222 research outputs found

    A composable approach to design of newer techniques for large-scale denial-of-service attack attribution

    Get PDF
    Since its early days, the Internet has witnessed not only a phenomenal growth, but also a large number of security attacks, and in recent years, denial-of-service (DoS) attacks have emerged as one of the top threats. The stateless and destination-oriented Internet routing combined with the ability to harness a large number of compromised machines and the relative ease and low costs of launching such attacks has made this a hard problem to address. Additionally, the myriad requirements of scalability, incremental deployment, adequate user privacy protections, and appropriate economic incentives has further complicated the design of DDoS defense mechanisms. While the many research proposals to date have focussed differently on prevention, mitigation, or traceback of DDoS attacks, the lack of a comprehensive approach satisfying the different design criteria for successful attack attribution is indeed disturbing. Our first contribution here has been the design of a composable data model that has helped us represent the various dimensions of the attack attribution problem, particularly the performance attributes of accuracy, effectiveness, speed and overhead, as orthogonal and mutually independent design considerations. We have then designed custom optimizations along each of these dimensions, and have further integrated them into a single composite model, to provide strong performance guarantees. Thus, the proposed model has given us a single framework that can not only address the individual shortcomings of the various known attack attribution techniques, but also provide a more wholesome counter-measure against DDoS attacks. Our second contribution here has been a concrete implementation based on the proposed composable data model, having adopted a graph-theoretic approach to identify and subsequently stitch together individual edge fragments in the Internet graph to reveal the true routing path of any network data packet. The proposed approach has been analyzed through theoretical and experimental evaluation across multiple metrics, including scalability, incremental deployment, speed and efficiency of the distributed algorithm, and finally the total overhead associated with its deployment. We have thereby shown that it is realistically feasible to provide strong performance and scalability guarantees for Internet-wide attack attribution. Our third contribution here has further advanced the state of the art by directly identifying individual path fragments in the Internet graph, having adopted a distributed divide-and-conquer approach employing simple recurrence relations as individual building blocks. A detailed analysis of the proposed approach on real-life Internet topologies with respect to network storage and traffic overhead, has provided a more realistic characterization. Thus, not only does the proposed approach lend well for simplified operations at scale but can also provide robust network-wide performance and security guarantees for Internet-wide attack attribution. Our final contribution here has introduced the notion of anonymity in the overall attack attribution process to significantly broaden its scope. The highly invasive nature of wide-spread data gathering for network traceback continues to violate one of the key principles of Internet use today - the ability to stay anonymous and operate freely without retribution. In this regard, we have successfully reconciled these mutually divergent requirements to make it not only economically feasible and politically viable but also socially acceptable. This work opens up several directions for future research - analysis of existing attack attribution techniques to identify further scope for improvements, incorporation of newer attributes into the design framework of the composable data model abstraction, and finally design of newer attack attribution techniques that comprehensively integrate the various attack prevention, mitigation and traceback techniques in an efficient manner

    Adding Query Privacy to Robust DHTs

    Full text link
    Interest in anonymous communication over distributed hash tables (DHTs) has increased in recent years. However, almost all known solutions solely aim at achieving sender or requestor anonymity in DHT queries. In many application scenarios, it is crucial that the queried key remains secret from intermediate peers that (help to) route the queries towards their destinations. In this paper, we satisfy this requirement by presenting an approach for providing privacy for the keys in DHT queries. We use the concept of oblivious transfer (OT) in communication over DHTs to preserve query privacy without compromising spam resistance. Although our OT-based approach can work over any DHT, we concentrate on communication over robust DHTs that can tolerate Byzantine faults and resist spam. We choose the best-known robust DHT construction, and employ an efficient OT protocol well-suited for achieving our goal of obtaining query privacy over robust DHTs. Finally, we compare the performance of our privacy-preserving protocols with their more privacy-invasive counterparts. We observe that there is no increase in the message complexity and only a small overhead in the computational complexity.Comment: To appear at ACM ASIACCS 201

    Vampire Attacks: Draining Life from Wireless Ad Hoc Sensor Networks

    Full text link

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)

    Efficient trapdoor-based client puzzle system against DoS attacks

    Get PDF
    Denial of service (DoS) and distributed denial of service (DDoS) are serious threats to computer networks. DoS and DDoS attacks aim to shut down a target server by depleting its resources and rendering it incapable of offering stable and integrated service to legitimate clients. Preventing DoS and DDoS attacks is a difficult task. A promising countermeasure against DoS attacks is the Client Puzzle method, which nevertheless faces a number of challenges, such as the complexity of puzzle construction and solution verification. Our research focuses on exploring novel puzzle constructions to satisfy the high demands of DoS defence in practice. In this thesis, we first identify the underlying weaknesses of existing client puzzles. To mitigate these vulnerabilities, we recommend the necessary requirements for good client puzzles. Based on this, we propose a new model for puzzle distribution, called the Trapdoor-based Client Puzzle System (TCPS). Two specific schemes are presented to construct puzzles within TCPS. We depict these two schemes, where each trapdoor algorithm is applied respectively. Both schemes have two distinct features: the computational overheads are low, and the difficulty level of puzzles is measurable. Moreover, both puzzle schemes are provably secure under traditional hard problems in mathematics. Our contribution to client puzzle defence against DoS attacks can be summarised as follows: * Identify the shortcomings of existing client puzzles. * Recommend the requirements of good client puzzles. * Formally define the Trapdoor-based Client Puzzle System, along with strict security conditions. * Propose a client puzzle scheme whose security is based on the RSA Assumption. Effectiveness and security are analysed and proven. * Propose a second client puzzle scheme whose security is based on the Discrete Logarithm Problem (DLP). Similarly, effectiveness and security are also analysed. * Provide a possible configuration for system parameters. * Discuss further possible attacks and their solutions. As our research is carried out in DoS attack scenarios, we also introduce this technical background before our achievements are presented

    Distributed Internet security and measurement

    Get PDF
    The Internet has developed into an important economic, military, academic, and social resource. It is a complex network, comprised of tens of thousands of independently operated networks, called Autonomous Systems (ASes). A significant strength of the Internet\u27s design, one which enabled its rapid growth in terms of users and bandwidth, is that its underlying protocols (such as IP, TCP, and BGP) are distributed. Users and networks alike can attach and detach from the Internet at will, without causing major disruptions to global Internet connectivity. This dissertation shows that the Internet\u27s distributed, and often redundant structure, can be exploited to increase the security of its protocols, particularly BGP (the Internet\u27s interdomain routing protocol). It introduces Pretty Good BGP, an anomaly detection protocol coupled with an automated response that can protect individual networks from BGP attacks. It also presents statistical measurements of the Internet\u27s structure and uses them to create a model of Internet growth. This work could be used, for instance, to test upcoming routing protocols on ensemble of large, Internet-like graphs. Finally, this dissertation shows that while the Internet is designed to be agnostic to political influence, it is actually quite centralized at the country level. With the recent rise in country-level Internet policies, such as nation-wide censorship and warrantless wiretaps, this centralized control could have significant impact on international reachability

    Privacy Preserving Cryptographic Protocols for Secure Heterogeneous Networks

    Get PDF
    Disertační práce se zabývá kryptografickými protokoly poskytující ochranu soukromí, které jsou určeny pro zabezpečení komunikačních a informačních systémů tvořících heterogenní sítě. Práce se zaměřuje především na možnosti využití nekonvenčních kryptografických prostředků, které poskytují rozšířené bezpečnostní požadavky, jako je například ochrana soukromí uživatelů komunikačního systému. V práci je stanovena výpočetní náročnost kryptografických a matematických primitiv na různých zařízeních, které se podílí na zabezpečení heterogenní sítě. Hlavní cíle práce se zaměřují na návrh pokročilých kryptografických protokolů poskytujících ochranu soukromí. V práci jsou navrženy celkově tři protokoly, které využívají skupinových podpisů založených na bilineárním párování pro zajištění ochrany soukromí uživatelů. Tyto navržené protokoly zajišťují ochranu soukromí a nepopiratelnost po celou dobu datové komunikace spolu s autentizací a integritou přenášených zpráv. Pro navýšení výkonnosti navržených protokolů je využito optimalizačních technik, např. dávkového ověřování, tak aby protokoly byly praktické i pro heterogenní sítě.The dissertation thesis deals with privacy-preserving cryptographic protocols for secure communication and information systems forming heterogeneous networks. The thesis focuses on the possibilities of using non-conventional cryptographic primitives that provide enhanced security features, such as the protection of user privacy in communication systems. In the dissertation, the performance of cryptographic and mathematic primitives on various devices that participate in the security of heterogeneous networks is evaluated. The main objectives of the thesis focus on the design of advanced privacy-preserving cryptographic protocols. There are three designed protocols which use pairing-based group signatures to ensure user privacy. These proposals ensure the protection of user privacy together with the authentication, integrity and non-repudiation of transmitted messages during communication. The protocols employ the optimization techniques such as batch verification to increase their performance and become more practical in heterogeneous networks.

    Cyber Security Concerns in Social Networking Service

    Get PDF
    Today’s world is unimaginable without online social networks. Nowadays, millions of people connect with their friends and families by sharing their personal information with the help of different forms of social media. Sometimes, individuals face different types of issues while maintaining the multimedia contents like, audios, videos, photos because it is difficult to maintain the security and privacy of these multimedia contents uploaded on a daily basis. In fact, sometimes personal or sensitive information could get viral if that leaks out even unintentionally. Any leaked out content can be shared and made a topic of popular talk all over the world within few seconds with the help of the social networking sites. In the setting of Internet of Things (IoT) that would connect millions of devices, such contents could be shared from anywhere anytime. Considering such a setting, in this work, we investigate the key security and privacy concerns faced by individuals who use different social networking sites differently for different reasons. We also discuss the current state-of-the-art defense mechanisms that can bring somewhat long-term solutions to tackling these threats
    corecore