-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Digitale Bibliothek Thuringen

Advancing the Applicability of
Reinforcement Learning to
Autonomous Control

Dissertation

zur Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)

vorgelegt der Fakultit fir Informatik und Automatisierung
der Technischen Universitat Ilmenau

von Dipl.-Inf. Alexander Hans
geboren am 18.06. 1981 in Nordhausen

Tag der Einreichung: 02.12.2013

Tag der Verteidigung;: 15.07.2014
1. Gutachter: Prof. Dr. Horst-Michael Grof3
2. Gutachter: Prof. Dr. Damien Ernst
3. Gutachter: Dr. Hans-Georg Zimmermann

urn:nbn:de:gbv:ilm1-2014000277


https://core.ac.uk/display/224752131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Abstract

With data-efficient reinforcement learning (RL) methods impressive results could
be achieved, e.g., in the context of gas turbine control. However, in practice
the application of RL still requires much human intervention, which hinders the
application of RL to autonomous control. This thesis addresses some of the
remaining problems, particularly regarding the reliability of the policy generation
process.

The thesis first discusses RL problems with discrete state and action spaces. In
that context, often an MDP is estimated from observations. It is described how to
incorporate the estimators’ uncertainties into the policy generation process. This
information can then be used to reduce the risk of obtaining a poor policy due
to flawed MDP estimates. Moreover, it is discussed how to use the knowledge of
uncertainty for efficient exploration and the assessment of policy quality without
requiring the policy’s execution.

The thesis then moves on to continuous state problems and focuses on methods
based on fitted Q-iteration (FQI), particularly neural fitted Q-iteration (NFQ).
Although NFQ has proven to be very data-efficient, it is not as reliable as re-
quired for autonomous control. The thesis proposes to use ensembles to increase
reliability. Several ways of ensemble usage in an NF(Q context are discussed and
evaluated on a number of benchmark domains. It shows that in all considered
domains with ensembles good policies can be produced more reliably.

Next, policy assessment in continuous domains is discussed. The thesis proposes
to use fitted policy evaluation (FPE), an adaptation of FQI to policy evaluation,
combined with a different function approximator and/or different dataset to ob-
tain a measure for policy quality. Results of experiments show that extra-tree
FPE, applied to policies generated by NFQ, produces value functions that can
well be used to reason about the true policy quality.

Finally, the thesis combines ensembles and policy assessment to derive methods
that can deal with changing environments. The major contribution is the evolving
ensemble. The policy of the evolving ensemble changes slowly as new policies
are added and old policies removed. It turns out that the evolving ensemble
approaches work considerably better than simpler approaches like single policies
learned with recent observations or simple ensembles.






/Zusammenfassung

Mit dateneffizientem Reinforcement Learning (RL) konnten beeindruckende Er-
gebnisse erzielt werden, z.B. fiir die Regelung von Gasturbinen. In der Praxis
erfordert die Anwendung von RL jedoch noch viel manuelle Arbeit, was bisher
RL fir die autonome Regelung untauglich erscheinen lief. Die vorliegende Ar-
beit adressiert einige der verbleibenden Probleme, insbesondere in Bezug auf die
Zuverlassigkeit der Policy-Erstellung.

Es werden zunédchst RL-Probleme mit diskreten Zustands- und Aktionsraumen
betrachtet. Fiir solche Probleme wird héufig ein MDP aus Beobachtungen ge-
schatzt, um dann auf Basis dieser MDP-Schétzung eine Policy abzuleiten. Die
Arbeit beschreibt, wie die Schétzer-Unsicherheit des MDP in die Policy-Erstellung
eingebracht werden kann, um mit diesem Wissen das Risiko einer schlechten Po-
licy aufgrund einer fehlerhaften MDP-Schatzung zu verringern. Auflerdem wird
so effiziente Exploration sowie Policy-Bewertung ermoglicht.

Anschlielend wendet sich die Arbeit Problemen mit kontinuierlichen Zustands-
rdumen zu und konzentriert sich auf auf RL-Verfahren, welche auf Fitted Q-
Iteration (FQI) basieren, insbesondere Neural Fitted Q-Iteration (NFQ). Zwar
ist NFQ sehr dateneffizient, jedoch nicht so zuverléssig, wie fiir die autonome Re-
gelung notig ware. Die Arbeit schldgt die Verwendung von Ensembles vor, um die
Zuverlassigkeit von NFQ zu erhohen. Es werden eine Reihe von Méglichkeiten der
Ensemble-Nutzung entworfen und evaluiert. Bei allen betrachteten RL-Problemen
sorgen Ensembles fiir eine zuverlassigere Erstellung guter Policies.

Im néchsten Schritt werden Moglichkeiten der Policy-Bewertung bei kontinuierli-
chen Zustandsrdaumen besprochen. Die Arbeit schliagt vor, Fitted Policy Evalua-
tion (FPE), eine Variante von FQI fiir Policy Evaluation, mit anderen Regres-
sionsverfahren und/oder anderen Datensitzen zu kombinieren, um ein Maf fiir
die Policy-Qualitdt zu erhalten. Experimente zeigen, dass Extra-Tree-FPE ein
realistisches Qualitdtsmaf fiir NFQ-generierte Policies liefern kann.

Schliefllich kombiniert die Arbeit Ensembles und Policy-Bewertung, um mit sich
andernden RL-Problemen umzugehen. Der wesentliche Beitrag ist das Evolving
Ensemble, dessen Policy sich langsam andert, indem alte, untaugliche Policies
entfernt und neue hinzugefiigt werden. Es zeigt sich, dass das Evolving Ensemble
deutlich besser funktioniert als einfachere Ansétze.






Danksagung

Die vorliegende Arbeit entstand wéhrend meiner Zeit als Doktorand bei der Sie-
mens AG, Corporate Technology, Intelligent Systems and Control in Miinchen.
Gleichzeitig war ich externer Doktorand des Fachgebiets fiir Neuroinformatik und
Kognitive Robotik der TU Ilmenau.

Zunachst danke ich Prof. Dr. Horst-Michael Grof fiir die Bereitschaft, die uni-
versitdre Betreuung der Arbeit zu iibernehmen, und die damit verbundene Un-
terstiitzung. Weiterhin danke ich Prof. Dr. Thomas Runkler fiir die Moglichkeit,
diese Arbeit als Mitglied seiner ausgezeichneten Fachgruppe anfertigen zu konnen.

Mein besonderer Dank gilt Dr. Steffen Udluft, der mir als Betreuer nahezu taglich
mit Rat und Tat zur Seite stand. Von unseren zahlreichen Diskussionen profitierte
diese Arbeit sehr. Hiaufig wurden so aus ersten, vagen Ideen umsetzbare Konzep-
te. Ich habe von ihm sehr viel gelernt und unsere Zusammenarbeit sehr genossen.
Weitere Mitglieder der Fachgruppe, insbesondere Volkmar Sterzing, Dr. Ralph
Grothmann und Dr. Hans-Georg Zimmermann, haben mir nicht nur zum Thema
der Dissertation wertvolle Hinweise gegeben. Letztgenanntem danke ich dariiber
hinaus fiir die Bereitschaft die Rolle eines Gutachters zu iibernehmen. Von Dieter
Bogdoll und Dr. Christoph Tietz habe ich viel iiber gute Software-Entwicklung
gelernt. Auch geht mein Dank an meine Mit-Doktoranden Dr. Daniel Schnee-
gafl, Dr. Anton Maximilian Schéfer sowie in besonderem Mafle Siegmund Diill.
Auch Diskussionen mit ihnen haben die Arbeit nicht unerheblich beeinflusst. Sie
alle haben zu einem ausgesprochen angenehmen Arbeitsklima beigetragen, das
jederzeit von Offenheit und Freundlichkeit gepragt war.

Dr. Damien Ernst danke ich fiir seine Einsichten in Fitted Q-Iteration und Extra-
Trees sowie fiir seine Bereitschaft als Zweitgutachter zu fungieren.

Schliefflich wére all dies nicht moglich gewesen ohne die bedingungslose Unterstiit-
zung, die ich von meiner Familie und insbesondere meinen Eltern immer erfahren
habe. Bei all meinen Vorhaben konnte ich mich stets auf sie verlassen.

Vor allem aber mochte ich mich bei Anne bedanken, die mit mir viele Momente
des Erfolgs, aber auch der Frustration geteilt hat und in der Lage war, mich stets
zur Weiterarbeit zu motivieren.






Contents

[List of Figures| xii
(List of Tables| xiii
[List of Acronyms| XV
(1__Introduction| 1
(1.1 RL for Autonomous Learning| . . . . . .. ... ... .. ..... 3
(1.2 Incorporation of Uncertainty| . . . . . . . . . ... ... ... ... )
(.3 Fnsembles for More Reliable Neural RLI. . . . . . .. .. ... .. 6
(1.4 Real-World Example: Gas Turbine Controll . . . . . . . . .. ... 6
M5 Outlind. . . . . . . 9
(.6 Publications . . . . . ... ... 10

2 Reinforcement Learning| 13
.1 Overview]. . . . . . . . . 13
2.2 Markov Decision Processes| . . . . . . .. ... 0oL 14
2.3 Value Functions| . . . . . . .. ..o 15
2.4 Dynamic Programming/ . . . . . . ... .. ... ... .. ... .. 18
[2.4.1 Policy Evaluation, Improvement, and Iteration|. . . . . . . 19

.42  Value [terationl . . .. .. . .. ... ... L. 20

[2.4.3  Learning from Observations| . . . . . . .. ... ... ... 20

[2.5  Temporal-Difterence Learning| . . . . . . ... ... ... ... .. 22
[2.6  Data-Efficiency| . . . . . . . . ..o o 23
[2.7  Function Approximation| . . . . . . . ... ..o 25
[2.8  Policy Gradient and Policy Search Methods| . . . . . . ... ... 27
2.9  Exploration| . . . . . . .. ... 28
[2.10 Further Readingl. . . . . . . . . . .. ... ... L. 30

[3 Uncertainty Awareness in Discrete Domains| 31
B.1 BasiclIdeal . . . . . . . .. 31




viii Contents
[3.2.1  Frequentist Estimate| . . . . . . . ... ... 33
[3.2.2 Bayesian Estimatel . . . . .. . ... .00 34

[3.3  Monte Carlo Uncertainty Estimate] . . . . . .. ... .. ... .. 35
[3.4  Uncertainty-Aware Value lteration|. . . . . . .. .. ... ... .. 38
[3.5  Full-Matrix Uncertainty Propagation| . . . . . . .. . .. ... .. 39
[3.6  Efficient Diagonal Approximationl . . . . . . ... ... ... ... 41
[3.7 Summary| .. ... 44
[4  Discrete Domain Applications of Uncertainty Awareness 45
[4.1  Quality Assurance] . . . . . . . . . . . ... 45
[4.1.1 Example[ . . . . .. ... o oo 47
4.1.2 Benchmarks . . . . . . ... ... oo 50
[4.1.3  Experiments and Results . . . . .. ... ... .. ... .. 52

42 Selt-Assessment] . . . . . . ..o oo 54
4.2.1 Value Function-Based Seli-Assessment! . . . . . . .. . .. 55
[4.2.2  Experiments|. . . . . . ... ... 56
4.2.3  Related Workl . . . ... ... ... ... ... .. 61
424 Conclusion|. . . . . . . . . . . 62

[4.3  Exploration| . . . . .. ... ... 63
4.3.1  Related Workl . . . ... ... ... ... ... .. 63
432 DBenchmarksl . . . . . . ... oo 65
4.3.3  Results and Discussionl . . . . . .. .. ... ... ... 66

[4.4  Summary| . . .. .. 68
[>  Ensembles for More Reliable Policy Identification| 71
[>.1 ~Neural Fitted Q-Iteration| . . . . .. . .. ... ... ... .... 71
[>.1.1  Fitted Q-Iterationl. . . . . . . . ... ... ... 72
[>.1.2  Problems ot NFQ| . . . . ... ... ... ... .. ..... 72

b2  EFnsemble Methods . . . . .. . . ... o 78
[>.3  Ensembles in Reinforcement Learningf . . . . . . ... ... .. .. 80
[>.4  Experiments| . . . . . .. ... 82
b4.1 Cart-Polel . ... ... ... ... ... 82
[>.4.2  Pole-Balancing| . . . ... ... ... ... .. ... ... 83




Contents ixX

[>.4.4  Experimental Setup|{. . . . . ... ... ... ... 84

b.45 Results. . . ... . 85

(5.5  Why Do Ensembles of NFQ Policies Work?|. . . . . . ... . ... 90
(.6 Continuous Actionsl . . . . . . . . . ..o 91
[>.7  Summary and Conclusion| . . . . ... .. ... ... ... ..., 93
6 Self-Assessment in Continuous Domains| 95
6.1 Value Function-Based Self-Assessment| . . . . ... ... ... .. 95
[6.2  Fitted Policy Evaluation| . . . . . . ... ... ... ... ... .. 96
6.3 Correlation Between lrue Performance and Value Function Estimatel 98
[6.4  Different Function Approximator and Difterent Data] . . . . . . . 99
[6.5 Policy Selection and Rejection| . . . . . . . . ... ... ... ... 101
[6.6 Weighted Ensembles| . . . . ... ... ... ... ... ... .. 103
(6.7 Summary| . .. ... 106

[ Autonomous Control in Changing Environments| 109
[7.1 Policy Selection in Changing Environments|. . . . . . . . . .. .. 110
[7.2  The Evolving Ensemble. . . . . . ... ... ... ... ... 112
21 Tdeal . . . . . o 112

[7.2.2  Experiments|. . . . . . . ... ... ... ... 113

[(2.3 Conclusions . . . . . . . .. .. 122

[7.3 Summary| . . ... 123

8 Conclusion| 125
[8.1 Summary| . . . . ... 125
8.2 Contributions| . . . . . . . .. ... o 129
8.3 Future Researchl. . . . . . . .. ... .. ... 132
[Bibliography| 135

Index 145






List of Figures

(1.1 Components and their interaction for RL-based gas turbine control| 8
[2.1 Interaction between agent and environment{. . . . . . . . . . . .. 14
[3.1 Exemplary return distributions of two actions| . . . . . . . . . .. 37
[4.1  Simple three-state MDP| . . . . . ... ... ... ... ... ... 46
[4.2  Histograms of ()-values of the three-state MDP| . . . . . . . . .. 50
[4.3  Visualization of the archery benchmark|{ . . . . . . . . ... .. .. 52
[4.4  Performance of policies generated with standard value iteration |

and uncertainty aware approaches| . . . . . . . . . ... ... ... 52
[4.5 Histograms of mean rewards and mean and quantile rewards| . . . 53
[4.6  Results for the archery domain| . . . . . . ... ... . ... ... 54
[4.7  Policy ranking results for the archery benchmark] . . . . . . . .. 58
4.8 Histograms of J(m) and J,(m)] . . . . ... ... ... 59
[4.9  Policy ranking results for the wet-chicken benchmarkl . . . . . .. 60
[4.10 Trap domainl. . . . . . . . ... 61
[4.11 Policy ranking results for the trap domain| . . . . . . . . . . ... 62
4.12 River-swim domain| . . . . . . . . ... ... L 65
4.13 Cumulative rewardsf. . . . . . . . ... .. ... ... 68
414 Immediate rewards . . . . .. ..o oo 69
[>.1  Performances of policies from repeated NFQ runs| . . . . . . . .. 73
(5.2  Maximum ()-values with different activation functions/. . . . . . . 75
[>.3 Ilustration of the cart-pole benchmark.|. . . . . . ... . ... .. 84
[5.4  Deep, cascaded neural network{. . . . . .. .. ... ... ... .. 85
[>.5 Histogram of majority ratios| . . . . . . . . ... ... ... ..., 91
[>.6  Example of superimposition of Gaussians| . . . . . . . .. ... .. 93
[6.1 Performance of selected/rejected policies (pole-balancing, 50 epi.)| 102
[6.2 Performance of selected /rejected policies (pole-balancing, 100 epi.)| 103
[6.3 Performance of selected/rejected policies (wet-chicken)| . . . . . . 103
[7.1  Performance of equally and Treek' PE-weighted ensembles| . . . . . 111




xii

List of Figures

[7.2  Setup of the evolving ensemble experiment| . . . . . . . . . . ... 114
[7.3  Evolving ensemble results from the pole-balancing benchmark|{ . . 116
[7.4  Histogram of the duration of policy usage|. . . . . . . . ... ... 118
[7.5 Evolving ensemble results from the cart-pole benchmarkl . . . . . 119
[7.6  Results from the randomly-replacing evolving ensemble] . . . . . . 121




List of Tables

[3.1 Time and space complexities ot the algorithms.| . . . . . . . . .. 44
[4.1  Exemplary observations of the simple three-state MDP| . . . . . . 47
[4.2  ()-values for the expectation-optimal policy{. . . . . . . . . .. .. 48
4.3  ()-values and standard deviation using the sampling approach| . . 48

[4.4  ()-values and standard deviation using the sampling approach with |

E=1 . o 50
[4.5 Best results obtained using the various algorithms in the river-swim |
and trap domains| . . . . . . . ... 66
[4.6  Parameters used for the experiments| . . . . ... ... ... ... 66
[4.7  Computation times| . . . . . . .. ... ... ... ... 67

[5.1  Number of successtul NF'Q) policies with different activation functions| 76

[5.2  Complexity of ensemble methods in NFQ|. . . . . .. ... .. .. 82
[>.3  Parameters used for the cart-pole and pole-balancing benchmarks 83
[5.4  Results of majority voting for the pole-balancing benchmarkl . . . 86
[5.5 Results of (Q-averaging for the pole-balancing benchmark| . . . . . 87

[5.6  Results of “most agreeable” policies for the pole-balancing bench- |

markl . .. 87

(5.7 Results of majority voting with policies from successive iterations |

for the pole balancing benchmark{ . . . . . .. ... ... ... .. 88

[5.8  Experimental results using policies from a single NFQ run and |

different ensemble policies| . . . . . . . .. ... 89

[6.1 Correlations between true policy pertormance and value functions] 99

|6.2 Correlations between true policy performance and J “’SO| ...... 100

[6.3 Performance of differently weighted ensembles| . . . . . . . . . .. 104

[6.4 Performances of policies from the “most agreeable” approach and |

“most preferable” policies| . . . . . ... ..o 105







List of Acronyms

ADP approximate dynamic programming

DP dynamic programming

DUIPI diagonal approximation of uncertainty-incorporating policy iter-
ation

DUIPI-QM diagonal approximation of uncertainty-incorporating policy iter-
ation with ) modification

FPE fitted policy evaluation

FQI fitted Q-iteration

MDP Markov decision process

MSE mean squared error

NFPE neural fitted policy evaluation
NFQ neural fitted Q-iteration

POMDP partially observable Markov decision process
RL reinforcement learning
TD temporal-difference

UP uncertainty propagation






Introduction

Reinforcement learning (RL) (Sutton and Barto, 1998) has become an attractive
option for solving challenging problems of optimal control, like controlling a gas
turbine. It is a type of machine learning concerned with the interaction with some
system. Often the notion of an agent interacting with an external environment
is used. The agent can observe the state of the environment and influence it by
carrying out actions. An action leads to a state transition and a new state, which
again the agent can observe and base its next action on. Along with the next
state a scalar value, the reward, is given. The agent’s aim is to find and follow a
policy that chooses those actions that maximize the reward in the long run.

RL is interesting for industrial problems of optimal control, because it learns from
data—actual observations from the system to be controlled. Learning from data
offers two major advantages. First, such a method can be applied even when no or
only an insufficient analytical description of the system is available. Second, the
method can automatically adapt the control strategy to changing characteristics
of the system, e.g., introduced by wear.

In machine learning RL lies between supervised and unsupervised learning. While
in supervised learning the user gives input-target pairs and wants the machine to
learn a mapping from input to target, in unsupervised learning one is interested in
finding structures in the data without specifying a target (e.g., Hastie, Tibshirani,
and Friedman, 2001)). Using the reward function the user can specify the objective
in an RL problem. However, the policy, i.e., the mapping from states to actions,
maximizing the long-term reward is not given in advance. Finding it is the essence
of RL, especially when knowledge about the environment is limited and only given
in the form of observations consisting of state transitions and rewards (i.e., tuples
consisting of state, action, successor state, and reward).

If the dynamics of the environment, i.e., the probability distribution over suc-
cessor states, and the reward function are known, dynamic programming (DP)
(Bellman, 1957) can be used to determine an optimal policy. If because of a
continuous state space or a large number of discrete states the policy cannot be
stored tabularly (i.e., keeping for each possible state the optimal action in mem-
ory), one must employ function approximation and therefore use approximate
dynamic programming (ADP) (Busoniu, Babuska, Schutter, and Ernst, [2010)).
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With an incomplete knowledge of the environment (A)DP alone is not applica-
ble and can only be part of an RL solution that first estimates a model of the
environment and then uses (A)DP to determine the optimal policy w.r.t. that
model.

The environment is usually assumed to be a Markov decision process (MDP)
(Puterman, (1994) M := (S, A, P, R), where S is the state space, A the action
space, P : S x Ax S~ [0,1] the transition probabilities, and R: S x Ax S — R
the reward function. An important feature of MDPs is the Markov property—
given an MDP M the knowledge of the current state and action is sufficient
to determine (the probability for) the next state. No historical information of
previous states is required.

In principle, RL can solve any problem that can be formulated as an MDP.
However, formulating the problem as an MDP is not sufficient to actually find a
suitable solution, it is merely one of the first steps when approaching a problem
using RL.

Problems that are well-suited to be formulated as an MDP include optimal control
problems. In optimal control, one can usually observe the state of the system
under control and influence it through control actions. The optimization goal is
formulated using the reward function. Games as well are often easily formulated
as MDPs. For example, consider the game of chess. The state would be comprised
of the current board configuration, possible actions would include all valid moves,
a reward of 0 would be given for all actions except the last one before the end
of the game: if the agent wins, it receives reward 1; if it loses, a reward of —1
is given; for a draw it receives 0. Although only the very last action receives a
direct reward, all previous actions influenced the way that led to the final board
configuration. In theory, an RL agent is able to learn from experience the moves
that lead to winning the game. In practice, however, a naive RL solution for the
game of chess will not be possible, since the number of possible board positions
is prohibitively largeE]

Nonetheless, there are quite a few “success stories” of RL, including games. Ar-
guably the most famous application of RL to games is Tesauro’s Td-Gammon
(Tesauro, (1994)), an RL program that learned to play backgammon at master
level by repeatedly playing against itself. While the state space of backgammon
is not as large as that of chess, it is still far too large to use a tabular represen-
tation. Tesauro used a neural network as function approximator and a learning
algorithm called @-learning (Watkins, [1989)) to train it. There are a number of
reports of successful application of RL to real-world problems from the robotics
domain (e.g., Merke and Riedmiller, 2001; Abbeel, Coates, Quigley, and Ng,
2006; Lee et al., [2006; Peters and Schaal, [2008; Kober and Peters, 2012)) as well
as optimal control of combustion processes (Stephan et al., 2000) and gas turbine
control (Schéafer, Schneegafl; Sterzing, and Udluft, |2007)).

! According to an early estimate by Shannon (1950) the number of possible positions is
roughly 10*3, recently an upper bound of 1067 was proven (Tromp, [2010).
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An important prerequisite to make RL applicable to interesting real-world prob-
lems is data-efficiency, i.e., requiring only few observations to derive a near-
optimal policy. This is necessary as observations of a real plant are usually
expensive—it takes time to generate them and the disruption of the plant’s regu-
lar operation should be kept as low as possible. While Tesauro’s Td-Gammon was
not particularly data-efficient—it required several hundreds of thousands games—
the issue has been addressed in recent years by RL methods that reformulate the
task of learning an optimal policy from a set of observations to a series of re-
gression problems and then applying powerful function approximators like neural
networks to these regression problems (e.g., Riedmiller, |2005; Schneegafl, Udluft,
and Martinetz, |2006; Schneegaf3, Udluft, and Martinetz, 2007a).

1.1 RL for Autonomous Learning

The focus of this thesis is making RL methods more autonomous. This means
requiring less human intervention when applying RL to a problem, but it mostly
means enabling the RL agent to run without (or only very little) human inter-
vention once the basic steps of RL application are done. Of course, this includes
controlling a system using RL in closed loop, but even more importantly it also
includes generating new policies online and thus adapting to changing character-
istics of the environment.

Although in principle RL should be applicable for autonomous learning, i.e., the
user only formulates the problem as an MDP and RL takes care of everything
else and finally returns a (near-optimal) policy, in practice it is not that easy. In
particular, after having formulated the problem as an MDP, the application of
RL requires the following steps.

1. Analysis of the problem (MDP): As a first step one must analyze the type of
MDP. Are the state and actions spaces discrete or continuous? If discrete,
how many states and actions must be considered? Are the state transitions
and reward function stochastic or deterministic?

2. Choice of RL algorithm: Based on the analysis of the previous step, a
suitable RL algorithm must be chosen. One could use model-based RL,
where first a model of the environment is estimated and then (approximate)
dynamic programming used to find a policy that is optimal w.r.t. that
model. On the other hand, there are model-free approaches. Likewise,
depending on whether either or both, the state space and action space, are
discrete or continuous and the number of states and actions one must decide
for or against using function approximation. If function approximation
should be used, what is a suitable method? Neural networks, kernel-based
approaches, regression trees?
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3. Choice of meta parameters of the algorithm: Many algorithms have certain
meta parameters. Those are not parameters determined during the process
of learning like the weights of a neural network, but parameters like its
topology (e.g., number of hidden layers, number of neurons in a hidden
layer), the learning algorithm (e.g., back propagation) and the learning
rate; for a kernel-based method one has to choose the type of kernel and
the so-called hyper-parameters of the kernel.

4. Monitoring of the learning process: For many learning algorithms there are
indicators that can be used to monitor the learning process. For instance,
one would observe the error curves of a neural network for a training and
validation set to determine whether learning is successful and to be able to
detect overfitting.

5. Ewvaluation of the result (policy): Once a policy has been generated, the
policy must be evaluated to decide whether it is good enough. If not,
maybe more observations are necessary, or one has to go back to one of the
previous steps and check the correctness of the MDP evaluation, consider
other algorithms, or tune meta parameters, and finally re-run the algorithm,
possibly with more data. The easiest way of evaluating a policy is to actually
run it using the actual MDP. However, if the MDP is a real system like a
gas turbine and not just a simulation running on a computer, this can be
very costly. Therefore, a measure of policy performance without the need
for running the policy on the actual problem is desirable.

Looking at the above enumeration, it becomes obvious that currently RL is far
from being truly autonomous. In addition to the decisions the user has to make
in terms of algorithm and parameter selection, often it is also required to monitor
the learning process and assess final policies before actually using them for the
system to be controlled. So even when steps 1-3 are completed, it is in general
not possible to apply the resulting algorithm to a system and let it run on its own
in closed loop. The learning process still needs to be monitored to ensure proper
learning. Moreover, it is in general not possible to guarantee a certain quality
of the resulting policy. For the application of RL to an autonomously learning
controller for a technical system, however, the proper function of the learning
controller must be ensured.

The aim of this thesis is to advance the applicability of RL to problems of au-
tonomous control. While potentially all items of the enumeration above could be
addressed, the first two points will be left out. They can normally be taken care
of using prior knowledge about the problem at hand; this knowledge should be
incorporated where possible. For instance, the user knows whether the problem’s
state space is discrete or continuous and can therefore choose an appropriate al-
gorithm. Moreover, the first two steps usually have to be addressed only once
for a given application. For example, when applying RL to gas turbine control,
an algorithm that works well for one turbine will most probably deliver good
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results for a similar gas turbine as well. On the other hand, parts of point 3
(choice of meta parameters), and points 4 (monitoring the learning process) and
5 (evaluation of the policy) need to be done repeatedly if an RL method is to be
applied to similar systems or used to continuously adapt a policy to a changing
environment,.

There are two major areas of contributions towards autonomous RL. On the
one hand, the thesis tries to make existing methods more robust, so they are less
sensitive to parameter choices and produce good results more reliably. In discrete
domains, uncertainty is incorporated to reduce the probability of determining
poor policies. In continuous domains this is achieved through ensembles. On
the other hand, methods are discussed that allow for the assessment of a policy’s
quality without actually executing it. Again, the knowledge of uncertainty helps
in discrete domains. For continuous domains the combination of policy evaluation
and ensembles and the use of different datasets and function approximators for
policy assessment are proposed.

1.2 Incorporation of Uncertainty

As a first step, the thesis deals with ways to incorporate uncertainty into methods
for discrete state and action spaces. In particular, this means applying uncer-
tainty propagation, a common concept in statistics (see, e.g., D’Agostini, 2003,
to policy iteration to obtain the uncertainty of the so-called Q-function, a map-
ping from a state-action pair (s,a) to a scalar value that determines the qual-
ity of (s,a). Policy iteration is based on the Bellman optimality equation and
can be used to determine the Q-function @Q* of the optimal policy 7* (Bellman,
1957)), where 7*(s) := arg max, Q*(s, a). Uncertainty propagation for policy iter-
ation was first introduced by Schneegafl, Udluft, and Martinetz (2008]) for quality
assurance—by avoiding state-action pairs with high uncertainty it is possible to
decrease the probability of obtaining an insufficient policy. Unfortunately, the
computational burden of that method is very high and becomes prohibitive as the
number of the MDP’s states grows significantly beyond 100. This is mainly due
to the need of maintaining a covariance matrix, whose size grows in O(|S|?|A[?)
with the number of states |S| and number of actions |A|. In this thesis, an ap-
proximate method for uncertainty propagation is proposed. By considering only
the diagonal elements of the covariance matrix, the complexity of the method is
reduced and remains the same as that of regular policy iteration. It is shown
that the approximation can still be successfully used to reduce the probability of
obtaining a poor policy. This way the uncertainty is used to derive good policies
more reliably and therefore helps the autonomous agent to become more robust.

Moreover, the knowledge of uncertainty can be used to more reliably assess a
policy’s quality by looking at its (-function. The parameters of the true MDP
are usually unknown and must be estimated from observations. A @Q-function
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determined w.r.t. to the estimated MDP only gives expected long-term rewards
for the estimated MDP; the results can be misleading w.r.t. the real MDP. Using
the uncertainty it is possible to correct the policy quality estimate.

1.3 Ensembles for More Reliable Neural RL

Many interesting problems exhibit a continuous state space instead of a discrete
one. When dealing with continuous state spaces, one has to introduce some sort
of function approximation. In this thesis, mostly neural networks are used as
such function approximators, since they have excellent generalization properties
(Hastie, Tibshirani, and Friedman, 2001, p.351). They are employed for fitted
Q-iteration (FQI), where the task of learning the @Q-function is reformulated as a
set of regression problems (Ernst, Geurts, and Wehenkel, [2005)). Although vari-
ous impressive results have been reported using FQI with neural networks, then
called neural fitted @Q-iteration (NFQ) (Riedmiller, |2005)), a number of problems
have been reported as well (Thrun and Schwartz, 1993; Gordon, 2001; Gaskett,
2002; Gabel and Riedmiller, |2006]). This leads to NFQ approaches being not
as reliable as would be desirable for autonomous RL. One way of dealing with
this and producing successful policies more reliably is the usage of ensembles.
In supervised learning, ensembles of independently trained learners have been
used successfully to produce better and more reliable results than when using a
single learner, both for regression and classification (Dietterich, 2000). RL can
also benefit from ensembles. For instance, instead of learning only a single policy
given a set of observations, one can learn multiple policies and combine them to a
final policy (e.g., using majority voting). The present work proposes a number of
ways of using ensembles in an NF(Q context and shows empirically that ensembles
indeed lead to more reliable policy identification.

1.4 Real-World Example: Gas Turbine Control

To illustrate the application of RL to a complex technical real-world problem and
some of the difficulties, consider the problem of optimal control of gas turbines.
In gas turbine control, the aim is to operate the turbine in a way that gives the de-
sired power output while at the same time keeping polluting emissions (CO, NOy)
and vibrations caused by combustion dynamics low. The gas is injected through
multiple burners. At each burner, the fuel flow is split into different fractions
enabling control over the combustion process. Traditionally, turbine operators
use tables and their experience to determine the optimal working point settings,
i.e., the different fractions, for a given situation, depending on parameters such as
the desired power output and ambient influences like air temperature and pres-
sure. Low-level controllers take care of reaching and keeping the currently set
working point. As those low-level controllers already work optimally, RL is used
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to optimize the high-level control. It is advantageous to use RL because one can
consider more parameters than covered by the tables, therefore giving working
points that are close to optimality for a given situation. Moreover, during the
lifetime of a turbine, an RL controller can learn new policies using actual obser-
vations of the turbine. It can therefore adapt the control strategy to changing
turbine characteristics, e.g., introduced by wear.

Consider the enumeration of the steps required when applying RL again (Sec-
tion [1.1)). Performing those steps manually is feasible when one is interested in
generating a single policy that is then applied to the system. If, however, not just
the policy, but also the learning process is to be run in closed loop, the learning
process must be sufficiently robust to produce good policies reliably.

Figure [1.1| shows the components and their interaction during runtime. The RL
controller contains the policy that gives the (high level) action (working point)
for the current situation. This action is passed to a low level controller that
takes care of reaching and keeping that working point. The low level controller
influences the turbine through low level actions and works in a closed loop by
monitoring the current raw state of the turbine (measurements such as ambient
air temperature and pressure, current power output, emissions, or combustion
dynamics). Furthermore, the raw state is passed to the reward function and a
state estimator. The reward function calculates a scalar reward value from (parts
of) the current state. Since the process described by a series of raw states is
usually non-Markovian, i.e., the raw state from one time step is not sufficient
to completely describe the state of the environment, requiring data from a num-
ber of past time steps, a state estimator is used to estimate a Markovian state
representation. The observations of the turbine are stored in a database.

The low level controller and the turbine constitute the conventional setup. For
the RL solution, the RL controller, the reward function, and the state estimator
are added. Then the working points are not defined by static tables any more,
but instead given by the current policy of the RL controller. The RL controller’s
policy is updated by the policy generator once it has determined a new policy.
In this setting, the RL agent consists of two parts: the online agent executing
the policy (RL controller) and the offline agent generating new policies (policy
generator). To enable autonomous operation of a system like that, the following
requirements must be met:

o The policy generator must be able to autonomously determine a new policy.
Manual monitoring of the learning process must not be required. Further-
more, once the learning algorithm’s parameters are set, it should not be
necessary to adjust them manually.

e A high quality of the RL controller’s policy must be maintained. Further-
more, differences between subsequent policies should be small, so that a
smooth transition from one policy to the next is possible.
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1.5

Outline

The remainder of the thesis is structured as follows:

Chapter 2 gives a more detailed introduction to and overview of RL.

Chapter 3 details methods for uncertainty awareness in discrete domains.
The basic idea is described, i.e., to determine the -function’s uncertainty
based on the uncertainty of the MDP estimate. To this end possible choices
of estimators are presented. Then a Monte Carlo method to estimate the
uncertainty is described, followed by a direct method using uncertainty
propagation. Since this method’s computational burden is high, an efficient
approximation is proposed.

Chapter 4 discusses possible applications of uncertainty awareness in dis-
crete domains. The knowledge of uncertainty can be used in a quality assur-
ance setting, where one wants to prevent the generation of very poor poli-
cies. Further applications are self-assessment, i.e., determining the actual
quality of a policy using the Q)-function and its uncertainty, and uncertainty-
based exploration. For all applications a number of experiments are per-
formed to evaluate the methods.

Starting with Chapter 5 the focus shifts from discrete to continuous state
problems. With NFQ a powerful neural RL method for continuous domains
is described. However, it has a number of issues that are discussed. The
thesis then continues to propose ensembles to mitigate those problems and
make NFQ more reliable. A number of ways to use ensembles in an NFQ
context are discussed and evaluated on a number of benchmark problems.
Finally, the thesis gives some explanations why ensembles work here and
outlines ways to adapt the methods to continuous actions.

In Chapter 6 the methods for self-assessment using uncertainty awareness
are to be adapted to continuous domains. It is argued that this is not
possible, since in the continuous domain setting no distribution over MDPs
is available. Instead, one can use fitted policy evaluation (FPE), which
can be improved by alternating the function approximator and/or dataset
compared to those used for policy generation. Experiments show that it
is possible to use the quality measure derived by FPE to select good and
reject poor policies from an ensemble or derive weighted ensembles.

Chapter 7 finally combines previous ideas. First, a scenario is discussed
where one has a number of policies for different parameterizations of the
same problem. The current parameterization is unknown. The task is
then to select policies suitable for this parameterization. The main part of
this chapter details the evolving ensemble approach. The idea is to use an
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ensemble that is regularly updated to be able to deal with a slowly changing
environment. The updates are performed by adding new policies, generated
from recent observations, and remove old, supposedly obsolete policies.

o Chapter 8 summarizes the thesis and outlines possible areas for future
research.

1.6 Publications

Parts of this thesis have already been published as peer-reviewed papers at inter-
national conferences:

« A. Hans and S. Udluft (2009). “Efficient Uncertainty Propagation for Re-
inforcement Learning with Limited Data”. In: Proceedings of the Interna-
tional Conference on Artificial Neural Networks.

This paper introduces the diagonal approximation of uncertainty-incorpor-
ating policy iteration (DUIPI) as an efficient approximation of full-matrix
uncertainty propagation. Its contents are covered by Chapters [3] and [4]

« A. Hans and S. Udluft (2010b). “Uncertainty Propagation for Efficient Ex-
ploration in Reinforcement Learning”. In: Proceedings of the 19th European
Conference on Artificial Intelligence. 10S Press.

Here it is shown how the knowledge of uncertainty can be used to ex-
plore efficiently. Further, a variant of DUIPI called diagonal approximation
of uncertainty-incorporating policy iteration with ¢ modification (DUIPI-
QM) is presented. The section about exploration in Chapteruses contents
of this paper.

o A. Hans, S. Duell, and S. Udluft (2011). “Agent Self-Assessment: Deter-
mining Policy Quality Without Execution”. In: Proceedings of the IEEFE
International Symposium on Approximate Dynamic Programming and Re-
inforcement Learning.

Finally, this paper argues that looking only at the Q-function when assess-
ing the quality of a policy can be misleading, which can be corrected by
considering the uncertainty as well. The contents of this paper are contained
within the self-assessment section of Chapter [4]

« A. Hans and S. Udluft (2010a). “Ensembles of Neural Networks for Robust
Reinforcement Learning”. In: Proceedings of the 9th IEEE International
Conference on Machine Learning and Applications. IEEE, pp. 401-406.

This is the first paper to suggest and evaluate ensembles in an NFQ context.
It served as the basis for parts of Chapter
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o A. Hans and S. Udluft (2011). “Ensemble Usage for More Reliable Pol-
icy Identification in Reinforcement Learning”. In: Proceedings of the 19th
FEuropean Symposium on Artificial Neural Networks.

Here, more empirical evidence is presented that ensembles improve the re-
liability of NFQ. Further, it is proposed to build ensembles from successive
NFQ iterations as a computationally cheap alternative.

Chapters [6] and [7] contain completely new, previously unpublished material.

The following (co-authored) papers are not covered by this thesis, but their con-
tents are related:

o A. Hans, D. Schneega3, A. M. Schéfer, and S. Udluft (2008). “Safe Explo-
ration for Reinforcement Learning”. In: Proceedings of the 16th FEuropean
Symposium on Artificial Neural Networks, pp. 413-418.

o S. Duell, A. Hans, and S. Udluft (2010). “The Markov Decision Process
Extraction Network”. In: Proceedings of the 18th European Symposium on
Artificial Neural Networks.

o S. Duell, L. Weichbrodt, A. Hans, and S. Udluft (2012). “Recurrent Neural
State Estimation in Domains with Long-Term Dependencies”. In: Proceed-
ings of the 20th European Symposium on Artificial Neural Networks.






Reinforcement Learning

This chapter gives an overview of reinforcement learning (RL) and introduces
methods that later parts of this thesis will build upon.

2.1 Overview

RL denotes a field of machine learning that is concerned with problems of sequen-
tial decision making. Often the notion of an agent acting in some environment
is used. When dealing with time-discrete systems, to which we limit the discus-
sion here, at each time step t = 1,2,..., N the agent observes the environment’s
current state s € S and can carry out some action a € A, where S is the state
space and A the action space, respectively. While transiting, at each time step
t the agent receives a reward r; € R. The agent acts according to a policy 7
determining the (probability for an) action to carry out based on the current
state. The policy can either be deterministic, i.e., 7 : § — A, or stochastic, i.e.,
T:SXx A~ [0, 1]E] Usually, the aim in RL is to find a policy that, when followed,
optimizes the expected sum of future rewards (the return)

Ry =7+ + 7 e + s + (2.1)

which can be discounted by setting the discount factor v € [0,1] to a value
smaller than 1. Discounting is necessary if rewards in the near future are to
be weighted higher than those further away. Another, more technical reason for
discounting is keeping the return from going to infinity, which is necessary for
methods based on value functions (discussed later in this chapter). In general,
we choose large discount factors like v = 0.95 or v = 0.975, because we are
interested in optimizing the long-term reward.

The most interesting property of RL is that it learns from observations. In the
classical setting, the RL agent interacts with the environment and learns from
this interaction which action is optimal in a given state. In an alternative setting,

!Obviously, a deterministic policy can be expressed as a stochastic one by using discrete
probabilities of 0 and 1.
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Figure 2.1: Interaction between agent and environment. At time step ¢ the agent
observes state s; and reward r; from the environment. Based on this information it
influences the environment using action a;, which causes a transition to state sy41.
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an RL method is given a set of observations and must derive a policy from this set
without additional interaction. In both cases, an observation can be considered
as a tuple (s,a,s’,r), meaning that in state s action a was executed, causing a
transition to state s’ and a reward r.

2.2 Markov Decision Processes

An RL problem is commonly described as a Markov decision process (MDP)
M :=(S,AP,R), (2.2)

composed of:

A state space S.

e An action space A. A definition as A(s) is common as well if the set of
available actions is dependent on the state s.

e A transition function P : S x A x § — [0, 1], giving the probability of
reaching a successor state s’ from a state-action pair (s, a).

e A reward function R : § x A x § — R, which gives the expected reward of
a transition.

A defining feature of an MDP is the Markov property. If it is fulfilled, the prob-
ability of a successor state s, only depends on the state-action pair (s, a;), all
previous states and actions are irrelevant, i.e.,

Pr(3t+1|3t7 at) = Pr<3t+1|3ta Aty St—1, At—15 - - -, S0, a0)~ (2-3)
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Likewise, the reward expectation is only dependent on the current transition
St —a; St+1, i'e‘v

E {Tt+1|3t+17 Qg, St} =E {Tt+1|5t+17 Qt, Sty At—1, St—1, - - -, S1, A0, 30} (2-4)

Consider for example an object moving along a straight line with some velocity
as an MDP. If the state contains the current position only, the Markov property
is not fulfilled, since it is not possible to derive the successor state, i.e., the
position in the next time step, from the current one. Additionally, knowledge of
the object’s velocity is required. In this case, we deal with a higher-order MDP
(order of 2 in this case), because we can derive the velocity from two consecutive
states (s;_1,s;) and this way determine s;1. In other words, by defining a new
state space S := {5,|5, = (s,_1,5;)} it is possible to restore the Markov property.
An equivalent solution would directly include the velocity into the state.

Many RL methods depend on the Markov property. If it is violated, those meth-
ods will in general not work. However, if the violation is not severe, the applica-
tion of methods assuming the state to be Markovian is often uncritical (Sutton
and Barto, 1998, p.64).

The framework dealing explicitly with non-Markovian environments is that of the
partially observable Markov decision process (POMDP) (Kaelbling, Littman,
and Moore, 1996; Kaelbling, Littman, and Cassandra, 1998)). A POMDP M’ :=
(S, 2, A,P,R,O) contains in addition to the components of an MDP an obser-
vation space Z and an observation function O : § x A +— Z. In a POMDP the
true state s € S is hidden and only observations z € Z are available. From a
series of observations a belief state as a distribution over possible hidden states
is constructed. The problem then is to find a policy that optimally maps belief
states to actions.

A different approach is the use of a state estimator that takes a series of T
observations z;_r, 2741, ..., 2 and reconstructs the current Markovian state s;
from them (e.g., Schéafer and Udluft, 2005; Duell, Hans, and Udluft, [2010). This
reconstructed Markovian state can then be used with approaches that expect the
state to be Markovian.

In this thesis the environment is assumed to be an MDP with a Markovian state
representation.

2.3 Value Functions

For every MDP so called value functions can be defined that give the expected
return when starting from a specific state (V-function) or a state-action pair (Q-
function). In any case, they assume some fixed policy. Note that while there
exists exactly one value function for a specific policy, multiple policies can yield
the same value function.
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The value function V7 : § — R gives the expected return for policy 7 and a state
s, i.e, the expected sum of discounted future rewards when starting from s and
strictly following m:

V™(s) = Ex{Ry|sy = s} = E, {Z fyirtﬂﬂ‘st = 5} : (2.5)
i=0

E, here denotes the expected value under the assumption that policy 7 is followed.
V7™ is known as the state-value function for policy 7. It can be formulated in a
recursive way:

Vi(s) = E; {Z ’YiTt+i+1‘St = 8}

i=0
= E; {V’tﬂ +7 Z ’Ykrt+k+2‘8t = 8}
k=0
= Z P(s'[s, m( lR(S ™ ") +Ex {Z’Ykrtﬂwrz St41 =5 H
s'eS k=0
= D P(Is,7(s)) [R(s,m(s), 8") +7V7(s)]. (2.6)
s'eS

Equations (2.5 and (2.6 assume a deterministic policy . For a stochastic policy
m: 8 x A [0,1], which gives the probability of executing action a in state s,
we have to take another expectation:

V7™(s) = Z; s,a z:SP s's,a) [R(s,a,s") +~yV7(s)]. (2.7)

The same can be formulated for state-action pairs, leading to the Q-function,
which gives the expected return for a state-action pair (s,a) when executing a in
s and afterwards strictly following policy :

Q" (s,a) = E. {Ry|s; = s,a;, = a} = E, {Z yirHiH‘st =s,a; = a} . (2.8)

1=0

Q™ denotes the action-value function of m. Analog to the recursive formulation
of V™ a recursive formulation of Q™ is possible:

Q"(s,a) = E; {Z ’Yi?"t+i+1‘8t =S, = &}

=0

= Y P(s']s,a) [R(s,m(s),s") + V7 (s)]. (2.9)

s'eS

Note that
V7(s) = Q" (s,m(s)).

Again, equations (2.8)) and (2.9) assume a deterministic policy. For a stochastic
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policy we have

Q"(s,a) = Eg {Z 7i7"t+i+1’8t = S,0t = a}

1=0

= > 7(s,a) Y. P(s|s,a) [R(s,7(s),s") + V7 (s")]. (2.10)

acA s'eS

The equations defining V™ and Q™ are called Bellman equations.

The goal of RL lies in finding a policy that achieves as much reward as possible
in the long run, i.e, that maximizes the return. Value functions define a partial
ordering over policies. A policy 7 is better than or equal to a policy 7’ if and only
if its value function gives an equal or greater return for all states. More formally,

T>71 eVseS:VTi(s) >V (s). (2.11)

For any given MDP there is at least one policy whose value function is greater
than or equal to all other value functions. Such a policy is known as an optimal
policy. While there may be more than one optimal policy, all of them share the
same state-value function, called the optimal state-value function,

V*(s) = max V7" (s). (2.12)
Likewise, they share the same optimal action-value function,
Q*(s,a) = max Q" (s, a). (2.13)

Since V* is the state-value function of an optimal policy, it can be expressed in
terms of the action-value function without referring to a specific policy as
V*(s) = max Q" (s,a), (2.14)
acA
because an optimal policy takes the action that maximizes the return or equiva-
lently maximizes the Q)-value for a given state. From this, using equation (2.9)),
we obtain
V*(s) =max »_ P(s|s,a) [R(s,7(s),s") +7V*(s)], (2.15)

acA oeS

which is known as the Bellman optimality equation for V*. The same can be
expressed in terms of state-action pairs as

Q*(s,a) = > P(s']s,a) [R(s,m(s),s") + 7V (s)],

s'eS

= Y P(s |3a[ (s,m(s),s )+7max@ (s,d)|, (2.16)

s'eS
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which is known as the Bellman optimality equation for Q™.

Since Q* = Q7 is the action-value function of the optimal policy 7* and the
optimal policy always chooses the action maximizing the Q)-function for the given
state, the optimal policy can be expressed in terms of Q*:

7*(s) ;= argmax Q*(s, a). (2.17)
acA

Obviously, knowledge of @* is sufficient to know the optimal policy 7*. In fact,
many RL methods build on action-value functions. Instead of directly looking for
the optimal policy, they try to determine its value function, as from the optimal
value function the optimal policy follows trivially.

2.4 Dynamic Programming

Methods belonging to the class of dynamic programming (DP) can be used to
determine the value function for a given policy or the optimal value function when
the MDP is completely known, in particular the state transition function P and
the reward function R.

While the term dynamic programming was introduced by Bellman (1957)) for
methods that solve optimal control problems (exactly the methods discussed in
this section), today it is used to identify a broad class of algorithms. The com-
mon characteristic of those algorithms is that they solve a problem by dividing it
into smaller and smaller sub-problems until the sub-problems are small enough
to be solved directly. Then the solutions to the smallest sub-problems are put to-
gether to solutions of larger sub-problems, until eventually the complete problem
is solved. DP is similar to classic divide-and-conquer algorithms (for example,
sorting algorithms like quick sort and merge sort), but in addition DP stores in-
termediate results (solutions to sub-problems) and re-uses them multiple times,
whereas classic divide-and-conquer algorithms use intermediate results only once
(Cormen, Leiserson, Rivest, and Stein, [2009)). DP can be used when the Bellman
optimality principle holds, which states that any part of an optimal plan must
be in itself optimal. In the case of policies this means “that whatever the initial
state and initial decision are, the remaining decisions must constitute an opti-
mal policy with regard to the state resulting from the first decision” (Bellman,
1957, p. 83). Aside from RL, algorithms that use DP include Dijkstra’s algo-
rithm for the shortest path problem (Dijkstra, 1959) and many string algorithms,
for instance for calculating the longest common subsequence (Cormen, Leiserson,
Rivest, and Stein, [2009) or the Levenshtein distance of two strings, i.e., the num-
ber of operations necessary to transform one string into the other (Levenshtein,
1966)).

All DP methods in RL are based on Bellman equations. In general, they turn a
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Bellman equation into an update rule. Starting from an arbitrary initial guess
repeatedly applying the update rule leads to a better and better estimate, in the
limit the estimate tends to the true value function.

2.4.1 Policy Evaluation, Improvement, and lteration

Policy evaluation can be used to determine the action-value function of a policy
7. Starting with an arbitrary initial guess Qf, the following update rule (based
on the Bellman equation for V7, equation (2.9))) is applied repeatedly for all
state-action pairs:

Qi (s,a) Z;SP(S'!& a) [R(s,a,s") + Q7 (s',w(s))]. (2.18)

With ¢ — oo, QT converges to the true value function Q™. In practice, one
stops when the change from one iteration to the next falls below a pre-defined

threshold e (Algorithm [I]).

Algorithm 1: Policy Evaluation
Input: policy 7, transition probabilities P, reward function R,
discount factor «, error threshold &
Result: estimate Q™ with max,, |Q™(s,a) — Q7 (s,a)| < ¢
begin
Initial guess as zero
Q0
€ ¢ o0
while ¢ > ¢ do
e+ 0
for V(s,a) € S x A do
Q;T+1(S, a) A ES/ES P(‘S/’S? @) [R(Sv a, 5,) + 7@?(3,7 77(3/))]
Record mazimum update
if |Q?+1(S,CL) - Q?(Sva’)‘ > e then
L €< |Q;T+1(Saa) - Q?(S’ CL)|

1< 1+1

return Q7

Once the action-value function Q™ is known, it can be used to improve the policy
in a step called policy improvement. Policy improvement updates a policy to
select the action maximizing Q™ in each state, i.e.,

7'(s) < argmax Q" (s,a) VseS (2.19)
acA

Policy evaluation and policy improvement can be combined to policy iteration:



20 Chapter 2. Reinforcement Learning

Starting with an arbitrary policy 7, this policy is evaluated resulting in Q™,
which is then used to improve the policy. The result of the improvement step
is stored as 7y, which again is evaluated and improved, etc. Since every update
is a strict improvement over the previous policy, unless the previous policy is
already optimal, and for a finite MDP there is only a finite number of policies,
policy iteration must converge to an optimal policy in a finite number of iterations
(Sutton and Barto, [1998)).

2.4.2 Value lteration

A major drawback of policy iteration is that in each iteration it requires a com-
plete policy evaluation step, which itself consists of a number of iterations over
the complete state set. Luckily, it is possible to combine policy evaluation and
policy improvement into one step, where policy improvement is done immediately
after the update of the value function without waiting for it to converge. The
resulting algorithm is called value iteration and has the same convergence prop-
erties as policy iteration (Bertsekas, [1987). It can be seen as turning the Bellman
optimality equation into an update rule, namely

Qr1(s,a) Z P(s'|s,a) {R(s,a, s+ max Qf(s',a')} , (2.20)

s'eS

that is applied to each state-action pair (s,a) € S x A. Here the policy is
implicitly assumed as m;(s) = argmax,. 4 @;(s,a). Algorithm [2| summarizes
value iteration.

2.4.3 Learning from Observations

The methods discussed so far assume complete knowledge of the MDP. In con-
trast, RL means learning from interaction with the environment or, more gener-
ally, from observations in the form of tuples (s, a, s', ), denoting a transition from
a state s with action a to a successor state s’ with reward r. Although methods
based on DP require complete knowledge of the MDP, it is possible to use them
in an RL setting, because the MDP’s unknown components can be estimated
from observation tuples. Namely, those are the transition probabilities P and the
reward function R.

Straightforwardly, P can be estimated by means of relative frequency. Let ng,
denote the number of occurrences of state-action pair (s,a) in the set of obser-
vations, i.e., the number of transitions starting from s with action a. Let further
Nsas denote the number of occurrences of the transition s —, s’. The probability



N O ok WoN =

©

10

11

2.4. Dynamic Programming 21

Algorithm 2: Value Iteration

Input: transition probabilities P, reward function R, discount factor =, error
threshold e
Result: estimate Q* with max,, |Q*(s,a) — Q*(s,a)| < e
begin
Initial guess as zero
Q0
€ < 00
while e > ¢ do
e+ 0
for V(s,a) € S x A do
Qiir(5.0)  Sues P(s']5,0) [R(s,a, ) + 7 maxy Q5 (s', )]
Record mazrimum update
if Q7 (s, 0) — Qi (s,a)| > ¢ then
L €<= ’Q:Jrl(‘s? CL) - Q:(& a’)|

1+ 1+1

return )

of a transition to s’ from s with a can then be estimated as

P(s']s, a) = — . (2.21)

N a,s

For a specific state-action pair (s, a), 75(3’ |s,a) defines a probability distribution
over all possible successor states ', therefore > s P(s'|s,a) = 1. Also, ng, =
ZS’ES Ns,a,s -

To estimate the reward function R, the mean can be used. Let r

)
s,a,s’)

7 =

1,..., N4y denote the list of rewards that occurred with the transition s —, s'.
Then R can be estimated as
n o
. e
R(s,a,s") = M (2.22)
Ns.a,s

Obviously, the more observations available, the better the above estimates are. In
practice, they often work well even for small numbers of observations. However,
if the estimates are flawed, the impact on the resulting policy can be dramatic,
since in the DP methods the estimates are taken for the true value again and
again. This problem will be discussed in more detail in the next chapter. A
solution lies in not only using the estimates P and R, but also considering their
uncertainties.
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2.5 Temporal-Difference Learning

Temporal-difference (TD) methods (Sutton, 1988) learn a value function directly
from experience, i.e., interaction with the environment. Whenever a transition
occurs, they use the corresponding observation tuple to update the current value
function estimate. More precisely, TD methods determine the so-called T'D error
and update the value function to decrease that error. Recall the Bellman equation
for the state-value function V™,

Vﬂ(s) = E7r {Tt-i-l + ’YVW(St_i_l)‘St = S} .

If V™ is correct, for an observation (s, a,s’,r) on average V7™(s) = r + yV7(s)
should hold. From this, we can derive the TD error as the difference of the two
terms left and right of the equation sign:

TDE :=r +~V7™(s") — V7(s). (2.23)

TD learning for V™ starts with an arbitrary guess for V7, e.g., V7™ =0, and then
improves it with each observation using an update rule based on the TD error.
For an observation (s, a,s’,r), V™(s) is updated according to

A,

V™(s) = V() +a [r+4V"(s) = V7(s)], (2.24)

where « € (0, 1] is a learning rate. A small learning rate is necessary to estimate
values in stochastic environments. V7 gives the expected return, but the obser-
vation tuple used to improve the estimate is just one observation contributing
to the expectation. With a learning rate v = 1 the estimated value would jump
from one value to another with different observations, instead of converging to
the expected value. If the environment is known to be deterministic (both, state
transitions and rewards), a learning rate a = 1 may be used.

To determine an optimal policy with TD methods, there are two common algo-
rithms: SARSA and Q-learning.

SARSA (Rummery and Niranjan, 1994)) estimates the Q-function of the currently
followed policy. It is therefore an on-policy method. With an observation tuple
(s,a,r,s',a’) (in addition to previously used observation tuples, the action se-
lected in the successor state is included as well) the following update rule is used
to update the estimate:

Q(s,a) + Q(s,a) + alr+~vQ(s',d") — Q(s,a)]. (2.25)

Similar to the update of V™, equation (2.24]), the current observation is used to
determine the error of the current estimate. The estimate is then corrected by
the a weighted error.

If the followed policy chooses actions by maximizing the current () estimate, it is
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automatically improved. This can be seen as something like a policy improvement
step, while the ) update corresponds to the policy evaluation step. Furthermore,
it should be ensured that every now and then alternative actions are tried. For
example, this can be achieved by using e-greedy exploration, where with probabil-
ity € a random action is chosen and with probability 1 — ¢ the action maximizing
the current () estimate. SARSA is an on-policy method because it only uses ob-
servations generated by the current policy. In particular, it uses Q(s’,a’) which
depends on the successor state and the action chosen by 7 in this state.

Q)-learning (Watkins, 1989) is a TD method that always estimates the optimal
action-value function Q*, regardless of the followed policy. It does this by being
an off-policy method that uses an update rule based on the Bellman optimality
equation:

Q(s,a) < Q(s,a) +a|r+ 7 max Q(s',ad") —Q(s,a)l . (2.26)

While SARSA uses the Q-value of the actually chosen action in the successor
state, (Q-learning assumes the action maximizing the current )-value estimate,
i.e., the action currently considered best. Given that each state-action pair (s, a)
is visited infinitely often, @)-learning’s Q-function estimate converges to the opti-
mal action-value function Q*.

2.6 Data-Efficiency

When evaluating RL methods, data-efficiencyis an important criterion. A method
that needs less observations from interaction with the environment to achieve a
certain policy quality is considered more data-efficient than a method requiring
more observations. For many applications data-efficiency is crucial, as exploration
of the actual system is often expensive and time-consuming.

The methods discussed so far fall into two categories: model-free and model-
based methods. While TD methods learn directly from observations, DP methods
use a model of the environment. Furthermore, they can be categorized into
on-line and off-line (or batch-mode) methods. TD methods learn directly (on-
line) while interacting with the environment. In contrast, when learning from
observations DP methods must first estimate a model of the environment and
use this model to determine a policy. Both, the model estimation as well as
the policy determination, are done off-line and usually from a set (or batch)
of observations. In general, model-based methods are more data-efficient, since
they effectively re-use observations (Atkeson and Santamaria, [1997). Classic TD
methods use every observation only once; an DP approach with an estimated
model re-uses the observations by means of the model.

An approach to increase the data-efficiency of TD methods is experience replay
(Lin,[1992)). Observations are stored and used multiple times to update the action-
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value estimate Q, thereby using TD learning in a batch-mode setting. Another
approach to increase the data-efficiency of TD methods are so-called eligibility
traces, where for each state or state-action pair an additional value, the eligibility
es, is stored. Whenever a TD update occurs, not only the value estimate of the
current state or state-action pair is modified, but also all others according to
their value e;(s) or e.(s, a), respectively. Whenever a state or state-action pair is
visited, its eligibility value is increased. In each time step, all eligibility values
decay. As a result, recently visited states or state-action pairs have a higher
eligibility value than seldom visited ones. The decay is influenced by a parameter
A, with A = 0 eligibility values of all states or state-action pairs except the most
recently visited one are set to zero, thus with A = 0 the method is equal to those
not using eligibility traces at all. General TD learning with eligibility traces
is called TD(A). Rummery and Niranjan (1994) proposed SARSA()), different
versions of @-learning with eligibility traces, i.e., Q()\), have been proposed by
Watkins (1989) and Peng and Williams (1996).

Although model-based DP approaches are very data-efficient, they have two ma-
jor drawbacks. First, they are very sensitive w.r.t. modeling errors. They deter-
mine an optimal policy for the estimated MDP. Even if the estimate is close to
the real MDP, a single mis-estimated transition probability can have a dramatic
impact on the resulting policy. Despite being optimal for the estimated MDP,
it might perform insufficiently when applied to the real system. In Chapter
this problem is discussed in more detail. Another problem is the computational
efficiency when used on-line. For the best possible performance, each new obser-
vation should be used as soon as possible. For DP this means that after each
interaction with the environment the estimates of P and R have to be recalcu-
lated, afterwards a complete run of value iteration has to be done. All in all a
lot of calculations are necessary, although the state-value function after the new
observation is most probably not very different from the previous. Exactly this
fact, that one new observation on average has only little influence on the resulting
state-value function, is used by prioritized sweeping (Moore and Atkeson, [1993)).
It works similar to value iteration but updates only values for state-action pairs
whose estimated value would change significantly. To this end the algorithm keeps
a queue of these state-action pairs, prioritized by the size of their changes. When
the state-action pair from the top of the queue is updated, the effect on each of
its predecessor pairs is calculated. If the value change of a predecessor pair would
be larger than some small threshold, it is inserted into the queue. Once the value
of a state-action pair is updated, it is removed from the queue. This is repeated
until the queue is empty or some maximum number of state-action pairs has been
processed.
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2.7 Function Approximation

All methods discussed so far work only for reasonably small discrete state and
action spaces, because they assume that the value of each state-action pair is an
entry of a table in memory. For MDPs with a large discrete or continuous state
space this becomes impractical. First, there is the storage problem—for each
possible state-action pair its value must be stored, which becomes impossible for
such MDPs. Second, even if we were able to store all those values, we would face
the problem of data-efficiency—it would take a lot of time and data (observations)
to fill the entries of the table with accurate values. Both issues are addressed by
generalization. Instead of storing each value independently, some representation
is used. This representation could be a function approximator parameterized by
a vector §. The number of parameters in g is usually much smaller than the
number of state-action pairs. Learning in this context means updating 0. This
way an update due to an observation involving only a single specific state-action
pair potentially changes the values of many more state-action pairs—the update
is generalized.

A very simple form of generalization is state aggregation, where instead of storing
the value of each single state a number of states are aggregated and represented
by a single value. When dealing with a continuous state space, this can be done
by discretizing each dimension of the state space, resulting in hypercubes. All
states within one hypercube are then aggregated to a single discrete state. State
aggregation is relatively simple to implement and, given that the discretization
is done with care, can lead to acceptable results. In general, however, it leads
to a violation of the Markov property, since it is unknown where exactly in the
hypercube a state is located, but the probability distribution of successor states
depends on the exact location. Therefore, the quality of the resulting policy is
highly problem-dependent.

A better approach is using a “proper” function approximator to represent the
value function. Let hz: S x A+ R denote a smooth and differentiable function
that is parameterized by §. We can then use gradient descent (Widrow and Hoff,
1960; Bishop, 1995)) to change fin a way that the difference between h; and the
true function becomes smaller. For gradient descent, an error function giving the
current deviation between desired and actual output of the function approximator
must be defined. Then the error function is differentiated w.r.t. to 6. The result-
ing vector of partial derivatives is called the gradient of the error function. It can
then be used to change 0 in the direction of the negative gradient to decrease hy;’s
error. To use function approximation with TD methods, the TD error is used
as error function (Sutton, 1988). Where a table-based TD approach updates di-
rectly the table entries, TD learning with function approximation uses the TD
error to update the parameter vector g, Popular function approximators used for
TD learning are artificial neural networks. For example, Tesauro’s Td-Gammon
used @-learning with neural networks (Tesauro, 1994)). Also linear function ap-
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proximators like the “cerebellar model articulator controller” (CMAC) (Albus,
1971), which in RL is known as tile coding (Watkins, |1989), have been used (e.g.,
Watkins, [1989; Sutton, [1996). In tile coding, the state space is discretized by
tilings (grids). Multiple tilings of different coarseness and with different offsets
are used. Every tile of a tiling is a receptive field for one binary feature. If a state
or state-action pair lies within a tile, the corresponding binary feature equals 1
(“on”). To make a prediction, the values of all features that are “on” are summed.
In tile coding, the vector of all feature values corresponds to the parameter vector
4. To learn, i.e., update 5, the values for the active features are adjusted in the
direction of decreasing error.

A class of methods important for this thesis is fitted value iteration (Gordon,
1995). It can be considered as a form of approximate dynamic programming
(ADP), since it does iterations just like DP based value iteration. Instead of
storing the value function tabularly, a function approximator is used. In each
iteration i, new values V; of a set of sample states X are calculated. Then
a function approximator h; is trained to map X to V;. In the next iteration,
t + 1, h; takes the place of the value function in the Bellman update equation
to calculate V;;;. Ormoneit and Sen (2002) used this framework with kernel-
based approximators to learn a Q-function, Lagoudakis and Parr (2003) used a
linear combination of basis functions. Ernst, Geurts, and Wehenkel (2003]) were
the first to use observations of the environment ((s,a,s’,r) tuples) instead of
model-generated samples. They later called the method fitted @Q-iteration (FQI)
(Ernst, Geurts, and Wehenkel, 2005). Riedmiller (2005 combined FQI with
neural networks, resulting in neural fitted Q-iteration (NFQ) .

A remarkable feature of FQI is that it can be combined with any function ap-
proximator, while earlier approaches like Sutton (1988)) or Tsitsiklis (1994) depend
on parametric methods involving a parameter vector ] (Ernst, Geurts, and We-
henkel, [2005). In Chapters [f] and [6] FQI with tree-based regression methods and
neural networks is employed and described it in more detail.

Another notable approach to approximating the optimal action-value function
Q* is rewards regression (Schneegafl, Udluft, and Martinetz, 2006|). The basic
idea of rewards regression is to reformulate the regression task so that the reward
observations are used as targets. While the kernel rewards regression approach
(SchneegaB, Udluft, and Martinetz, 2006) still needs to iterate, it was later ex-
tended to explicit kernel rewards regression, where the problem is solved in one
step by means of quadratic programming (Schneegaf}, Udluft, and Martinetz,
2007b). Similarly, the neural rewards regression approach is a reformulation of
the task of learning Q* into a neural topology that has the rewards as targets
(Schneega$, Udluft, and Martinetz, |2007a)).
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2.8 Policy Gradient and Policy Search Methods

Besides methods approximating the optimal action-value function (with the aim
of deriving a near-optimal policy), there are two groups of methods that directly
search the policy space.

The first group are policy gradient methods. They are called so because they use
the gradient of the policy function w.r.t. its parameters. In order to do so, the
policy must be differentiable. If the policy is represented by a neural network,
this is normally the case. Since a deterministic discrete-action policy function is
not differentiable, in the case of discrete actions a stochastic policy must be used.
On the other hand, such an approach can deal directly with continuous actions
without the need to discretize whatsoever. Then, using the gradient w.r.t. policy
parameters with the policy plugged into some optimality function, gradient ascent
is performed to improve the policy (the parameters of the policy are changed
so that the optimality function is maximized). Hafner and Riedmiller (2011)
introduced neural fitted Q-iteration with continuous actions (NFQCA), which
adapts the NFQ idea to the continuous actions setting. While NF(Q resembles
value iteration, NFQCA corresponds to policy iteration. A policy network is
added that maps a state to a continuous action. The output of this network is
fed into the ) network already present in NFQ. One iteration then proceeds in
two steps: first, using both networks, new () targets are calculated, and then a
new () network is learned (policy evaluation). Second, the ) network is frozen
and the policy improved by doing gradient ascent on the policy network (policy
improvement). The policy gradient neural rewards regression approach (PGNRR)
due to Schneegafl; Udluft, and Martinetz (2007¢) integrates both steps into one
network topology by means of shared weights and selective gradient flow control.
PGNRR has no need for iteration, the policy is learned by one network training
step.

While NFQCA and PGNRR use the value function as optimality function, there
are approaches depending on policy roll-outs. They determine the quality of a
policy by actually running it. From the performances of differently parameterized
policies the gradient can be determined and the policy improved in positive gradi-
ent direction. The success of value function based approach depends highly on the
Markov property. With approaches building on actual roll-outs, the dependency
is less strong. As a consequence, the methods are more robust w.r.t. a violation
of the Markov property. Naturally, they are only applicable when data-efficiency
is not required, for instance because a simulator is available. For examples for
such methods see Riedmiller, Peters, and Schaal (2007), Sehnke et al. (2010).

The recurrent control neural network (RCNN) (Schéafer, Udluft, and Zimmer-
mann, [2007) is a method that lies between value-function based approaches and
approaches depending on actual roll-outs. It is a neural network composed of two
parts: a recurrent sub-network modeling the environment (environment model)
and a control network (MLP mapping current (internal) state of the environment
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model to an action). The training process proceeds in two steps: first, observa-
tions of the environment are used to learn the environment model. Second, this
network is frozen and used to predict the n-step return of the policy currently
encoded in the control network, where n gives the future horizon and is a pa-
rameter of the topology. Like in other policy gradient methods, gradient ascent
is performed. In the RCNN approach, the weights of the control network are
adjusted to maximize the return, i.e., the sum of rewards from each future time-
step. Because of the explicit summation using the future time-steps, the RCNN
can be considered as a “virtual Monte-Carlo policy gradient” method (Schéfer,
2008).

The second group contains methods often called policy search or direct policy
search methods. They are similar to policy gradient methods in that they also
search the policy space directly. However, they do not rely on a gradient. Instead,
they often use evolutionary algorithms (see, e.g., Eiben and Smith, |2008)) to op-
timize the policy. Evolutionary algorithms find better solutions by combining
(crossover) and slightly changing (mutation) already existing solutions. The so-
lutions become better, because the probability of selecting an already existing so-
lution to be modified and afterwards included in the successor generation depends
on its quality (fitness). Mostly the fitness of a policy is determined by running it
for a number of steps (policy roll-out). Usually, this is only feasible when a sim-
ulation is available, since many policies need to be evaluated for each generation
and the optimization must run for a number of generations to come up with good
solutions. Hence, the data-efficiency is often low. Nonetheless, policy search with
evolutionary methods can lead to excellent policies. This is in particular true for
non-Markovian environments, since they do not depend on the Markov property
like value-function based approaches. A prominent example of methods used in
this context is neuroevolution, where evolutionary algorithms are used to evolve
the topology and weights of a neural control network (Gomez and Miikkulainen
(1999); see Whiteson (2012) for a more recent treatment). Fitted policy search
(Migliavacca et al., 2011)) combines policy search and value functions; they evolve
the parameters of the policy using a number of methods, including evolutionary
algorithms, but determine the fitness not from actual roll-outs, but fitted policy
evaluation with regression trees.

2.9 Exploration

Since RL often means learning from interaction with the environment, the aspect
of exploration must be considered. Exploration in RL refers to the process of
gathering information about the environment, i.e., about the consequences of
different actions in different states.

A simple exploration scheme is random exploration, which is achieved by follow-
ing the random policy that, regardless of the current state, chooses actions at
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random. Naturally, the performance during exploration, i.e., the sum of collected
rewards, is generally quite low compared to a policy that relies on already avail-
able knowledge about the environment. e-greedy exploration tries to use already
available knowledge while at the same time continuing to explore: with proba-
bility €, a random action is chosen, with probability 1 — ¢ the action which is so
far considered best is chosen. Starting with a large € and reducing it over time
is therefore a simple approach to tackle the exploration-exploitation dilemma—
when should one stop exploring and instead only execute actions assumed to be
optimal? Similar to e-greedy exploration is Boltzmann action selection, where
the probability of selecting an action depends on its current ()-value estimate:
the higher the estimated ()-value, the higher the probability of selecting that
action. The influence of the ()-values depends on the Boltzmann temperature.
The higher it is set, the smaller the ()-value’s influence and the more random the
action selection. Similar to changing € over time in e-greedy exploration, it is
reasonable to start with a high temperature and lower it over time.

One distinguishes directed and undirected exploration methods (Thrun, [1992).
The approaches mentioned so far are undirected, since they do not plan the ex-
ploration, but explore randomly. Although e-greedy and Boltzmann exploration
explore “interesting” regions of the state space most of the time if € or the Boltz-
mann temperature are sufficiently low, they are unable to systematically explore
areas of the state space that are so far unexplored. This undirectedness leads
to potentially exponential exploration times until a near-optimal policy is found.
Directed methods, on the other hand, store not only information necessary to
derive or represent the exploitation policy. In addition, they store information
that allows more directed exploration.

A directed exploration method is R-Maz (Brafman and Tennenholtz, 2003). It
initializes the @-function with the maximum possible value Tf{—j‘ for each state-
action pair, where 1., denotes the maximum possible immediate reward (hence
the name). In the Bellman iteration the Q-value of a state-action pair is only
updated if this state-action pair has been visited at least C' times, with C' a
parameter of the algorithm. This way, each state-action pair appears to yield
maximum return before it has been visited at least C' times. When following the
resulting policy, systematic exploration is achieved. Brafman and Tennenholtz
(2003)) showed that R-Max needs only polynomial time to find a near-optimal
solution. This had first been shown by Kearns and Singh (1998) for their (more
complicated) E? algorithm.

Model-based interval estimation (MBIE) (Wiering and Schmidhuber, 1998 Strehl
and Littman, 2009) is another algorithm for directed exploration. MBIE builds
confidence intervals around the transition probability estimates as well as reward
estimates. Then, in the Bellman iteration, the action is chosen which maximizes
the Q)-value within the intervals. Thus the action selection is maximally optimistic
within the confidence intervals. When the policy is executed, new observations of
the selected actions are collected, leading to smaller confidence intervals. If the
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action selected so far is not clearly superior, the decreasing confidence interval
will eventually lead to the selection of another action (whose confidence interval is
still greater). Strehl and Littman (2009) showed that MBIE finds a near-optimal
policy in polynomial time. They also introduced an MBIE variant called model-
based interval estimation with exploration bonus (MBIE-EB), for which they also
proved optimality (Strehl and Littman, 2009). MBIE-EB alters the update rule
of the Bellman iteration to add a state-action dependent bonus that decreases
with the number of observations of a state-action pair.

2.10 Further Reading

In this chapter a short introduction to RL was given. More details can be found
in the excellent book by Sutton and Barto (1998)). Another good introduction
(that also includes POMDPs) is due to Kaelbling, Littman, and Moore (1996).
The recent book by Szepesvari (2010)) includes lots of methods developed in the
past decade. Finally, Bugoniu, Babuska, Schutter, and Ernst (2010) treat RL
and DP with a focus on function approximation.



Uncertainty Awareness
in Discrete Domains

This chapter presents methods for determining uncertainties of ()-values in dis-
crete domains. The ()-values’ uncertainties stem from the uncertainties about
the parameters of the Markov decision process (MDP). This motivates the dis-
cussion of methods for deriving the (Q-values’ uncertainties from those of the
MDP. Once the Q-values’ uncertainties are known, they can be used for a num-
ber of applications that will be detailed in the next chapter. In the context of
this work, the most important application is quality assurance, where the aim is
to derive a quantile-optimal policy, whose performance distribution is narrower
than that of the expectation-optimal one. Although the expected performance
of a quantile-optimal policy may be lower than the expected performance of an
expectation-optimal policy, the probability of obtaining a very low performance
is reduced. Discrete methods are less affected by the problems mentioned in Sec-
tion of the introduction: for value iteration, there are no meta parameters to
set and the learning process does not need to be monitored, since it determin-
istically arrives at the same results for a given MDP. However, if the MDP was
estimated from observations, the need for the evaluation of the final policy still
exists. It is only optimal w.r.t. the estimated MDP. One can only hope that
it also performs sufficiently for the real MDP. Using uncertainty awareness for
quality assurance means considering the uncertainty of the MDP estimate in a
way that decreases the probability of obtaining a policy that will perform poor
for the real MDP. This way good policies are generated more reliably.

3.1 Basic Idea

Classic value iteration based on dynamic programming (DP) determines the ex-
pectation of Q-values given an MDP. However, when the MDP, i.e., the transition
probabilities P and the reward function R, are unknown, one can only estimate
the MDP from observations. The resulting ()-values are optimal w.r.t. the es-
timated MDP, but not necessarily optimal w.r.t. the real MDP. Because of the
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maximization of the ()-values done in the Bellman optimality equation, the re-
sulting Q-function is positively biased and the resulting policy will often be too
optimistic and perform insufficiently.

The basic idea of what will be done in this chapter is to consider not just point
estimates of the MDP’s parameters. Instead, for each parameter a distribution
will be assumed, resulting in a distribution over MDPs. This distribution can then
be used to determine a distribution of ()-values for each state-action pair instead
of just a single value. Using this knowledge it becomes possible to determine
quantile-optimal policies that try to maximize a certain quantile of the ()-value
distribution instead of the expected value. A quantile-optimal policy optimizes
the quantile performance instead of the expected (mean) performance. The lower
the chosen quantile, the lower the probability of obtaining a policy that performs
worse than indicated by the @-values. The quantile realizes a trade-off between
the amount of guaranteed performance and that guarantee’s probability. The
lower the quantile, the higher the probability of the guarantee, but the lower its
value. It is a trade-off between performance and certainty. In quality assurance,
one is willing to trade-in an amount of performance for a higher certainty that
this performance is actually reached. It is crucial to note that we deal with
the uncertainty of the estimators of the MDP, i.e., the uncertainty of having
estimated the wrong MDP. This uncertainty is distinct from the stochasticity of
the MDP.

In the following, a distribution is usually characterized only by its expected value
and standard deviation.

First possibilities of how to model the transition probabilities and the rewards
of an MDP are mentioned. It is then illustrated how to approximate the Q-
value distribution by repeatedly drawing an MDP M, from the MDP distribution
and determining the Q-function for M; (Monte Carlo uncertainty estimate (Sec-
tion [3.3)). Next, work by Schneega, Udluft, and Martinetz (2008) is described.
Schneegafl, Udluft, and Martinetz (2008) used uncertainty propagation (UP) to
calculate the Q)-function’s uncertainty directly from the uncertainties of the esti-
mators. This makes it possible to determine the exact uncertainties without the
need for computationally expensive Monte Carlo methods. However, the com-
putational burden of this method is still high. Therefore, an approximation is
presented whose computational complexity is identical to that of the standard
Bellman iteration. Nonetheless, the uncertainties determined by this approxi-
mation can be used for quality assurance and exploration, which will be shown
experimentally in the next chapter.

3.2 Estimators

There are several ways of modeling the estimators for the transition probabilities
P and the reward R. In the following, the frequentist approach using relative
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frequency as well as a Bayesian approach are presented.

For both approaches the probabilities from state-action pairs are assumed to
be independent of each other and the rewards. One can therefore assume an
independent multinomial distribution for each state-action pair. For a state-
action pair (s, a), the probability of a successor state is then given as P(s’ s, a),
with Y, cs P(s]s,a) = 1.

3.2.1 Frequentist Estimate

In the frequentist paradigms, the relative frequency is used as the expected tran-
sition probability, i.e.,

. N, a;

P(sk|si,a;) = —=2—, (3.1)

nsk\si,aj

where n, o, denotes the total number of transitions from state-action pair (si,a;)
of which ny, s, 4, lead to state sy.

The uncertainties of the parameters of the according multinomial distribution,
represented by a covariance matrix, are assumed to be

P(sklsira;)(1=P(sklsi,a;))

(A( ’ ) A( | ))— Mevey ’ tee = ( )
Cov(P(sk|si,a;), P(sn|si, a; P o o 3.2
’ ’ P(Skli’;:vl]a)?i(fnb“aj)’ if sk Sn'

1%

Note that since each state-action pair has its own multinomial distribution, it has
also its own corresponding covariance matrix.

Using the same concept for the rewards and assuming a normal distribution, the
mean is used as reward expectation, i.e.,

n . .
R 1 sk,\sz,a] '
R(si,a;,s,) = S : (3.3)
Milspa; =1 K0
with () ‘ the i-th observation of the reward of the transition s; —4; .
sklsisaj

The corresponding covariance matrix is diagonal with elements

A

Var(R(s;, a;, Sk))

nsk\si,aj -1

Cov(R(si, a;, 1), R(si, a5, 51)) =

(3.4)

Although the estimation of the transition probabilities using relative frequency
usually leads to good results in practice, the corresponding uncertainty estima-
tion is problematic if there are only a few observations, because in that case the
uncertainties are often underestimated. For instance, if a specific transition is ob-
served twice out of two tries (nsk‘sl.,aj = Ngja; = 2), its uncertainties are assumed

to be COV(,]S(SHSZ‘,aj),ﬁ(sk|siaaj)) = 0.
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3.2.2 Bayesian Estimate

Again assuming all transitions from different state-action pairs to be independent
of each other and the rewards, the transitions can be modeled as multinomial
distributions. In a Bayesian setting, where one assumes a prior distribution over
the parameter space P(sy|s;, a;) for given i and j, the Dirichlet distribution with
density

Pr(P<81|Si7 aj)u R 7P(5\3| |Si7 a’j))aij17--~7aij\$| =
Dlay) & o1

——— 22— [ P(sklsi, aj)** 1, (3.5)

[T D) i !

S . . : . .
Qi = ZLZ‘I ok, is a conjugate prior with posterior parameters a%k = Qg +
S . . . e
Nsiazsps afj = Zlkzll ozf;ljk. Choosing the expectation of the posterior distribution
as the estimator, i.e.,

75(Sk|$i7aj) = Z;ka (36)

the uncertainty of P is

O‘?'k 1_0‘? k)
A - (ol j2r Ty SK = s,
Cov(P(sklsi, a;), Plsilsia;) = § " i (3.7)
(o )2 (? +1) if s, # sn

Note that a; = 0 results in a prior that leads to the same estimates and slightly
lower uncertainties compared to the frequentist modeling of Section [3.2.1] On the
other hand, setting a; = 1 leads to a flat, maximum entropy prior that assumes
all transitions from a state to all other states equally probable.

Both settings, a; = 0 and a; = 1, represent extremes that the author believes
are unreasonable for most applications. Instead, the prior belief is modeled by
setting a; = %", where m is the average number of expected successor states of
all state-action pairs and |S| is the total number of states. This choice of «;
realizes an approximation of a maximum entropy prior over a subset of the state
space with a size of m states. This way most of the probability is “distributed”
among any subset of m states that have actually been observed, the probability
of all other (not observed) successor states becomes very low. Compared to the
maximum entropy prior with o; = 1, one needs only a few observations for the
actually observed successor states to be much more probable than not observed
ones. At the same time, the estimation of the uncertainty is not as extreme as
the frequentist one, since having made the same observation twice does not cause
the uncertainty to become zero. Estimating m from the observations is easily
possible.

Friedman and Singer ((1999) propose to use a hierarchical prior to achieve some-
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thing similar. With their approach they try to distribute the probability mass
among a relatively low number of actually observed outcomes compared to the
number of possible outcomes. Instead of directly estimating o = one first

m
. : . Is1’
uses a prior over the feasible sets of possible outcomes.

3.3 Monte Carlo Uncertainty Estimate

As noted before, we are looking for a distribution of Q)-values instead of just
single point estimates. The previous sections described ways to estimate MDPs
from observations. In fact, not just an MDP is estimated, but a distribution
of MDPs. Using this distribution, a straightforward solution to the problem of
estimating a ()-value distribution is a Monte Carlo approach (Metropolis and
Ulam, |1949): One samples a number of MDPs from the MDP distribution and
calculates the @)-values for each of them using value iteration. For a state-action
pair, each MDP sample gives one value. Those values combined approximate the
true @)-value distribution for that state-action pair. Obviously, the more MDPs
one samples and calculates Q)-values for, the better the approximation will be.
Something quite similar to this approach was done by Dearden, Friedman, and
Andre (1999) for efficient exploration. They used the uncertainty to direct the
exploration to promising but still insufficiently state-action pairs. In the present
work, however, the notion of uncertainty is used in a more explicit sense and the
application is not limited to exploration. Moreover, the Monte Carlo sampling
approach is just one way to estimate the ()-value distribution. It is discussed first
as it is the most straightforward one. Its understanding is therefore a good basis
for the further discussion.

It is assumed that the Bayesian estimator is used. Thus, in order to sample
an MDP, one needs to sample from the Dirichlet posterior distributions. This
can be achieved with independent samples from a Gamma distribution and a
normalization (Congdon, [2006, p.83). Since the state-action pairs are assumed
to be independent of each other, it is possible to sample a multinomial distribution
for each state-action pair independently. Thus, for a state-action pair (s;, a;), the
according multinomial distribution is sampled the following way:

p1~ F(Oé?,j71)> P2~ F(Oég,j,z)a s PISI Y F(Oégms‘)a (3.8)
P1 D2 Dis|
P(s1lsi, a;) = — g P(sa2]si,a;) == —g7— -+, P(sis|lsi,a;) = —5—-
> pi S i S py
(3.9)

Doing this for each state-action pair it is possible to sample an MDP M, from
the posterior distribution.

This way one samples a number of K MDPs My, k = 1,2,..., K, determines
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Algorithm 3: Monte Carlo Uncertainty Estimation
Input: o, i=1,2,...,|S,7=1,2,...,|AL,k=1,2,...,|S|, K
Result: Q;.k=1,2,... K
begin
sample MDPs
for k=1,2,...,K do
for V(s,a) € S x A do
for s’ € S do

L ps ~T(af; )
for ' € S do

(ol Py
t Pi(|s,a) < S

determine expectation-optimal policy
7* < value__iteration(E; {P;} ,R)
determine 7 ’s QQ-functions for sampled MDPs
fori=1,2,....k do
L Q; + policy_evaluation(m*, P;, R)

return Qi =1,2,...,k

the Q-function for each MDP M, with value iteration, and arrives at K values
Qi (s,a) for each state-action pair (s,a), approximating the distribution of this
particular state-action pair’s Q-value.

Unfortunately, the method derived so far is inconsistent. Each Q-function im-
plies a certain policy and is valid only w.r.t. that policy. Combining them to
approximate the Q)-value distribution would mean mixing Q-functions from dif-
ferent policies. Moreover, what would be the policy that this Q-value distribution
belongs to? A more consistent solution could look like the following:

1. Determine a common policy 7 for the MDP distribution for the expected
MDP, i.e., using the expected values of the corresponding Dirichlet posterior
distributions.

2. Sample K MDPs M,k =1,2,..., K from the MDP distribution.

3. For each MDP, do policy evaluation (Section [2.4.1)) for the common policy
7 to get QF, the Q-function of 7 evaluated for MDP M.

Algorithm [3] summarizes Monte Carlo uncertainty estimation of the expectation-
optimal @-function.

S

With the method one obtains an array of Q-values ¢;"*,i =1,2,..., K for each
state-action pair (s;,a;), from which the distribution can be approximated. For
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Figure 3.1: Exemplary return distributions of two actions (red and blue) in a state.
The blue action gives the higher expected return, therefore a expectation-optimal policy
would choose this action. However, if one considers the uncertainty as well, here with
& =1, the red action becomes preferable, because its return is more certain.

instance, the mean value gives the expected @Q-value,

1 & ..
E{Qﬂ(shaj)} = ?ZQZ ’ J) (310)
i=1
the standard deviation of the distribution is approximated by the standard devi-

ation of the array,

oQ"(s;,a;) =/ Var(g¥%). (3.11)
With K — oo, E{Q"(s;,a;)} = Q" (s4,q; ).
This can be used to reason about the true return of m. Given the uncertainty
o™, we can define a function

Qi (s,a) = Q"(s,a) — €0Q(s,a) (3.12)

that gives the return guaranteed (performance limit) with some probability de-
pending on ¢ and the distribution class of Q™. For instance, assuming that Q)™ is
normally distributed, QT2 (¢ = 2) gives the minimum return that with probabil-
ity Pr(§) = Pr(2) ~ 0.977 will occur.

Figure |3.1] illustrates the situation of two actions selectable in a given state. The
blue action has the higher expected return, but in comparison to the red action its
return distribution is quite wide, hence the probability of obtaining a low return
in one of the possible MDPs is higher. When optimizing the expected value, one
would choose the blue action and with probability Pr(0) = 0.5 obtain a return of
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at least 5. The red action obtains with probability 0.5 a return of at least 4.5.
In the example a choice of £ = 1 is illustrated as well. With a probability of
Pr(¢ = 1) ~ 0.84 the blue action will generate a return of 3.3. The red action
will with the same probability obtain a return of 3.6. A quantile-optimal policy
determined with & = 1 would thus choose the red action.

3.4 Uncertainty-Aware Value lteration

So far we have only estimated the uncertainty of a given policy or Q-function.
The next step is to maximize a certain performance quantile defined by &. This
is necessary because simply changing the policy using the uncertainty of its Q-
function does not work: A policy based on Q™% i.e., 75(s) := argmax,cq Q™¢,
does not in general improve the performance limit, as Qz’f considers the uncer-
tainty only for one step. Q™ gives the quantile performance of 7. If one changes
the policy, the existing Q-function would become invalid, posing an inconsistency.
To use the knowledge of uncertainty for maximizing the performance limit (as
opposed to the expectation), the uncertainty needs to be incorporated into the
policy-improvement step of the value iteration algorithm.

The policy-improvement step is contained within the Bellman optimality equa-
tion as max,e 4 Q" (s,a). Alternatively, determining the optimal policy in each
iteration as

Vs :m™(s) + arg max Q™ (s,a) (3.13)

and then updating the Q-function using this policy, i.e.,

Vs,a: Q™ (s,a) < > P(s']s,a { (s,a,8) +~yQ™ (s Wm_l(s))}, (3.14)

s'eS

yields the same solution. To determine a quantile- or &-optimal policy that max-
imizes the performance limit for a given £, the update of the policy must not
choose the optimal action w.r.t. the maximum over the ()-values of a particular
state, but the maximum over the @-values minus their weighted uncertainty:

Vs m™(s) argerﬁax Q™ (s,a) — EaQ™(s,a)] . (3.15)

The Monte Carlo uncertainty estimation approach can be modified to determine a
quantile-optimal policy by considering the uncertainty in the policy improvement
step of value iteration. In each iteration, the policy is determined according to
, where Q™ and o)™ are estimated from the samples. See Algorithm 4| for
the complete procedure. In the policy improvement step in line 13, % > QM (s, a)

corresponds to Q™(s, a), \/Vari(Q;"(s, a)) corresponds to Q™ (s, a).

We now have everything we need to derive policies that optimize a specific quan-
tile, i.e., policies maximizing Q™ for a given £&. With £ > 0 we get policies
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Algorithm 4: Monte Carlo Uncertainty-Aware Value Iteration

Input: o, x,i=1,2,...,[S,7=1,2,...,|A, K =1,2,...,|S], K, &
Result: Qf,i=1,2,..., K
begin
sample MDPs
fori=1,2,....k do
for V(s,a) € S x A do
for s € S do

L ps ~T(af;,)
for s € S do

(ol Py
t Pi(|s,a) < S

uncertainty-aware value iteration
m <0
fori=1,2,..., K do
| QY0
while not converged do
determine this iteration’s policy

for s,a € § x Ado
| (s)  argmax,cq & 5 Q0" (s, ) — &/ Var QP (s, a))
do value iteration update for each MDP sample
fori=1,2,..., K do
for s,a € § x Ado
| QI (s,a) = Xu Pi(s']s, a) [R(s, a,8) + Q7 (s, 7™ (5))]

m+m-+1

return Q7,1 =1,2,... K

avoiding uncertainty that can be used for quality assurance, while with £ < 0 we
get policies that seek uncertainty and can be used for efficient exploration. Be-
fore detailing those applications with experiments in the next chapter, more direct
ways of estimating the uncertainty will be discussed in the following sections.

3.5 Full-Matrix Uncertainty Propagation

The estimators described in Section give expected values and uncertainties.
Instead of sampling MDPs, one can use the uncertainties directly to compute
the uncertainty of the ()-function. This can be achieved by applying uncertainty
propagation (UP) to the Bellman iteration to derive an update equation that will
be used in parallel to the standard Bellman update equation.
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Uncertainty propagation, also known as Gaussian error propagation (D’Agostini,
2003), is a common method in statistics to propagate the uncertainty of mea-
surements to the results. It is based on a first-order Taylor expansion. Given
a function f(z) with f : R +— RY and the uncertainty of the function argu-
ments as covariance matrix Cov(x), the uncertainty of the function values f(z)
is determined as

Cov(f) = Cov(f, f) = DCov(z)D™. (3.16)

D is the Jacobian matrix of f w.r.t. x consisting of the partial derivatives of f

w.r.t. each component of z, i.e., D, ; = gf_-
J

We now want to use the knowledge about the estimator’s uncertainty to determine
the @-function’s uncertainty, 0@). We start with an initial covariance matrix
Cov(Q°,P,R) and apply UP to the update equation of the Bellman iteration

Q™ (s, a) + Z P(s']s,a) [R(s,a, ) + V"1 (s)] (3.17)

where P and R denote the estimates for the transition probabilities and rewards,
respectively, and V™! the value function of the previous iteration. The Bellman
equation takes 75, 7@, and V™! as arguments and produces Q™ as result. To
apply uncertainty propagation, equation (3.16)) is used on the Bellman equation
to obtain the update rule

Cov(Q™,P,R) < D™ 'Cov(Q™ ', P,R)(D™ T, (3.18)

where D™ denotes the Jacobian matrix (obtained by differentiating equation
(13.17)

Do Dgr Doz
pr = | o 1 0 (3.19)
0 0 I

(DG )i = Y™ (sk,a)P(sklsi, a;)
(Dgp)gink) = 0itdjn (R(Sz‘7 aj, si) + VVm(Sk»
<D87R)(i7j)v(lvn7k) - 5i716j,n7)(8k|87;, a/])

Note that in the above definition of D™ a stochastic policy 7 : S x A — [0, 1] is
assumed that gives the probability of choosing action a in state S.E| Starting with

LA deterministic policy 74 can easily be mapped to a stochastic one by setting 7(s,a) := 1
if mq(s) = a and 7(s,a) := 0 otherwise.
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an initial covariance matrix

Cov(Q%) Cov(Q°P) Cov(Q’R)

Cov(Q’,P,R) =] Cov(P,Q° Cov(P) Cov(P,R) | (3.20)
Cov(R,Q°) Cov(P,R)T Cov(R)
0 0 0
=| 0 Cov(P) Cov(P,R) |, (3.21)

0 Cov(P,R)’ Cov(R)
the update rule (3.18)) is used in parallel to the Bellman update equation in each
iteration to update the covariance matrix.

Finally, from the covariance matrix one can extract the @)-function’s uncertainty

as cQm = \/diag(Cov(Qm)).

3.6 Efficient Diagonal Approximation

The above algorithm’s time complexity per iteration is of higher order than the
standard Bellman iteration’s one, which needs O (|S|?|A]) time (O (|S|?|.A|?) for
stochastic policies). The bottleneck is the covariance update with a time com-
plexity of O ((|S||.A|)?37) (Coppersmith and Winograd, [1990), since each entry
of @ depends only on |S| entries of P and R. The overall complexity is hence
bounded by these magnitudes.

This complexity can limit the applicability of the algorithm for problems with
more than a few hundred states. To circumvent this issue, it is possible to use
an approximate version of the algorithm that considers only the diagonal of the
covariance matrix. This variant is called the diagonal approximation of uncertain-
ty-incorporating policy iteration (DUIPT). Only considering the diagonal neglects
the correlations between the state-action pairs, which in fact are small for many
RL problems, where on average different state-action pairs share only little prob-
ability to reach the same successor state.

DUIPI is easier to implement and, most importantly, has the same complexity as
the standard Bellman iteration—both in terms of time and space complexity. In
the following we will derive the update equations for DUIPI.

When neglecting correlations, the uncertainty of values f(z) with f: R™ — R™,
given the uncertainty of the arguments x as ox, is determined as

2

(@f)?=> <§£>z (02:)2. (3.22)

This is equivalent to equation (3.16|) of full-matrix UP with all non-diagonal
elements set equal to zero.
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Recall the update step of the Bellman iteration,

Q" (s,a) < Y P(s]s,a) [R(s,a,8) + V" ()], (3.23)

s'eS

can be regarded as a function of the estimated transition probabilities P and
rewards R, and the Q-function of the previous iteration Q™™ (V™1 is a subset
of Q™™1), that yields the updated @Q-function Q™. Applying UP as given by
equation to the Bellman iteration, one obtains an update equation for the
@-function’s uncertainty:

(0Q™(s,a))* « ;S(DQ,Q)2(UVm_1(3,))2+
> (Dop)*(0P(s]s,a))* +

s'eS

>~ (Dor)*(0R(s,a,5))*, (3.24)

s'eS

Dgo =7P(s'|s,a), Dop =R(s,a,s")+ VTS, Dor =P(s'|s,a). (3.25)

V™ and oV™ have to be set depending on the desired type of the policy (stochastic
or deterministic) and whether policy evaluation or policy iteration is performed.
E.g., for policy evaluation of a stochastic policy 7

Vm(s) = %ﬂ(@ﬁ)@m(s,a), (3.26)
(cV™(s))? = ZAW(a|s)2(UQm(s,a))2. (3.27)

For policy iteration, according to the Bellman optimality equation and resulting in
the Q-function Q* of an optimal policy, V™ (s) = max, Q™(s,a) and (cV™(s))? =
(0Q™ (5, arg max, Q™(s, a)))”.

Using the estimates P and R with their uncertainties o® and oR and starting
with an initial Q-function @Q° and corresponding uncertainty cQ°, e.g., @Q° + 0
and 0@ < 0, through the update equations and the @-function
and corresponding uncertainty are updated in each iteration and converge to Q™
and cQ™ for policy evaluation and Q* and c@* for policy iteration. Algorithm
shows the complete DUIPI procedure.

Instead of calculating the @Q-function and its uncertainty and then using this
information to update the policy, one can as well modify the )-values by adding
or subtracting the ¢-weighted uncertainty in each iteration. This gives rise to a
variant of DUIPI called the diagonal approximation of uncertainty-incorporating
policy iteration with ¢ modification (DUIPI-QM). However, this leads to a Q-
function that is no longer the @-function of the policy, as it contains not only
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Algorithm 5: DUIPI

Input: estimators P and R for a discrete MDP, their uncertainties o’P and o'R,
a scalar &

Result: quantile-optimal policy m

begin

Initialize Q-function and uncertainty with zero

Q%+ 0

(0Q)? 0

initialize policy to choose actions with equal probabilities

T ﬁ

m 40

while the desired precision is not reached do

Update policy and value function

for s € S do

determine best action

(s, max 4= argmax, Q™ (s, a) — §/(cQ™)*(s, a)
increase probability of choosing that action . ..
ds < min(1/m,1 — 7" (as max|s))

T (g max|S) ¢ T™(As max|S) + ds

...and decrease probability for all other actions

for a € A\ {@smax} do

1—mm
| 7 a]s) - el (g s)

Update value function and its uncertainty

Vmil(s) < 3,7 (s, a)QM (s, a)
| (aV2(s) <= Xa (s, a)(0Q™)? (s, )
update Q-function and its uncertainty
for s,a € S x Ado
Qi (s,0) S, P(s']s,a)[R(s,a, ') + 7V™H(s))]
(eQ™1)?(s,a) = E(Dq,o)* (V™) (s)+

(Dgp)*(cP)*(s')s,a) + (Dor)*(cR)*(s,a,s)

m<+—m+1

return 7

the sum of (discounted) rewards, but also uncertainties. Therefore, using this
@ and o(Q) it is not possible to reason about expected rewards and uncertainties
when following this policy. Moreover, for the exploration case with negative &
the Q-function does not converge in general for this update scheme, because in
each iteration the @)-function is increased by the &-weighted uncertainty, which
in turn leads to higher uncertainties in the next iteration. On the other hand,
by choosing ¢ and v to satisfy € + v < 1 it is possible to keep @) and o@) from
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diverging. Nonetheless, in the experiments reported in the next chapter DUIPI-
QM has proven useful, as its update scheme allows to use DUIPI successfully even
for environment that exhibit high correlations between different state-action pairs,
because by updating the (Q-values the uncertainty is propagated through them.

Like the full-matrix algorithm DUIPI and DUIPI-QM can be used with any choice
of estimator, e.g., a Bayesian setting using Dirichlet priors or the frequentist
paradigm (see Section . The only requirement is the possibility to access the
estimate’s uncertainties cP and o'R.

Algorithm Time Complexity Space Complexity

Full-Matrix UP O((|S]].A])*37) O(|S|°|A]2)

DUIPI O(|S|*|Al) O(IS|*|A])

DUIPI-QM O(|SI?|A) O(|S[?|Al)

Standard Value Iteration O(|S|A]) O(|S*) A

Table 3.1: Time and space complexities of the algorithms.

3.7 Summary

This chapter introduced methods for determining a @-function’s uncertainty in
problems with discrete state and action spaces. Once the uncertainty is known,
it can be used to derive quantile-optimal policies that optimize a quantile perfor-
mance instead of the expectation. First, the frequentist and a Bayesian approach
to model an MDP distribution were described. Next, a Monte Carlo approach to
estimate the Q-function’s uncertainty and derive quantile-optimal policies (de-
fined by a parameter £) was proposed. The Monte Carlo approach illustrates
the relationship of model uncertainty (w.r.t. the MDP) and resulting uncertainty
of the @Q-function. It further has the advantage of actually approximating the
true Q-value distribution. Its downside is the computational cost. The rest of
the chapter dealt with ways of directly estimating the uncertainty from the ex-
pected value and standard deviation of the MDP distributions. The full-matrix
uncertainty propagation approach (Schneegafl; Udluft, and Martinetz, |2008) was
described. To deal with this method’s shortcomings in terms of computational
burden, an efficient approximation (DUIPI) was proposed. Further, a variation
that modifies the @-values using their uncertainty (DUIPI-QM) was explained.

The knowledge of uncertainty can be used for a number of applications, which
will be detailed in the next chapter. In the context of autonomous control the
most important application is quality assurance. By optimizing a lower quantile
of the @-value distribution, one can decrease the probability of obtaining a policy
that will perform poor for the real MDP and thus increase reliability.



Discrete Domain Applications of
Uncertainty Awareness

As already outlined in the previous chapter, the knowledge of uncertainty can be
used for various applications. This chapter will detail the applications and present
a number of examples. First, the quality assurance application will be discussed,
where instead of the expectation one optimizes a lower quantile of the ()-value
distribution. While in general this leads to a lower expected performance, the
probability of obtaining a poor solution is reduced. Although methods for discrete
state and action spaces are not affected by most of the difficulties described in
the introduction, the risk of having estimated the wrong Markov decision process
(MDP) remains. For applications of autonomous control we are willing to accept
a decreased expected performance for an increased minimal performance. In
domains exhibiting the so-called border phenomenon even the expectation can be
improved. Next, it will be discussed how to use the knowledge of uncertainty to
enable agent self-assessment, i.e., evaluating a policy without executing it on an
actual system. For the third and final application, we will change the sign of the
parameter weighting the uncertainty and therefore obtain policies that seek state-
action pairs with a high sum of current ()-value and corresponding uncertainty,
thus realizing efficient exploration. Although exploration is not in the focus of
this work, it shows the versatility of applications for uncertainty awareness.

4.1 Quality Assurance

Given the knowledge of an MDP, i.e., the state transition probabilities P and
the reward function R, dynamic programming (DP), namely value iteration, can
be used to determine the optimal @-function Q*, from which the optimal policy
follows as 7*(s) := argmax,. 4 Q*(s,a). If, however, only observations of the
MDP in the form of (s,a,r,s") tuples, consisting of state s, action a, reward r,
and successor state s’, are available, the MDP must be estimated from those
observations before value iteration can be used. In that case, the resulting Q-
function will be optimal w.r.t. the estimated MDP, and in general only sub-
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(1,0.5,—2.1)

(1,1,0.1) (1,0.5,2)

(1,0.5,—2.1)

Figure 4.1: Simple three-state MDP. In the description (a, b, ¢) of a transition a is the
action, b the probability for that transition to occur, and c the reward.

optimal w.r.t. the real MDP.

One can use the knowledge of uncertainty to decrease the probability of obtaining
a policy that will perform poor for the real MDP, thus determining policies of
reasonable quality more reliably. For example, consider the simple three-state
MDP in Figure[d.I] In state 1 the optimal policy would always execute action 1 in
order to receive the certain reward of 0.1; in state 2 and state 3 the optimal policy
would execute action 2 to go to state 1. If, however, the MDP’s parameters had
to be estimated from a set of observations and that set did contain an observation
of the transition giving a reward of 2 from state 2 or state 3, but no observations
of the transition giving a reward of —2.1 in state 2 or state 3, the optimal policy
for the estimated MDP would go to state 2 and execute action 1 there, expecting
a reward of 2, while the true expected reward for that transition is 0.5-(2—2.1) =
—0.05. Obviously, this policy would perform far from optimal when applied to
the real MDP. Not having observed the self-transition and corresponding reward
of —2.1 in either state 2 or state 3 even once, on the other hand, indicates a high
uncertainty of the estimates for the transition probabilities from those state-
action pairs. If one used one of the methods introduced in the previous chapter
to determine the @-function’s uncertainty, it would become obvious that the Q-
values of the actions chosen by the expectation-optimal policy are affected by
high uncertainty. In a quality assurance setting we do not want a policy that is
based on uncertain estimates. Instead, it should deliver a certain performance
with high probability (i.e., little uncertainty), even if this performance is less than
that of the expectation-optimal policy (whose performance, however, is affected
by a higher uncertainty). To achieve that, in the policy update step of the value
iteration, one does not choose the action that maximizes the @-function, but
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instead in the ¢-th iteration one sets
Vs e S:m(s) + max Qi(s,a) —Eo0Qi(s, a), (4.1)

where ¢ is a parameter weighting the uncertainty. The higher £, the more certain
the return of the resulting policy will be. As described in the previous chapter,
making assumptions about the distribution of the )-values it is even possible
to determine the probability of obtaining a return smaller than Q™ (s, a) when
executing action a in state a and afterwards strictly following 7, where 7 is

determined according to (4.1)).

4.1.1 Example

Consider the three-state MDP from Figure {4.1] again. Suppose further that we
do not know the exact properties of the MDP; instead, we have made the obser-
vations shown in Table 1]

~

# s a s r
1 1 1 1 0.1
2 1 1 1 0.1
3 1 1 1 0.1
4 1 2 2 0
5 2 2 1 0
6 1 2 3 0
7 3 1 2 2
8 3 1 2 2
9 3 1 2 2
10 2 1 3 2
11 3 1 3 -21
12 2 1 2 -21
13 3 2 1 0

Table 4.1: Exemplary observations of the simple three-state MDP.

Starting with a Dirichlet prior for each state-action pair with a = 0.5, the obser-
vations were used to determine the posterior distributions. Using the expected
values for P and 7@, the optimal @-function was determined using value iteration;
the @-values and corresponding policy are shown in Table With the given
observations and the resulting estimates of P, the policy tries to go from state
1 to state 2, then execute action 1 to go to state 3, and then go back to state 1
again. While this is indeed the optimal policy for the estimated MDP, it is not
optimal for the real one. The only time this policy receives a reward other than
zero is when executing action 1 in state 2. According to the estimated MDP,
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the expected reward for that state-action pair is 2, while for the real MDP it is
0.5-(=2.14+2)=-0.05.

state Q(state,1) Q(state,2) =«
1 2.53 2.65 2
2 2.63 2.51 1
3 3.36 2.51 1

Table 4.2: (Q-values for the expectation-optimal policy according to the observations

from Table

The Q-values from Table are those of the optimal policy w.r.t. the estimated
MDP. To estimate the uncertainty of those ()-values, the sampling approach de-
scribed in the previous chapter was used. From the Dirichlet posterior distribution
1,000 MDPs were sampled and on each sample policy evaluation was run for the
policy determined previously. From that one can obtain an empirical distribution
for each state-action pair. Table shows the expected values and standard de-
viations from each Q-value distribution; Figure gives the histograms (black).
Looking at the values in Table [4.3] it becomes obvious that while the expected
value of action 2 in state 1 is indeed higher, this advantage is not certain at
all; when considering the uncertainties as well, both actions seem equally good.
Likewise, the other ()-values exhibit high uncertainty, because they are influ-
enced by the policy’s choice of state-action pairs whose corresponding estimates
of transition probabilities are affected by high uncertainty.

state Q(state,1) Q(state,2)

1 1.21(5.28) 1.23 (5.71)
2 1.05(6.76)  1.17 (5.41)
3 1.72(6.18) 1.15 (5.42)

Table 4.3: )-values and standard deviation (in brackets) estimated using the sampling
approach based on 1,000 MDP samples.

One might wonder about the difference between the ()-values in Tables and
4.3l For the values in Table the expected values from the Dirichlet distribu-
tions were used. For each state-action pair the multinomial distribution, i.e., the
probabilities for successor states from this state-action pair, was assumed that is
given by the expected value of the corresponding Dirichlet distribution. The set
of multinomial distributions (one for each state-action pair) defines the MDP for
which then policy evaluation was performed, leading to the values in the table.
On the other hand, for the results in Table sampled MDPs were used. For
an MDP sample, for each state-action pair a multinomial distribution was drawn
from the corresponding Dirichlet distribution. The resulting MDP sample was
then used in policy evaluation (of the same policy), leading to one set of @Q-value
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samples. This was done 1,000 times, leading to 1,000 ()-value samples for each
state-action pair. From those samples the means and standard deviations were
calculated, giving the values in the second table. One might expect that with
an increasing number of MDP samples the values given by this Monte Carlo ap-
proach converge to those calculated for the expectation MDP, but this is not the
case. The reason for this lies in the fact that E; f(x;) # f(E;z;) if f is a non-linear
function. In our case, f is the Bellman iteration, i.e., the repeated application
of the Bellman operator. z; corresponds to the transition probabilities. In one
case, the Bellman iteration is performed for the expected MDP (corresponding to
f(E;z;)), in the other case the Bellman iteration is performed for MDP samples
and the expectation is taken over the results (corresponding to E; f(x;)). The lat-
ter case is what we actually want, hence the Monte Carlo approach is the only one
that correctly approximates the @)-value distribution. With the number of MDP
samples going to infinity, the true distribution is revealed. Since for each MDP
sample a complete Bellman iteration needs to be performed, the Monte Carlo
approach is quite expensive. Therefore, in practice the full-matrix approach by
Schneegafl, Udluft, and Martinetz (2008)) as well as its approximation DUIPI are
preferred, although both consider the expected MDP only and hence deliver ap-
proximate solutions. Nonetheless, both approaches work well in practice, as the
experiments show.

Let us again consider the problem of a policy selecting an action whose superiority
is uncertain and that in fact might be an inferior action. To circumvent this
problem, the policy should select actions based not on the expected value, but a
lower quantile. When assuming a normal distribution, selecting actions according
to Q(s,a) —&oQ(s,a) with, e.g., £ = 2, would yield a policy that with probability
Pr(¢) = Pr(2) ~ 0.977 will perform at least as good as Q(s,a) — £0Q(s,a)
indicates.

Tableshows the Q-values and uncertainty of a policy determined using 7(s) :=
argmaxqe 4 Q(s,a) — £0Q(s,a), with & = 1, in the iteration; the corresponding
histograms are given in Figure [£.2] The resulting uncertainties are smaller, the
distributions narrower. Although the uncertainties are still high, being uncer-
tainty aware leads to a more “careful” policy here that stays in state 1 and
receives the reward of 0.1 it is certain about, instead of trying to go for the
uncertain 2 in state 2.

For the remainder of this chapter, we will move away from the sampling approach
and instead use the methods that directly determine the uncertainty, namely the
full-matrix uncertainty propagation (Schneegaf, Udluft, and Martinetz, 2008]),
DUIPI, and, for exploration, DUIPI-QM.
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Figure 4.2: Histograms of ()-values of the three-state MDP. The black histograms cor-
respond to the expectation-optimal policy, which chooses action 2 in state 1. Since the
corresponding estimates are affected by high uncertainty, the resulting histograms are
quite wide. The histograms of ¢ with ¢ = 1 are shown in red. Since it considers both,
the expected value as well as the corresponding estimate’s uncertainty, the resulting
histograms are narrower.

state  Q(s,1) Q(s,2) (Q—-¢0Q)(s,1) (Q—¢€0Q)(s,2) =t

1 0.99 (0.56) 1.04 (0.72) 0.43 0.32 1
2 1.05(1.26) 0.97 (0.66) -0.21 0.31 2
3 1.60 (1.34) 1.00 (0.70) 0.26 0.30 2

Table 4.4: Q-values and standard deviation (in brackets) for ¢, & = 1.

4.1.2 Benchmarks

In the quality assurance context experiments using the wet-chicken 2-D and
archery benchmarks were performed.
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Wet-Chicken 2-D

Wet-chicken 2-D is a two-dimensional version of the original wet-chicken bench-
mark (Tresp, |1994).

In the original setting a canoeist paddles on a one-dimensional river with length
[ and flow velocity v = 1. At position x = [ of the river there is a waterfall.
Starting at position x = 0 the canoeist has to try to get as near as possible to
the waterfall without falling down. If he falls down, he has to restart at position
x = 0. The reward increases linearly with the proximity to the waterfall and is
given by r = z. The canoeist has the possibility to drift (x — 0+ v =z + 1), to
hold the position (x — 1+ v = z), or to paddle back (zr —2 + v = x — 1). River
turbulence of size s = 2.5 causes the state transitions to be stochastic. Thus, after
having applied the canoeist’s action to his position (also considering the flow of
the river), the new position is finally given by 2’ = x + n, where n € [—s, s] is a
uniformly distributed random value.

For the two-dimensional version the river is extended by a width w. Accordingly,
there are two additional actions available to the canoeist, one to move the canoe
to the left and one to move it to the right by one unit. The position of the
canoeist is now denoted by (z,y), the (re-)starting position is (0, 0).

The velocity of the flow v and the amount of turbulence s depend on y: v = 3y/w
and s = 3.5 — v. In the discrete problem setting, which we use here, x and y are
always rounded to the next integer value.

While on the left edge of the river the flow velocity is zero, the amount of turbu-
lence is maximal; on the right edge there is no turbulence (in the discrete setting),
but the velocity is too high to paddle back.

Archery

In the archery benchmark (Schneegafl, Udluft, and Martinetz, 2008), the state
space represents an archer’s target (Figure . Starting in the target’s middle,
the archer has the possibility to move the arrowhead in all four directions and to
shoot the arrow. The exploration was performed randomly with short episodes of
25 transitions. The arrowhead’s moves are stochastic (probability 0.25 of moving
in another direction) as well as the event of making a hit after shooting the arrow.
The highest probability for a hit is with the arrowhead in the target’s middle.
Every exploration episode starts in the middle as well. The border is explored
quite rarely, such that a hit there can misleadingly cause the corresponding es-
timate to indicate a high reward and thus the agent to finally shoot from this
place.
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Figure 4.3: Visualization of the archery benchmark showing the 25 states with their
hitting probabilities.

4.1.3 Experiments and Results

Wet-Chicken 2-D

Wet-Chicken 2-D 10x10 Wet-Chicken 2-D 20x20
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Figure 4.4: Performance of policies generated using standard value iteration (black),
DUIPT (solid lines), and the full-matrix method (dashed lines). £ = 0.5 is indicated by
blue, £ = 1 by red. Policies generated using frequentist estimators are indicated by ‘A’
marks, ‘O’ marks indicate policies generated using Bayesian estimation.

For the experiments river sizes of 10x10 (100 states) and 20x20 (400 states) were
used. For both settings a fixed number of observations was generated using
random exploration. The observations were used as input to generate policies
using the different algorithms. The discount factor was chosen as v = 0.95.
Each resulting policy was evaluated over 100 episodes with 1,000 steps each. The
results are summarized in Figure (averaged over 100 trials). For clarity only
the results of stochastic policies are shown (except for & = 0, i.e., standard policy
iteration), they performed better than the deterministic ones in all experiments.
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Figure 4.5: Left: histograms of average rewards of 10% policies with & = 0 (solid), £ =1
(blue), and ¢ = 2 (red). For the generation of each policy 4 - 10* observations were
used. Right: mean (solid) and 0.1-quantile (dashed) average rewards of policies with
& =0 (black), £ = 0.5 (blue), and £ =1 (red).

Usually, a method like DUIPI aims at quantile optimization, i.e., reducing the
probability of generating very poor policies at the expense of a lower expected
average reward. However, in some cases it is even possible to increase the expected
performance, when the MDP exhibits states that are rarely visited but potentially
result in a high reward. For wet-chicken, states near the waterfall have those
characteristics. An uncertainty-unaware policy would try to reach those states
if there are observations leading to the conclusion that the probability of falling
down is low, which in fact is high. Schneegafl; Udluft, and Martinetz (2008))
report this as the “border phenomenon”, which by our more general explanation
is included. Due to this effect it is possible to increase the average performance
using uncertainty aware methods for policy generation, which can be seen from
the figure.

For small numbers of observations and high &-values DUIPI performs worse, as in
those situations the action selection in the iteration is dominated by the uncer-
tainty of the Q-values and not the Q-values themselves. This leads to a preference
of actions with low uncertainty, the Q-values play only a minor role. This effect
is increased by the fact that due to random exploration most observations are
near the beginning of the river, where the immediate reward is low. Using a more
intelligent exploration scheme could help to overcome this problem. Due to the
large computational and memory requirements the full-matrix method could not
be applied to the problem with river size 20x20.

Figure [.5] compares uncertainty-aware and unaware methods. Considering the
uncertainty reduces the amount of poor policies and even increases the expected
performance (£ = 0.5). Setting & = 1 results in an even lower probability for poor
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policies at the expense of a lower expected average reward.

Archery

In the archery domain the same experimental setup was used. For all experiments,
the Bayesian estimator with aw = 0.001 was applied. Figure [1.6] shows the mean
performance, averaged over 1,000 trials. The standard approach not considering
the uncertainty (£ = 0) starts similarly to the other approaches, with less than
100 observations it performs only slightly worse. Interestingly, however, when
increasing the number of observations, the performance plateaus and even falls.
This is because in the larger observation sets also more observations of border
states are included. Since there are many border states, a hit by chance from one
of those states is likely. Only when the number of observations is increased even
further, the border states get explored more often as well and the estimates of the
hitting probabilities of those state-action pairs get better. The uncertainty-aware
approach, on the other hand, is not fooled by hits from border states. Since they
are in fact unlikely, an estimate of a high hitting probability from a border state
is necessarily affected by high uncertainty.

performance

0
10! 102 103 10%
number of observations

Figure 4.6: Results for the archery domain. Note that the x-axis has logarithmic scale.

4.2 Self-Assessment

When using reinforcement learning (RL) for optimal control of complex technical
systems, often batch-mode RL is used, because many data-efficient RL methods
operate in batch-mode and attain data-efficiency through re-use of observation
tuples (Kalyanakrishnan and Stone, 2007)). Furthermore, for many technical con-
trol tasks it is adequate to use batch-mode RL—observations of the system from
operation with previous controllers are often available and the policy is not up-
dated continuously, but only when a sufficient number of new observations leading
to a substantially different policy are available.
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When a new policy has been generated, it is usually advisable to evaluate it before
applying it to the actual system to ensure its quality. In benchmark applications,
this evaluation can easily be done using the environment itself. For a real-world
application, however, this is usually not possible, as the policy might turn out to
be insufficient, leading to an undesirable decrease of performance or even damage
the system while being evaluated. As an alternative, one could use a simulation,
but therefore such a simulation must be available and model the real system
accurately enough to allow conclusions about the policy’s performance on the
real system.

Instead of actually executing the policy to evaluate it, we want to inspect a policy
without requiring execution. The obvious indicator of policy performance is the
value function. It should give the expected discounted future reward when follow-
ing that policy. When the parameters of the MDP are known, policy evaluation
can be used to determine the value function. However, if the knowledge of the
environment is limited, the estimates of the underlying MDP’s parameters might
lead to wrong conclusions and thus a flawed value function that does not reflect
the true performance of the policy on the real MDP.

4.2.1 Value Function-Based Self-Assessment

If the true value function of a policy is available, the obvious solution for self-
assessment is the usage of the value function as indicator of policy quality. The
expected return of a policy 7 is then given as

J(m) = 3 o)V (5), (4.2)

ses

where 114(s) is the probability of starting in s and V™ the value function of 7. It
showed that the mean value, i.e.,

_ 1 _
J(m)=V —EZV (s), (4.3)

ses

is a good alternative; it was used for the experiments (Section . Given a
set of policies, with J(7) it is possible to select the best m policies. Likewise, the
user can specify a minimum required return Jy;,. In an autonomous system a
new policy 7 is then only applied if J(7) > Juyin-

Unfortunately, calculating the true value function requires exact knowledge of
the MDP’s state-transition probabilities and reward function. Usually, those
are unknown and have to be estimated from observations. When dealing with
stochastic MDPs, the estimates can be flawed, as was illustrated in Section .1}
Having only a small set of observations (like the ones given in Table to derive
the estimates for the MDP and doing policy evaluation using those estimates,
an inferior policy can have a higher value function than the optimal one and
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consequently have a higher J(m) value. The problem here is that the estimates
are used without considering their uncertainty. Knowing the uncertainty oV'™,
which stems from both, transition probability and reward uncertainties, one can

reformulate equation (6.1)) to

Ti(m) =2 mo(s) [V7(s) — LoV (s)], (4.4)

seS

where again £ is a parameter weighting the uncertainty. Likewise, equation (4.3

becomes 1

Ju(m) = 5] > V7(s) = &aV7(s). (4.5)

seS

The uncertainty incorporating value function V."¢(s) = V™(s) —£aV™(s) is called
quantile value function.

4.2.2 Experiments

To evaluate the possibilities of determining policy quality using either the stan-
dard value function or the quantile value function, a number of experiments were
conducted using the archery, wet-chicken 1-D (Tresp, 1994} see also Section[4.1.2)),
and trap (Dearden, Friedman, and Andre, |1999) benchmark domains.

Setup

For each domain, a number of policies were generated. The aim was to select the
best m policies without additional information, i.e., without running the policy
on the real MDP or a simulation. Likewise, no additional observations were used.
To assess the selection quality, each policy was evaluated on the real MDP; its
performance (mean reward per step) served as a measure of its true quality.

In particular, for each experiment the following was done:

1. Generate N observations using random exploration, estimate the MDP from
the observations, use dynamic programming (value iteration) to determine
the optimal policy 7; for the estimated MDP, and finally evaluate the pol-
icy 100 times for 1,000 steps each to determine its performance 7;. This is
repeated 25 times, resulting in policies 72 95, value functions and uncer-
tainties (V,oV)12.. 25, and true performances 715 o5.

2. Use J(7) and J,(m) to create ranking vectors g7 and g’ of the policies.
E.g., g{ gives the index of the best policy according to J(7), ggs the worst.

3. From the true performances 7; and the rankings ¢’ and ¢”* create vectors
[7 and [”« containing the mean performance of the best m policies, m =



4.2. Self-Assessment 57

: J _ 1 2 = 1 m = 1 25 =
1,2,...725,1.6.71 —(Tg‘]17§zi:1rgi],...7% Z‘Zl,rg;_]7...,% ZZng;]). Ob_
lJ —

viously, ly; = lg% gives the mean performance of all 25 policies.

4. Steps 1-3 are repeated 400 times, allowing to generate Vectors_l_J and l:‘]“
containing the mean of the individual {7 and [’» vectors and o/ and o]’
containing the uncertainty of the mean (standard error).

Note that while the policies and their value functions and corresponding uncer-
tainty were generated in one step, one could as well use a given policy and set of
observations to generate the value function and uncertainty (policy evaluation).

The discount factor was set v = 0.975. For all experiments the Bayesian estimator
with o = 0.01 for the transition probabilities was used; the sample mean served as
estimate of the reward (Chapter [3, Section [3.2). As weighting of the uncertainty
a value of £ = 3 was used.

The figures in this section show the mean rewards given a number of selected best
policies (vectors 17 and l_J“). E.g., the very left point gives the mean performance
of the best selected policy, the very right point gives the mean performance over
all policies, i.e., the performance expectation when selecting a policy randomly.
For each experiment, the 10,000 policies were divided into 400 distinct sets of
25 policies each, a ranking was performed for each of those sets of 25 policies.
Therefore, each point in a figure is the average of 400 values.

Archery

For the archery domain (Section [4.1.2), experiments according to the general
setup were performed using various numbers of random exploration observations.
Results for a representative selection of numbers of observations are given in

Figure 4.7

When estimating an MDP from 300 observations, the standard value function
does help in selecting a policy performing better than average. When selecting
only the presumably best policy from a set of 25 policies, the mean performance
of the policies applied to the real problem is 0.43, while random selection gives
policies with a mean performance of 0.39. However, when considering the uncer-
tainty for the selection as well, the performance of the policies selected as best
increases to 0.48. When using 500 observations, the gain achievable with standard
value function based policy selection further decreases, while the selection quality
of the quantile value function remains constant. This is because of the increasing
number of misleading observations at the border of the target. Although the
probability of hitting the target from a specific border state is quite small, since
there are many border states, observing a hit from one of the border states is quite
likely, leading to the assumption that shooting from this state the probability of
hitting the target is high. This assumption leads to policies that move to such
a border state and always shoot from there. With 1,000 and 2,000 observations,
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Figure 4.7: Results of experiments using the archery benchmark. Shown are the per-
formance of policies ranked either using J(7) (black) or Jy(m) (gray). The very left
point in each plot shows the expected performance of the policy ranked best, the very
right point gives the mean performance of all policies.

the problem becomes even more pronounced—selecting a policy based only on
the standard value function leads to the selection of poor policies, as those are the
ones with massively overestimated value functions. This is expected in domains
exhibiting the “border phenomenon” (Schneega8, Udluft, and Martinetz, 2008)),
where most observations are focused in a favorable area of the state space. The
border is only explored rarely, but relatively large; it is therefore likely to observe
a positive reward by chance. With increasing dimensionality of the state space,
the border increases.

To illustrate the overestimation, Figure shows histograms of the estimated
mean values for different true policy qualities (exemplary for 2,000 observations).
In the left column the standard value functions are depicted, the right column
shows the histograms of the quantile values. The top row contains values for
the best policies (mean reward greater than 0.4), the second and third row in-
termediate policies, the bottom row shows poor policies (mean reward less than
0.2). While the value function itself does not allow the selection of good policies
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Figure 4.8: Histograms of J(7w) and J,(7) for different true policy performances for
the experiment using the archery benchmark with 2,000 observations. The left column
shows J () (ignoring uncertainty), the right column shows .J,,(7) values considering the
uncertainty. The policies are ordered by true performance with the best policies in the
top row (r > 0.45), intermediate policies in the second and third rows, and the worst
policies in the fourth row (r < 0.2).

(all histograms lie in the same range), the quantile value function reflects the
true value more clearly (area of filled bins moves from lower to larger values with
increasing true policy performance).

Wet-Chicken

In the wet-chicken benchmark (Section , an exploration run consists of one
continuous trajectory. Due to the stochasticity of the turbulences, there are
situations when the canoeist is very near the waterfall without falling down.
Although the probability of falling down from a point like this is high, limited
observations can cause the estimator to misleadingly indicate a high probability
of not falling down. Since the reward close to the waterfall is high, a policy
generated using those estimates would try to reach a point near the waterfall,
expecting to stay there without falling down and to receive a high reward.

Figure [4.9) shows the results for different numbers of observations. In the wet-
chicken domain the policy selection using the value function systematically selects
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Figure 4.9: Performance of ranked policies for the wet-chicken benchmark. The ranking
using the standard value function is marked black, the ranking according to the quantile
value function gray.

poor policies. In this setting it is better to pick a policy randomly than choosing
the one with the best value function. E.g., for 2,000 observations most policies are
near-optimal, but the over-optimistic value function of some policies leads to the
selection of poor policies. When considering the uncertainty (with the quantile
value function), the situation changes, since the overestimated values are affected
by a high uncertainty.

Trap

The trap domain is a maze containing 18 states and four possible actions (Dear-
den, Friedman, and Andre, (1999). The agent must collect flags and deliver them
to the goal. For each flag delivered the agent receives a reward. However, the
maze also contains a trap state. Entering the trap state results in a large nega-
tive reward. With probability 0.8 the agent’s action has the desired effect, with
probability 0.2 the agent moves in perpendicular direction (chosen randomly with
equal probability). See Figure for an illustration.
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Figure 4.10: Illustration of the trap domain. Starting in state S the agent must collect
the flag from state F and deliver it to the goal state G. Once the flag is delivered to
state G, the agent receives a reward of 1 and is transferred to the start state S again.
Upon entering the trap state T a large negative reward of —2.1 is given. All other
states yield a reward of 0. In each state the agent can move in all four directions. With

probability 0.9 it moves in the desired direction, with probability 0.1 it moves in one
of the perpendicular directions with equal probability.

The results from this domain are shown in Figure [£.11] For 300 and 500 observa-
tions we see the same effects as with the other domains—while the value function
based approach systematically selects poor policies, considering the uncertainty
of the value function as well it is possible to overcome this problem and select
good policies. However, for 1,000 and 2,000 observations, in the setting chosen
here with £ = 3, also the uncertainty aware approach tends to systematically
select poor policies, albeit not as extreme as the value function only approach.
Setting £ to a higher value would help here, but could lead to a dominance of the
uncertainty for cases with fewer observations.

The optimal policy for this domain tries to stay away from the trap state. After
collecting the flag, it goes back to the start state, then two fields down, and finally
two fields right to deliver the flag. If an observation set does not contain the event
of entering the trap state accidentally from the state left of it, the resulting policy
will try to take the shortest path from the flag state to the goal, closely passing the
trap state. Since the path is shorter, the corresponding estimated value function
will misleadingly contain larger values than those of a more defensive (and in fact
better) policy.

4.2.3 Related Work

To the best of our knowledge, so far only few works related to the issue of self-
assessment in RL exist. There are works concerned with the selection of a suitable
policy. Gabel and Riedmiller (2006]) address the problem of policy degradation in
NFQ by calculating a sample of the optimal @)-function tabularly and comparing
that with the neural representation. They conclude that the closer the match, the
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Figure 4.11: Performance of ranked policies for the trap domain. Again, the result of
the standard value function based ranking is marked black, the ranking also incorpo-
rating the uncertainty is marked gray.

better the policy. Migliavacca et al. (2010, |2011) propose fitted policy search, a
direct policy search method that uses an FQI-like approach to evaluate candidate
policies. Instead of evaluating the policy on the real system or a simulation, they
use fitted policy evaluation to determine the value function of the candidate policy
using that policy and a set of observations of the system.

4.2.4 Conclusion

The work in this section can be considered as a first attempt at comparing policies
without executing them on the real MDP. It was shown that the value function
can be misleading and largely overestimate the quality of the policy. To address
this problem, uncertainty propagation was used to determine the uncertainty of
the value function as well. Considering the uncertainty to determine the quantile
value function, it becomes possible to much more reliably distinguish between
good and poor policies. Although the discrete MDP setting considered here is not
the preferred solution in practice—instead of estimating MDPs and corresponding
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optimal policies from a number of distinct observation sets and then selecting
from those policies, using all available observations to estimate a single MDP
would usually yield better results—for continuous state (and action) MDPs it is
an important issue. In Chapter [6] we will try to adapt the methods to continuous
domains. Although it is not possible to do this in a straightforward manner,
uncertainty and corresponding mis-estimation again play a central role.

So far we only dealt with methods that use an existing set of observations to
derive or evaluate a policy, no matter where those observations came from and
how they were generated. The next section will discuss how the knowledge of
uncertainty can be used for efficient exploration.

4.3 Exploration

When no observations from previous interaction with the environment by some
policy are available, one has to do exploration to learn about the environment.
In an online setting, where each new observation is potentially used immediately
to update the current policy, one is often interested in finding a good policy as
quickly as possible and therefore explore efficiently, but at the same time the
rewards gathered should be maximized right from the start. In that context
the well-known exploration-exploitation dilemma arises: when should the agent
stop trying to gain more information (explore) and start to act optimally w.r.t.
already gathered information (exploit)?

Uncertainty awareness can also be used in this setting to combine existing (already
gathered) knowledge and uncertainty about the environment to further explore
areas that seem promising judging by the current knowledge. Moreover, by aiming
at obtaining high rewards and decreasing uncertainty at the same time, good
online performance is possible.

It will be shown that using a natural measure of the uncertainty obtained via
uncertainty propagation (UP) it is possible to explore efficiently without relying
on an artificial exploration bonus. Furthermore, in two variants of the algorithm
the @Q-function itself is not modified and still represents the followed policy and
actually collected rewards. Moreover, no “optimistic” initialization of the Q-
function is necessary.

4.3.1 Related Work

There have been many contributions considering efficient exploration in RL. In the
following Bayesian @Q-learning (Dearden, Friedman, and Russell, [1998), model-
based interval estimation (Wiering and Schmidhuber, |1998; Strehl and Littman,
2009), and R-Mazx (Brafman and Tennenholtz, |2003)) are considered.
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Bayesian Q-learning

Dearden, Friedman, and Russell (1998)) presented Bayesian ()-learning, a Bayesian
model-free approach that maintains probability distributions over Q)-values. They
either select an action stochastically according to the probability that it is optimal
or select an action based on wvalue of information, i.e., select the action that max-
imizes the sum of @-value (according to the current belief) and expected gain in
information. They later added a Bayesian model-based method that maintains a
distribution over MDPs, determines value functions for sampled MDPs, and then
uses those value functions to approximate the true value distribution (Dearden,
Friedman, and Andre, (1999).

Model-Based Interval Estimation

In model-based interval estimation (MBIE) (Wiering and Schmidhuber, |1998;
Strehl and Littman, [2009)) one tries to build confidence intervals for the transition
probability and reward estimates and then optimistically selects the action max-
imizing the value within those confidence intervals. Strehl and Littman (2009)
proved that MBIE is able to find near-optimal policies in polynomial time. This
was first shown by Kearns and Singh (1998) for their E? algorithm and later by
Brafman and Tennenholtz (2003) for the simpler R-Max algorithm.

Strehl and Littman (2009) present an additional algorithm called model-based
interval estimation with exploration bonus (MBIE-EB) of which they also prove
optimality. According to their experiments, it performs similarly to MBIE. MBIE-
EB alters the Bellman equation to include an exploration bonus term

Q(s.0) = R(s.a) + 7 Y P(slls.0) max Q(sa)) + ——,  (46)

s'eS Ns.a

where (3 is a parameter of the algorithm and n, , the number of times state-action
pair (s,a) has been observed.

R-Max

R-Max takes a parameter C'; which is the number of times a state-action pair
(s,a) must have been observed until its actual @-value estimate is used in the
Bellman iteration. If it has been observed fewer times, its value is assumed as

Q(s,a) = T, (4.7)

which is the maximum possible Q-value (7. is the maximum possible reward).
This way exploration of state-action pairs that have been observed fewer than C'
times is fostered.
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Figure 4.12: Illustration of the river-swim domain. In the description (a,b,c) of a
transition a is the action, b the probability for that transition to occur, and ¢ the
reward.

Risk and Uncertainty

There have also been a number of contributions considering the incorporation
of risk in RL (Heger, |1994; Neuneier and Mihatsch, [1998; Sato and Kobayashi,
2000; Geibel, 2001). These approaches deal with the risk of obtaining a low
return in the single run—a risk that even exists for an optimal policy due to the
inherent stochasticity of the MDP. The consideration of uncertainty deals with
the uncertainty of the estimated parameters, due to our incomplete knowledge
about the MDP. While this uncertainty decreases with an increasing number of
observation, the stochasticity of the MDP and therefore the risk of obtaining a
low return in the single run remains.

To demonstrate the functionality of the approach, experiments were conducted
using two benchmark applications from the literature. The following section
compares the full-matrix version, classic DUIPI, DUIPI with @-function modi-
fication, and two established algorithms for exploration, R-Max (Brafman and
Tennenholtz, 2003) and MBIE-EB (Strehl and Littman, [2009). Furthermore,
some insight is presented on how the parameter £ influences the agent’s behavior.

4.3.2 Benchmarks

The first benchmark is the river-swim domain from Strehl and Littman (2009)),
which is an MDP consisting of six states and two actions. The agent starts in
one of the first two states (at the beginning of the row) and has the possibility to
swim to the left (with the current) or to the right (against the current). While
swimming to the left always succeeds, swimming to the right most often leaves the
agent in the same state, sometimes leads to the state to the right, and occasionally
(with small probability) even leads to the left. When swimming to the left in
the very left state, the agent receives a small reward. When swimming to the
right in the very right state, the agent receives a very large reward, for all other
transitions the reward is zero. The optimal policy thus always swims to the right.
See Figure for an illustration.

The other domain considered here is the trap domain as used previously.
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river-swim trap

R-Max 3.024+0.03-10° 469+ 3

MBIE-EB 3.134+0.03-10° 558 4+3
full-matrix UP  2.59 +0.08 - 10° 521 +20
DUIPI 0.6240.03-105 554410
DUIPI-QM 3.16 £0.03 - 10 565 4 11

Table 4.5: Best results obtained using the various algorithms in the river-swim and
trap domains. The used parameters can be found in Table [1.6]

river-swim trap
R-Max (C =16 Cc=1
MBIE-EB 5 =0.01 8 =0.01

full-matrix UP o =0.3, ¢
DUIPI «a=0.3,¢
DUIPI-QM «=0.3, ¢

~1 a=0.3,&=-0.05
—2 a=01,¢(=-0.1
—0.049 a=0.1, £ = —0.049

Table 4.6: Parameters used for the experiments.

For each experiment the cumulative reward for 5,000 steps was measured. The
discount factor was set v = 0.95 for all experiments.

4.3.3 Results and Discussion

Table shows the results for the considered domains and algorithms obtained
with the respective parameters set to the optimal ones found. Reported are
results averaged over multiple trials, for each average its uncertainty is given as
well.

For river-swim, all algorithms except classic DUIPI perform comparably. By
considering only the diagonal of the covariance matrix, DUIPI neglects the cor-
relations between different state-action pairs. Those correlations are large for
state-action pairs that have a significant probability of leading to the same suc-
cessor state. In river-swim many state-action pairs have this property. Neglecting
the correlations leads to an underestimation of the uncertainty, which prevents
DUIPI from correctly propagating the uncertainty of )-values of the right most
state to states further left. Thus, although @)-values in state 5 have a large un-
certainty throughout the run, the algorithm settles for exploiting the action in
the left most state giving the small reward if it has not found the large reward
after a few tries. DUIPI-QM does not suffer from this problem as it modifies Q-
values using uncertainty. In DUIPI-QM, the uncertainty is propagated through
the state space by means of the ()-values.



4.3. Exploration 67

full-matrix UP DUIPI DUIPI-QM

time 7 min 14 s 14 s

Table 4.7: Computation time for 5,000 steps in the river-swim domain using a single
core of an Intel Core 2 Quad Q9500 processor. The policy was updated in every time
step.

In the trap domain the correlations of different state-action pairs are less strong.
As a consequence, DUIPI and DUIPI-QM perform equally well. Also the per-
formance of MBIE-EB is good in this domain, only R-Max performs worse than
the other algorithms. R-Max is the only algorithm that bases its explore/exploit
decision solely on the number of executions of a specific state-action pair. Even
with its parameter set to the lowest possible value, it often visits the trap state
and spends more time exploring than the other algorithms.

Although full-matrix UP performed worse than the approximate algorithm DUIPI-
QM, it is in general expected to be the best performing algorithm; the author
believes that the results here are due to peculiarities of the test domains.

Figure |4.13| shows the effect of ¢ for the algorithms. Except DUIPI-QM the
algorithms show “inverted u”-behavior. If £ is too large (its absolute value too
small), the agent does not explore much and quickly settles on a suboptimal
policy. If, on the other hand, ¢ is too small (its absolute value too large), the
agent spends more time exploring. The author assumes that DUIPI-QM would
exhibit the same behavior for smaller values for £, however, those are not usable,
as they would lead to a divergence of Q) and o).

Figure shows the effect of £ using DUIPI in the trap domain. While with
large & the agent quickly stops exploring the trap state and starts exploiting,
with small £ the uncertainty keeps the trap state attractive for more time steps,
resulting in more negative rewards.

Using uncertainty as a natural incentive for exploration is achieved by applying
uncertainty propagation to the Bellman equation. Our experiments indicate that
it performs at least as good as established algorithms like R-Max and MBIE-
EB. While most other approaches to exploration assume a specific statistical
paradigm, our algorithm does not make such assumptions and can be combined
with any estimator. Moreover, it does not rely on state-action pair counters,
optimistic initialization of ()-values, or explicit exploration bonuses. Most im-
portantly, when the user decides to stop exploration, the same method can be
used to obtain quantile-optimal policies for quality assurance (Section by
setting £ to a positive value.

While full-matrix UP is the more fundamental and theoretically more sound
method, its computational cost is considerable. If used with care, however, DUIPI
and DUIPI-QM constitute valuable alternatives that proved well in practice.
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Figure 4.13: Cumulative rewards for river-swim obtained by the algorithms for various
values of £&. The values for full-matrix UP are averaged over 50 trials, for the values for
DUIPI and DUIPI-QM 1,000 trials of each experiment were performed.

4.4 Summary

This chapter concludes the part about methods for MDPs with discrete state and
actions spaces. After having introduced ways of determining the @Q-function’s
uncertainty and from that quantile-optimal policies in the previous chapter, cor-
responding applications were detailed here. We started with quality assurance,
where one is interested in optimizing a lower quantile and thus decrease the prob-
ability of obtaining a poor policy. While this performance guarantee comes in
general at the expense of a lower expected performance, the experiments showed
that in domains exhibiting states that are visited rarely, but can potentially yield
a high reward (though on average are poor and should be avoided), even the ex-
pected performance can be increased (“border phenomenon”). We started with a
small three-state MDP to illustrate the effect of quantile optimality. It was fur-
ther discussed why the Monte Carlo method arrives at other results than using
the expected values of the Dirichlet distributions. Next, the full-matrix approach
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Figure 4.14: Immediate rewards of exemplary runs using DUIPI in the trap domain.
When delivering a flag, the agent receives reward 1, when entering the trap state it
receives —2.1. While with £ = —0.1 after less than 300 steps the trap state does not
seem worth exploring anymore, setting £ = —0.5 makes the agent explore longer due
to uncertainty. With £ = —1 the agent does not stop exploring the trap state in the
depicted 1,000 time steps.

as well as DUIPI were applied in a quality-assurance setting for the archery and
wet-chicken 2-D benchmarks. Subsequently, self-assessment was discussed, i.e.,
assessment of a policy without requiring its execution on the actual MDP or addi-
tional observations. It was argued that the value function itself can be misleading.
If also its uncertainties are considered, selection of good and poor policies becomes
possible. This shows again the impact of mis-estimation and how uncertainty
awareness can act as a remedy. Finally, uncertainty-aware methods were used for
efficient exploration by negating the parameter £ and thus using uncertainty as
an added bonus. The introduced approaches were compared to established meth-
ods for efficient exploration, namely R-Max and MBIE-EB; it showed that they
perform comparably. Advantages in this work’s uncertainty-propagation based
methods are the fact that they do not assume a specific statistical paradigm
and, most importantly, can be combined with the quality assurance approach by
changing £ to a positive value once the exploration is considered finished.






Ensembles for More Reliable
Policy Identification

Most problems of optimal control for technical systems feature a continuous state
space. However, the methods introduced in the previous chapters are only appli-
cable to problems with discrete state and actions spaces. To deal with the com-
putational and storage problem that comes with the potentially infinite number
of states of a continuous state space, it is inevitable to resort to some sort of
function approximation. An extremely simple form of function approximation is
a grid-like discretization of the state space. Each hypercube can then be treated
as a discrete state and discrete methods become applicable. However, such a
locally constant function approximation not only generalizes very poorly, it also
violates the Markov property, because different states within a single hypercube
are not distinguishable any more (the coarseness of the discretization influences
the severity of the violation).

In this thesis, mainly neural networks are used as function approximators; they
can deal with high-dimensional inputs and have excellent generalization capa-
bilities (Hastie, Tibshirani, and Friedman, 2001, p.351). In particular, neural
networks are employed in the context of neural fitted @Q-iteration (NFQ).

The following section will first detail NFQ and describe the algorithm it builds
on, fitted Q-iteration. We will then discuss the problems of NFQ that hinder
its application to autonomous control. As a way of increasing the reliability of
NFQ, the usage of ensembles is proposed. In that context, a number of ensemble
methods will be named and evaluated on different benchmark problems.

5.1 Neural Fitted Q-lteration

Neural fitted Q-iteration (NFQ) (Riedmiller, 2005) is an instance of the fitted Q-
iteration (FQI) algorithm. FQI was first introduced by Ernst, Geurts, and We-
henkel (2003) as a data-efficient batch-mode reinforcement learning (RL) method
(see also Ernst, Geurts, and Wehenkel, 2005). They used extremely randomized
trees (Geurts, Ernst, and Wehenkel, [2006) as function approximator. In NFQ,
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instead of regression trees a neural network is used.

5.1.1 Fitted Q-lteration

Algorithm [6] summarizes FQI. It can be considered as a sample-based version of
value iteration (see Chapter , Section . Instead of the transition probabil-
ities, one uses the samples directly. Starting with an arbitrary Q-function (lines
2-3, assuming Qinix = 0 here), a function approximator is trained to map inputs
to @-values (line 6). In the next step, the new targets are determined using an
update based on the Bellman optimality equation (line 7). Since a (generalizing)
function approximator was trained in line 6, it is possible to determine the Q-
values for state-action pairs that are not contained in the set of observations O
and thus to maximize the Q-function over a’.

Algorithm 6: Fitted Q-Iteration

Input: set of observations O = {(s;,a;,r;,sili =1,..., M}, v €[0,1)
Result: near-optimal Q-function Q*

begin

inputs are state-action pairs from observations

input; := (s;,a;) Vie{l,...,M}

set rewards as initial targets

target, :=1; Vie{l,...,M}

k:=0

while stopping criteria not reached do

train regression algorithm to map input — target
Qy := train(input, target)

determine new targets

target, := r; + ymaxy Qx(si,a’) Vie{l,...,M}
k=k+1

return Q)

NFQ has proven to be very data-efficient. E.g., Riedmiller (2005) was able to learn
near-optimal policies for the pole-balancing benchmark using observations from
100 episodes of random exploration (approximately 600 observations). However,
a number of problems have been reported as well. In particular, it is hard to
decide when a Q-function leading to a good policy is reached and therefore when
to stop iterating.

5.1.2 Problems of NFQ

There have been a number of reports on problems regarding the learning pro-
cess with function approximators in RL and FQI in general and NFQ in par-
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Figure 5.1: Performances of policies from repeated NFQ runs on different datasets.
With each of the three datasets NFQ was run 50 times, resulting in 50 policies. The
histograms show the performances, i.e., average reward, of the policies for each dataset.

ticular (Thrun and Schwartz, 1993; Gordon, 2001; Gaskett, 2002; Gabel and
Riedmiller, |2006).

As an example, consider the histograms shown in Figure 5.1} Here, three distinct
datasets were used to run NFQ 50 times on each. This resulted in 50 policies
for each dataset. The policies were evaluated (by running them on the actual
environment) and the achieved average reward was determined as a measure of
a policy’s performance. Each histogram contains therefore 50 values. It shows
that repeated runs of NFQ on the same dataset can lead to quite different results.
Although the distributions are different (dataset 1 has a tendency towards poor
policies, whereas most policies generated from dataset 2 and especially dataset
3 are comparatively good), all histograms contain a fair amount of both, poor
as well as good policies. The stochastic components of neural network training,
namely the random initialization of weights and the stochastic pattern selection,
make different results given the same dataset possible. Ideally, NFQ would only
produce good policies. In the following, reasons for its failure are discussed.

Chattering

When using function approximation for RL, a phenomenon called chattering can
occur (Gordon, 2001). The space of possible Q-functions for an MDP repre-
sentable by a function approximator contains so-called greedy regions. In such a
region the policy resulting from greedy exploitation of the respective Q-function,
i.e., following m(s) = arg max, Q(s, a), does not change. Each greedy region con-
tains a greedy point, during the process of learning the Q)-function represented by
the function approximator moves to that point. If the greedy point lies within
the greedy region, no problems arise. However, if the greedy point lies on the
border of another or even outside the greedy region, an oscillation can occur with
the Q-function moving from one greedy region to another. Gabel and Riedmiller
(2006)) report this problem for NFQ. The authors suggest doing a policy selec-
tion by monitoring the current policy’s quality and stopping the learning process
once the quality declines. Their method works by calculating a sample of the
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optimal @-function tabularly and comparing the ranking of actions of the tab-
ular @-function with the neural one. They conclude that the closer the match,
the better the neural Q-function. While the approach is indeed able to stabilize
the learning process and produce high-quality policies more reliably, its major
drawbacks are the limitation to discrete state spaces and the necessity of having
observed multiple actions in the same state, since the tabular ()-function cannot
generalize over actions.

Rising Q Problem

Thrun and Schwartz (1993)) report the problem of overestimation of @-values, a
fundamental flaw of value function based RL with function approximation. When
learning with noisy data, the output of a function approximator will also be
affected by noise. Although the noise has a mean of zero, an algorithm relying on
the maximization of )-values (this includes @Q-learning and FQI-like algorithms)
will systematically overestimate the ()-value, as it selects the maximum @)-value
over all actions when determining the targets for the next learning step. Thus
the noise is maximized as well. More formally, taking the maximum over several
noisy values is an overestimation, since

E{max d} > max E{a}, (5.1)

where @ is the vector of noisy values. Applied to the maximization of the Q-
function, we have

E{Igleaj( Q(s,a)} > max E{Q(s,a)}. (5.2)

Gaskett (2002) observed that problem as well and called it the “rising QQ problem”.

Van Hasselt (2010b)) analyzed the overestimation of Q-values when applying tabu-
lar ()-learning in stochastic domains, without using function approximation. The
stochasticity of the environment can have similar effects as the noisy output of
a function approximator. Van Hasselt proposes double Q-learning, a variant of
@-learning where one uses two representations of the Q-function; when a Q)-value
of one representation is to be updated, the maximum successor state (Q-value is
determined using the other representation. He argues that the data-efficiency
does not suffer, as the two representations can be combined to derive the pol-
icy. However, it is unclear whether this also applies in a setting with function
approximation.

To weaken the rising ) problem, a sigmoid activation function is used for the
output neuron of the () network, thus bounding the range of possible output
values. Using a bounded activation function for the output neuron was also
reported to lead to a more stable learning behavior (Riedmiller, 2011)), which is
confirmed by the experiments here. The hyperbolic tangent serves as activation
function, limiting the network’s outputs in [—1,1]. To be able to represent Q-
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Figure 5.2: Maximum @-values per NFQ iteration with i¢d and tanh activation functions
in the output layer.

values smaller than —1 or greater than 1, a linear scaling is used (¢; denotes
original targets, fj the scaled ones):

k = 1.05max |t (5.3)
J
N t;
: (5.4

This way the maximum absolute value the network is asked to represent is
ltmax| = 1/1.05 ~ 0.9524. Not having to use the complete range of possible
outputs of [—1,1] keeps the network from having to use large weights for the
connections to the output layer. Obviously, the scaling value x must be kept to
be able to do an inverse scaling when network output values are to be used. Al-
gorithm [7| summarizes the implementation. Gabel, Lutz, and Riedmiller (2011])
independently proposed a scaling method similar to the one used here. The train-
net function takes pairs of input vectors and corresponding target values, initial-
izes a new neural network, and adapts the weights of the network to minimize the
mean squared error (MSE) between the network’s output and the target values.
To train a network, the VarioEta learning algorithm (Neuneier and Zimmermann,
1998) is employed. It leads to similar results as standard backpropagation (with
small batches), but is often faster. The training is done in a number of steps,
starting with a large learning rate and decreasing it after each step. In each step,
the network is trained for a number of epochs n.. If the average MSE of the last
n. epochs on a validation set did not fall by at least some pre-defined threshold,
training in that step is stopped and the next step commences; otherwise, the
network is trained for another n. epochs.

To show the superiority of bounded output neurons in combination with scaling,
a number of experiments were performed using the pole-balancing benchmark
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id noscale id tanh
steps balanced 284 (849) 2427 (1035) 2675 (866)
successful policies 3/50 23/50 37/50

Table 5.1: Number of successful policies (i.e., able to balance at least 3,000 steps)
generated by NFQ runs with different activation functions and with and without target
scaling (pole-balancing).

with fixed observation sets (see Section for details on the benchmark and
the data generation). With each data set, NFQ was run using different activation
functions in the output layer. Each experiment was repeated 50 times. Figure
shows maximum @Q-values for 200 iterations. In one case, the output neurons
were unconstrained by using the identity as activation function. In the other
case, the activation function was the hyperbolic tangent, limiting the network’s
outputs in [—1,1]. The dashed line denotes the maximum plausible @Q-value
Qmax = Rmax/(1—7), with Ry, the maximum reward (in this case Ry = 1). As
can be seen from the figure, when using the identity, the Q)-values rise quickly and
cross the line of the maximum plausible @-value, indicating a clear overestimation.
While the network using the hyperbolic tangent is able to overestimate as well
(because of the 1.05 factor), it is harder, and the Q-value overestimation is not
as severe as with the identity function. In addition to producing more plausible
@-values, the bounded output approach also leads to better policies. Table
shows the results. Additionally, the table contains results of the same experiment
with id activation and no target scaling. It is obvious that the network’s ability
to learn the Q-function and thus the quality of the resulting policy benefits from a
target scaling, which is a common technique to successfully train neural networks
(see, for instance, Bishop, (1995, Chapter 8).

General Issues of Neural Network Training

Dietterich (2000) names three general problems that arise in the context of func-
tion approximation.

1. The statistical problem. With a limited number of training patterns, a
solution that nicely fits both training and validation sets can still deviate
from the true function.

2. The computational problem. Many algorithms, including neural networks,
optimize a non-convex error function that exhibits local minima; by start-
ing from different points in the parameter space and randomly selecting
patterns for training, even given the same training data different instances
of the same algorithms can arrive at different solutions.

3. The representational problem. The function approximator might even be
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Algorithm 7: Scaling NFQ

Input: set of observations O = {(s;,a;,r;,siji =1,...,N}, v, K
Result: near-optimal Q-function Q*
begin
inputs are state-action pairs from observations
input, := (s;,a;) Vie{l,...,N}
set rewards as initial targets
target, :=1r; Vie {l,...,N}
k:=0
while £ < K do
scale targets
ki = 1.05 max; |target;|
farget, .= "% Vi€ {1,..., N}
train neural network
net@ := train-net(input, @c)
get mazximum Q-values for successor states from network . ..
Vi(sh) := K max, net@ (s, a’) Vi€ {l,...,N}
...and use them to determine new targets
target; == r; +YVi(si) Vie{l,...,N}
k:=k+1

return Q)

unable to exactly represent the actual function. Note that this problem
can arise even if the function approximator itself is powerful enough (like
a sufficiently large neural network), because the hypothesis space is limited
by the size of the training set.

In addition to chattering and the rising Q problem, those general problems con-
tribute to the instability of NFQ as well.

For the pole-balancing benchmark even with approximately 60,000 observations
(10,000 episodes), a number that here excludes the statistical problem, the au-
thor could observe oscillations. While the vast majority of iterations produced
successful policies, occasionally there was a policy that was unable to balance
the pole for the required 3,000 steps. Therefore, at least in this case, adding
observations alone is not sufficient.

To mitigate those problems, it is proposed to use ensembles for more robust and
reliable RL with function approximation. This also makes the algorithm less
sensitive to the possible choices of parameters.
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5.2 Ensemble Methods

In supervised learning, ensemble methods such as mixture of experts (Jacobs, Jor-
dan, Nowlan, and Hinton, 1991), bagging (Breiman, 1996)), or boosting (Freund,
Schapire, and Abe, [1999) have been used successfully to improve the performance
of a single learner by combining several ones—both for classification and regres-
sion problems.

For classification problems, the most straightforward way of combining single
learners to an ensemble is majority voting. Each individual classifier is trained
independently on the dataset or a subset thereof. For new input data, each
classifier votes for a class, the most voted for class is used as the final prediction of
the ensemble. Ensembles improve the prediction quality if the individual members
are accurate and diverse (Hansen and Salamon, [1990)). A classifier is accurate
if its error rate on new inputs is better than random guessing; the ensemble
members are diverse if they do not make the same errors on new data points.
For example, consider three classifiers {hy, hs, h3}, each having an error rate of
0.4. If they are identical, i.e., not diverse, they will make the same errors on new
inputs, their errors will be maximally correlated, and the ensemble error rate
will consequently be identical to the individual ones. If, on the other hand, their
errors are uncorrelated, i.e., the diversity is maximal, when h; is wrong, he and
hs may be correct, so that the majority vote will give the correct result. Given
M classifiers with error rates smaller than 0.5, more than M /2 have to be wrong
for the final classification to be wrong (Dietterich, 2000). One can see that in this
case simply adding members to the ensemble will increase the prediction quality;
with M — oo, the probability of more than M /2 members being wrong tends to
zero. In practice, however, the errors are not completely independent, therefore
adding members makes only sense up to a certain point.

When using ensembles for regression problems, a simple aggregation scheme is
the weighted mean of the outputs of the ensemble members as final output. In the
context of neural network ensembles, Krogh and Vedelsby (1995)) introduced the
term ambiguity to quantify the disagreement of the members on a given input.
Let f;(z) be the output of network 7 on the input . The ensemble output is then
given by

flz) = Z:wz—fi(x), (5.5)

where w; is the weight of network ¢ and Zf\il w; = 1. If no information about the
quality of a specific network is available, all weights are set w; = 1/M, i.e., every
network is assigned the same weight. The ambiguity of a network ¢ for an input
x is the squared difference between the network’s output f;(z) and the ensemble
output f(x), i.e.,

a;(x) = (filz) = f(2))* (5.6)

The ensemble ambiguity is the weighted sum of the ambiguities of the members:
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a(x) = Zl w;a;(z). (5.7)

Based on this, one can express the average ensemble ambiguity over the input
distribution X as -
A=E, x,a(z). (5.8)

Given the expected error of a single network of the ensemble as

= ]\14 ; E.x, (fi(z) — y())*, (5.9)

Krogh and Vedelsby (1995)) showed that the ensemble error E can be expressed
as
E=FE— A, (5.10)

i.e., the ensemble error is reduced by the ambiguity. This is in fact similar to
the traditional bias/variance trade-off (Geman, Bienenstock, and Doursat, 1992).
If the networks are strongly biased, they will all produce similar solutions, the
ambiguity will be low and E ~ E. If, on the other hand, they are less biased, the
ambiguity will be higher and the ensemble error will be lower than the expected
error of a single network (Krogh and Vedelsby, 1995; Brown, Wyatt, Harris, and
Yao, 2005)).

As we have seen, in an ensemble diversity is key. Consequently, ensemble methods
like bagging (Breiman, [1996)) or boosting (Freund, Schapire, and Abe, [1999) try
to increase the diversity.

Bagging (short for bootstrap aggregating) uses bootstrapping (Efron, |1979; Efron
and Tibshirani, [1993) to produce new datasets of the same size as the original;
on each dataset, an individual learner is trained (Breiman, 1996). Bootstrapped
replica are generated by repeatedly sampling with replacement from the original
dataset. Given N samples in the original dataset, each bootstrapped replica will
contain on average 0.63/N samples from the original dataset, some of them appear-
ing multiple times. The remaining 0.37/N samples are often used for validation
purposes.

Boosting goes one step further by training one learner after another and giving
so far mis-classified examples a higher weight. This way learners trained in the
beginning cover the general “easy” training examples and later trained learners
become “experts” for certain cases. The final decision is made by a weighted
majority voting, where the weight of each single learner is dependent on its per-
formance on the complete dataset. Originally proposed as a meta-algorithm for
classification, boosting can also be extended to regression problems (Friedman,
2001]).

In the case of neural networks, even simply training the network multiple times on
the same training set leads to some diversity because of the random initialization
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of the network’s weights and the random selection of patterns during learning.
Other possibilities of introducing diversity into an ensemble of neural networks
include varying the network’s topology (number of hidden layers, number of neu-
rons per layer, randomly sparse initialization of weight matrices (Zimmermann,
Grothmann, Schéfer, and Tietz, 2006)), the learning algorithm, the learning rate,
and regularization techniques like weight decay or early stopping.

5.3 Ensembles in Reinforcement Learning

Like supervised learning, RL can also benefit from ensembles. Surprisingly, the
interest for ensemble methods in the RL literature has been quite low. There are
a number of approaches that use ensembles to represent the value function (e.g.,
Singh, [1993; Tham, [1995; Sun and Peterson, [1999; Ernst, Geurts, and Wehenkel,
2005). The option of combining different policies has been explored less often
(Jiang and Kamel, |2006; Wiering and van Hasselt, 2008), though with promising
results. Faufler and Schwenker (2011) used ensembles for (online) TD learning
with neural networks.

In the following, ways of combining different neural networks to an ensemble in
an NF(Q context are discussed.

Combination of final policies

A straightforward and, as we later shall see, quite successful way of creating a
policy ensemble is letting each instance of the algorithm run for itself until a
final policy or @-function is determined and then combining those to obtain the
final policy. This method was first (and independently of this work) proposed
by Wiering and van Hasselt (2008]). It makes no assumptions about the policy
generating algorithm and is therefore suitable for combining algorithms that use a
different notion of a @-function (e.g., actor-critic algorithms) or no @Q-function at
all (e.g., methods that directly search the policy space (see Chapter [2))). A simple
solution for combining policies is (weighted) majority voting. Wiering and van
Hasselt (2008) propose and empirically evaluate a number of additional methods
for combining policies. Those are rank voting, Boltzmann multiplication, and
Boltzmann addition. In rank voting each ensemble member votes for each action,
the voting weight depends on the rank the member assigns that action. Majority
voting is a special case of rank voting where the voting function assigns all actions
except the one considered best a voting weight of zero. Boltzmann multiplication
and addition use Boltzmann distributions. Each ensemble member contributes
such a distribution. For Boltzmann multiplication an action’s probabilities are
multiplied, while for Boltzmann addition they are added, to arrive at the prob-
abilities of a final Boltzmann distribution that is then used for action selection.
According to their experiments, Boltzmann multiplication and majority voting
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work best.

Selection of the “most agreeable” policy

Instead of combining several policies to one, one can as well select the presumably
best policy of the ensemble. That policy could be the “most agreeable” one, i.e.,
the one that is most often among the majority (van Hasselt, 2010a)).

Ensemble representation of (Q-function

Instead of letting each instance run for itself, the ensemble can already be used to
generate new targets in each iteration. To do so, after having trained all learners
in an iteration, their combined output is used to generate new targets for the
next iteration. E.g., the single outputs can be combined as a (weighted) average.
This is similar to a number of previous approaches that use an ensemble as in a
supervised learning setting (Singh, [1993; Tham, [1995; Sun and Peterson, 1999;
Ernst, Geurts, and Wehenkel, |2005)).

Combination of final Q-functions

When combining learners that use a ()-function, one can combine the single Q-
functions to an ensemble @)-function and base the final policy on that. This can
be achieved by, e.g., (weighted) averaging. Note that this is different from the
ensemble representation of the value or Q-function.

Combinations of Policies from a Single NFQ Run

As a computationally cheap alternative to multiple individual NFQ runs or mul-
tiple neural networks for representing the ()-function, one can form an ensemble
using policies from successive NFQ iterations. Since one does not know when a
good policy is found and thus when to stop iterating, assuming that after a min-
imum number of iterations there are more good than bad policies, an ensemble
policy obtained this way is expected to be better than a randomly picked one.

Table gives the complexity for each method relative to a standard NFQ run.
The times needed for a single NFQ run as well as for calculating an action given a
state using the resulting policy are considered constant. Each ensemble member
needs this effort, therefore most methods need as much additional time as ensem-
ble members k£ are added. Exceptions are the “most agreeable” policy approach,
where a single policy is selected to be used during runtime, and the ensemble
generated from a single NFQ run, where during policy generation only one NFQ
run is needed.

In the following experimental section all methods mentioned above are evaluated,
except the ensemble representation of the (Q-function, because this method only
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Method Policy Generation Runtime

Single NFQ run O(1) O(1)

Combination of final policies O(k) O(k)
Combination of final @Q-functions O(k) O(k)
“Most agreeable” policy O(k) O(1)

Ensemble representation of Q-function O(k) O(k)
Policies from a single NFQ run O(1) O(k)

Table 5.2: Complexity of ensemble methods in NFQ.

addresses the problems related to supervised learning of the Q-function, the NFQ-
specific problems (chattering, overestimation) remain.

5.4 Experiments

To evaluate the ensemble methods in an NF(Q context, experiments were con-
ducted using the pole-balancing, cart-pole, and wet-chicken benchmarks. In the
following, the benchmark domains, the setup of the experiments, and the results
are described.

5.4.1 Cart-Pole

The cart-pole benchmark is a control problem that has been studied in classical
control theory as well as in the RL literature (first works in an RL context include
Michie and Chambers, 1968; Barto, Sutton, and Anderson, [1983). The aim is
to balance a pole attached to a cart by applying forces to the cart. The pole
should remain in upright position and the cart not hit one of the boundaries of
the track. The state space S = (6,6, x, &) is four-dimensional and contains the
pole’s angle # and its angular velocity 6 as well as the cart’s position z and its
velocity @. Possible actions are A = {—1,0,1} and denote the force applied to
the cart. Often, the actions are corrupted by a noise term. The dynamics are
described by

f o= afutof (5.11)
o
S [+ m,l0*sin(0) (5.12)
my

. gsin(f) — cos(f)c

b= (5.13)
2(3 me )

i o= o mud?) (5.14)

my
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g m. m, l Im Ir T

Cart-Pole 98 3 8kg 2kg 05m 10N 2N 0.02s
Pole-Balancing 98 5 8kg 2kg 05m 50N 10N 0.1s

Table 5.3: Parameters used for the cart-pole and pole-balancing benchmarks.

where f is the actually applied force, a the action, f,, a positive force constant,
p a random variable distributed uniformly in [—1, 1], f, a second positive force
constant determining the amount of action noise, m, the mass of the pole, [ the
length of the pole, and m, the mass of the cart.

The state variables can be determined from the differential equations by numerical
integration, for instance using Euler’s method (Hairer, Norsett, and Wanner,
2002):

Tpy1 = Ty +TI
Tyl = Ty +TI
‘9t+1 = Qt + Tét
ét+1 = ét + Tét

7 denotes the duration of a timestep. Table gives the parameters used in the
experiments. Figure illustrates the cart-pole problem.

In the RL setting of the cart-pole, a discrete reward signal is used as punishment
when the pole falls or the cart moves outside the boundaries of the track:

7,01 o 0 lf ‘xt’ < Lmax A ‘et’ < emaxa

t '_{ —1 otherwise. (5.19)

Additionally, a distance-based reward measure is defined with added bonus for
the target region and punishment for states leading to failure:

—|w| = 160 + 1 — 222/0.05% + 22/0.05% if || < 0.05 A |8,] < 0.15,
— |z — 104 otherwise.
(5.20)

5.4.2 Pole-Balancing

The pole-balancing benchmark is a variant of the cart-pole where only the angle
and angular velocity are considered. Consequently, the only goal is to balance
the pole. This problem is also known as the inverted pendulum. In one setting,
an episode starts with the pole in upright position, the goal is then to balance
the pole as long as possible. In another setting, an episode starts with the pole



84 Chapter 5. Ensembles for More Reliable Policy Identification

—Zmax
Figure 5.3: Tllustration of the cart-pole benchmark.

hanging downwards in its stable position; the goal is to apply forces in a way that
cause the pole to swing up and then stabilize it.

For the experiments only the setting where an already upright pole has to be
balanced were used. The parameters are given in Table [5.3]

5.4.3 Wet-Chicken

The wet-chicken benchmark was already used in Chapter [ In contrast to the
version used previously, here the canoe position x is not rounded to the nearest
integer, but the continuous value is used directly, resulting in a continuous state
problem.

5.4.4 Experimental Setup

For each domain, a number of observations were generated using random explo-
ration.

For the pole-balancing benchmark, observations were generated in episodes. When
applying actions randomly, the pole falls (and therefore the episode ends) after
approximately six steps. Datasets were used of 25, 50, and 100 episodes, corre-
sponding to 150, 300, and 600 observations. To assess a policy’s quality, it was
run 100 times for at most 3,000 steps. If a policy is able to balance the pole
for 3,000 steps, it is considered successfulE] For each dataset size, 50 distinct

13,000 steps are chosen to get results comparable to those from Riedmiller (2005).
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Figure 5.4: Deep, cascaded neural network where each layer is connected to the output
layer. Each circle represents a layer of neurons, each arrow denotes a weight matrix
realizing a full connection of the respective layers.

datasets were generated; an independent trial was run with each of them (i.e., 50
independent trials for each combination of method and dataset size).

For cart-pole, observation sets containing 10,000 and 30,000 observations were
generated. Observations were generated starting from random positions with
zero velocities and x € [—2.3,2.3], # € [—0.2,0.2]. For evaluation, the position
was randomly initialized with x € [—1, 1]. An episode was stopped when |z| > 2.4
or |#| > 0.25. A policy’s quality is reported as average immediate reward from 100
episodes with a maximum length of 3,000 steps. For the cart-pole experiments,
the distance-based reward function was used. The results reported are
averages of 40 completely independent trials, i.e., using 40 distinct datasets.

In the wet-chicken domain the datasets contained 500 observations and were
generated with random exploration. Each run started at the beginning of the
river and lasted for 500 steps. This was repeated 100 times to obtain 100 distinct
datasets. The results reported are average rewards from 100 episodes with 1,000
steps each.

For all experiments the neural networks consisted of an input, two hidden, and
an output layer (4-layer network). Each hidden layer contained 10 neurons. For
the pole-balancing benchmark also a deep, cascaded architecture was used, where
each layer is connected to the output as well (Figure . The deep, cascaded
network contained 8 hidden layers (10-layer network), each hidden layer contained
10 neurons.

5.4.5 Results

The results of the experiments using the pole-balancing benchmark are shown in
tables as number of successful policies. Table gives the results using single
networks, i.e., single policies obtained by a standard NFQ run as described above,
as well as results from ensemble policies using majority voting. “4L” denotes the
standard 4-layer network, “10LD” the deep, cascaded architecture. Table [5.5]
gives the results of Q-averaging. The single network results are not included
again, as the results of majority voting and Q-averaging are identical when only
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Number of Episodes

25 50 100
1x 4L 24/50 (48%) 20/50 (40%) 37/50 (74%)

1x 10LD 18/50 (36%) 22/50 (44%) 24/50 (48%)

5x 4L 28/50 (56%) 38/50 (76%) 43/50 (86%)

10x 4L 32/50 (64%) 37/50 (74%) 45/50 (90%)

15x 4L 33/50 (66%) 38/50 (76%) 46/50 (92%)

20x 4L 34/50 (68%) 37/50 (74%) 48/50 (96%)

5x 10LD  24/50 (48%) 26/50 (52%) 37/50 (74%)

10x 10LD 30/50 (60%) 35/50 (70%) 45/50 (90%)

15x 10LD 30/50 (60%) 37/50 (74%) 45/50 (90%)

20x 10LD 32/50 (64%) 40/50 (80%) 48/50 (96%)

5x 4L & 5x 10LD  33/50 (66%) 36/50 (72%)  47/50 (94%)
10x 4L & 10x 10LD 37/50 (74%) 43/50 (86%) 50,50 (100%)
15x 4L & 15x 10LD  36/50 (72%) 43/50 (86%) 50,50 (100%)
20x 4L & 20x 10LD 39/50 (78%) 45/50 (90%) 50/50 (100%)
Riedmiller’s NFQ - 23/50 (46%)  44/50 (88%)

Table 5.4: Results for the pole-balancing benchmark from single policies (first two rows)
and ensemble policies derived by majority voting. Given is the ratio of successful
policies, i.e., policies able to balance at least 3,000 steps. The results from Riedmiller
(2005) are given as a reference.

one network’s policy is used.

The performance of the present NFQ implementation when using 50 random
episodes as training data approximately matches the performance reported by
Riedmiller (2005). He does not give results for 25 episodes, here the performance
for 100 episodes is somewhat worse. With more optimization of the learning
process it would be possible to further improve the results for 50 and 100 episodes.
In particular, for the network training procedure used here an adaption of the
num__epochs parameter w.r.t. to the number of training examples seems to be
crucial (a fixed value of 30 was used; experiments using num_ epochs = 15 for
100 episodes (not reported here) showed a notable improvement of single policy
quality). However, when looking at the results of Table it becomes obvious
that by combining different networks to ensembles it is possible to match or
even surpass the performance of an NFQ approach apparently fitting the pole-
balancing problem better ]

2 Apart from using VarioEta as opposed to Rprop, this thesis’s training process and the one
used by Riedmiller (2005) have a further difference: While he used a fixed number of 100 epochs
for training with Rprop (Riedmiller, 2010), here the MSE of the validation set is used to decide
when to stop training.
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Number of Episodes

25 50 100
5x 4L 31/50 (62%) 36/50 (72%) 43/50 (86%)

10x 4L 31/50 (62%) 32/50 (64%) 48/50 (96%)

15x 4L 36/50 (72%) 31/50 (62%) 49/50 (98%)

20x 4L 34/50 (68%) 35/50 (70%) 50/50 (100%)

5x 10LD  24/50 (48%) 37/50 (74%) 36/50 (72%)

10x 10LD 31/50 (62%) 33/50 (66%) 40/50 (80%)

15x 10LD  29/50 (58%) 37/50 (74%) 41/50 (82%)

20x 10LD 30/50 (66%) 37/50 (78%) 42/50 (84%)

5x 4L & 5x 10LD  30/50 (60%) 31/50 (62%) 43/50 (86%)

10x 4L & 10x 10LD 31/50 (66%) 39/50 (78%) 43/50 (86%)
15x 4L & 15x 10LD 31/50 (66%) 40/50 (80%)  44/50 (88%)
20x 4L & 20x 10LD 33/50 (66%) 40/50 (30%) 44/50 (88%)

Table 5.5: Results for the pole-balancing benchmark from ensemble policies derived
by Q-averaging.

Number of Episodes

25 50 100
5x 4L 25/50 (50%) 24/50 (48%) 43/50 (36%)
10x 4L 25/50 (50%) 32/50 (64%) 41/50 (82%)
15x 4L 25/50 (50%) 29/50 (58%) 43/50 (86%)
20x 4L 27/50 (54%) 32/50 (64%) 45/50 (90%)

Table 5.6: Results for the pole-balancing benchmark of “most agreeable” policies.

Adding networks to the ensemble increases the performance to a certain point,
which is not always reached here (adding even more networks than 20 would be
required). Among networks of the same type there seems to be already enough
diversity to benefit from an ensemble, but combining networks of different types
is better—not only are the heterogeneous ensembles containing the most mem-
bers (15x 4L & 15x 10LD and 20x 4L & 20x 10LD) better than all homogeneous
ensembles, in 11/12 cases heterogeneous ensembles perform better than homoge-
neous ones of the same size.

Comparing the aggregation techniques, majority voting is superior to ()-averaging.
While for the ensembles of 4L networks both perform equivalently, for combina-
tion of 10LD networks and the heterogeneous ensembles majority voting is clearly
better (8/12 and 12/12 cases, respectively). A reason for this might be that the
different networks’ QQ-functions have different ranges. Another reason for major-
ity voting being superior might lie in the fact that a single really bad Q-function
can dominate the average (drastically decreasing or increasing it); with majority
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Number of Episodes
25 50 100
1x 4L/5 25/50 (50%) 28/50 (56%) 44/50 (88%)
1x 4L/10 30/50 (60%) 28/50 (56%) 45/50 (90%)
1x 10LD/5 24/50 (48%) 24/50 (48%) 35/50 (70%)
1x 10LD/10 22/50 (44%) 31/50 (62%) 36/50 (72%)
2x 4L/5 26/50 (52%) 33/50 (66%) 44/50 (88%)
4x 4L/10 33/50 (66%) 39/50 (78%) 48/50 (96%)
10x 4L/10 34/50 (68%) 39/50 (78%) 49/50 (98%)
2x 10LD/5 28/50 (56%) 26/50 (52%) 38/50 (76%)
4x 10LD/10 33/50 (66%) 41/50 (82%) 47/50 (94%)
10x 10LD/10 33/50 (66%) 43/50 (86%) 48/50 (96%)
1x 4L/5 & 1x 10LD/5 34/50 (68%) 33/50 (66%) 42/50 (84%)
2x 4L./10 & 2x 10LD/10 36/50 (72%) 40/50 (80%) 48/50 (96%)
5x 4L /10 & 5x 10LD/10 41/50 (82%) 45/50 (90%) 50/50 (100%)

Table 5.7: Results of majority voting with policies from successive iterations for
the pole-balancing benchmark. For these experiments policies from successive iterations
of a single NFQ run were used. The number of policies from successive iterations is
noted after the slash. For example, “2x 4L./5” denotes an ensemble containing policies
from the last five iterations of two independent NFQ run using a 4-layer network (total
of 10 ensemble members).

voting, the bad @Q-function has only one vote, the magnitude of the Q-values
plays no role.

Table [5.6] contains results of the “most agreeable” policy for the pole balancing
benchmark. While for all observation sizes the single selected policy cannot reach
the performance of an ensemble of the policies selected from, the policy selected as
the “most agreeable” one performs better than a single randomly selected policy.
Therefore, this method might be worthwhile considering when only the increased
complexity for policy generation can be accepted, but the increased complexity
of a full ensemble during runtime (policy execution) cannot.

Table shows results of experiments with policies from successive iterations
from single NFQ runs and combinations of successive iterations from independent
NFQ runs. Combinations of policies from NFQ runs using the 4-layer network as
well as the 10-layer deep network were also evaluated. In general, using policies
from successive iterations in ensembles improves the performance and the results
are comparable to those from ensembles containing policies from independent
NFQ runs (Table . However, here the ensembles need to be much larger to
achieve similar results. For example, to achieve 45/50 successful policies with
50 episodes of observations, an ensemble containing 100 members is needed here
(5x 4L/10 & 5x 10LD/10), while an ensemble of 40 policies from individual runs
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Cart-Pole Wet-Chicken
Observations 10,000 30,000 500
Single 1x 4L —0.35+0.07 —0.140 4 0.040 12.9+0.2

Successive 1x 4L/5 —0.324+0.08 —0.089 £ 0.029 13.4+£0.2
iterations  1x 4L/10 —0.21+0.04 —0.146 4+0.043 13.3+£0.2

Independent 5x 4L/1 —0.11+£0.02 —0.030 % 0.005 13.3£0.2
runs 10x 4L/1 —0.07+0.02 —0.021 £ 0.002 13.3£0.2

5x 4L/2 —0.09 £0.02 —0.026 £ 0.003 13.4+£0.2
5x 4L/5 —0.07+0.01 —0.022 4+ 0.002 13.5£0.2
5x 4L/10 —0.05+0.01 —0.019 £ 0.002 13.4£0.2
10x 4L/2 —0.07£0.01 —0.020 £ 0.002 13.4£0.2
10x 4L/5 —0.06 +£0.01 —0.019 +0.001 13.4+£0.2
10x 4L/10 —0.05+0.01 —0.017 +0.001 13.4+0.1

Combined

Table 5.8: Experimental results using policies from a single NFQ run and ensemble
policies from a number of final successive iterations from single NFQ runs, completely
independent runs, and combinations of both. The numbers shown correspond to the
average immediate reward (from 40 (cart-pole) and 100 trials (wet-chicken), respec-
tively). For cart-pole average rewards instead of ratios of successful policies (as for
pole-balancing) are given, since most policies are able to complete the required steps;
the distance-based reward is therefore a more meaningful measure, as it also captures
how well a policy keeps the cart in the middle of the track and the pole upright.

suffices as well (20x 4L & 20x 10LD).

Table [5.8| contains the results of the experiments using the cart-pole and wet-
chicken benchmarks. Here, only experiments using 4-layer networks were per-
formed. Again, in addition to ensembles consisting of policies from independent
NFQ runs (denoted “independent runs”), also policies from successive iterations
of a single NFQ run (“successive iterations”) as well as combinations of both
approaches (“combined”) are included. In the cart-pole domain, ensembles of
successive iterations do not significantly increase the performance. The results
for wet-chicken suggest a slight improvement of ensembles from successive itera-
tions. Ensembles from independent NFQ runs lead to significantly better policies
in the cart-pole domain and tend to improve the wet-chicken policies as well. In
the experiments performed here, the best results are obtained by the combined
approach, using ensembles consisting of policies from a number of successive runs
from multiple independent runs.

Overall, it seems advisable to focus on independent NFQ runs. Ensembles con-
taining policies from individual runs in general deliver better results, as they
are less correlated and can therefore contribute more to an ensemble. Nonethe-
less, ensembles of policies from successive iterations almost always lead to better
performance, albeit not as pronounced as the performance increase when using
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policies from successive runs. The preferred solution for a particular application
therefore depends on the concrete requirements: If one cannot afford many off-
line NFQ runs, but evaluating a large ensemble at runtime is feasible, one should
use policies from successive iterations. If, on the other hand, the computational
resources at runtime are limited and the user can only afford a rather small en-
semble, one should use policies from independent NFQ runs to build the ensemble,
as the performance-per-ensemble-size ratio of ensembles from individual runs is
better. Of course, a combination of the two approaches is possible as well.

5.5 Why Do Ensembles of NFQ Policies Work?

To understand why ensembles of NFQ policies improve upon the performance of
single policies, consider the three problems named by Dietterich (2000) again:
the statistical problem (a solution that fits both, training and validation data,
can still deviate from the true underlying function), the computational problem
(since an exhaustive search of the hypothesis space is typically intractable, meth-
ods like stochastic gradient descent are used that can only approximate the best
hypothesis), and the representational problem (the function approximator might
be unable to represent the actual function, because it lies outside the hypoth-
esis space). All three problems potentially contribute to a learner’s failure in
classic classification and regression problems. An NFQ run comprises a series of
regression problems, leading to an even more intricate situation.

If the members of the ensemble are accurate and diverse, i.e., make (in expecta-
tion) better decisions than random guessing and do not make the same errors,
combining them can “average out” the individual errors and lead to a better en-
semble solution. If one deals with a binary classification problem, a classifier h;
is better than random guessing if its error rate e; < 0.5. If we have three of those
classifiers, for a given sample two or more have to be wrong for the majority deci-
sion to be wrong. With an increasing number of members, the probability of the
majority being wrong decreases. If the ensemble members’ errors were completely
uncorrelated, the ensemble performance could be increased indefinitely by adding
more and more members. However, in practice some correlation will always be
present, resulting in an upper limit for the reasonable ensemble size.

Ensembles of policies in RL work for similar reasons as described above. In each
state the decision must be made what action to choose. If the individual policies
are accurate and diverse, they will choose a good action most of the time and will
choose differently for some states. Using the policies in an ensemble then again
allows “averaging out” the errors of individual policies (at least to some extent).
Additionally, and maybe even more importantly, ensembles allow to suppress very
poor policies. Figureillustrates how often a policy is among the majority (data
from pole-balancing ensembles containing 20 policies (4L networks) trained with
observations from 100 episodes). If a policy is always among the majority, i.e.,
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Figure 5.5: Histogram of majority ratios. Ensembles with 20 members from the pole-
balancing experiments with 100 episodes were used and for each policy it was deter-
mined how often it is among the majority of its ensemble. This was done for 50 trials,
so the histogram contains values from 50 - 20 = 1000 policies.

has a majority ratio of 1, it behaves exactly like the ensemble and could be used
instead. The histogram shows that most policies are often among the majority.
On the other hand, there is a considerable amount of policies with a majority
ratio of 0.7 and less. Although those policies choose the majority action most of
the time, 30 % or more of their choices are overruled by other ensemble members.
The few policies with a majority ratio of less than 0.5 represent those instances
where NFQ completely failed; they occasionally choose the optimal action merely
by chance. When executed alone their performance would be very poor, but in
the ensemble they are overruled most of the time.

That the aspect of “averaging out” individual errors contributes as well can be
seen from the fact that not a single policy is always among the majority. Only
11 out of the 20 - 50 = 1000 policies used for the histogram in Figure have
a majority ratio of 0.99 or greater. The performance of those single policies will
hardly be distinguishable from the ensemble performance, but they are quite
rare—on average the ensemble of only every second trial contains such a policy.
Moreover, it is hard to identify those policies. The experimental results also
showed that on average “most agreeable” policies, i.e., those most often among
the majority, do not perform as well as the corresponding full ensembles. This
supports the assumption that the ensemble members “average out” each other’s
errors.

5.6 Continuous Actions

So far the discussion was limited to discrete-action problems. This section will
discuss ideas for ensembles for continuous-action problems, which can serve as
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starting points for further research.

Majority voting appears to be the best approach for discrete actions. Unfortu-
nately, implementing majority voting for continuous actions is not straightfor-
ward. Consider an ensemble of continuous-action policies. For a given state,
member i outputs a vector @; € RPA, with D4 the dimensionality of the action
space. Every d@; is a point in the action space. In analogy to the discrete action
case, we expect the majority to output an action that in some sense is “near” the
optimal action. The outputs of the members that are wrong will be scattered.
Now the question arises how to first identify this majority and second determine
a final ensemble action vector from the members’ actions.

Assuming a metric space, e.g., Euclidean, we can determine the pair-wise dis-
tances between the members’ actions. Given further a distance parameter d,.y,
we can for each member’s action determine the set of neighbors within a maxi-
mum distance of dy,.y, i.e., for member i the set is defined as

Nidmax = {EL} | dlSt(C_iz, 6]) < dmax N1 7é ]}a (52]‘)

with dist(-, -) the distance function for the assumed metric space. From the sets
one determines the one with most members and chooses its action as ensemble
action, i.e.,

(5.22)

mdmex .— @ § = arg max ‘mea" .
J

If there is not just one action with the maximum number of neighbors, the final
action can be determined by randomly selecting from the set of actions with the
maximum number of neighbors (maximum set). It is also thinkable to choose the
action that lies in the maximum set’s centroid.

Another idea is to add Gaussian functions, one for each ensemble member with
the center at the member’s action’s point. If we superimpose more than two
Gaussians, the resulting function will in general have exactly one maximum,
which we then consider the chosen action| Finding the maximum analytically is
non-trivial, though. As a solution, it is proposed to use gradient ascent, starting
from the centers of the Gaussians, i.e., from the actions proposed by the members.
While this approach will only find local maxima for some starting points, there
will be at least one starting point from which the global maximum can be found.
See Figure for an example.

For the Gaussian function approach the parameter corresponding to the standard
deviation in a Gaussian density function would serve as the distance parameter.

3There are cases with the actions positioned in a symmetrical way that lead to a maximum
for each action. For example, two-dimensional actions being positioned equidistantly on a circle
would yield such a situation. However, in practice this will happen very rarely; it could be dealt
with by random action selection.
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Figure 5.6: Example of superimposition of Gaussian functions, here for one-dimensional
continuous actions and three ensemble members. For each action proposal by an en-
semble member, a Gaussian function is added (red), resulting in the black curve. The
proposed actions are ag = 3, a1 = 3.5, and as = 6.1. The maximum of this curve
can be determined by gradient ascent from the proposed actions. While doing gradient
ascent from the very right action as would lead to a local maximum, starting from any
of the other two actions will lead to the global optimum at a = 3.279. The distance
parameter is chosen o = 1.

5.7 Summary and Conclusion

In this chapter, the combination of ensemble methods with NFQ was explored.
After an introduction to NFQ, problems contributing to its reliability issues were
named. By using ensembles, these issues can be addressed. A brief overview of
ensemble methods was given, mentioning the importance of accuracy and diver-
sity (or ambiguity) of the ensemble members. It followed an evaluation of the
methods on the pole-balancing, cart-pole, and wet-chicken benchmarks. In gen-
eral, large and diverse ensembles perform best, but also small ensembles lead to
improvement. The recommended ensemble size depends on what the user can
afford computationally. The more ensemble members already present, the less
improvement can be expected from adding a member. For the problems consid-
ered here, ensemble sizes of about 20 members seem reasonable. Regarding the
ensemble methods, majority voting can be recommended, since it lead to excel-
lent results and its implementation is straightforward. Finally, possibilities for
ensembles for continuous actions were discussed, which can serve as a starting
point for further research.

Overall, ensembles improved the quality of the resulting policies in each of the
considered domains. In general, the author expects ensembles to be always at
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least as good as randomly selected policies; if the quality of the policies to choose
from varies, ensembles will likely perform better for reasons similar to the ones
leading to the superiority of ensembles in classification problems. When using
ensembles in an NFQ context, the suppression of poor policies seems to be an
important property. However, “averaging out” of individual errors contributes as
well (as confirmed by the better results of full ensembles over “most agreeable”
policies).

If the user can afford the computational effort, large and diverse ensembles,
possibly containing policies from successive iterations, are the most promising
approach. Furthermore, once a regular NFQ implementation is available, the
extension to the ensemble methods presented in this chapter is almost trivial,
in particular using majority voting with policies from independent NFQ runs.
The same holds for parallelizing the methods, both for policy generation and
execution, taking advantage of the recent developments of commodity hardware,
shifting from single to multi-core architectures (Borkar et al., |[2005)).



Self-Assessment in Continuous Domains

This chapter investigates methods for self-assessment in continuous domains. In
Chapter [, Section [4.2], we discussed how different policies can be compared in
a discrete setting by considering not only the value function, but also its uncer-
tainty. We have seen that considering the value function alone can be mislead-
ing. If one considers the value function’s uncertainty as well, a more realistic
assessment of policy quality becomes possible. Ideally, in a continuous setting
one would do the same: “somehow” determine a value function along with its
uncertainty and then compare policies using their values minus the &-weighted
uncertainty. Unfortunately, this is not possible, since there is no way of deter-
mining the uncertainty in a way similar to what was used in the discrete case.
Straightforward policy evaluation, however, works much better for continuous
problems with function approximation than the table-based discrete variant. We
will see that using alternative methods or different data for policy evaluation the
correlation between estimated and true policy performance and thus the quality
of the policy performance estimation can be improved drastically.

Throughout the chapter policies from the experiments described in the previous

chapter will be used (for pole-balancing a different reward function was used;
more details in Section [6.3)).

6.1 Value Function-Based Self-Assessment

If the value function is available, one can use the expected return as a measure
for the quality of a policy m, here for the continuous state space S,

T () = /S 1o(8)V7™ () ds, (6.1)

where 1(s) denotes the probability density of s being a start state. This integral
can be approximated by averaging the values of the start states Sy found in the

observation set: )

T = |Sol

> VT(s) (6.2)

SESy
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Unfortunately, the exact value function of a policy V™ is usually unknown and
must somehow be estimated from observations. In fact, when dealing with policies
generated by a value function based method like neural fitted Q-iteration (NFQ),
an estimation of the value function is already available in form of the Q-function
that was generated when determining the policy. However, it will show that,
although there is some correlation between the Q)-function and the actual policy
performance, one can do much better by determining a new @Q-function using
policy evaluation.

6.2 Fitted Policy Evaluation

To determine the @-function of a given policy and a set of observations of a
Markov decision process (MDP), one can use an algorithm similar to fitted Q-
iteration (FQI), called fitted policy evaluation (FPE). FPE can be considered
as the sample-based equivalent to policy evaluation using dynamic programming
(DP), as described in Chapter [2| Section Recall the DP update step for

policy evaluation:

Qfia(s,a) = > P(ls,a) [R(s,a,5) + Q5 (s, 7(s"))] (6.3)

s'eS

As with FQI, when using a sample-based approach, the expectation realized by
the sum over successor states and the corresponding transition probabilities P
are approximated by the samples. Thus, the update of targets in an iteration of
FPE is done using

Qi1 (Sisa;) =1 + Q5 (sy,m(s))) Vie{l,..., M}, (6.4)

where (s;, a;, s, r;) is an observation tuple and M the number of observations.

Algorithm [§ shows the complete FPE procedure. The only difference to FQI is in
line 7—instead of maximizing the ()-value of a successor state over the actions,
the @Q-value of the action selected by policy 7 is used. As with FQI, this can be
combined with any function approximator.

Using FPE one can obtain a value function for a given policy and then use this
value function to obtain the expected return J*° (using ) of the policy as
a quality measure. However, as stated above, if the policy was generated using
FQI, one already has an estimate of the policy’s value function. Unfortunately,
as we will see in the next section, it is not a very good one.

So far the procedure is very similar to the discrete case; the only difference lies in
the way of determining the value function—in the discrete setting, DP-based pol-
icy evaluation was used, here we use (sample-based) FPE. The next step would
consist in determining the uncertainty. Analogous to the discrete case, a Monte
Carlo approach comes to mind, here using ensembles. Instead of performing
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Algorithm 8: Fitted Policy Evaluation
Input: set of observations O = {(s;,a;,r;,s})|i=1,...,M}, m, v
Result: @Q-function estimate of Q™
begin
inputs are state-action pairs from observations
input, := (s;,a;) Vie{l,..., M}
set rewards as initial targets
target, :==1r; Vie{l,...,M}
k:=0
while stopping criteria not reached do
train function approrimator to map input — target
Q7 := train(input, target)
determine new targets
target; :==r; + YQF (s}, 7(s;)) Vie{l,...,M}
k:=k+1

return Q}

FPE only once, it is performed multiple times, each time delivering a new value
function sample. Unfortunately, on second thought it becomes obvious that this
method would not estimate the uncertainty contained within the data. Instead,
it would give the uncertainty of the complete learning process from input data
(observation set) to output data (value function). For example, consider neural
FPE with the training data being bootstrapped replica of the observation set,
i.e., if the observation set contains N samples, we repeatedly sample (with equal
probability) from the original set until we have N samples. Even using the same
observation set, a Monte Carlo approach based on differently sized networks (e.g.,
different number of hidden neurons) will lead to different uncertainty estimates.
A large network will lead to a higher uncertainty estimate than a smaller one,
because its flexibility and thus its variance are higher (and its bias lower). The
major difference between the discrete and continuous settings is the following: In
the discrete setting, one uses an explicit model of the MDP. The Dirichlet distri-
butions constitute a distribution of MDPs, which can be used to sample MDPs.
In the continuous case, the observation set corresponds to a single MDP, a distri-
bution over MDPs we do not posses. By using the observations to build a prob-
abilistic model, for example using Gaussian processes (Rasmussen and Williams,
2006)), and then sampling from that model, a similar approach would become pos-
sible. However, this would require making additional, possibly problem-specific
assumptions, whereas the MDP model consisting of transition probabilities and
reward expectation is a natural choice for any discrete MDP. The idea of direct
uncertainty estimation for continuous domains is therefore abandoned; instead,
other methods for estimating a policy’s performance are evaluated.
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6.3 Correlation Between True Performance and Value Func-
tion Estimate

To assess the quality of a value function as an indicator of the true performance of
a policy, one can use the correlation coefficient, which is a measure of the linear
dependency of two random variables. In the present case, those two random
variables are the true performance of a policy 7 and an estimate J*5 () of its
expected return. Ideally, J-S0 (m) gives the true expected return, i.e., the expected
sum of discounted rewards when running 7 on the MDP. If for two policies m and
7 JusSo (m) > JsSo ('), m can be considered the better policy, since it is able
to collect a greater sum of rewards. If J#50 (m) fails at giving the true return
of m, which for real applications it often does due to effects such as chattering,
overestimation of )-values, and under- and over-fitting, one can at least hope
that Jr5o (7) is suitable as a basis for deciding whether one policy is better than
another. For that to work, a common basis is necessary, i.e., J#50 (7) should be
determined using the same method and the same data for each policy.

FPE is may be used in policy iteration, where one tries to find a near-optimal
policy by repeatedly doing policy evaluation and policy improvement. To actually
evaluate a final policy without a subsequent policy improvement step has been
independently proposed by Migliavacca et al. (2010). They used tree-based FPE
to evaluate candidate policies in a direct policy search setting (see Migliavacca
et al. (2011)) for an extended version).

For the experiments in Chapter [5] ensembles of policies were generated using NFQ
with a common observation set for each ensemble. For the experimental results
in this chapter, for wet-chicken, the observation sets and corresponding policies
from Chapter [5| were employed. For pole-balancing, a modified reward function
was used. Consequently, new observation sets and policies had to be generated.
The modified reward function not only punishes failure, but also includes a bonus
of 1 when |0| < 0.03, i.e., the pole is almost upright. This way also policies able
to balance the pole all the time are distinguishable (with the original reward
function they would lead to an average reward of 0, no matter how well they
balance the pole).

Using the final @-function of each NFQ run, j“’SO(W) of each policy 7 of the
ensemble was determined. From this the correlation coefficient between the true
mean reward 7,4 = 1,..., K and J*%(r;),i = 1,..., K, with K the number of
ensemble members, was calculated (for each ensemble separately). Thus a corre-

A

lation coefficient for each ensemble was obtained. JﬁFs(g was determined based on

A

the Q-function from the NFQ runs and J%59, based on value functions from a sep-
arate neural FPE run for each ensemble member. Table [6.1] shows the correlation
coefficients of the actual policy performances (mean reward) and the estimates
J#% (1) using the Q-functions from the NFQ run (Original NFQ) and neural
FPE (NFPE). Except for the pole-balancing experiments with observations from
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Benchmark Correlation
Original NFQ NFPE

Pole-Balancing, 50 episodes —0.02 + 0.02 0.31 £ 0.02
Pole-Balancing, 100 episodes 0.14 £ 0.02 0.33 £ 0.02
Wet-Chicken —0.03 £ 0.03 0.17 & 0.05

Table 6.1: Correlations between true policy performance and value functions. Original
NF(Q denotes the performance’s correlation with Jf\‘}f(%; NFPE denotes the correlation

3 AN,SO
with J\ppg-

100 episodes the value function from the original NFQ run is completely un-
informative with a correlation of approximately zero. When more observations
are available (100 episodes), the situation becomes better. However, when doing
FPE, where the policy is fixed throughout the run, the results are much better
with correlation coefficients around 0.3 for the pole-balancing benchmark and 0.2
for wet-chicken.

Reasons for the superiority of the FPE approach include the absence of chattering
as well as the maximum bias when the policy is fixed. Furthermore, the task of
learning the @-function for a given fixed policy is easier than learning the policy
and the value function at the same time, which is done in value iteration variants
like NFQ.

6.4 Different Function Approximator and Different Data

Further improvements can be achieved by using a different function approxima-
tor or a different dataset to do FPE. If the dataset is sufficiently large to avoid
under- and over-fitting, FPE should be able to determine an approximation of the
value function that is close to the true one, given that the function approximator
is powerful enough. In practical applications, however, the amount of available
observations is often limited. So far for FPE the same dataset was used that pre-
viously served as the basis for policy generation. Similar to flawed self-assessment
of humans, where the least competent often are also the most unaware of their
own incompetence (Kruger and Dunning, [1999)), using the same data and the
same function approximator to assess a policy can be disadvantageous—if the
data mislead the function approximator to produce an inferior policy, chances
are it is mislead again when doing policy evaluation. In the following, two ways
to circumvent this problem will be discussed and evaluated.

The most natural solution is to use a different dataset for FPE than was used to
determine the policy to evaluate. Of course, this requires that additional data
is available and implies a trade-off—what portion of the data should be used to
determine the policy and what to evaluate it? For simplicity, we evaluate only
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Benchmark Correlation
NFPEgs TreeFPE TreeFPEg;qs

Pole-Balancing, 50 episodes 0.38 4+ 0.02 0.29 £+ 0.02 0.27 £ 0.02
Pole-Balancing, 100 episodes 0.40 £ 0.02 0.46 £ 0.02 0.48 £ 0.02
Wet-Chicken 0.26 £ 0.02 0.63 £ 0.05 0.55 £ 0.05

Table 6.2: Correlation coefficients between true policy performance and JH50 for the
pole-balancing and wet-chicken benchmarks. For NFPFE 37 neural FPE on a different
dataset was used. TreeF'PE and TreeF'PE 37 denote extra-tree-based FPE on the same
and a different dataset, respectively.

the case where the size of both datasets is equal.

Another possible solution lies in the use of an alternative function approximator
for FPE. It should be powerful enough to be able to represent the value func-
tion. At the same time it is advisable to choose a function approximator that
is as different as possible from the one used to generate the policy. The idea is
that the more different the function approximators are, the less likely they are
to make the same mistakes. This is related to the diversity issue of ensembles,
where the different ensemble members should all be accurate (powerful) and di-
verse (different) (Krogh and Vedelsby, 1995; Dietterich, 2000). It also resembles
ideas from safety-critical applications, where for a certain task not just one, but
multiple different implementations are used (Lala and Harper, 1994)). The more
diverse the implementations are, the less likely is a failure of all of them for a
given situation.

Here, extremely randomized trees (extra-trees) (Geurts, Ernst, and Wehenkel,
2006) take the role of the alternative function approximator. As a method based
on regression trees, extra-trees are quite different from neural networks. At the
same time, they are known to produce good solutions if a reasonable amount of
training data is available. As an additional advantage, generating extra-trees is
computationally quite cheap compared to backpropagation training of a neural
network.

So in addition to neural FPE using the same data that was used for policy gener-
ation, neural FPE was performed using a different set of observations of the same
size. Tree-based FPE as well was run using the same and a different dataset.
The correlation coefficients of the resulting J#S0 functions are summarized in
Table [6.21

In comparison with the NFPE results based on the same data, the correlation
can always be improved, especially for the wet-chicken benchmark. Extra-tree
based FPE (TreeFPE) achieves an even better correlation, except for the pole-
balancing benchmark using observations from 50 episodes. When using as little as
50 episodes, the limited predictive power of trees hinders them in finding a better
fitting value function than the neural network based approach. When more data
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are available, however, they achieve a better correlation because of their different
nature, no matter if they are trained on the same data used for policy generation
or a different dataset.

In summary, one can conclude that NFQ leads to @-functions that carry only
little information about the quality of their respective policies: When following
the @-function’s policy, i.e., always choosing the action that maximizes the Q-
function, the obtained return will most likely be different from the one the Q-
function indicates. To obtain a ()-function that is closer to the true return and is
therefore more appropriate to assess a policy’s quality, one can use fitted policy
evaluation, ideally using a separate dataset or a different function approximator.

6.5 Policy Selection and Rejection

One application of an estimate of the expected return of a policy is policy selection
or rejection. Given a set of policies, the aim is to order them by their performance.
The resulting ordered list can then be used to select a number of good or reject
a number of poor policies.

For the experiments in this section, the policies from the pole-balancing and
wet-chicken benchmarks were ordered using different estimates of J™%. Then
a number n of policies from the list was selected, with n = 1,2,..., K, where
K is the total number of policies to be compared. For the selected set the true
mean performance was determined. When rejecting policies, the list is ordered
the other way around, starting with the smallest estimate of J™%. Again, an
increasing number n of policies is selected, starting from the top of the list, and
the mean performance of the selected set is determined. In the case of rejection,
the mean performance of policies that would be rejected is determined.

In essence, this is the same as what was done in Chapter [4] Section[4.2]for discrete
domains.

Figures[6.1]and show the results for the pole-balancing benchmark using poli-
cies generated from 50 and 100 random episodes, respectively. For the policies
from 50 episodes, the estimate of the expected return based on the NFQ value
function is completely uninformative, one could as well select a policy at random.
Given the correlation coefficient of approximately zero, this comes as no surprise.
All other approaches work comparably in this setting. When using observations
from 100 episodes, the original NFQ @-function also has some correlation with
the true performance and makes it possible to select policies that are better than
the average or reject policies worse than the average. Other approaches, however,

perform considerably better. Although the linear correlation between jﬁFSPO,E and

the true performance is better than the correlation with J4%., when actually
selecting good or poor subsets of policies, the tree approach performs consis-
tently better. Using different data, a further slight improvement is possible. In

the pole-balancing experiments also the advantage of using a different dataset in
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Figure 6.1: Mean performance of selected (left) and rejected (right) policies for the
pole-balancing benchmark using observations from 50 episodes. Each curve corresponds
to the selection/rejection based on a specific value function (directly from NFQ or
generated with an FPE variant). When selection is performed, the very left points give
the average reward of the policy considered best (according to the respective selection
method); for rejection this corresponds to the policy considered worst. In both cases
the very right points of the plots give the average performance of all policies in the set,
as in that case all are selected or none rejected, respectively.

combination with neural FPE becomes obvious (marked green and blue, respec-
tively).

Figure shows the results for the wet-chicken domain. Here ensembles with
a size of just 10 were used. Again, using the Q-function from the original NFQ
runs it is not possible to distinguish between good and poor policies. Using
neural FPE, the situation becomes somewhat better, especially recognizing poor
policies becomes possible; the selection, however, does not work as well. Using a
different dataset leads to an improvement for recognizing both, good as well as
poor policies. But for this benchmark, FPE based on extra-trees works by far
best. Interestingly, the extra-trees approach does not need a different dataset to
work well. While a different dataset tends to improve the result even further,
the tree approach is so different from a neural-network-based FQI that different
data does not change the situation much. This is also true for the pole-balancing
experiments.

Though not in detail reported here, experiments using extra-tree FPE to evaluate
a policy generated by extra-tree FQI resulted in less correlation between the value
function and the true performance. Using a different function approximator would
probably in this case help as well, i.e., using neural FPE to evaluate policies
generated by tree FQI.
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Figure 6.2: Mean performance of selected (left) and rejected (right) policies for the
pole-balancing benchmark using observations from 100 episodes. See the description of
Figure for more details.
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Figure 6.3: Mean performance of selected (left) and rejected (right) policies for the
wet-chicken benchmark. See the description of Figure for more details.

6.6 Weighted Ensembles

Instead of using the policy quality measure to select or reject certain policies, one
can also derive a weighting from it and use that for weighted majority voting. In
the following, the different Jr50 estimates are used as a basis for a weighting for
an ensemble. For each ensemble member, its weight w; is determined according
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Pole-Balancing

50 episodes

100 episodes

Wet-Chicken

Single 0.222 +£0.008 0.220 £ 0.008 12.94+0.1
Equal 0.287 £ 0.006 0.280 + 0.005 13.24+0.1
NFPE 0.290 £ 0.006  0.287 4 0.005 13.24+0.1
TreeFPE 0.296 £ 0.006 0.301 £ 0.004 13.7+0.1
NFPEgqs 0.299 £ 0.006 0.292 £ 0.004 13.5+0.1
TreeFPEg;qs 0.296 £+ 0.006  0.298 + 0.004 13.8 +0.1
Neg. NFPE 0.244 + 0.007 0.226 £ 0.007 13.0+0.1
Neg. TreeFPE 0.260 £ 0.007 0.236 £ 0.007 12.34+0.1
Neg. NFPEgig 0.230 £0.008 0.212 4 0.008 12.8 0.1
Neg. TreeFPEg;¢ 0.261 +0.007  0.237 4+ 0.006 12.44+0.1
Uncorrelated 0.285 = 0.006 0.278 &= 0.005 13.2+0.1
MP NFPE 0.255 £+ 0.005 0.273 £0.007 13.1+0.1
MP TreeFPE 0.273 £0.006 0.294 4 0.006 14.14+0.1
MP NFPEgqg 0.258 £ 0.008 0.273 £ 0.007 13.4+0.1
MP TreeFPEg4gs 0.272£0.007 0.298 £ 0.006 14.14+0.1

Table 6.3: Performances of differently weighted ensembles. Equal denotes equal weight-
ing of all members; NFPE and TreeFPE denote ensembles weighted using weights de-
rived by neural and extra-tree FPE, respectively; for Neg. NFPE and Neg. TreeFPE
the same weights were used, only negated; Uncorrelated denotes uncorrelated weights.
MP denotes the most preferable policy, i.e., the policy with the greatest weights. The
subscripted diff denotes usage of a different dataset of FPE.

to
JM’SO(Wi) - minj JM7SO(7T],)

max; .J#5 (m;) — min; J#50 ;)

w; = (6.5)
thus scaling the weights between 0 and 1. By increasing the influence of good
and decreasing the influence of poor ensemble members, one may hope to increase
the overall performance of the ensemble. If, on the other hand, the weighting is
systematically wrong, i.e., good policies are weighted lower than poor policies, a
weighted ensemble should perform worse than an equally weighted one. Uncor-
related weights should have no impact on an ensemble’s performance.

Table contains the results of the weighting experiments for the pole-balancing
benchmark using 50 and 100 episodes as well as the wet-chicken benchmark. As a
baseline, the performances of equally weighted ensembles (second row) are given.
Additionally, the average reward of a single network policy (without ensemble) is
shown (first row). The next two rows give the performances of ensembles weighted
using jﬁ%PE and j?feeFPE, respectively. Here, the weighting consistently improves
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Pole-Balancing
50 episodes 100 episodes

Single 0.222 £ 0.008  0.220 £ 0.008
Most agreeable 0.276 +0.007 0.278 4 0.007
MP NFPE 0.255 £ 0.007  0.273 £ 0.007

MP TreeFPE 0.273 £0.007  0.294 £ 0.005

MP NFPEg;g 0.258 £0.007  0.273 £ 0.007
MP TreeFPEgs 0.2721+0.007 0.298 = 0.006

Table 6.4: Performances of policies from the “most agreeable” approach from the
previous chapter and “most preferable” policies (i.e., the policy considered best by the
respective evaluation method).

the performance, especially when using extra-tree-based FPE. When doing the
same weighting using a different dataset (rows 5 and 6), the NFPE-based results
can further be improved, while the results of TreeFPE remain approximately the
same. This is in agreement with the plots from the previous section, which al-
ways show an improvement for NFPE with different data over the same dataset,
whereas the results of TreeFPE for the same and a different dataset are Very sim-
ilar. Next, the effect of deliberately bad weights is shown by negating JNFPE and
JTreeFPE, the results are given in rows 7 and 8. As expected, the performances
decrease when deliberately choosing bad weights. The better the correlation be-
tween J% and the true performance, the more drastic the performance decrease
when negating the corresponding weights. Rows 9 and 10 show the same for
different datasets. Again, NFPE’s performance is affected (better correlation,
therefore worse performance when negating weights), while for TreeNFPE no
difference can be observed. Uncorrelated gives the results of using uncorrelated
weights. As expected, the performances of ensembles weighted with uncorrelated
weights tend to be lower because of the smaller effective ensemble size (since all
weights except one are smaller than 1, the effective ensemble size is reduced in
comparison to unweighted ensembles). However, this is the only effect of un-
correlated weights. Lastly, results of the most preferable policy (MP) are given,
where the single policy with the greatest weight was selected. Unsurprisingly,
the better the correlation between quality measure and the true performance,
the better the selection of a single policy. Note that the numbers in the table
correspond exactly to the leftmost points of the left-hand plots in the previous sec-
tion. Pole-balancing profits much more from ensembles than wet-chicken, where
the best results are achieved by single policies. This is probably due to the highly
stochastic nature of the wet-chicken benchmark and the fact that a policy usually
has two “switching points”: at the beginning of the river, drift is the preferred
action; after the first “switching point”, hold becomes the best action, after the
second action back. Mixing policies with different “switching points” apparently
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does not work as well. Another explanation is the superiority of TreeFPE, which
allows to select a single NFQ policy that performs better than an ensemble.

Table compares “most preferable” policies to those identified by the “most
agreeable” approach from the previous chapter, where the policy is chosen that
most often is among the majority for the states appearing in the observation
dataset (the numbers for MP are repeated from Table . It shows that both ap-
proaches perform comparably. In the setting using observations from 50 episodes,
the “most agreeable” approach has advantages over NFPE-based “most prefer-
able” policy selection and gives similar results compared to the TreeFPE-based
variant. In the setting using observations from 100 episodes, an advantage for
TreeFPE-based policy selection over the “most agreeable” approach can be ob-
served. With more data available, the approach based on direct policy assessment
more clearly identifies good policies. However, if due to constraints at runtime
(policy execution) only a single policy can be used, it seems questionable whether
the additional effort of running FPE is worthwhile, given that the much cheaper
process of determining the “most agreeable” policy leads to a comparable result.
If during runtime an ensemble is to be used, though, determining and using a
weighting does make sense, as it leads to a further performance improvement.

6.7 Summary

In the present chapter methods for policy assessment in continuous domains were
discussed. Starting from the natural approach of using the value function, it was
argued why an uncertainty estimate comparable to self-assessment in discrete do-
mains cannot be obtained in a similar fashion. The correlation coefficient was used
as a measure for suitability of value functions determined in different ways. The
correlation between the value function generated during policy generation with
NFQ and the true performance is often almost zero. If, however, a separate policy
evaluation step is performed, the correlation can be improved considerably. To
this end the fitted policy evaluation (FPE) approach was introduced. Moreover,
it was argued that by employing a different function approximator and/or using a
different observation set, the correlation can be increased further. It followed an
evaluation of the approaches for policy selection and rejection. In addition, the
policy performance measures were used to construct weighted ensembles, show-
ing that the ensemble performance can be improved through weighting. Also the
“most agreeable” policy selection approach from the previous chapter was com-
pared with the weighting-based “most preferable” one. The “most agreeable”
policy is the one that is most often among the majority (in majority voting) on
the observation set, while the “most preferable” policy is that with the high-
est weight. It turned out that the “most agreeable” approach performs quite
comparably to the “most preferable” one.

In addition to the applications evaluated here (policy selection/rejection, ensem-
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ble weighting) others are thinkable. In a practical application, one could define
a minimum value that a policy must reach during evaluation in order to be put
into action. One can also use it to switch to a new policy only when a consid-
erable performance gain is to be expected. This can be assessed by comparing
evaluation results of the currently used and the candidate policy.






Autonomous Control in
Changing Environments

This chapter combines the ideas from the previous two chapters for approaches to
deal with changing environments. As a changing environment this thesis considers
a problem whose characteristics slightly vary, while the general structure remains
unchanged. For example, in a gas turbine those changing characteristics could
be fuel quality, ambient parameters not included in the state representation, or
changing characteristics of the turbine itself due to wear. Such a changing envi-
ronment violates the Markov property. Therefore, the theoretically sound solution
is to include all parameters describing the change in the state space. However,
not only is it often hard, if not impossible, to observe such changes directly, but
a state space with greater dimensionality usually requires the collection of more
observations to generate a near-optimal policy. Instead, if the change in charac-
teristics occurs slowly enough, one can assume the environment to be static for
a limited timeframe. This assumption makes it possible to generate a new policy
regularly, using data from a new, recent timeframe. Exactly this approach is used
in this chapter.

Two settings of changing environments are considered. In the first, a pool of
policies and an environment are given. All policies in the pool are known to
work reasonably for the environment. They were generated using observations
from environments of a certain class but with different parameterizations. It is
unknown what the parameterization of the current environment is. The task then
is to select policies from the pool that are best suited for the given environment.

In the second setting, a changing environment is considered and the aim is to
generate policies in a way that at each point in time a policy is available that
controls the environment reasonably well. The traditional solution is to regularly
generate a new policy using the last n observations. Here, an approach is proposed
using an evolving ensemble, where new policies are generated regularly as in the
traditional approach, but instead of a single policy an ensemble is used. The
ensemble evolves by adding and removing policies, optionally based on policy
evaluation.
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7.1 Policy Selection in Changing Environments

Consider the following setting: Given a set of policies, determine a weighting for
the policy set or select a number of policies for a new Markov decision process
(MDP) that is similar to the one the policies were determined for, but has a
somewhat different parameterization. In a real-world scenario, for the given poli-
cies an expert might have assured that they work reasonably for the given system
to be controlled. Changing characteristics of the system due to, e.g., environ-
mental conditions (temperature, air pressure, etc.) or wear, could be regarded
as different parameterizations. A possible solution for this setting could be as
follows:

1. Select a number n of policies from the set randomly to form an ensemble.

2. Let the ensemble run for a number of steps and save the observations.
Since all policies were assessed by an expert beforehand, the ensemble’s
performance will be reasonable, though in general not the best achievable
(due to the lack of adaptation to the current parameterization).

3. Use the observations from the previous step to evaluate each policy from
the set for the given parameterization (represented by the observations).
From the policy evaluations a weighting can be obtained.

4. Use the weights to select the presumably best n policies from the set to
form a new ensemble.

5. Use the new ensemble to control the system.

The above procedure can be repeated regularly or every time the average perfor-
mance drops below a threshold, indicating a changed parameterization. Moreover,
some form of bootstrapping can be applied, where first a weighting is determined
using only few observations. With the ensemble from the first weighting more
observations are generated that again can be used to obtain a better weighting.
This way the amount of time the ensemble of randomly selected policies is used
could be minimized.

This approach is evaluated on the pole-balancing benchmark. Changed parame-
terizations are realized by varying the mass of the pole m, € {0.5,1,1.5,...,6} kg.
For each parameterization, five datasets were generated, each with observations
from 100 episodes, using random exploration. For each dataset, five neural fitted
Q-iteration (NFQ) runs were performed (as described in Chapter [5)) to obtain five
policies, totaling in 25 policies per variation and 300 policies for all variations.
Those 300 policies comprise the pool of policies assumed to work reasonably well
for all parameterizations. To test the method for a particular parameterization,
n policies were selected randomly from the pool, forming an ensemble, which was
run for 300 or 600 steps, respectively. With the resulting observations, all 300
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Figure 7.1: Performance of equally weighted ensembles selected randomly and using
TreeFPE based on 300 and 600 observations for different variations of the pole-balancing
benchmark (different pole mass m,,). For all ensembles 20 members were used.

policies were evaluated using TreeFPE, resulting in J52 ppp(m),7 = 1,.. ., 300,
which were used to order the policies and then select the presumably best n from
the total 300 to form an ensemble. The resulting ensembles were evaluated (100
trials with at most 3,000 steps each), as a baseline the performance of ensembles
with randomly selected members was determined as well.

Figure shows the performances of equally weighted ensembles for different pa-
rameterizations of the benchmark (varying pole mass m,,). Black indicates the re-
sults of ensembles with randomly selected members. Apparently, with m,, € [1, 5]
kg the problem is easier than with very small or large weights. This somewhat
counter-intuitive result can be explained as follows: When the pole is quite light,
a few wrong actions can already lead to failure. If it is heavier, it has more inertia,
and a single action has less impact. On the other hand, if it becomes too heavy,
it becomes increasingly difficult to erect a pole that is not standing straight, and
a policy must use the right actions as often as possible to use all the available
force in the right direction.

The pool contains policies trained with observations from poles with different
masses. When selecting policies randomly from the pool (black curve), one can
do quite well for m, < 2.5, since most policies are suitable for those parameteri-
zations. However, to excel at parameterizations with higher pole mass, a random
selection is insufficient. In contrast, the ensembles built from policies consid-
ered best by TreeFPE by far outperform the ones based on random selection.
TreeFPE was run with 300 observations (red) and 600 observations (blue), but
the evaluation quality benefits only little from the extra observations.
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7.2 The Evolving Ensemble

In this section we discuss an approach to use ensembles and policy evaluation in
an on-line system able to learn a policy from scratch, control the system using that
policy, and also update the policy regularly to react to changing characteristics.

7.2.1 Idea

The basic idea again comprises a policy pool. Some or all policies from that
policy pool form the ensemble that constitutes the policy. Whenever a certain
number of new observations has been collected, they are used to generate one or
more new policies. Those policies are then added to the pool, and all policies in
the pool are re-evaluated using recent data. The results of this re-evaluation can
then be used to update the ensemble and possibly remove policies from the pool
that—according to the evaluation—perform insufficiently.

The naive approach of using a single policy and regularly replacing it with a new
one trained from recent observations has a number of shortcomings:

« As we have seen in Chapter [5] a policy resulting from a single NFQ run
might perform insufficiently. It is advisable to use ensembles to weaken this
problem.

« Datasets often vary in quality, leading to policies of varying quality. Even
when using ensembles, a poor dataset will lead to poor policies.

» Replacing the entire ensemble might lead to abruptly changing policies. In
general, gradually changing policies are preferred.

The evolving ensemble addresses these problems mainly through ensemble usage.
First, an ensemble reduces the risk of picking a single poor policy. Since the
majority of policies performs reasonably, an ensemble will most likely perform
reasonably as well. Second, by replacing only a part of the policy pool and not
all policies at once, the influence of a single poor dataset is decreased. This
also ensures a gradual change of the ensemble policy, because only a part of
the ensemble can be changed from one step to the next. Third, by using policy
evaluation to decide which policies are kept and which are removed from the pool,
the influence of poor policies is further reduced.

In detail, the evolving ensemble approach works as follows:

1. Initialization. Starting with some dataset (e.g., generated by random ex-
ploration), determine K policies. These policies form the initial policy pool
ITy. An ensemble containing all (or a random subset of) policies from Il
forms the first ensemble policy 7. A counter ¢ is initialized ¢ := 0.
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2. Policy Execution. = is used to control the system for N steps, thereby
generating N observations.

3. Policy Generation. The N most recent observations are used to determine
K new policies, which are added to the policy pool II;.

4. Policy Evaluation. All policies 7; € II; are evaluated with the N most recent
observations (e.g., using TreeFPE). The result for a policy 7, is stored as

;.

5. Policy Pruning. If the size of the policy pool is greater than some maximum
capacity M, i.e. |II;| > M, the worst |II;| — M policies (according to .J;)
are removed from II;.

6. Ensemble Formation. A new ensemble policy 7§, is formed using the best
L policies from T1I; (according to .J;).

7. Loop. The counter i is increased and it is continued with step 2.

When learning new policies from observations generated by previous, already
near-optimal policies, the problem of imbalanced data arises. A near-optimal
policy will visit only certain areas of the state space. This can lead to an under-
representation of observations of other areas. Furthermore, such a policy will
in a given small area of the state space always choose the same action. As a
consequence, a policy generated from those observations might be able to control
the system well in a preferred area of the state space, but at the same time be
unable to properly move the system there. Although the problem’s severity will
be different depending on the environment and the generalization capabilities of
the function approximator, in general it must be considered and taken care of.
Possible solutions include weighting or resampling of observations (Abtahi and
Fasel (2011)) report good results by subsampling explorational data, where most
observations are from regions outside the target area). For an on-line setting of
batch-mode reinforcement learning (RL), as discussed here, it is also thinkable to
remember all observations and resample before learning a policy. The resampling
would then make sure that all areas of the state space are represented equally well.
However, when dealing with changing environments the age of an observation
becomes important as well—the older an observation, the less trustworthy it is.
It is therefore unavoidable to include some sort of exploration to circumvent the
problem of imbalanced data or even unrepresented regions of the state space.

7.2.2 Experiments
The approach is first evaluated on the pole-balancing benchmark. Analogously

to the experiments in the previous section, the mass of the pole is varied. This
time, however, we are not presented a concrete parameterization and have to
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Figure 7.2: Setup of the evolving ensemble experiment for the pole-balancing envi-
ronment. The axis depicts the timestep. Shown are the first 1,500 timesteps (left)
and timesteps 3,500—4,500 (right). For the first 500 timesteps, random exploration is
performed. The resulting observations are used for four NFQ runs, resulting in four
policies, constituting the first ensemble pool IIy. The next 500-4/5 = 400 steps ensem-
ble IIj is executed, again saving the observations. The remaining 500 - 1/5 = 100 steps
random exploration is performed. The observations from both, ensemble policy exe-
cution and random policy are used to determine another four policies, which are then
added to the pool. Now, |II;| = 8. This continuous until the size of the pool exceeds
the maximum size of M = 20. After timestep 3,500 this happens for the first time.
Hence, IT5 contains 24 policies. For all 24 policies, policy evaluation, namely TreeFPE,
is performed, using the observations from the recent 500 observations. The resulting
quality measures j]5 are then used to select the presumably best 20 policies, forming
II5, which is then used as the ensemble. After the next 500 steps again four policies
are generated and added to II5, which then again is too large, so the presumably best
20 policies are selected, etc.
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select suitable policies from a given policy pool. Instead, we are faced with
a single environment that changes slowly. While the environment changes, we
want to adapt the executed control policy to accommodate for the changes as
good as possible.

To implement a gradual mass change, the mass m,, is defined to be time dependent
according to

= 0.5 (7.1)

"+ "8o

0 : &
= 55sin (ot
P 2-500 - 100
where mg is the initial mass, 7 the mathematical constant (expressing the ratio
of the circumference of a circle to its diameter) and ¢ the current timestep. With

the used frequency a quarter period (and thus the maximum mass) is reached
after 500 - 100 timesteps.

Every 500 timesteps the recent 500 observations are used to generate four new
policies, i.e., N := 500 and K := 4. For policy evaluation TreeFPE is used. The
maximum policy pool size is set M := 20. The complete policy pool is used as
ensemble, thus L := M = 20.

To deal with the problem of imbalanced data, the ensemble policy is used for only
%N steps. The remaining %N steps random exploration is used. Obviously, for a
real-world application another solution would be required, but here the focus is
on the evolving ensemble approach. The problem of imbalanced data occurs as
well with static environments that do not change at all.

Figure illustrates the experimental setup.

The evolving ensemble is compared with three less sophisticated approaches.
First, the traditional approach is used, where a single new policy is generated
using the recent 500 observations (single policy). The rest of the setup is iden-
tical, i.e., the policy is executed for %N and random exploration is used for the
remaining %N timesteps. Second, not a single policy, but an ensemble of four
policies (derived from the same dataset) is used (simple ensemble). Third, the
evolving ensemble approach without the policy evaluation step is considered. In-
stead of performing policy evaluation, once the ensemble has become too large,
policies are removed starting with the oldest policy (remove-old evolving ensem-

ble).

For each approach 10 independent trials were performed as described above. Each
trial led to 100 policies, one every 500 timesteps. Note that in this context
a “policy” can as well be an ensemble composed of up to 20 single policies.
To measure the quality of a policy, its mean immediate reward was determined
by running it on an instance of the pole-balancing problem with a pole mass
corresponding to the respective timestep. Figure|7.3|shows the results. The upper
plot shows the means over the 10 trials, the bottom plot shows the minimum over
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Figure 7.3: Results from the evolving ensemble experiments using the pole-balancing
benchmark. The upper plot shows mean values over the performed trials, the bottom
plot shows the minimum over all trials.

all trials for each timestep. As we have already seen when varying the mass of
the pole at the beginning of this chapter, the pole-balancing problem becomes
easier with increasing pole mass (due to the increased inertia) up to certain point.
The different approaches exhibit notable differences in their ability to exploit this
simplification.

Single policies (black, ‘x’ marks), where just a single policy is trained using
the recent 500 observations, and simple ensembles (green, ‘+’ marks), which
are composed of four policies trained on the recent 500 observations, show mixed
results. While occasionally good performance is achieved, the policy quality often
changes rapidly from one update to the next, i.e., after every 500 timesteps.
Moreover, when looking at the minimum results of all trials, single policies and
ensembles turn out worse than the other approaches. Although it is not that
obvious from the plots, the simple ensembles perform better on average than
single policies (0.47 for ensembles compared to 0.42 for single policies), especially
when it comes to the minimum results (0.22 for ensembles and 0.09 for single
policies).



7.2. The Evolving Ensemble 117

The evolving ensemble approach removing the oldest policies, once the ensem-
ble becomes too large (blue, ‘x” symbol), delivers a more consistent performance.
This is in part due to the greater ensemble size of 20, and in part due to the
smaller change from one update to the other: of the 20 policies only four change
in an update. When looking at the average of all timesteps, with 0.43 it performs
worse than the simple ensemble approach and only slightly better than single
policies, which is somewhat surprising. When it comes to the minimum, how-
ever, it can clearly outperform the two simpler approaches (with an average of
0.34). The smoothing effect of the remove-old evolving ensemble approach keeps
it from taking full advantage of the very best policies, which in some timesteps
are generated. At the same time it keeps it from incurring the poor performance
of the occasional poor policies. This latter feature is what makes this approach
attractive for autonomous control, where we look for consistent reasonable per-
formance.

Finally, the evolving ensemble approach with TreeFPE-based policy assessment
(red, ‘A’ marks) is superior to all others in this setting. Except for the first
timesteps it consistently delivers high performance. This is true over all 10 tri-
als, since even the minimum over all trials is not much worse than the mean
(the maximum difference between the mean and the minimum is 0.10, the mean
difference 0.02). It is also reflected in the low uncertainty of the mean (small
error-bars). Since TreeFPE works well for determining a policy’s performance
here, it becomes possible to not just remove the oldest policies, but those that
most probably are unsuitable—either because the environment has changed too
much since their generation, or because they were poor policies in the first place.

Figure [7.4] shows a histogram of the number of timesteps policies are used before
they are discarded. The histogram shows this in terms of iterations, i.e., the time
between updates of the ensemble (generation of new policies and assessment of all
policies using recent observations, removal of assumingly poor policies). As can
be seen from the figure, about half the policies are not executed even once; they
are generated, thereafter assessed using the same dataset (but with TreeFPE a
different method), and found to be worse than other candidate policies. This
is in part due to the tendency of NFQ to occasionally produce poor policies (as
discussed in Chapter . Moreover, candidate policies not only have to “compete”
with policies generated from the same dataset; also the 20 policies already present
in the ensemble are candidate policies. Since they potentially have been assessed
several times before and always have been among the best 20 policies (otherwise
they were not part of the ensemble anymore), chances are they actually are good
policies. At the same time, since the environment is changing, even the best
policies will become unsuitable eventually and are removed from the ensemble.
With an increasing number of iterations, the fraction of policies decreases, which
is not surprising. Policies are expected to perform best for the environment that
generated the observations they were learned with. Only few policies are so
universal that they fit a large timeframe.
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Figure 7.4: Histogram of the duration of policy usage. An iteration here is the time
between two updates, i.e., 500 timesteps. Half the policies are discarded before being
executed even once (large bar for 0 iterations). As expected, the fraction of policies
decreases with increasing policy age (number of iterations the policy is part of the
ensemble).

The comparison of simple 4-policy ensembles on the one hand and ensembles
with 20 members in the evolving ensemble case on the other hand might seem
unfair. The amount of NFQ runs involved is identical, though. The important
difference lies in the way policies are used. In the simple ensemble approach
a policy is used only for a single ensemble; the evolving ensemble uses policies
multiple times and takes advantage of the fact that the environment changes only
slowly. The approach with assessment-based removal admittedly adds the cost
of running TreeFPE for all 20 policies every 500 observations. However, looking
at the results this is worth the effort. In the end, it means using (comparatively
cheap) computational power to extract more information out of (comparatively
expensive) observations of the environment.

The evolving ensemble approach was also evaluated on the more difficult cart-
pole benchmark as described in Chapter [ Section [5.4.1} Since one needs much
more observations to have a chance at deriving reasonable policies, new policies
are learned not every 500, but every 20,000 observations. To change the environ-
ment’s characteristics, the pole’s length [, is changed according to

0 ._
0 = 025 (7.3)

t ._ g0 . T

lp = lp +O5 Sin (218106 t) s
where lg is the initial length, again m the mathematical constant and ¢ the current
timestep. With the used frequency a quarter period is reached after 1.8 - 10°
timesteps, thus the maximum length is reached at ¢t = 1.8 - 10° with lf, =0.25 +
0.5 =0.75.

Each dataset is used to generate four policies, i.e., K := 4. Every 20,000 ob-
servations new policies are generated, i.e., N := 20,000. For policy evaluation
TreeFPE is used. The maximum policy pool size is set M := 20. The complete
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Figure 7.5: Results from the evolving ensemble experiments using the cart-pole bench-
mark. The upper plot shows mean values over the performed trials, the bottom plot
shows the minimum over all trials.

policy pool is used for an ensemble, thus L := M = 20. So only N, the number of
observations after which new policies are generated, is different from the previous
setup using the pole-balancing benchmark.

To deal with the problem of imbalanced data, again random exploration is used,
here for %N timesteps for each update (to account for the larger state space).

As previously with the pole-balancing benchmark, four approaches are compared:
a single policy learned from the recent 20,000 observations, an ensemble of four
policies learned from the recent 20,000 observations, an evolving ensemble that
adds four policies every 20,000 timesteps (again learned from the recent 20,000
observations) and removes the oldest policies once the ensemble size has reached
its limit, and an evolving ensemble that uses TreeFPE to decide which policies
to remove. Again, 10 trials were performed. Figure shows the results. While
the task of pole-balancing becomes easier with increasing pole mass, the cart-
pole problem appears to become harder with increasing length of the pole—
all approaches show some decline in performance with increasing pole length.
However, differences between the approaches can be observed again.
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Single policies (black, ‘x’ marks) perform worst, simple ensembles containing
four members (green, ‘4+’ marks) are slightly better. The best results, especially
in terms of the minimum mean immediate rewards (bottom plot) are achieved
by the evolving ensemble approaches. This comes as no surprise—after all, the
evolving ensembles make more effective use of the generated policies by using
them multiple times. Between the two evolving ensemble approaches there are
interesting differences, though. First, in the first third of the total timeframe (ap-
prox. timestep 0-800,000) the evolving ensemble without assessment (and instead
removal of the oldest policies) performs better than the one using assessment; this
is true for the mean as well as the minimum over all trials. Apparently, the policy
assessment done by TreeFPE is often wrong, leading to a selection of poor poli-
cies. The second interesting observation occurs around timestep 1,600,000: the
minimum of the evolving ensemble with removal of old policies drops for several
timesteps below zero; at the same time, the evolving ensemble with assessment
can maintain its performance. In the following, we will investigate the reasons
for both observations.

The TreeFPE-based policy assessment is supposed to allow for keeping good and
discarding poor policies. We therefore expect it to be a good measure for the
quality of single policies. As done before, it is useful to consider the correlation
coefficient between the results from TreeFPE and average rewards from execution
on the actual problem: over all policy evaluations the correlation is —0.02 4-0.04.
Given this correlation, doing TreeFPE seems useless in this setting—one could
as well select policies at random. On the other hand, the correlation between
all evaluations of the run and the respective policies’ true performance is not ex-
actly what is interesting. Instead, one should investigate the policy pool of each
iteration individually. In each iteration, TreeFPE is performed for each policy
currently in the pool using the same observations; the resulting ranking is used to
select the assumingly best 20 policies (and discard the poorest four). Therefore,
the correlation of the 24 policies of each of those sets and their true performance
is what is really interesting. Determining the corresponding numbers, we get a
correlation of —0.17 4+ 0.02 over all trials. This result is even worse—it means
that systematically the wrong policies are selected, though the effect is weak as
the absolute value of the correlation is rather small. This explains the poor per-
formance during the first third of the experiment. Given the relative performance
in the first third and the rest of the experiment, one would expect the negative
correlation to be more severe during the first third. However, a systematic change
in correlation over time was not found.

Now consider the drop of the minimum performance of the evolving ensemble
with removal of old policies around timestep 1,600,000. In this case, the ensemble
contains a number of poor policies; nonetheless, majority voting still leads to a
high quality of the ensemble policy. In the next iteration, however, two of the
four new ensemble members are poor, while four good policies are removed. After
that the number of good members is not sufficient to keep up the good ensemble
performance. The next two updates cannot significantly change the situation,
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Figure 7.6: Results from the randomly replacing evolving ensemble. The results from
the ensemble replacing old policies and the TreeFPE-based evolving ensemble are shown
for comparison; they are identical to those in figure

as they add one or more poor policies themselves. Moreover, the poor policies
added in previous iterations are still present. When finally in the next iteration
four good policies are added, it still takes two iterations for the performance to
resume an acceptable level, because a sufficient number of poor policies needs to
be shifted out.

One would expect that this problem could be avoided by using policy evaluation
to select which policies to keep and which to discard. An according experiment
was performed by using the same single policies in combination with TreeFPE:
instead of in each iteration adding four new and discarding the oldest four poli-
cies, the decision was based on TreeFPE policy evaluation. Interestingly, this
approach discarded a sufficient number of poor policies to prevent the perfor-
mance drop. This result is somewhat surprising, since the correlation between
true policy performance and TreeFPE suggests that the quality measure derived
by TreeFPE is not informative in this setting. Indeed, if the correlation is ap-
proximately zero, using random numbers as performance measure should lead to
the same result. To this end the experiment was repeated with random selection:
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when in an iteration the ensemble becomes too large and policies need to be
dropped, those policies are selected at random. Figure shows the result and
compares them with the other two evolving ensemble approaches. Remarkably,
the mean performance over all 10 trials of this approach is equivalent to (if not
better than) the performance of the other evolving ensemble approaches. Look-
ing at the minimum, the random selection performs comparably to the evolving
ensemble dropping the oldest policies in most timesteps, but it can avoid the
huge performance drop towards the end. This interesting result can be explained
by the fact that the random selection ensemble contains policies from a broader
range—it does not always drop the oldest policies, consequently some old policies
remain in the ensemble. This weakens the impact of the sequential poor itera-
tions, where each iteration adds a number of poor policies. At the same time, the
older a policy, the smaller its probability of not having been dropped previously.
Taking the numbers of this experiment, in each iteration 4 of 24 policies need to
be dropped, so the probability of being dropped in one iteration is 4/24 = 1/6.
From this follows that the probability for a policy that entered the ensemble in

iteration i still being a member in iteration i + k is (1 — )*.

7.2.3 Conclusions

From the observations with the above experiments the following conclusions can
be drawn:

e The evolving ensemble approach in general works well in changing environ-
ments. Not only does it deliver a better mean performance than individual
ensembles or even single policies, it most importantly improves upon the
minimum performance. Instead of potentially drastically changing the pol-
icy with each update, it provides for graduate change of the policy and
adaptation to the environment. Of course, it is as well applicable if the
environment is static and does not change.

o If a means of policy evaluation is available, it can be a great addition to
the evolving ensemble approach, since then one can selectively remove poor
and keep good policies. The pole-balancing experiment showed that this
can lead to a remarkable advantage. On the other hand, if the quality
of the policy evaluation is poor and perhaps even negatively correlated to
the true performance, including policy evaluation can weaken the ensem-
ble. However, as long as the negative correlation is not extreme, the general
robustness introduced by the ensemble is sufficient to still keep its perfor-
mance above those of simple (non-evolving) ensembles and single policies.

e In the experiments with the cart-pole benchmark there was one trial where
the evolving ensemble without assessment showed a severe performance
drop. This was mainly due to a number of subsequent ensemble updates
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that added poor policies. Further experiments using other selection strate-
gies (instead of simply dropping the oldest policies), but based on the same
single policies, showed that also for this trial the performance drop can be
avoided by essentially widening the range from which policies are selected
and hence making the ensemble more diverse. As an alternative to different
selection techniques one could also increase the size of the ensemble; this
would also lead to the inclusion of policies from a wider range of timesteps.
Yet another alternative lies in decreasing the number of policies generated
with each dataset; instead of generating four policies, one could generate
just one new policy. To achieve the same ensemble size, one would have
to generate a new policy more often, i.e., after a smaller number of new
observations. To have the same dataset size, the datasets would need to
overlap. While this increases the correlation between policies generated
subsequently, the correlation would not be as high as between four policies
generated from the same dataset.

7.3 Summary

This chapter combined ideas from previous chapters to deal with changing envi-
ronments. First, the case was considered where a collection of policies is already
available, but it is unclear which of those policies are most suitable for the current
environment. It was suggested to first run an ensemble with a random selection
of policies to collect observations (while still maintaining a reasonable perfor-
mance). The observations collected this way are then used for policy evaluation,
resulting in estimates of a policy’s performance on the current environment. The
estimates are then used to select a subset of policies to form an ensemble sub-
sequently controlling the environment. The experiments showed that ensembles
of policies selected using policy assessment perform significantly better than ran-
domly selected policies. An approach like this can prove useful whenever policies
from one or more similar systems are already available and are to be transferred
to another similar system. For example, if an operating company were to put a
new turbine into operation, it could use policies from all other, already operated
turbines as an initial pool of policies to select from.

In a second step the evolving ensemble approach was introduced. The evolving
ensemble adapts to a changing environment by periodically adding new policies
derived from recent observations and discarding policies that have become obso-
lete. The decision which policies to remove and which to keep can be based on
a policy’s age. Using policy assessment can provide a superior alternative. Both
approaches were evaluated on the pole-balancing and cart-pole benchmark prob-
lems and compared with two simpler approaches, namely using a single policy
learned from recent observations and an ensemble trained from the same observa-
tion set. The results indicated that the evolving ensemble is superior, especially in
terms of minimum performance. The results from the pole-balancing experiments
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showed that the evolving ensemble approach can considerably benefit from policy
assessment—mno other approach could deliver such a high and consistent perfor-
mance. On the other hand, the experiments on the cart-pole problem revealed
that uncorrelated or even negatively correlated policy assessment can weaken
the ensemble. Also the remove-old evolving ensemble showed weaknesses in this
setting—if two or more subsequent updates add poor policies, a notable perfor-
mance drop might occur. The evolving ensemble using policy assessment did not
show this problem, although the policy assessment was almost uncorrelated to
the true policy performance, thus effectively removing policies randomly. To con-
firm this assumption, the same experiment was performed with actual random
selection of policies. It turned out that this approach performed comparably and
was able to avoid the performance drop of the remove-old evolving ensemble.
The reason for this is the wider range that policies are used from, thus decreasing
the correlation between policies in the ensemble. From this follows the advice
to use large ensembles, preferably with members from different timeframes and
therefore different observations.

An evolving ensemble is applicable whenever RL is applied to problems of au-
tonomous control. Consider the example from above again, where a new gas
turbine is to be put into operation. The existing policies from other turbines
could serve as an initial policy pool. First, an ensemble of randomly selected
policies could be used to collect observations. Those observations could be used
to perform policy assessment of all policies and select the most suitable ones.
Thereafter the ensemble could be updated by periodically adding new policies
trained from recent observations and removing unsuitable policies according to
policy assessment. No matter how fast the actual change of the system, due to
the steady updates the evolving ensemble would always provide a suitable policy.



Conclusion

This chapter concludes the thesis. It summarizes the previous chapters, highlights
the main contributions, and lastly gives ideas for possible future research.

8.1 Summary

The thesis was concerned with reinforcement learning (RL) and its application to
autonomous control. RL is an attractive method for autonomous control, because
it learns from actual observations of the system and can thus deal with problems
where classical approaches of optimal control are unfeasible. Furthermore, an
RL method can adapt to changing characteristics of the system. Data-efficient
RL methods have been developed in recent years, often employing powerful func-
tion approximators like neural networks. Although impressive results could be
achieved, it was argued that the application of such methods is still cumbersome.
In particular, often the learning process needs to be monitored and the policy
as final result often has to be evaluated by executing it on an actual system.
This hinders the application of RL to autonomously learning controllers that not
only control the system in closed loop, but also autonomously update the control
policy.

The thesis focused on increasing robustness, in particular decreasing the proba-
bility of obtaining poor and insufficient policies. Starting with discrete domains
the issues of uncertainty were discussed. When estimating a Markov decision
process (MDP) from a limited number of observations with the aim of obtain-
ing an optimal policy for the underlying MDP, ignoring the uncertainties can
have drastic consequences. The main reason for this is the maximization of the
@-function done in the Bellman optimality equation. This causes a positively
biased @-function, which leads to a policy that is, regarding the real, underlying
MDP, often too optimistic. As a result, it might perform insufficiently on the real
MDP. By incorporating the uncertainties of the MDP estimation, it becomes pos-
sible to obtain the uncertainties of the Q-function. This allows deriving policies
that account for the estimates’ uncertainties they are based on (quantile-optimal
policies). To decrease the probability of deriving a policy that will perform poorly
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on the real MDP, one optimizes a lower quantile than the expectation. The re-
sulting policy realizes a trade-off between an action’s return and the return’s
certainty. For example, from two actions with similar expected return the ac-
tion with the more certain return would be chosen. A Monte Carlo approach
was introduced that allows to determine the ()-function’s uncertainties from the
MDP estimate’s uncertainties by considering a distribution over MDPs. As a
more direct method to arrive at the Q)-function’s uncertainty, work by Schnee-
gaf}, Udluft, and Martinetz (2008) (full-matrix uncertainty propagation (UP))
was described. They use uncertainty propagation to pass the transition and re-
ward estimators’ uncertainties to the result, i.e., the Q-function. Both, the Monte
Carlo approach as well as full-matrix UP are computationally very expensive. As
a feasible alternative, an approximate method, the diagonal approximation of
uncertainty-incorporating policy iteration (DUIPI), was introduced. Uncertainty
propagation uses a covariance matrix, whose size is the dominating factor in the
computational requirements of full-matrix UP. By considering only the diagonal
of the covariance matrix, DUIPI has the same complexity as the standard Bell-
man iteration (i.e., value iteration). Although being only approximate, it can
improve upon the (uncertainty-ignorant) standard Bellman iteration and in par-
ticular decrease the risk of obtaining a very poor policy (quality assurance). In
addition to the application of uncertainty awareness to quality assurance, we dis-
cussed the evaluation of a policy without actually executing it (self-assessment).
Again, the consideration of uncertainty is important, since a Q)-function derived
from an MDP estimate is often positively biased. Our experiments showed that if
the uncertainty is ignored, no reasoning about a policy’s quality is possible using
the @Q-function alone. If, instead of evaluating only the ()-values, one considers
the @-values together with their uncertainties, i.e., evaluates a policy based on its
(Q-values minus the e-weighted uncertainties, a more realistic policy evaluation
becomes possible. As a third application, it was shown that uncertainty aware-
ness can as well be used for efficient, uncertainty-seeking exploration. This can
be achieved by changing the sign of &, the parameter weighting the uncertainty.
This way the uncertainty acts as a bonus.

Since many interesting industrial control problems, including gas turbine control,
feature a continuous state space, starting in Chapter [5| those problems were con-
sidered. The thesis focused on neural fitted @Q-iteration (NFQ) as a neural RL
method requiring only little manual monitoring during learning—automatically
monitoring the error on some validation set and training the network in each
iteration until the error is small is usually sufficient. However, the errors of the
regression task in an NFQ iteration are by no means a suitable measure for pol-
icy quality. Thus it is hard to know when a good policy has been obtained, and
therefore when to stop iterating. Simply iterating “long enough” is no viable
option, since the policy quality often oscillates while iterating. This is one of
the problems of NFQ; another is its tendency to overestimate the (-function.
Overall, while NFQ often delivers excellent policies in a data-efficient way, it can-
not straightforwardly be used for autonomous control, if a considerable risk of
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obtaining a poor policy cannot be accepted. As a possible solution the usage
of ensembles was proposed. Ensembles are an established method in supervised
learning. By combining different individual learners an ensemble is created that
usually performs better than its members and often even better than any of the
individual learners. Ensembles are effective if the members are accurate and di-
verse, i.e., make reasonable, although not excellent predictions and do not make
the same errors for a given input. Surprisingly, so far the interest in ensembles in
RL has been quite low; in particular, to the best of our knowledge a combination
of NFQ with ensembles has not been considered before. Multiple ways of using
ensembles in an NFQ context were discussed and evaluated. In the according
experiments simple majority voting proved to be particularly effective. To realize
a majority voting ensemble of NFQ policies, NFQ is run multiple times using
the same dataset, each run generating a member of the final policy ensemble.
The final policy ensemble is run by querying each individual policy for an action
and selecting the action that most ensemble members chose. The variation in-
troduced by the randomness in the training process of neural networks (random
initial weights, stochastic pattern selection during training) as well as randomly
splitting the data into training and validation set introduced a sufficient amount
of diversity for ensembles to be effective. In one experiment, additionally a dif-
ferent network topology was used. It showed that with heterogeneous ensembles,
consisting of members using different topologies, further improvements are pos-
sible. Still, homogeneous ensembles have the advantage of being simpler: once a
regular NFQ implementation is available, it merely has to be run multiple times
to produce the ensemble members. Since they deliver significant improvements
over single network policies as well, in practice homogeneous ensembles are an
appropriate choice. Ensembles work, because they suppress poor policies, the
errors of individual members are “averaged out” similarly to classic ensembles for
supervised learning problems. An ensemble can be expected to be always at least
as good as a randomly selected member. If the quality of the individual policies
varies, ensembles will likely perform better. In the experiments, ensembles lead to
considerable improvements in all of the domains. In the scope of the thesis, only
methods dealing with discrete actions could be considered. As a starting point
for further research, two methods for continuous action selection in ensembles
were sketched.

The hope was to be able to adapt the methods from the discrete setting to the
continuous one to derive quantile-optimal policies there as well, i.e., explicitly
consider the uncertainty and prefer actions with certain returns over uncertain
ones. Unfortunately, adapting the methods to the continuous setting was not
possible (at least not in a straightforward way), since one deals with different
uncertainties in the different settings. In the discrete setting, one estimates an
MDP (a model of the environment) from observations. Here, only the MDP
estimate is affected by uncertainty; anything that follows, e.g., determining an
optimal policy, is completely deterministic and not affected by uncertainty at
all. One can access the MDP estimate’s uncertainties and use them to derive
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the Q-function’s uncertainties and thus determine quantile-optimal policies. In
the continuous setting, one does not explicitly estimate a model. Instead, the
@-function is learned directly. In this case, the result is affected by two types
of uncertainty: First, we have the uncertainty about the environment. This is
similar to the discrete setting, but this time one cannot access it directly, since no
explicit model of the environment is used. Second, uncertainty is introduced by
the learning process itself (due to stochastic influences like random start weights
and random pattern selection). By using the Monte Carlo approach of repeatedly
running the learning process one can estimate this uncertainty. Unfortunately, it
cannot be used to derive quantile-optimal policies, since for this one needs to know
the uncertainty contained within the observations as well. Nonetheless, ensembles
achieve something similar as quantile-optimal policies for quality assurance: by
suppressing poor member policies they decrease the probability of obtaining a
poor overall policy. Analogously, a quantile-optimal policy in the discrete setting
decreases the probability of obtaining a poor policy by restricting the use of
uncertain knowledge about an MDP.

In Chapter [6| methods for self-assessment in continuous domains were discussed,
i.e., evaluating a policy without actually executing it. The Q-function generated
by NFQ is not a good indicator for policy quality, which could be seen by compar-
ing the )-function and the policy’s true performance. Because of the inability of
obtaining the @)-function’s uncertainty, it was necessary to look for other ways of
arriving at a more meaningful quality measure than the Q-function. Experiments
with fitted policy evaluation (FPE) were performed, an adaptation of the fitted
Q-iteration (FQI) approach to policy evaluation. It turned out that using neural
fitted policy evaluation (NFPE) with the same set of observations already leads
to a better performance measure. By using a different dataset and/or a different
function approximator one can further improve the results. In practice, especially
the approach using a different function approximator is attractive, since in this
case no additional data for evaluation is required. It was shown that a perfor-
mance measure derived this way is more informative than the @-function from
NFQ. In experiments the performance measure was used to select good or reject
poor policies from a set of given policies. It was further used to weight ensemble
members, leading to a further increase of the performance of ensemble policies.

In Chapter [7| the ideas from previous chapters were combined to deal with chang-
ing environments. First the situation was considered where one already has a
set of policies trained for different versions of a certain environment. It was as-
sumed that it was unclear which policies from the set are most suitable for a
given environment. In such a setting, one can first select policies randomly and
use them as an initial ensemble, which is run for a number of steps. The result-
ing observations are then used to evaluate all available policies and then select
the supposedly best ones. This method was evaluated using the pole-balancing
benchmark, where different pole masses were used as different versions of the
environment. It showed that ensembles of policies selected by FPE performed
much better than ensembles of randomly selected policies. Finally, the idea of
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the evolving ensemble was introduced. It adapts to slowly changing environment
by continuously adding new policies that are trained using recent observations.
At the same time policies that have become unsuitable are removed from the
ensemble. Two methods for removing policies were considered: simply removing
the oldest policies and FPE-based removal of policies that have become obsolete.
The approaches were evaluated on the pole-balancing and cart-pole benchmarks
and were compared with less sophisticated approaches, namely single policies and
simple (non-evolving) ensembles. On the pole-balancing benchmark the evolving
approaches were clearly superior, in particular when looking at the minimum
over all trials. On the cart-pole benchmark the situation was not as clear. While
the evolving approaches here as well delivered a better and more consistent per-
formance, the approach using FPE could not show advantages. Further anal-
ysis showed that in this setting tree-based FPE was unable to generate useful
performance measurements, resulting in random selection of policies. Still, this
approach was able to avoid a severe performance drop that occurred when for a
number of successive iterations poor policies were generated. This problem can
be circumvented by using proper FPE to select policies. If this is not available,
as was the case in the cart-pole experiment, one should include policies from a
time range as wide as possible in the ensemble to maximize its diversity. The
experiments with the pole-balancing benchmark showed that a means of policy
evaluation can be a great addition. When applying the evolving ensemble ap-
proach, one should first try to find such a means. Even if the correlation is only
small, it will improve the evolving ensemble.

8.2 Contributions

In the following, the major contributions of this thesis are outlined:

(i) Monte Carlo estimate of a Q-function distribution. As a first and
direct way to estimate a Q)-function’s uncertainty, a Monte Carlo approach
was presented. The approach estimates not only the uncertainty, but a
complete Q-function distribution. It further illustrates how the uncertainty
of the MDP estimate influences the Q)-function’s uncertainty. It was further
argued that the Monte Carlo approach estimates the true distribution. The
other approaches, i.e., using uncertainty propagation to determine the -
function’s uncertainties from those of the MDP estimate (full-matrix UP)
and its fast approximation using only the diagonal of the covariance matrix
(DUIPI), can only approximate the true uncertainty because of E; f(x;) #
f(E;x;), if f is a non-linear function (in our case the repeated application
of the Bellman operator). While the left-hand side of the equation is what
we are looking for, the direct methods can only deliver the right hand side.

The Monte Carlo estimate served mainly to illustrate that the Q-function’s
uncertainty stems from the uncertainty about the MDP, if the true MDP
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is unknown and only observations are available. Although of the presented
methods the Monte Carlo estimate is the only one that delivers the true
distribution, in practice one of the other methods will be preferable due to
the Monte Carlo estimate’s high computational requirements.

(ii) Diagonal approximation of uncertainty incorporating policy iter-
ation (DUIPI). With DUIPI, a method to efficiently approximate the
@-function’s uncertainty was presented. By neglecting the non-diagonal
elements of the covariance matrix it has the same complexity as the stan-
dard Bellman iteration. A number of experiments were conducted that
showed the effectiveness of the method for quality assurance, i.e., reducing
the probability of obtaining a poor policy.

DUIPI should be considered whenever one deals with an MDP with discrete
state and action spaces and is looking for an uncertainty-aware method.
The knowledge of uncertainty can then be used to lower the probability
of obtaining a poor policy because the wrong MDP has been estimated.
Although DUIPI is approximate (due to its ignorance of non-diagonal el-
ements of the covariance matrix), it is the preferred method for domains
with more than 100 states, since the computational requirements limit the
applicability of full-matrix uncertainty propagation.

(iii) Using uncertainty awareness for exploration and self-assessment.
It was shown that in addition to quality assurance the concept of uncertainty
awareness can be used for efficient, uncertainty-seeking exploration. In this
context the diagonal approximation of uncertainty-incorporating policy it-
eration with @ modification (DUIPI-QM) was introduced, a method that
modifies the Q-values itself to include uncertainty. The methods were evalu-
ated experimentally on a number of benchmark problems from the literature
and they were compared with established exploration techniques. It turned
out that they perform comparably, while having the advantage of using the
notion of uncertainty explicitly and allowing to use the same method for
both, exploration and quality assurance. Additionally, it was discussed how
the Q-function can be used to assess a policy’s quality without actually ex-
ecuting it. It was shown that the Q)-function itself is often positively biased
and that considering the uncertainty mitigates this problem as well.

Uncertainty-based exploration is an alternative to established discrete-domain
exploration methods like R-Max or model-based interval estimation (MBIE).
Compared to those it has the advantage that it is based on the same method
that can be used for quality assurance; the only difference is the setting of
the parameter weighting the uncertainty—if it is set to a positive value,
the resulting policy tries to avoid uncertainty (quality assurance); set to a
negative value, an uncertainty-seeking policy results (exploration).

(iv) Combination of NFQ and ensembles. With the combination of NFQ
and ensembles, a novel approach was proposed that makes NFQ more reli-
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(v)

(vi)

able and thus more suitable for autonomous control. Several ways of using
ensembles in an NF(Q context were discussed and evaluated; it turned out
that majority voting is a simple yet effective approach.

Introducing ensembles to NFQ is maybe the most important contribution
towards autonomous RL. NFQ by itself is a very powerful approach to
tackle RL problems with continuous (and potentially high-dimensional)
state spaces in a data-efficient way. However, the reliability issue of NFQ
remains; using ensembles allows to significantly weaken, if not overcome
this issue.

Self-assessment in continuous domains. When evaluating methods for
self-assessment in continuous domains, it showed that the Q-function gen-
erated by NFQ is a poor indicator for policy quality. It was proposed to
use FPE for a given policy, and results were presented indicating that using
FPE the correlation between true performance and the quality measure is
increased. Moreover, it was proposed to use a different function approxima-
tor than used to generate the policy, since a different method is less likely
to make the same errors. This idea can be combined with using a different
set of observations as well.

Evaluating the quality of a policy is important when applying RL to au-
tonomous control, since employing an insufficient policy can lead to un-
acceptable performance loss or even damage. To the best of the author’s
knowledge, in the context of NFQ so far the quality of the Q-function as
a performance indicator has not been considered. As it showed that the
NFQ @Q-function alone is insufficient to derive a performance measure, the
proposed alternatives, i.e., using a different function approximator and/or
a different dataset for policy evaluation, are important ingredients to allow
the application of RL to autonomous control.

The evolving ensemble as an approach to autonomous control in
changing environments. Finally, the evolving ensemble approach was
presented. By combining ensembles and self-assessment it is suitable for au-
tonomous control in changing environments, because it continuously adapts
to the environment by adding new policies and dropping those that have
become obsolete. Also without a means of policy assessment the evolving
ensemble can be used, in this case by dropping the oldest policies.

The evolving ensemble advances the state of the art of applying RL to
environments whose characteristics slowly change. While the traditional
approach of periodically learning a new policy from recent data can lead to
abruptly changing policies and, at least in the case of NFQ, occasionally
produce a poor policy, the policy of the evolving ensemble changes gradually,
since from one ensemble generation to the next only a subset of policies
is replaced. This allows to maintain an ensemble policy of high quality,
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especially when using policy assessment to decide which policies to keep
and which to replace.

8.3 Future Research

Finally, ideas for future research are discussed.

The discrete domain methods were mainly evaluated empirically through exper-
iments. Theoretical results would be desirable as well, in particular to quantify
the loss introduced by DUIPI’s ignorance of the non-diagonal elements of the
covariance matrix in comparison to the full-matrix algorithm. Further it would
be interesting to see what exactly the effects of calculating f(E;z;) instead of
E;f(z;) are, i.e., applying the Bellman iteration to the expected MDP instead of
taking the expectation of the Bellman iteration applied to all possible MDPs ac-
cording to their distribution. The Monte Carlo approach approximates the latter
and reveals the true distribution given an unlimited number of samples.

Since the thesis’s major background was optimal control of technical systems like
gas turbines, instead of further dealing with methods for discrete state spaces
and addressing open questions, the thesis moved on to continuous state methods,
as the regarded real-world problems also feature a continuous state space.

In the context of ensembles for RL, directions of future research include the com-
bination of different methods. In this work, only NFQ was used. It would be
interesting to see how ensembles with policies from different methods perform,
for example variants of rewards regression (Schneegafl, Udluft, and Martinetz,
2007b; Schneegafl;, Udluft, and Martinetz, |2007al). Moreover, one could use FQI
with different function approximators than neural networks, for example combin-
ing policies from extra-tree FQI (Ernst, Geurts, and Wehenkel, 2005) and NFQ in
an ensemble. Heterogeneous ensembles that use different neural topologies were
briefly experimented with. This idea could be taken one step further by using
random topologies. Randomizing the members’ topologies could potentially in-
crease the diversity of the ensemble and thus lead to even better results. The
same holds for learning parameters like the learning rate or the learning algorithm
for training a neural network—those could be chosen at random as well. How-
ever, care must be taken to still obtain accurate ensemble members. Furthermore,
experiments with other domains should be performed to get a better understand-
ing of where ensemble method are most effective. Also, a thorough theoretical
analysis could lead to useful insights. Moreover, the influence of the exploration
method could be investigated. In the experiments random exploration was used
to obtain a fairly equal distribution of observations over the state space. How
do ensemble methods behave if the distribution is skewed? Could re-sampling
help in such a situation? Finally, only discrete action problems were considered
and ideas for ensembles in continuous action problems were only sketched. It
would be worthwhile to look into those problems as well, since many real-world
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problems feature continuous action spaces.

The evolving ensemble approach as well offers several directions for further re-
search. First, other domains and settings could be evaluated. Moreover, more
realistic exploration schemes should be evaluated—to focus on the approach, ran-
dom exploration was included to avoid the problem of imbalanced data. One
could try to find criteria for when imbalanced data are problematic and evaluate
methods to avoid the imbalance (like re-sampling). Further experiments could
also lead to insights in the influence of ensemble size, the time-frame policies are
chosen from, and other parameters.

This thesis’s aim was to advance the applicability of RL to autonomously learning
controllers in potentially changing environments. The methods worked well for
the considered benchmark domains. A major direction for future research will be
applying them to an actual system.

Research in artificial intelligence has at least in part always been concerned with
methods that are able to adapt and learn, because being able to learn must be
considered part of intelligent behavior. RL in particular is a method that closely
resembles the way humans learn. Sutton and Barto write:

“When an infant plays, waves its arms, or looks about, it has no
explicit teacher, but it does have a direct sensorimotor connection
to its environment. Exercising this connection produces a wealth of
information about cause and effect, about the consequences of actions,
and about what to do in order to achieve goals.” (Sutton and Barto,
1998, p. 3)

When applying RL to complex control tasks, we formulate our goals through the
reward function. If all goes well, the agent then magically learns what to do to
achieve those goals. Through its contributions this thesis tried to increase the
odds that this magic actually happens.
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&-optimal policy,

action-value function,

agent, [I3]

agent self-assessment, see policy as-
sessment
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bagging, [79]

Bayesian estimator, [34]
Bayesian Q-learning,
Bellman equation,
Boltzmann action selection, [29]

boosting, [79]
border phenomenon,

cart-pole benchmark,
changing environment,

chattering in NFQ, [73]
continuous-action problems,
covariance matrix, 40|

data-efficiency, [23]

diagonal approximation of uncertainty-
incorporating policy itera-
tion, see DUIPI

Dirichlet distribution, [34]

Dirichlet prior,

discount factor,

DUIPI, [43] [49]

with Q-modification, see DUIPI-

QM

DUIPI-QM, [9]

dynamic programming,

eligibility traces,

ensembles,
accuracy and ambiguity,
evolving, see evolving ensemble
weighted, [I03]

environment, [T3]

estimator
reward, [32]
transition probabilities,

Index

evolutionary algorithm, 28]

evolving ensemble, [I09]
expected return,
experience replay,
exploration, [28]

e-greedy, [29)

(un-)directed,

random,

uncertainty-seeking,
extremely randomized trees, [100

fitted policy evaluation,
fitted policy search,
fitted Q-iteration, [20]
neural, see NFQ
fitted value iteration,
frequentist estimator,
full-matrix uncertainty propagation,

B9, A9
function approximation, 25

Gaussian error propagation, see un-
certainty propagation

gradient descent,

greedy region,

grid discretization, [71]

imbalanced data problem, [113
inverted pendulum, see pole-
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majority voting, [7§]
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Markov decision process,
partially observable,
Markov property,
maximum entropy prior, [34]
MDP distribution,
model-based interval estimation, [29)
631
Monte Carlo sampling,
Monte Carlo uncertainty estimation,
00l

most agreeable policy, [81]
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multinomial distribution, 34

neural fitted Q-iteration

see NFQ,

neural network training, general is-
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NFPE,

NFQ, [7]
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optimal policy,
overestimation of Q-values, [74]
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policy degradation in NFQ),
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policy improvement, [T9]
policy iteration,
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POMDP, see Markov decision pro-
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Q-learning,

Q-value distribution,
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quantile optimality,
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quantile-optimal policy,
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rewards regression,

kernel,
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rising Q problem, see overestimation
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risk in RL,
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in continuous domains,
value function-based, [55]
sequential decision making,
sigmoid activation function,
state aggregation, [25]
state estimator, [I5]
state-value function,

temporal-difference methods,

trap benchmark,
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uncertainty awareness, [31]
applications,

uncertainty propagation, [31], [39]
uncertainty-aware value iteration,

value function,
as indicator of policy quality, [55],
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quantile,

value iteration, [20] [47]
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weighted ensemble,
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