439 research outputs found

    Exploiting Polyhedral Symmetries in Social Choice

    Full text link
    A large amount of literature in social choice theory deals with quantifying the probability of certain election outcomes. One way of computing the probability of a specific voting situation under the Impartial Anonymous Culture assumption is via counting integral points in polyhedra. Here, Ehrhart theory can help, but unfortunately the dimension and complexity of the involved polyhedra grows rapidly with the number of candidates. However, if we exploit available polyhedral symmetries, some computations become possible that previously were infeasible. We show this in three well known examples: Condorcet's paradox, Condorcet efficiency of plurality voting and in Plurality voting vs Plurality Runoff.Comment: 14 pages; with minor improvements; to be published in Social Choice and Welfar

    Quantum Algorithm Implementations for Beginners

    Full text link
    As quantum computers become available to the general public, the need has arisen to train a cohort of quantum programmers, many of whom have been developing classical computer programs for most of their careers. While currently available quantum computers have less than 100 qubits, quantum computing hardware is widely expected to grow in terms of qubit count, quality, and connectivity. This review aims to explain the principles of quantum programming, which are quite different from classical programming, with straightforward algebra that makes understanding of the underlying fascinating quantum mechanical principles optional. We give an introduction to quantum computing algorithms and their implementation on real quantum hardware. We survey 20 different quantum algorithms, attempting to describe each in a succinct and self-contained fashion. We show how these algorithms can be implemented on IBM's quantum computer, and in each case, we discuss the results of the implementation with respect to differences between the simulator and the actual hardware runs. This article introduces computer scientists, physicists, and engineers to quantum algorithms and provides a blueprint for their implementations

    Techniques for the realization of ultra- reliable spaceborne computer Final report

    Get PDF
    Bibliography and new techniques for use of error correction and redundancy to improve reliability of spaceborne computer

    Obtaining representations for probabilities of voting outcomes with effectively unlimited precision integer arithmetic

    No full text
    A procedure is developed to obtain representations for the probability of election outcomes with the Impartial Anonymous Culture Condition and the Maximal Culture Condition. The procedure is based upon a process of performing arithmetic with integers, while maintaining absolute precision with very large integer numbers. The procedure is then used to develop probability representations for a number of different voting outcomes, which have to date been considered to be intractable to obtain with the use of standard algebraic techniques.

    Computer Science Principles with Python

    Get PDF
    This textbook is intended to be used for a first course in computer science, such as the College Board’s Advanced Placement course known as AP Computer Science Principles (CSP). This book includes all the topics on the CSP exam, plus some additional topics. It takes a breadth-first approach, with an emphasis on the principles which form the foundation for hardware and software. No prior experience with programming should be required to use this book. This version of the book uses the Python programming language.https://rdw.rowan.edu/oer/1024/thumbnail.jp

    Computer Science Principles with C++

    Get PDF
    This textbook is intended to be used for a first course in computer science, such as the College Board’s Advanced Placement course known as AP Computer Science Principles (CSP). This book includes all the topics on the CSP exam, plus some additional topics. It takes a breadth-first approach, with an emphasis on the principles which form the foundation for hardware and software. No prior experience with programming should be required to use this book. This version of the book uses the C++ programming language.https://rdw.rowan.edu/oer/1025/thumbnail.jp

    Formal methods and digital systems validation for airborne systems

    Get PDF
    This report has been prepared to supplement a forthcoming chapter on formal methods in the FAA Digital Systems Validation Handbook. Its purpose is as follows: to outline the technical basis for formal methods in computer science; to explain the use of formal methods in the specification and verification of software and hardware requirements, designs, and implementations; to identify the benefits, weaknesses, and difficulties in applying these methods to digital systems used on board aircraft; and to suggest factors for consideration when formal methods are offered in support of certification. These latter factors assume the context for software development and assurance described in RTCA document DO-178B, 'Software Considerations in Airborne Systems and Equipment Certification,' Dec. 1992

    Advancing the Applicability of Reinforcement Learning to Autonomous Control

    Get PDF
    ï»żMit dateneffizientem Reinforcement Learning (RL) konnten beeindruckendeErgebnisse erzielt werden, z.B. fĂŒr die Regelung von Gasturbinen. In derPraxis erfordert die Anwendung von RL jedoch noch viel manuelle Arbeit, wasbisher RL fĂŒr die autonome Regelung untauglich erscheinen ließ. Dievorliegende Arbeit adressiert einige der verbleibenden Probleme, insbesonderein Bezug auf die ZuverlĂ€ssigkeit der Policy-Erstellung. Es werden zunĂ€chst RL-Probleme mit diskreten Zustands- und AktionsrĂ€umenbetrachtet. FĂŒr solche Probleme wird hĂ€ufig ein MDP aus BeobachtungengeschĂ€tzt, um dann auf Basis dieser MDP-SchĂ€tzung eine Policy abzuleiten. DieArbeit beschreibt, wie die SchĂ€tzer-Unsicherheit des MDP in diePolicy-Erstellung eingebracht werden kann, um mit diesem Wissen das Risikoeiner schlechten Policy aufgrund einer fehlerhaften MDP-SchĂ€tzung zuverringern. Außerdem wird so effiziente Exploration sowie Policy-Bewertungermöglicht. Anschließend wendet sich die Arbeit Problemen mit kontinuierlichenZustandsrĂ€umen zu und konzentriert sich auf auf RL-Verfahren, welche aufFitted Q-Iteration (FQI) basieren, insbesondere Neural Fitted Q-Iteration(NFQ). Zwar ist NFQ sehr dateneffizient, jedoch nicht so zuverlĂ€ssig, wie fĂŒrdie autonome Regelung nötig wĂ€re. Die Arbeit schlĂ€gt die Verwendung vonEnsembles vor, um die ZuverlĂ€ssigkeit von NFQ zu erhöhen. Es werden eine Reihevon Möglichkeiten der Ensemble-Nutzung entworfen und evaluiert. Bei allenbetrachteten RL-Problemen sorgen Ensembles fĂŒr eine zuverlĂ€ssigere Erstellungguter Policies. Im nĂ€chsten Schritt werden Möglichkeiten der Policy-Bewertung beikontinuierlichen ZustandsrĂ€umen besprochen. Die Arbeit schlĂ€gt vor, FittedPolicy Evaluation (FPE), eine Variante von FQI fĂŒr Policy Evaluation, mitanderen Regressionsverfahren und/oder anderen DatensĂ€tzen zu kombinieren, umein Maß fĂŒr die Policy-QualitĂ€t zu erhalten. Experimente zeigen, dassExtra-Tree-FPE ein realistisches QualitĂ€tsmaß fĂŒr NFQ-generierte Policies liefernkann. Schließlich kombiniert die Arbeit Ensembles und Policy-Bewertung, um mit sichĂ€ndernden RL-Problemen umzugehen. Der wesentliche Beitrag ist das EvolvingEnsemble, dessen Policy sich langsam Ă€ndert, indem alte, untaugliche Policiesentfernt und neue hinzugefĂŒgt werden. Es zeigt sich, dass das EvolvingEnsemble deutlich besser funktioniert als einfachere AnsĂ€tze.With data-efficient reinforcement learning (RL) methods impressive resultscould be achieved, e.g., in the context of gas turbine control. However, inpractice the application of RL still requires much human intervention, whichhinders the application of RL to autonomous control. This thesis addressessome of the remaining problems, particularly regarding the reliability of thepolicy generation process. The thesis first discusses RL problems with discrete state and action spaces.In that context, often an MDP is estimated from observations. It is describedhow to incorporate the estimators' uncertainties into the policy generationprocess. This information can then be used to reduce the risk of obtaining apoor policy due to flawed MDP estimates. Moreover, it is discussed how to usethe knowledge of uncertainty for efficient exploration and the assessment ofpolicy quality without requiring the policy's execution. The thesis then moves on to continuous state problems and focuses on methodsbased on fitted Q-iteration (FQI), particularly neural fitted Q-iteration(NFQ). Although NFQ has proven to be very data-efficient, it is not asreliable as required for autonomous control. The thesis proposes to useensembles to increase reliability. Several ways of ensemble usage in an NFQcontext are discussed and evaluated on a number of benchmark domains. It showsthat in all considered domains with ensembles good policies can be producedmore reliably. Next, policy assessment in continuous domains is discussed. The thesisproposes to use fitted policy evaluation (FPE), an adaptation of FQI to policyevaluation, combined with a different function approximator and/or differentdataset to obtain a measure for policy quality. Results of experiments showthat extra-tree FPE, applied to policies generated by NFQ, produces valuefunctions that can well be used to reason about the true policy quality. Finally, the thesis combines ensembles and policy assessment to derive methodsthat can deal with changing environments. The major contribution is theevolving ensemble. The policy of the evolving ensemble changes slowly as newpolicies are added and old policies removed. It turns out that the evolvingensemble approaches work considerably better than simpler approaches likesingle policies learned with recent observations or simple ensembles
    • 

    corecore