c(i)B(x− i), (5.14)

where B(x) is the cubic B-spline basis function, and c(i) are the B-spline coefficients.

The B-spline coefficient matrix C = (c(1), c(2), ..., c(L))T can be obtained in a least

squares manner:

C = (BTB)−1BTT, (5.15)

where B ∈ R|M1|×L is the B-spline basis matrix constructed using the input color values

and T ∈ R|M1| is the target color value matrix containing the target color values in

M1.

However, color correspondence is generally noisy as shown in Fig. 5.4, even when

the estimated dense correspondence is accurate. The noise could be due to subtle

differences in the images (for example, shadows) or intrinsically noisy image (i.e. the
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(a) Input. (b) Target. (c) Color correspondence.

Figure 5.4: An example of color correspondence. (a) Reconstructed image seg-
ment with the estimated NNF. (b) The corresponding original image segment. (c)
Their color correspondence (red channel) is noisy and with many outliers. The objec-
tive is to fit a color transfer curve which can faithfully map the color in (a) to that in
(b).

same input color corresponds to a few different colors on the captured image). If a

B-spline curve is applied to fit the noisy color correspondence, the transfer curve will

be distorted with reduced dynamic range. This will greatly affect the color transfer

curve estimation.

To further improve the global model, we adopt an EM-based algorithm for color correc-

tion as in the case of NNF interpolation. The color correspondence can be re-arranged

as D = D0∪D1∪...∪D255 with Dm = {(m, ym,i)}Nm

i=1 for input color valuem = 0, ..., 255.

From the observation, Dm can also be modeled as a mixture of Gaussian distributed

inliers and uniformly distributed outliers. We need to estimate the percentage and

variance of inliers θm = (γm, σ
2
m) for Dm.

During the E-step, the probability of color pair (m, ym,i) being an inlier can be esti-

mated using:

pm,i =
γm exp

(
−‖ym,i−fc(m)‖2

2σ2
m

)
γm exp

(
−‖ym,i−fc(m)‖2

2σ2
m

)
+ 1−γm

256
(2πσ2

m)
1
2

. (5.16)

During the M-step, θm = (γm, σ
2
m) is updated as:
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Algorithm 6: Color Correction
1 Input: Completed image Ic and masks {Mi}1

i=0;
2 for each RGB color channel do
3 Fit a B-spline curve with color correspondence D;
4 for i = 1 : Tout do
5 for m = 0 : 255 do
6 for j = 1 : Tin do
7 E-step: update posterior probability as for Eqn.(5.16);
8 M-step: update model parameteras for Eqn.(5.17);

9 Remove color pairs with low probability from D;
10 Fit a B-spline curve with updated D;
11 Apply color transfer curve to image region on Ic withinM0 for image

correction.
12 Output: Color corrected image O.


γm = tr(Pm)

Nm
,

σ2
m = (Ym−Zm)TPm(Ym−Zm)

tr(Pm)
,

(5.17)

where Pm = diag(pm,1 , ..., pm,Nm
) is a diagonal matrix, Ym =

(
ym,1 , ..., ym,Nm

)T and

Zm = (fc(m), ...,fc(m))T ∈ RNm are column vectors.

For each input color value m ∈ {0, ..., 255}, the EM algorithm is applied for Tin itera-

tions and followed by removing the input and target color pairs with low probability

being inliers (i.e. pm,i < τpc) from D. When the outliers in every input color values

have been removed, the color transfer curve is re-estimated with the updated color

correspondence D. After the whole process has been iterated for Tout iterations, the

color transfer function is applied to image regions on Ic within M0. Algorithm 6

summarizes our proposed color correction algorithm.
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5.5 Numerical Results

In this section, we report the implementation details and numerical results of our pro-

posed image completion method and compare them to other commonly used methods.

Testing images are from [4].

5.5.1 Image Completion via Dense Correspondence

For PatchMatch, the NNF parameters (u, v, s, θ) take discrete values. The scale pa-

rameter s has been discretized into 256 discrete scales. The minimum and maximum

scale is 0.33 and 3.00, respectively. The scale ratio between consecutive scales is fixed.

Similarly, there are 90 discrete orientations for the orientation parameter θ. The start

angle is −45◦, and the end angle is 45◦ with the angle step being 1◦. In random search,

the adaptive search threshold is set to τrnd = (10, 10, 25, 9)T, the edge threshold to

determine edge patches is set to τedge = 60. The size of the image pyramid K is the

largest integer such that 2−K ×max(m,n) ≥ 32 for I1 ∈ Rm×n . For example, if the

image size is 800× 1024, then K = 5.

The patch size is selected as 7×7 (i.e. patch radius is r = 3). The length of the BRIEF

descriptor is set to be nb = 128. When the pixels on patch Ekr (F k(p)) does not fall on a

regular grid of image Ek, bi-linear interpolation is applied to compute its pixel values.

Its BRIEF descriptor is then extracted from the interpolated pixel values.

Data normalization has been applied to each column dimension of X and Y so that

each parameter has zero mean and unit variance. It enables us to fix the Gaussian

kernel filter range β in NNF interpolation for different “hole” sizes. The EM algorithm

will stop if it does not converge within TEM = 50 iterations. When the model parameter

of the previous level is not available, the percentage of inliers is initialized as γ = 0.5,

otherwise the model parameter is initialized using the parameter of the previous level.
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The re-scaling factor for the initialization of the model parameter across pyramid level

was set to κ = 2. The regularization parameter λ is set to 10. A data pair will be

selected as a control point only if it is very likely an inlier (i.e. its inlier probability esti-

mated using the previous level interpolation function exceeds ρ = 0.99). The threshold

value for identifying mask region is set to τp = 0.7 through cross-validation. A data

point with the confidence score larger than 0.7 is considered to be reliably estimated

inlier.

It is essential to have some good matching parameters found at the initial pyramid

level so that these good parameters can be propagated at consecutive pyramid levels.

With more iterations, a larger number of random searches will be applied to exploit the

parameter space in order to increase the probability of obtaining some good matches.

The total number of iterations applied at the first level was selected as 16. Each type

of propagation is performed 4 times. For the other levels, the number of iteration for

propagation is reduced to 4, i.e. each type propagation is performed only once.

For NNF interpolation, the number of control points M is around 0.5% of the total

number of points N within the ROI. The filter range of the Gaussian kernel is selected

as β = 100. There are two reasons to set the filter range to such a large value. First,

the filter range β controls the smoothness of the interpolation result. As the NNF is

generally noisy, a large β can remove the noisy high frequency components. Second, a

small filter range is not able to interpolate the NNF within a large occluded region as

the Gaussian kernel will return a very small value when the input location is far from

the control points.

5.5.2 Color Correction

The B-spline for color correction has L = 7 knots. The maximum inner Tin and outer

Tout iterations for the EM algorithm is 3 and 5, respectively. The threshold value for
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(a) Input image segment. (b) Image completion result.

(c) Color correction with B-spline. (d) Proposed color correction.

Figure 5.5: Color correction comparison. (a) Image segment within the ROI. (b)
Image completion result by our method before color correction. (c) Color correction
result by directly fitting a B-spline curve for each color channel using the obtained color
correspondence. (d) Color correction result of our proposed method. (Better view in
electronic version.)

defining inliers is set to τpc = 0.7 via cross-validation.

In this section, we make visual comparisons between the result without color correction,

with color correction by direct B-spline fitting, and with our proposed color correction

method. As shown in Fig. 5.5 (b), though the completed texture is highly coherent

with the original image, there is an apparent color difference between the completed

region and the original image in the image completion result. If a B-spline curve is fitted

for every color channel using the obtained color correspondence, the color difference

in 5.5 (c) is alleviated, however, the completed region is still a bit darker and can be

identified. This is caused by using a noisy color correspondence for color correction.

Fig 5.5 (d) shows our proposed color correction result where the completed region has

no visible color difference compared to the input image in Fig 5.5 (a). This validates
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the effectiveness of our proposed color correction method for image completion.

5.5.3 Comparison with State-of-the-Art Methods

In this section, we compare our proposed image completion via dense correspondence

method with state-of-the-art image completion methods [3, 4]. Image melding [3] is a

single image completion method based on patch correspondence within the input image

itself. Zhu et al.’s method [4] is a recently proposed Internet-based image completion

method based on sparse and line correspondence. Image melding method requires a

detailed mask to identify the unwanted image region, while Zhu et al.’s method and our

proposed method only need a rectangle to mark ROI. The Matlab realization of image

melding is from authors’ website. The image completion results of [4] are provided by

the authors.

Fig. 5.6 and Fig. 5.7 present two set of image completion results for detailed compar-

ison. Fig. 5.8 - Fig. 5.11 show more comparison results. For completeness, we also

show, in Fig. 5.13, the exemplar images used by our image completion method.

Fig. 5.6 (a) shows an image which is relatively easy to complete since the background is

a large plane where the correspondence can be well modeled by a perspective transform.

We would like to remove the stranger from the photo. In Fig. 5.6 (b), image melding

method reconstructs a distorted image region since there are not enough repetitive

image patches. This reveals the shortcoming of image completion methods based on

a single image. In Fig. 5.6 (c), Zhu et al.’s method utilizes exemplar images from

Internet for image completion. The completed image region is essentially coherent

with the original image content in the input image. However, there is a visible miss-

alignment on the top boundary between completed region and the input image. The

completed image region also has a slightly different color style compared with the

input image as there is no color correction performed in [4]. Fig. 5.6 (d) shows the
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(a) Input image. (b) Image melding result [3].

(c) Zhu et al.’s result [4]. (d) Our completion result.

Figure 5.6: Comparison with state-of-the-art image completion methods for
the image taken near the Duomo of Milan. (a) Input image with a labeled ROI
(red rectangles). (b) Image melding result [3]. (c) Image completion result from [4].
(d) our proposed image completion via dense correspondence result. (Better view in
electronic version.)

image completion result by our proposed method. With dense correspondence and

NNF interpolation, the completed image content is highly consistent with input image.

Though the exemplar has a distinct color style as shown in Fig. 5.5 (b), our final

image completion result has no visible color difference thanks to our color correction

algorithm.

In Fig. 5.7 (a), there is a construction site on the Hampton Palace. We would like

to restore its normal look. As shown in Fig. 5.7 (b), image melding is not able to

reconstruct a natural-looking building due to the large size of the “hole” and non-

stationary image content. In Fig. 5.7 (c), Zhu et al.’s method faithfully reconstructs

a natural looking image. In Fig. 5.7 (d), our image completion result is also faithful.
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(a) Input image. (b) Image melding result [3].

(c) Zhu et al.’s result [4]. (d) Our completion result.

Figure 5.7: Comparison with state-of-the-art image completion methods for
the image taken near the Hampton Palace. (a) Input image with a labeled ROI
(red rectangles). (b) Image melding result [3]. (c) Image completion result from [4].
(d) our proposed image completion via dense correspondence result. (Better view in
electronic version.)

When making a comparison between the result in Fig. 5.7 (c) and Fig. 5.7 (d), we can

find that our result has an indistinguishable color while there is a slight color difference

in the result of [4]. The building in our completed result (shown in Fig. 5.7 (d)) has

almost the same orientation as that in the input image (Fig. 5.7 (a)), while the building

in Fig. 5.7 (c) is slightly tilted.

In the first row of Fig. 5.8 and Fig. 5.9, image melding still fails to reconstruct a

natural looking image. Zhu et al.’s method faithfully reconstructs the image content

behind the boat. However, the reconstructed image region seems to have a larger scale

compared to the input image and has a slight miss-alignment. The image completion

result by our proposed method feels more realistic. It is interesting to find that image
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(a) Input image. (b) Image melding result [3].

Figure 5.8: Comparison with state-of-the-art image completion methods. (a)
Input images with a labeled ROI (red rectangles). (b) Image melding results [3]. The
input images from top to bottom are taken near Palazzo Santa Sofia, Notre-Dame de
Paris, Colosseum, and Kinkaku-ji, respectively. (Better view in electronic version.)

melding method achieves a better completion result for the second input image in Fig.

5.8 - 5.9 (the image taken near the Notre-Dame de Paris). This is because the Notre-
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(a) Zhu et al.’s result [4]. (b) Our completion result.

Figure 5.9: Comparison with state-of-the-art image completion methods. (a)
Image completion results from [4]. (b) our proposed image completion via dense corre-
spondence results. The input images from top to bottom are taken near Palazzo Santa
Sofia, Notre-Dame de Paris, Colosseum, and Kinkaku-ji, respectively. (Better view in
electronic version.)
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(a) Input image. (b) Image melding result [3].

Figure 5.10: Comparison with state-of-the-art image completion methods..
(a) Input images with a labeled ROI (red rectangles). (b) Image melding results [3].
The input images from top to bottom are taken near Rialto Bridge, Kensington Palace,
and Big Ben, respectively. (Better view in electronic version.)

Dame de Paris is symmetric and image melding method makes use of image content

from the right side. Single image based method also has the advantage of consistent

color across the reconstructed image. For the input image taken near the Colosseum,

image melding method completes the “hole” with slight distortion. The result by Zhu et

al.’s method has a visible inconsistency in the color rendering. Our proposed method

reconstructs the content within the ROI realistically. In the last row, Zhu et al.’s



5.5. Numerical Results 167

(a) Zhu et al.’s result [4]. (b) Our completion result.

Figure 5.11: Comparison with state-of-the-art image completion methods. (a)
Image completion results from [4]. (b) our proposed image completion via dense corre-
spondence results. The input images from top to bottom are taken near Rialto Bridge,
Kensington Palace, and Big Ben, respectively. (Better view in electronic version.)

method and our method have similar completion results. Three further examples are

shown in Fig. 5.10 and Fig. 5.11 where we can appreciate a behaviour of the three

algorithms similar to what seen in Fig. 5.8 - 5.9. Image melding tends to struggle

when the region to be completed is large and there is a lack of similar patches in the

image. It performs well otherwise. The other two methods, i.e. [4] and ours, perform

consistently well with our method often providing a more consistent rendering.
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Figure 5.12: Sample image completion results by a deep neural network based
method [5].

Figure 5.13: The exemplar images used for image completion.

The data-driven methods of [5, 40] are powerful and are able to learn a single and

generally effective model for image completion from a large dataset. In Fig 5.12, sample

image completion results using [5] are shown. We conjecture that the unsatisfactory

results can be due to the inconsistency between the training dataset and the testing

image. Our proposed method is a model-based approach so it does not suffer from

potentional training/testing mismatches and the prior information (i.e. the smoothness

of the dense correspondence and the color transfer curve) is important to provide the

much better image completion results. We also note that our proposed method relies

on the use of “side information” provided by the retrieved exemplar images, whereas

the other two approaches do not need an exemplar image. This also clarify why we

perform much better.
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5.5.4 Subjective Evaluation for Image Completion

In order to perform subjective evaluation, we have surveyed 34 people about their

preference over different image completion results. Each respondent was asked to make

a pairwise comparison for 9 pairs of image completion results. The 9 pairs of image

completion results are randomly selected from the results of image melding (method

1), Zhu et al.’s method (method 2), and our proposed method (method 3) shown in

Fig. 5.6 - Fig. 5.11. For method i and j, with i, j = 1, 2, 3 and i 6= j, we have obtained

102 pairwise comparison results. This gives us a winning matrix Ξ ∈ R3×3 :

Ξ =


0 0.95 0.83

0.05 0 0.75

0.17 0.25 0

 , (5.18)

where Ξ(i, j) indicates the fraction of respondents that think the result of method j is

better than that of method i with i, j ∈ {1, 2, 3}.

From the winning matrix Ξ, we can find that about 83% and 75% of the respondents

think the image completion results of our proposed method are better than those of

image melding and Zhu et al.’s method, respectively. There are also some interesting

results from the survey. We thought that image melding achieves the best result for the

Notre-Dame de Paris case, while most respondents think Zhu et al.’s method produces

a better result. This could be due to a brighter color and more detailed structure in

the result of Zhu et al.’s method. Another example is that most respondents prefer

our result in the Big Ben case over Zhu et al.’s. This may be due to a slightly miss-

alignment on the Zhu et al.’s result.
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(a) Input Image. (b) Whyte et al.’s result. (c) Our result.

(d) Input Image. (e) Whyte et al.’s result. (f) Our result.

Figure 5.14: Further image completion results evaluated on the images from
[6].

5.5.5 Computation Complexity and Further Examples

Table 5.5.5 shows the computation time of our proposed image completion method.

We have implemented our method using C++. The evaluation is performed on a PC

with Intel Core i7 3.4 GHz CPU. From Table I, the computation time of our image

completion algorithm is generally linear with the number of pixels in the ROI region,

while may fluctuate depending on the complexity of the image content. To show that

our method works well also in different conditions, we have also performed image

completion on two images from [6]. The results are shown in Fig. 5.14.
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5.6 Summary

In this chapter, we have proposed a novel Internet-based image completion method.

Instead of correlating the input image with the retrieved exemplar image based on

sparse correspondence, we propose to make use of dense correspondence to relate every

pixel within the ROI to a pixel on the exemplar image. This enables accurate image

content transfer from the exemplar image and reliable color correction to remove color

difference between the completed part and the input image.

A hierarchical framework is built to perform dense correspondence estimation, image

completion, and color correction jointly. The dense correspondence estimation is based

on a hierarchical variation of the PatchMatch method. Contrary to other approaches,

BRIEF descriptor is adopted to handle the inter image differences. As the estimated

NNF is in general noisy and with large occlusion within the “hole”, an EM-based method

is applied to identify reliable inliers from the estimated dense correspondence and

interpolate a smooth NNF over the occluded region. A global model is applied for color

correction. As a noisy color correspondence is observed, color correction is also based

on a similar EM algorithm to remove outlier color correspondences. To demonstrate our

method, we made a comparison with the state-of-the-art image completion methods.

From the numerical results, we can see that our proposed image completion method

achieves photo realistic results on a wide range of images.



Chapter 6

Conclusion

6.1 Summary

In this thesis we have considered two specific image enhancement problems and pushed

the boundaries on both the learning-based direction and the model-based direction. For

single image super-resolution, we presented a new learning-based multi-layer dictionary

model using either unstructured dictionary or convolutional dictionary. The proposed

model design provides useful insights on the workings of Deep Neural Networks (DNNs)

and enables us to bridge the established sparse representation theory with DNNs.

Finally, we presented a model-based image completion algorithm which transfers image

contents from an exemplar image to the input image by using an interpolated smooth

nearest neighbor field.

In Chapter 3, we presented a Deep Analysis Dictionary Model (DeepAM) which con-

sists of multiple layers of linear and non-linear transforms with an application on single

image super-resolution. A L-layer DeepAM is composed of L layers of analysis dictio-

nary and element-wise soft-thresholding pairs and a single layer of synthesis dictionary.

The forward pass of DeepAM is efficient and contains matrix multiplication with the

173
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analysis dictionaries and the element-wise soft-thresholding operations. To have an

effective deep model, we propose to divide each analysis dictionary into an Information

Preserving Analysis Dictionary (IPAD) and a Clustering Analysis Dictionary (CAD) to

preserve the essential information from the input signal and generate discriminative fea-

ture representations, respectively. Based on different learning objectives, we proposed

learning algorithms for both the IPAD and its soft-thresholds pair and the CAD and

its thresholds pair. We demonstrated in simulation results that the learned DeepAM

achieves comparable performance as the Deep Neural Networks (DNNs) which has the

same structure and is optimized using backpropagation and other existing single image

super-resolution methods. The model design of DeepAM provides some insights on the

workings of the fully connected DNNs.

In Chapter 4, we generalized DeepAM by replacing its linear transforms from un-

structured dictionaries to convolutional dictionaries. A L layer Deep Convolutional

Analysis Dictionary Model (DeepCAM) consists of L layers of convolutional analysis

dictionary and element-wise soft-thresholding pairs and a single layer of convolutional

synthesis dictionary. Each convolutional analysis dictionary is also composed of a

convolutional IPAD sub-dictionary and a convolutional CAD convolutional analysis

sub-dictionary. Based on the convolutional structure within DeepCAM, the minimum

number of IPAD and CAD atoms at each layer has been derived based on information

preserving and discriminative feature generation requirement. The convolutional IPAD

and CAD are learned using variations of our proposed convolutional analysis dictio-

nary learning algorithm which is able to achieve efficient learning by exploiting the

structural properties of convolutional dictionaries. Simulation results show that the

learned DeepCAM achieves a better performance than DeepAM while using a smaller

number of parameters.

In Chapter 5, we considered the Internet-based image completion problem whose ob-

jective is to transfer image contents from an exemplar image to the input image and
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the transferred contents should be consistent with the input image. We presented an

image completion algorithm based on dense correspondence which models pixel-wise

correspondences between two images and therefore has the potential to generate highly

accurate image content transfer. A hierarchical PatchMatch algorithm is proposed to

progressively generate the nearest neighbor field (NNF) between the input image and

the exemplar image. The estimated NNF is usually noisy and with a large occlusion

area corresponding to the region to be replaced. By modelling NNF as a smooth field,

we propose to an Expectation-Maximization algorithm to interpolate a smooth NNF

over the occlusion area which is then used to transfer contents. Color correction is

further applied to diminish the color differences between the transferred contents and

the original input image. Numerical results show that the proposed image completion

method can achieve photo realistic results.

6.2 Future research

We conclude this thesis with some future research directions.

1. Joint deep dictionary learning algorithm – We presented a layer-wise algo-

rithm for learning the Deep Analysis Dictionary Model (DeepAM). The multi-

layer analysis dictionaries and soft-thresholds are learned sequentially from shal-

low layers to deep layers and are therefore independently optimized. Simulation

results in Chapter 3 demonstrate that backpropagation algorithm can be applied

to further improve a learned DeepAM with minor changes. An efficient learning

algorithm which is able to learn all components jointly and incorporate the de-

sired properties of the analysis dictionaries and the soft-thresholds will be useful

for a deep dictionary model.

2. General non-linear functions – We have applied soft-thresholding operators as

the non-linear functions in DeepAM. This is Justified if a sparse modelling point
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of view is used. As discussed in Chapter 3, a DeepAM with soft-thresholding

can be considered as a deep model with rectified linear unit (ReLU) as non-

linear functions, while it is still not clear how to learn DeepAM with other non-

linear functions. It would be very interesting to generalize DeepAM with soft-

thresholding to DeepAM with other non-linear functions such as Leaky ReLU

function, Sigmoid function, and Tanh function. This would enable us to further

improve the performance of the learned DeepAM and apply DeepAM on other

applications like for example classification tasks.

3. Image completion with multiple exemplar images – We presented an image

completion algorithm based on an single exemplar image. This imposes some

requirements on the quality of this exemplar image, like for example having no

occlusions. A more robust approach is to use multiple exemplar images for image

completion. Based on the contents of the exemplar images, the transferred image

contents can come from different exemplar images. This will lead to a more

flexible framework and better image completion results.
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