
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong Thesis Collection
1954-2016 University of Wollongong Thesis Collections

2005

Efficient trapdoor-based client puzzle system against DoS attacks Efficient trapdoor-based client puzzle system against DoS attacks

Yi Gao
University of Wollongong, yigao@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong University of Wollongong

Copyright Warning Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University

does not authorise you to copy, communicate or otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court

may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong. represent the views of the University of Wollongong.

Recommended Citation Recommended Citation
Gao, Yi, Efficient trapdoor-based client puzzle system against DoS attacks, M.Comp.Sc thesis, School of
Information Technology and Computer Science, University of Wollongong, 2005. http://ro.uow.edu.au/
theses/331

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Online

https://core.ac.uk/display/36979663?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ro.uow.edu.au/
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses?utm_source=ro.uow.edu.au%2Ftheses%2F331&utm_medium=PDF&utm_campaign=PDFCoverPages

U
W

NIVERSITY

OLLONGONG

OF

Efficient Trapdoor-Based Client Puzzle
System Against DoS Attacks

A thesis submitted in fulfillment of the

requirements for the award of the degree

Master of Computer Science by Research

from

UNIVERSITY OF WOLLONGONG

by

Yi Gao

School of Information Technology and Computer Science

October 2005

c© Copyright 2005

by

Yi Gao

All Rights Reserved

ii

Dedicated to my parents:

Qizhai Gao and Shujie Sun

iii

Declaration

I, Yi GAO, declare that this thesis, submitted in partial fulfil-

ment of the requirements for the award of Master of Computer

Science by research, in the School of Information Technology

and Computer Science, University of Wollongong, is wholly

my own work unless otherwise referenced or acknowledged.

The document has not been submitted for qualifications at

any other academic institution.

Yi Gao
October 24, 2005

iv

Publication

Chapter in Book

Yi Gao, Willy Susilo, Yi Mu, and Jennifer Seberry. “Efficient Trapdoor Based

Client Puzzle Against DoS Attacks.” Network Security, S. Huang, D. MacCallum and

D-Z. Du (eds.), Springer-verlag, 2005 (to appear).

Conference Paper

Yi Gao, Yi Mu and Willy Susilo. “Preventing DoS Attacks with A New Client

Puzzle Scheme.” In Proceedings of the AUUG’2005 Annual Conference, October 2005

(to appear).

v

Abstract

Denial of service (DoS) and distributed denial of service (DDoS) are serious threats

to computer networks. DoS and DDoS attacks aim to shut down a target server by

depleting its resources and rendering it incapable of offering stable and integrated

service to legitimate clients. Preventing DoS and DDoS attacks is a difficult task.

A promising countermeasure against DoS attacks is the Client Puzzle method, which

nevertheless faces a number of challenges, such as the complexity of puzzle construction

and solution verification.

Our research focuses on exploring novel puzzle constructions to satisfy the high

demands of DoS defence in practice. In this thesis, we first identify the underlying

weaknesses of existing client puzzles. To mitigate these vulnerabilities, we recommend

the necessary requirements for good client puzzles. Based on this, we propose a new

model for puzzle distribution, called the Trapdoor-based Client Puzzle System (TCPS).

Two specific schemes are presented to construct puzzles within TCPS. We depict these

two schemes, where each trapdoor algorithm is applied respectively. Both schemes

have two distinct features: the computational overheads are low, and the difficulty

level of puzzles is measurable. Moreover, both puzzle schemes are provably secure

under traditional hard problems in mathematics.

Our contribution to client puzzle defence against DoS attacks can be summarised

as follows:

• Identify the shortcomings of existing client puzzles.

• Recommend the requirements of good client puzzles.

• Formally define the Trapdoor-based Client Puzzle System, along with strict se-

curity conditions.

• Propose a client puzzle scheme whose security is based on the RSA Assumption.

Effectiveness and security are analysed and proven.

vi

• Propose a second client puzzle scheme whose security is based on the Discrete

Logarithm Problem (DLP). Similarly, effectiveness and security are also analysed.

• Provide a possible configuration for system parameters.

• Discuss further possible attacks and their solutions.

As our research is carried out in DoS attack scenarios, we also introduce this tech-

nical background before our achievements are presented.

vii

Acknowledgements

The research work for this thesis was undertaken at the University of Wollongong.

First, I would like to thank my supervisors, Associate professor Yi Mu and Dr.

Willy Susilo for their guidance and help in my research. Without them, this thesis

would not have been possible.

I greatly appreciate Ruth Walker and Juliet Richardson for their kind help in the

English expression of this thesis. I also wish to acknowledge the support I have received

from all the staff in the School of IT & CS, University of Wollongong.

Finally, I would like to thank my family and friends for their enduring love and

support.

viii

Contents

Publication v

Abstract vi

Acknowledgements viii

1 Introduction 1

1.1 Service Availability . 1

1.2 Overview of DoS Attacks . 2

1.3 Previous Work . 3

1.4 The Challenge . 5

1.5 Thesis Organisation . 5

2 Technical Background 7

2.1 A Brief History of DoS Attacks . 7

2.2 Underlying Causes of DoS Attacks . 9

2.2.1 Social Factors . 9

2.2.2 Architectural Factors . 9

2.3 Classification of DoS Attacks . 10

2.4 Representative DoS Attacks . 12

2.4.1 IP Spoofing . 12

2.4.2 TCP SYN Flooding . 13

2.4.3 Smurf . 15

2.4.4 DDoS . 16

2.5 Proposed Countermeasures . 22

ix

2.5.1 Ingress/Egress Filtering . 22

2.5.2 Packet Marking . 24

2.5.3 Time-out . 24

2.5.4 Random Dropping . 25

2.5.5 SYN Cookies . 25

2.6 Summary . 26

3 Client Puzzles 27

3.1 Overview of Client Puzzles . 27

3.2 Application of Puzzles . 29

3.2.1 Puzzles in Key Agreement . 29

3.2.2 Puzzles in Junk Mail Defence 30

3.3 Client Puzzle Protocol . 31

3.4 Puzzle Construction . 33

3.4.1 Hash Function-based Puzzle Scheme 34

3.4.2 Diffie-Hellman Based Puzzle Scheme 36

3.5 Summary . 39

4 Trapdoor-based Client Puzzle System 40

4.1 Problems . 40

4.2 Essential Requirements . 41

4.3 Definition . 42

4.3.1 One-Way Function . 43

4.3.2 Trapdoor One-Way Function . 43

4.3.3 Trapdoor-based Client Puzzle System 43

4.4 Security Assumption . 46

4.4.1 The RSA Assumption . 47

4.4.2 The Discrete Logarithm Problem (DLP) 48

5 A Scheme Based On The RSA Assumption 49

5.1 Algorithm . 49

5.2 A RSA Assumption-based TCPS . 52

x

5.3 Parameter Table and Scheme Prototype 57

5.4 Remarks . 59

5.5 Security Considerations . 62

5.6 Summary . 63

6 A Scheme Based On The DLP 65

6.1 Algorithm . 65

6.2 A DLP-based TCPS . 68

6.3 Parameter Table and Scheme Prototype 72

6.4 Remarks . 74

6.5 Security Considerations . 76

6.6 Summary . 77

7 System Description and Discussion 78

7.1 Working Environment . 78

7.2 System Description . 79

7.3 Discussion . 81

8 Conclusion and Future Work 85

Bibliography 89

xi

List of Tables

1.1 General Security Goals and Threats . 1

2.1 DoS Classifications . 12

4.1 The Relationship Between Factorisation, RSA Assumption and RSA . . 48

5.1 Parameter Table of the RSA Assumption-based TCPS 57

6.1 Parameter Table of the DLP-based TCPS 72

xii

List of Figures

2.1 IP Spoofing Attack . 13

2.2 TCP’s Three-way Handshake . 14

2.3 TCP SYN Flooding Attack . 15

2.4 Smurf Attack . 17

2.5 Three-layer Control For A DDoS Attack 18

2.6 Reflection DDoS Attack . 21

2.7 Ingress Filtering . 23

3.1 No DoS Attack Threat . 32

3.2 Under A DoS Attack . 33

3.3 Aura’s Client Puzzle Construction . 34

3.4 D-H-based Client Puzzle Construction 37

4.1 A Simple Prototype For The TCPS . 45

5.1 A Sample of Set A . 54

5.2 A RSA Assumption-based Puzzle Scheme 58

6.1 A DLP-based Puzzle Scheme . 73

7.1 A Threat To Our TCPS . 81

7.2 Using A Sequence Number Against IP Spoofing 83

xiii

Chapter 1

Introduction

1.1 Service Availability

Today’s Internet has successfully fulfilled the expectation of empowering a single com-

puter to service remote requests from millions of geographically dispersed clients. With

this significant power, the Internet has been widely applied in our society, and has in-

creasingly become a prevalent part of human lives. People enjoy and benefit greatly

from a number of fresh nouns that belong to a new information era: eBusiness, eCom-

merce, eEducation, eGovernment, eHealth and so on. In consequence, the issue of how

to supply these network services reliably and securely to legitimate clients is a growing

concern among network engineers and researchers.

Generally, authentication, integrity and confidentiality are the most important prin-

ciples of network security. However, recent reports about a number of prominent Inter-

net service providers that broke down because of malicious attacks [2, 3, 66, 68] urge

people to realise that all security principles must be based on service availability. It

is clear that no one can evaluate the quality of an online service that is not available.

“Availability” in this context refers to a service that can be accessed within a rea-

sonable amount of waiting time after a legitimate client sends a request. Table (1.1)

illustrates these general security goals and their corresponding threats.

Goal Security Threat
Information Confidentiality Exposure of Information

Information Integrity Modifying/Injecting Information
Information Authentication Forged Information

Service Availability Denial of Service

Table 1.1: General Security Goals and Threats

1

1.2. Overview of DoS Attacks 2

The service availability of a network server can be destructed in a variety of ways,

such as internal bugs within a system, hardware limits, or malicious attacks from

outside. Denial of Service (DoS) is the term we use to refer to the results of any inten-

tional or accidental actions that can successfully make a legitimate service unavailable

for legitimate users.

Since other DoS threats are relatively easy to deal with, this thesis will focus only

on the study of malicious DoS attacks launched via the Internet. By analysing existing

countermeasures against DoS attacks and their inherent problems, we will propose a

new defence scheme, which is expected to be efficient and effective in both practice and

theory.

1.2 Overview of DoS Attacks

D. Howard [32] presented a comprehensive definition of DoS:

If computer hardware, software, and data are not kept available, productivity can

be degraded, even if nothing has been damaged. Denial of Service can be conceived

to include both intentional and unintentional assaults on a system’s availability.

The most comprehensive perspective would be that regardless of the cause, if a

service is supposed to be available and it is not, then service has been denied.

Network-based DoS attacks, in particular, denote malicious actions which aim at shut-

ting down a target server and destructing its service availability. These attacks usually

attempt to block or degrade service in a designated period temporarily, rather than

intrude on the server directly or damage the data permanently. Similar attack scenar-

ios can be found in the real world: a malicious client repeatedly uses distinct bogus

names, phone numbers and credit card numbers to deceive a hotel receptionist into

reserving rooms for him, which as a result, are not available for other legitimate clients

in a certain period. This is a typical DoS attack.

A Cyberworld DoS attack is designed to flood numerous spurious requests to a

server, crushing its infrastructure, depleting its bandwidth, computational capacity or

system stack memory, and eventually crashing it. In consequence, legitimate clients

have to experience a service downtime, and victim servers may lose millions of dollars.

One of the most popular DoS attacks, TCP SYN flooding attacks, were reported by

several major newspapers in 1996 [2, 3, 20, 68]. These attacks succeeded in crippling

1.3. Previous Work 3

Panix, a major New York Internet service provider, in early September 1996, and

created similar problems for the website of the New York Times just a few days later.

As a rule, a SYN flooding attacker exploits spoofed IP addresses to mount a large

number of initial and unresolved connection requests to a victim server, depleting its

resources and rendering it incapable of responding to legitimate clients. According

to an advisory issued by CERT on September 19th, 1996 [59], several underground

magazines pushed the spread of DoS attacks ahead by publishing source codes and

automated tools for launching TCP SYN flooding attacks.

Distributed Denial of Service (DDoS) was rapidly brought to the public’s attention

after eBay, Amazon, Yahoo and several other prominent commercial websites fell victim

to this new form of DoS attacks on February 9th, 2000 [16, 66]. Relying on the fast

spread of Internet worms [15], a DDoS attacker is able to easily manipulate thousands

of vulnerable computers in the Internet to launch a large-scale DoS attack to a target.

Compared with traditional ones, the strength of DDoS attacks can be multiplied by

10, 100, or even 1000, and the effect on the Internet is therefore immeasurable.

In a worse case scenario, as the above incidents have demonstrated, even if an

Internet server possesses very large bandwidth and resources, and is protected by a

reliable firewall system, it is still vulnerable to a range of Denial of Service attacks.

1.3 Previous Work

A countermeasure against bogus clients is to perform authentication before any com-

munication and resource allocation. However, conventional authentication schemes

based on public-key technology (for example, RSA and DSS) will no longer meet the

demand for DoS defence. This is because most of them require a server to conduct

expensive computations, such as modular exponentiation, and store a large amount of

session information for each client, which actually opens up new opportunities for DoS

attacks. Therefore, a more effective and inexpensive approach to defend against DoS

attacks is desirable.

So far, several approaches have been proposed in the literature [34, 33, 44, 43],

among which Client Puzzle is one of the most notable and influential. Earlier work

[7, 5, 33] showed that the client puzzle mechanism is capable of alleviating or confining

DoS attacks to a harmless level in theory. The aim of client puzzles is to destroy DoS

attacks by forcing every suspected adversary to consume a number of computational

resources for authentication, before he/she is granted access to the resources of a server.

1.3. Previous Work 4

In contrast to traditional authentications, client puzzles seem weak, yet are inexpensive

and efficient in determining whether a connection request is sent by network worms

[15, 63].

The idea of client puzzles was first introduced as an access control mechanism by

Dwork and Naor in 1992 [22]. They proposed a system for junk mail defence, in which

every successful delivery of a message requires the sender to solve a small cryptographic

puzzle. By doing so, they successfully impose a large amount of computational costs

on sending mass mails, while for legitimate clients, the costs to compute single puzzles

are negligible.

Combining the idea of a stateless protocol [4] and Client Puzzle, Juels and Brainard

[33] proposed a Client Puzzle Protocol to protect network servers against SYN flooding

attacks. This protocol emphasises that no memory should be allocated before client

authentication, and that the client is the one who pays for the authentication. Generally

speaking, when there is no DoS attack alarm, a defending server accepts and responds

to connection requests as normal. However, if the server is suspected of being under

attacks, it will send a small cryptographic puzzle to each client applying for a service,

before allocating any system resources to them. Only the request belonging to the

client who returns the correct answer will proceed. The cost of computing a single

puzzle is trivial for legitimate clients, yet unbearably expensive for a DoS attacker who

attempts to consume considerable resources from the server. Moreover, the complexity

of cryptographic puzzles can be adjusted by an administrator, according to the strength

of the attack he/she receives. In their paper, Juels and Brainard also presented a simple

puzzle construction to implement their protocol, although this seemed unsatisfactory

and caused a lot of arguments in network forums [19, 48, 65].

Following this, a few researchers attempted to improve puzzle construction within

the framework of the Client Puzzle Protocol. Aura and Nikander [5] proposed a hash

function based puzzle scheme, in which a client needs a brute-force search for the correct

answer, and a server performs a hash function to verify the solution. Waters and Juels

[6] suggested a new technique that permits the outsourcing of puzzles. However, even

puzzles can be used by different servers, and the solution of a puzzle still requires one

modular exponentiation for every defending server.

In general, these proposed puzzle schemes are less capable of meeting the require-

ments of client puzzles. Improper usage of these unqualified puzzles, on the other hand,

will lead to DoS attacks.

1.4. The Challenge 5

1.4 The Challenge

The aim of this study is to redefine the essential requirements of client puzzles, and to

establish a generic client puzzle system which is appropriate and secure enough to be

embedded in the Client Puzzle Protocol [33].

It is desirable that this system should possess two prominent characteristics. One

is that most of the computations for puzzle generation can be fulfilled in a pre-

construction phase, independent of a puzzle construction. Pre-construction can be

processed during idle time, and items calculated in this phase can be reused by com-

bining them with time parameters. The other important feature is a quick verification.

No computation occurs in the verification phase, which makes DoS attacks aiming at

flooding bogus solutions to exhaust system resources impossible. Moreover, the com-

plexity of puzzles in the system proposed in this thesis are parameterised and can be

adjusted flexibly, according to the strength of DoS attacks.

We will propose two novel trapdoor algorithms to implement this client puzzle sys-

tem. Both of them are provably secure under the assumptions of well-known hard

problems such as Discrete Logarithm Problem and Factorisation [36, 50]. We will

demonstrate how a trapdoor puzzle can be generated by a defending server, and how

a client achieves the correct answer. By counting their respective workloads, the ad-

vantages of our scheme will be analysed in contrast with other proposed puzzles.

Our scheme is expected to overcome the potential problems of previous client puz-

zles, such as complicated construction and verification. We will demonstrate that our

puzzles are computationally efficient and properly cohere with existing Internet proto-

cols.

1.5 Thesis Organisation

The rest of the thesis is organised as follows:

• In Chapter 2, we will present the developing history of DoS attacks, and analyse

potential reasons for their existence. We will give a broad overview of DoS attacks

and their attack modes by depicting a number of prevalent examples, such as SYN

flooding, Smurf, and DDoS. Several proposed countermeasures will be described

in this chapter, along with an analysis of their advantages and disadvantages.

1.5. Thesis Organisation 6

• Chapter 3 will be devoted to the notion of client puzzles. Three relevant applica-

tions of cryptographic puzzles (including the Client Puzzle Protocol [33]) will be

addressed in this chapter. To clarify the problems we try to resolve in this thesis,

two proposed client puzzle schemes will be investigated. Note that Chapter 3

and Chapter 4 are intended to provide the background knowledge needed for the

following chapters.

• To solve current problems and enable client puzzles to prevent DoS attacks effec-

tively, we will propose a novel model for puzzle construction, called the Trapdoor-

based Client Puzzle System (TCPS). This model will consist of our new recom-

mendations about qualified client puzzles, and a series of security conditions. It

is hoped that puzzles generated from our proposed model will fulfill their original

promise against DoS attacks.

• We will develop two specific trapdoor algorithms and describe them in Chapter 5

and Chapter 6. Each individual algorithm can be used to implement an efficient

puzzle construction within our proposed model. We will demonstrate how the

TCPS work by employing these two algorithms, respectively. We will provide

rigorous proof of their security properties. Moreover, a number of possible attacks

will be considered at the end of both chapters, and the proposed puzzle schemes

are expected to resist all of them.

• In Chapter 7, we will provide the proper parameterisations for a defending system,

which will help our puzzle schemes work effectively in practice. Some discussion

about further attacks and security considerations will be presented.

• Chapter 8 is the conclusion, where we will summarise our work within this thesis,

together with a list about future research directions.

• The last part of this thesis comprises the references.

Chapter 2

Technical Background

Denial-of-Service (DoS) and Distributed Denial-of-Service (DDoS) attacks have been

around for years, but it seems that people still cannot find a proper way to deal with

them. This chapter intends to provide an overview of DoS/DDoS attacks, along with

several proposed countermeasures, which, it is hoped, will help readers understand the

problems that we try to solve in the following chapters.

This chapter will begin with a brief history of DoS attacks, which leads to a review

of their evolution. A discussion about why DoS attacks exist and are rapidly developing

follows. DoS attacks will be classified according to their characteristics, and several

notorious DoS attack approaches will also be described in this chapter. After that,

a number of current countermeasures against DoS attacks will be introduced, such as

Packet Marking, Filtering techniques, SYN cookies, and so on. These countermeasures’

objectives, working theories, merits and limitations will also be analysed.

2.1 A Brief History of DoS Attacks

Most people were not aware of the urgency of DoS attacks, until a number of famous

Internet service providers were brought down in February 1996. However, earlier than

this, in 1988, an incident happened which was ignored, maybe because the Internet was

relatively unknown at that time. The Morris worm, a self-replicating program created

by Robert T. Morris Jr., successfully disrupted the Internet for nearly 48 hours in the

city of California [53]. That was the first taste of DoS attacks.

After ten years of development, DoS attacks appear more sophisticated and difficult

to solve. Before 1999, DoS attackers might have exploited IP spoofing and flaws in

existing network protocols to mount attacks from a single source to a single target. A

7

2.1. A Brief History of DoS Attacks 8

series of advisories issued by CERT [59, 56, 60, 57, 61] between 1996 and 1998 reported

these attacks, such as SYN flooding, Smurf, ping of death, etc.

In 1999, several Distributed Denial-of-Service tools (Trinoo, TFN and “stachel-

draht”) were reported by CERT [58] for the first time. The fear about larger-scale

attacks proved to be true by the events that happened in February, 2000, when em-

inent websites like Yahoo, CNN.com and Amazon, which were protected by powerful

firewall systems and possessed huge bandwidth and system resources, were still shut

down by DDoS attacks.

The most common process for launching DDoS attacks consists of three steps:

1. Scan vulnerable computers across a wide range of the Internet.

2. Intrude on these victims and install malicious scripts for mounting an attack.

According to different types of scripts, these infected computers are categorised

as “Masters” or “Zombies”.

3. An attacker communicates with “Masters” only, deploying them to transfer an

attack order to “Zombies”, which will finally mount the real attack.

Before 2000, most DDoS attacks were required to scan vulnerable victims manually,

and list them for later intrusion. The attacks took the form of multiple sources to a

single target at this stage.

From 1996 to 2000, several countermeasures against DoS/DDoS were proposed,

such as SYN cookies [8], Filtering mechanisms [25, 43], Congestion Control [41, 55],

etc. However, none of them seemed good enough to tackle and stop the violence of

DoS attacks.

Since 2001, the quick evolution of DDoS attacks is even more terrifying. Attackers

who deploy self-propagating network worms like the notorious Code Red and advanced

scanning strategies [63] can easily compromise more than ten thousand unwitting “ac-

complices” in a few hours. Stefan Savage, a network researcher from CAIDA (Super-

computer Center’s Cooperative Association for Internet Data Analysis) pointed out

that, “With that kind of firepower, they could have taken down anything” [31]. Scien-

tists admit that with a little improvement, Code Red could render an arbitrary network

incapable of communicating with the outside world. This is a new phase of DoS attacks

which can be launched from multiple sources to multiple targets.

Furthermore, communication between “Zombies” and “Masters” can be encrypted

by DoS tools such as “stacheldraht”, and be transferred via IRC channels [14] which

2.2. Underlying Causes of DoS Attacks 9

offer anonymous service for their users. All of these factors make it more difficult to

detect and trace a DDoS attack.

2.2 Underlying Causes of DoS Attacks

2.2.1 Social Factors

Everything exists for a reason. If the first appearance of the Morris worm was due to

intellectual curiosity [53], the prevalence of DoS attacks nowadays has a much more

realistic basis in this for-profit society.

First of all, business or commerce being performed via the Internet means high

profit and time sensitiveness [28]. A successful DoS attack may lead to a victim losing

thousands of dollars per minute. Hence, a DoS attack may aim to commit a commercial

crime or take personal revenge. In addition, the purpose of bringing down popular Web

servers can also be to gain a reputation among hackers’ community.

More evidence indicates that the tools to automatically launch DoS attacks that

disperse within the Internet have become another serious problem. Even a network

illiterate can mount a considerable DoS attack by using these tools. This situation is

not acceptable in today’s Internet, where numerous monetary transactions are handled.

What we need is not only a good solution to defend against these DoS attack tools,

but also a complete policy to rule the activity of information providers in the Internet.

Unfortunately, this idea seems far from actual practice and difficult to achieve.

2.2.2 Architectural Factors

The Internet was created for functionality, not for security. It can supply worldwide

clients with quick, easy and inexpensive communication channels, and can be gradually

reinforced by diverse levels of network protocols that ensure the reliability and timely

delivery of communication. However, the booming growth of the Internet also leaves a

lot of concealed damage and other serious issues for security researchers.

One problem of the Internet is that network resource is limited and consumable [14].

Bandwidth, processing power or memory of a network device all have their maximum

capabilities. When a network computer provides service to a mass of remote clients,

it simultaneously creates the possibility of making a single computer fight against a

large number of network resources. If the goal of an attack is to deplete the victim’s

2.3. Classification of DoS Attacks 10

resources, this can always be achieved in theory, as long as it carries with a sufficient

amount of resources, such as a large number of bogus connection requests. Actually,

this is why DDoS attacks are successful.

Another problem is that “Internet security is highly interdependent” [14]. For

example, DDoS attacks generally launch from systems or networks that are undermined

through security-related compromises. That means, no matter how perfectly the target

system might be protected, its susceptibility to DDoS attacks depends on the security

status of the rest of the global Internet.

The last but not the least issue is the hasty deployment of network protocols. Most

of them are designed to meet the demands of industry, and are hastily applied to

widespread network servers and routers. SYN Flooding and IP spoofing attacks aim

at the shortcomings of TCP/IP [46, 47]. A server based on SSL protocol [27] is subject

to DoS attacks, because the protocol requires the server to perform a computationally

expensive verification operation to initiate a SSL connection. An attacker may easily

overwhelm the server by flooding it with invalid connection requests.

2.3 Classification of DoS Attacks

Before discussing details of specific examples of DoS attacks, it is useful to classify

DoS attacks according to their characteristics. Some researchers have undertaken this

work in distinct ways. Readers can refer to [39, 34, 67] for more information. Here, we

provide two kinds of classification.

1. One possible classification of DoS attacks according to the aims of attacks could be:

• System destruction: The target of this type of attack is the hardware of net-

work devices, such as electricity power, network lines, and so on. These attacks

are easy to detect, and can be solved quickly by switching on the backup power

system, or recovering the communication lines. Besides these physical attacks,

the limitations of hardware, such as a Network card or CPU with too small

capability, is also an attack point in this category.

• Implementation bugs: Sometimes attackers may search for specific bugs in net-

work systems, or scan improper configurations of firewalls or routers to launch

their attacks. These system and application faults may be caused by the ig-

norance of administrators, or software bugs. The general solution is to install

2.3. Classification of DoS Attacks 11

patches timely, and examine important input and output data for network de-

vices regularly and patiently.

• Resource consumption: A service provided by a server can be viewed as a

shared resource in the Internet. A DoS attacker who aims at resource consump-

tion can exploit bogus requests to deceive the victim server into repeatedly grant-

ing the resources to him, until it is exhausted or unavailable for other legitimate

clients. This type of attack is more difficult to tackle, because most of them

make use of the weaknesses of existing network protocols. In fact, their malicious

requests appear no different from legitimate ones, and ordinary defence systems

are incapable of detecting them.

According to the definition of resource, forms of attack can be further divided

into distinct parts as follows:

– System resource: This includes CPU processing capability, storage capa-

bility, buffer space, etc. Attackers cripple a victim by forcing it to process

more than it can handle. Notice that this result is not due to the low ca-

pability of the hardware. In fact, attackers take advantage of the flaws of

several protocols to unlimitedly amplify the effect of DoS attacks. As we

discuss later, TCP SYN flooding attacks belong just to this category.

– Bandwidth: When installing a network device, such as a server, a router

or a firewall, the administrator will configure the maximum bandwidth or

maximum connectivity. The aim of these attackers is to force a server to

deplete its connectivity or obstruct the network by flooding large amounts

of traffic packets. A Smurf attack forces routers to stop forwarding packets

due to network congestion.

2. The other classification relies on the evolution of DoS attacks, and three attack

modes can be identified:

• Single-to-Single: Early DoS attacks, such as IP Spoofing attacks and TCP SYN

flooding attacks, belong to this category. They exploit spoofed IP addresses to

cheat a victim server out of resources. But actually, they only use their own

system resources to perform these attacks. As a result, the power and impact

of these attacks are relatively impotent. Furthermore, they are less available to

launch attacks that aim at bandwidth consumption.

2.4. Representative DoS Attacks 12

• Multiple-to-Single: Early Distributed DoS attacks take advantage of network

worms to compromise vulnerable machines on the Internet. These raw recruits

are used to launch a cooperative DoS attack. In combination with the attack

methods used in Single-to-Single, many systems with less resources can attack a

much larger system.

• Multiple-to-Multiple: Nowadays, more sophisticated DDoS attacks can easily

overwhelm a target network that may include several network servers. Although

several countermeasures and DoS Detect systems have been applied to mitigate

the force of large-scale DDoS attacks, the data on DoS attacks each week indicate

that they are still far from being prevented.

The following table summarises the above classifications:

DoS Classification

by Aims:

by Modes:

(1). Physical destruction
(2). Implementation Bugs
(3). Resource consumption

(1). Single-to-Single
(2). Multiple-to-Single
(3). Multiple-to-Multiple

Table 2.1: DoS Classifications

2.4 Representative DoS Attacks

2.4.1 IP Spoofing

IP spoofing means to cheat others by using false IP addresses instead of one’s own.

Strictly speaking, IP Spoofing alone is not a DoS attack, but an important step in

those attacks. Nearly all successful DoS attacks need to cooperate with this technique

in order to conceal attackers’ real IP addresses and avoid IP tracing.

At the beginning, IP spoofing was used by attackers to gain unauthorized access

to remote systems. In 1995, one year before the appearance of SYN flooding attacks,

CERT reported several IP spoofing attacks [62], in which attackers could obtain root

2.4. Representative DoS Attacks 13

access to victim systems by making use of applications that used authentication based

on IP addresses.

When a client wants to establish a TCP connection, a program can be used to

generate a socket, automatically filling the header field of an IP packet with the source

address. However, an attacker may modify this program under Unix, and change the

address to whatever he wants. Due to the fact that the routing strategy only considers

IP destination addresses, the correctness of IP source addresses is unfortunately ignored

[30].

In some cases, an attacker can use IP spoofing to launch a small-scale DoS attack, as

in the following scenario, albeit that the strength of this attack is limited. An attacker

A forges B’s IP source address and sends a lot of packets to different destinations. As

a rule, all the returning IP packets flow to B, which may lead to network congestion.

�

��
�� ��

�

������������������	 ������������������
 �������������������

��������	�����������
��������
�����������

��������������������

Figure 2.1: IP Spoofing Attack

2.4.2 TCP SYN Flooding

Taking advantage of the imperfections of the TCP connection establishment protocol

[33], attackers launch TCP SYN flooding attacks by flooding a target server with

many “half-open” connections, which leads to the victim’s connection capability being

depleted, so that it becomes unavailable for other legitimate clients.

2.4. Representative DoS Attacks 14

Normally, establishment of a TCP connection requires that both sides communicate:

a client and a server exchange an orderly sequence of messages [59]. This process

is commonly called TCP’s three-way handshake. The client begins this protocol by

sending a SYN message to the server, which is listening to connection requests from the

network. Acknowledging the SYN message, the server returns a SYN-ACK message to

the client, and meanwhile prepares for this connection by distributing a piece of buffer

space to store session information. The client completes the protocol by replying to an

ACK message. Now, the connection is established, and the service-specific data can

be transferred between the client and the server. Fig (2.2) illustrates this three-way

handshake connection.

��� �����	�	

���������	

�����	

���

��		�����	

������ ���	��

������

Figure 2.2: TCP’s Three-way Handshake

There are at least two shortcomings in this TCP connection establishment protocol.

One is that the authentication is based on source IP addresses, whereby an attacker

may perform IP spoofing. The other is located at the second step of the three-way

handshake, where, before receiving the final ACK message, the server has already

allocated buffer space for this connection, and must keep it until a timeout. Taking

advantage of this point, an attacker can exhaust the buffer space of the target server

by sending a sufficient number of “half-open” connections.

In this attack, the attacker uses IP spoofing to forge large amounts of initial con-

nection requests (SYN messages), and mount them to a target server. These requests

2.4. Representative DoS Attacks 15

appear to be legitimate and are not filtered by firewall or other defence systems. The

server responds with SYN-ACK messages, and allocates buffer space for each connec-

tion. Although the time for keeping these reserved buffer space is short, the space

can eventually be exhausted, and the server then fails to respond to other legitimate

clients, as long as the attacker floods numerous connection requests repeatedly. This

attack effectively prohibits normal clients from visiting the target server. That is the

reason for its prevalence in the hackers’ community.

������ ���	��

�����

�����

�����

�����

�	
	���
����

�	
	���
����

�	
	���
����

�	
	� �
����

Figure 2.3: TCP SYN Flooding Attack

According to the advisory of CERT [59], any system connected to the Internet

and providing a TCP-based network service (such as Web Server, FTP server, or mail

server) is potentially vulnerable to this kind of attack.

2.4.3 Smurf

Smurf attacks make use of forged ICMP echo request packets and IP broadcast ad-

dresses to overwhelm a victim system with large amounts of ICMP echo reply packets

that are sent from an intermediary site [61].

The Internet Control Message Protocol (ICMP) is used to inspect errors and send

control messages. It is also used to check whether a network device is responding.

Hence, if a machine receives an ICMP echo request packet, it will respond with an

ICMP echo reply packet.

2.4. Representative DoS Attacks 16

On the Internet, a packet can be transferred to an individual IP address or broadcast

to an entire subnet, depending on whether the destination address is an IP broadcast

address1. Via an IP broadcast address, a packet can be delivered to all machines on

that subnet.

In a typical Smurf attack, three parties play different roles: an attacker, an interme-

diary and a victim. Using IP spoofing, the attacker forges an ICMP echo request packet

with the victim’s source address, and sends it to an IP broadcast address. When all

the machines in the intermediary’s network receive this packet, they send ICMP echo

reply packets directly to the spoofed IP address, which actually belongs to the victim.

This may cause severe network congestion in the victim’s local network. The targets of

this attack may include not only the victim host, but also routers and communication

lines connected to the victim’s local network. The function of the intermediary site is

to amplify the amount of traffic that flows to the victim’s address. In consequence,

some researchers refer to this site as an amplifier site [34].

Tools for launching this type of DoS attack have been developed [61], which can

spread these attacks to multiple intermediaries simultaneously, and lead to much larger

attacks. In other cases, the target of Smurf attacks can be the intermediary directly.

If all the machines on that network respond to one or several ICMP echo requests, it

will certainly cause severe network congestion and outage. In particular, if an attacker

can force routers to stop forwarding packets, then all the hosts behind those routers

are effectively disconnected.

2.4.4 DDoS

Distributed Denial of Service (DDoS) is a new form of DoS attack, first reported in

early 2000 [16, 54, 66]. In contrast to traditional DoS attacks, DDoS attackers, in

particular, are armed with self-propagation worms which can be installed on a discre-

tionary number of vulnerable computers on the Internet. An attacker is able to harness

these compromised machines in order to mount a coordinated DoS attack. These in-

fected machines are typically divided into two groups: “Masters” and “Zombies”, which

play different roles in a DDoS attack. “Masters” are more like an intermediary, while

“Zombies” serve as attack platforms. Communication between an attacker and the

“Zombies” is not direct, but depends on the “Masters”. One “Master” may control

and deliver the attacker’s command to a number of “Zombies”. By mounting such a

1Each LAN (Local-area Network) on the Internet possess an IP broadcast address.

2.4. Representative DoS Attacks 17

�

��������	�
�������

�

�

���

����

��������	�
�������

��

�������������������

�������������������

����������

����������

����������

����������

����������

����������

����������

����������

Figure 2.4: Smurf Attack

coordinated DoS attack, the effectiveness of a DDoS can be multiplied by 10, 100, or

even 10,000 times [24].

A typical DDoS attack process can be described as follows. An attacker first scans

a large range of networks to find vulnerable hosts that have weak defences against a

malicious intrusion. The number of these hosts is determined by the strength of the

attack that an attacker intends to launch. Second, the attacker installs “Master” or

“Agent” programs on these vulnerable hosts. A machine with an “Agent” program is

called a “Zombie”, which carries out the actual attack. A machine installed with a

“Master” program is able to communicate with a number of “Zombies” and serves as a

control-handler of the attacker. An attacker can command several “Masters” directly,

and “Zombies” are activated by these “Masters” at the designated time for an attack.

Fig (2.5) shows this three-layer control. The reason for using such an architecture is

to keep the attacker safe and difficult to trace. Now, all the preparation has been

accomplished. The attacker only needs to cross his fingers and wait for an appropriate

time to launch his DDoS attack. When a defending server suspects that it is under

a DoS attack, it can only find numerous legitimate connection requests received from

a large number of legitimate IP addresses, consuming all the resources of the server.

However, the real owners of these “Zombies” are unwitting accomplices [34], and do

not know what has actually happened on their machines.

The improvements in DDoS attacks can be summarised as having two main features.

2.4. Representative DoS Attacks 18

Figure 2.5: Three-layer Control For A DDoS Attack

One is that DDoS attacks may effectively bypass IP spoofing defence mechanisms.

Before 2000, researchers exploited ingress/egress filtering edge routers to stop most

packets with spoofed IP addresses. This forced the attacker to perform IP spoofing

by using only the addresses from his own network. A simple and powerful solution

against these attacks is to filter all packets from one suspected network in order to

ensure service for legitimate clients from the rest of the Internet. Unfortunately, DDoS

attacks can pass around this filter by launching attacks from different networks. It

would be pointless for a network service provider to block all request packets from so

many networks.

The other characteristic is that a DDoS attacker can amplify attack traffic im-

mensely by using self-propagation worms to compromise sufficient computers on the

Internet. He can manually or automatically scan the Internet to find each vulnerable

machine on N networks as his “Zombie”. One “Zombie” issues 1/N traffic load to a

target server. If N is big enough, it may bring down any target and cause an incredible

amount of damage.

2.4. Representative DoS Attacks 19

DDoS Tools and Technologies

Usually, attackers utilise professional tools to launch attacks. Sub7, TFN, Trin00 and

“Stacheldraht” are earlier DDoS tools, whilst Kaiten, GTbot, sdbot appear to be more

recent [34]. Nearly all DDoS tools, however, need some core techniques to accomplish

attacks, such as scanning, propagation, and communication. These techniques are

usually exploited before real attacks start, but serve as vital points in DDoS attacks.

In the following section, we will describe these methods. It is beneficial for readers to

comprehend how attackers recruit and control their “Masters” and “Zombies”:

(1) Scanning

Scanning is the first step in launching DDoS attacks. What attackers scan for are

vulnerable machines/systems existing within the entire Internet. “Vulnerable”, in

this context, means that these machines/systems are subject to intrusion attacks,

since most of them have weak or even no defence systems, such as firewall or anti-

virus software. Some of them may have a number of system bugs (for example,

bugs reported in Microsoft Windows systems or Internet Explorer), and have not

been fixed in time. All of them offer the opportunity for attacks to intrude these

machines/systems and leave unnoticeable codes for malicious intentions. In early

DDoS attacks, an attacker had to personally scan and identify all the potential

targets he/she required, storing their addresses into a list. This list was used to

direct compromised machines to recruit more “Masters” and “Zombies”. More

recently, this situation has been changed by network worms like Code Red, which

can fulfill the process of scanning-detection-infection-propagation automatically,

without any direction from attackers [63].

A scanning strategy is a method for selecting the next machine to be probed.

A primitive type is random scanning strategy, in which compromised machines

probe random IP address for potential targets. Sometimes this technique can

lead to network congestion, since many machines may detect, and try to intrude,

the same IP address simultaneously. Hitlist scanning can avoid this problem

by recording all the machines that have been detected and compromised. This

technique is utilised to speed up the initial slow phase of worm propagation. More

details and other scanning strategies can be found in [39, 63].

(2) Propagation

Today, automated propagation has been developed into three general models [14]:

2.4. Representative DoS Attacks 20

the central source propagation, the back-chaining model and the autonomous

model. In central source propagation, the attack code is stored in a central

server or set of servers. A propagation is fulfilled by an intrusion transferring a

copy of the attack code from the central source to a newly compromised system.

During back-chaining propagation, a system which is intended to compromise

other potential targets, serves as a central source from which the attack code

can be delivered to others. The newly infected machines then become the source

for the next propagation [39]. In contrast with the central source propagation,

this model ensures a smooth delivery for the attack code. Autonomous prop-

agation can directly inject a vulnerable machine with the attack code, without

downloading or copying it from a external source, saving the file retrieval phase.

(3) Communication

Communication mechanisms are another important issue not only for DDoS at-

tackers, but also for security engineers. If communication packets from an at-

tacker to “Masters”, or from “Masters” to “Zombies”, can be detected ahead

of real attacks, according to the destinations of these packets, the compromised

machines can be identified and removed easily. However, as time goes by, com-

munication channels for DDoS attacks are becoming more difficult to detect.

Early DDoS tools used TCP/UDP packets for communication, which are rela-

tively easy to identify using network monitoring tools, such as Intrusion Detection

Systems (IDS). Then attackers found the Internet Relay Chat (IRC) provides a

sufficiently anonymous environment for communicating with “Zombies” directly,

which makes it more difficult to identify DDoS networks [14].

Attack Network Topologies

There are two major topologies in DDoS attacks: direct attacks and reflection attacks.

The architecture of direct attacks has been demonstrated in Fig (2.5). An attacker

controls several “Masters” that are responsible for transmitting the attack command to

a number of “Zombies”. At a designated time, all the “Zombies” launch a direct DDoS

attack by flooding a victim with numerous bogus requests. The attack command flows

along the following path:

Attacker → Masters → Zombies → Victim

2.4. Representative DoS Attacks 21

The architecture of a reflection DDoS attack is illustrated in Fig (2.6). Denote

network (a), which consists of all the “Masters” and “Zombies”, as the attack network.

Network (b) represents a large number of well-meaning and innocent servers, which

unfortunately act as reflectors in a reflection DDoS attack. Many of these reflectors

possess broadband or good connectivity, such as Internet server providers, TCP servers,

and so on. In this kind of attack, by manipulating attack network (a), an attacker can

mount many initial requests carrying a target’s IP address to innocent systems in

network (b). These systems will unwittingly reply and return corresponding messages

to the victim, which can easily exhaust the victim’s bandwidth and lead to severe

network congestion. In reflection DDoS attacks, it is more difficult to detect malicious

packets on the Internet, and much harder to find clues to the attack network or the

attackers’ real IP addresses.

��������

��	���� ��	���� ��	����

�����
�����
�����
�����
�����

���	�
���

���	�
���

���	�
���

���	�
���

���	�
���

���	�
���

���	�
���

���	�
���

���	�
���

������

������

����

Figure 2.6: Reflection DDoS Attack

2.5. Proposed Countermeasures 22

2.5 Proposed Countermeasures

To prevent DoS attacks, many defence mechanisms have been proposed. Various fire-

walls and router configurations have been suggested by network administrators and

commercial vendors. Protocol designers are also trying to improve existing protocols

to make them resistant to DoS attacks. However, most of them inevitably have poten-

tial disadvantages, and are not capable of successfully defending against DoS/DDoS

attacks.

Before introducing several proposed countermeasures, we look briefly at the differ-

ences between the Internet and the traditional phone network2, which does not often

suffer from malicious denial of service attacks inside [15]. There are three reasons for

this. First, every connection request (call) binds tightly with its real address (phone

number). It is fairly easy to identify an attacker. Second, it seems impossible in the

phone network where an attacker exploits worms/viruses to compromise other tele-

phones for a cooperated DoS attack. The last reason is that a DoS attack launched via

the traditional phone network requires a lot of resources, including human resources,

money and time.

According to these reasons, scientists and researchers strive to find similar ways

to resolve DoS problems. Ingress/Egress filtering and packet marking can be used to

obtain a relatively reliable IP address. Client puzzles are deployed to increase the cost

of launching DoS attacks. A number of anti-virus softwares and intrusion detection

systems have been developed to detect and stop the spread of network worms.

In this section, we provide a brief introduction to current defence methods. More in-

formation can be obtained from the following literature: Trackback IP [44, 42], Ingress

/egress filtering [25, 43], SYN cookies [8, 11], Client Puzzle [5, 6, 15, 33], and Operating

system improvement [13, 49].

2.5.1 Ingress/Egress Filtering

The aim of filtering is to stop packets with spoofed IP addresses from reaching a target

server. To date, two primary methods have been studied: ingress filtering and egress

filtering [67].

2Internet phone services may attract DoS attacks toward the traditional phone network, by ex-
ploiting software (such as Skype, Net2Phone, etc) to generate enough call requests to block a call
centre. However, in this thesis, we treat Internet telephony as an extended application of the Internet
and as such is vulnerable. As a result, we believe that if DoS attacks can be solved for the Internet,
the possibility of the traditional phone network being attacked by Internet telephony will decrease.

2.5. Proposed Countermeasures 23

Ingress filtering is applied on the external interface of a network (e.g. firewall/routers)

and drops all suspected incoming packets. For example, if the source address of an in-

coming packet belongs to its internal network, this packet will be dropped immediately.

This scenario is illustrated in Fig (2.7), where three packets from distinct IP addresses

try to pass into a subnet, and the firewall filters unwanted packets according to the

ingress filtering rule.

��������

��	
����������������������

��������	���
�����

���

��	���
�����

��

������

���

��������

������������

�������������

������������

�	�������������	�������

���	��

�����������������������

������������

������������

���

Figure 2.7: Ingress Filtering

In contrast, egress filtering is exploited on the internal interface of a network to

inspect packets going out. It will filter the packets that do not have the local network

addresses.

• Advantage: The packets filtering mechanism is an efficient way to prevent most

spoofed packets from travelling on the Internet. Although an attacker can still

perform IP spoofing by using his/her local network addresses, it is relatively easy

for victim servers to trace back and identify the deployed network, then tackle it

with corresponding security measures.

• Disadvantage: As mentioned in Section 2.4, IP spoofing may help attackers hide

their real identities, which, as a result, becomes an important step in launching

a DoS/DDoS attack. However, DDoS attacks, in particular, are often launched

from real IP addresses (“Zombies” and “Master”). Ingress/Egress filtering do

2.5. Proposed Countermeasures 24

not work well in these DDoS attack scenarios. Moreover, to efficiently prevent

spoofed packets, filtering mechanisms must be applied widely on network routers

and firewalls within the whole Internet, which would be not easy to reach in to-

day’s Internet, where fills in numerous different network devices based on various

network protocols and industry standards.

2.5.2 Packet Marking

Packet marking is also used to prevent IP spoofing. In this method, a packet can be

traced back to its source address by inserting traceback data into the packet when it

passes through distinct routers to the destination [42, 44]. If a victim is attacked, it can

deduce the path of malicious packets in order to identify the attacker’s source address.

• Advantage: This may be combined with filtering mechanisms to destroy IP

spoofing completely. Packet marking is capable of meeting the demands of DDoS

defence.

• Disadvantage: Requiring each router to insert unique information as a packet

passes will increase traffic load and create much information redundancy. More-

over, since the traceback data needs to be encoded, packet marking encounters

computational difficulties when it has to deal with a large number of attack

packets [67].

2.5.3 Time-out

In the time-out approach, a server deploys a short period of time to wait for the final

ACK message, which should be returned from a client to complete TCP connection

protocol. After this time, which we call “time-out”, the connection request will be

rejected. Meanwhile, the distributed buffer space for this connection will also be cleared

[33].

• Advantage: This approach may help the server to prevent too many half-open

SYN packets from being crammed into the buffer space. It is easy to implement

in existing servers, without any need to increase software/hardware, or modify

network protocols.

• Disadvantage: This approach can be overwhelmed by a SYN flooding attack

with a high-speed rate, which means the buffer space may be filled with malicious

2.5. Proposed Countermeasures 25

connection requests before each time-out occurs. Furthermore, a short time-out

can possibly influence the service availability of clients whose network connection

has a long time delay.

2.5.4 Random Dropping

In the random dropping approach, a server selects a certain percentage for its buffer

capacity, which should never be 100 percent. When the amount of consumed buffer

space reaches this designated value, a number of half-open connection requests in the

waiting queue will be rejected at random.

• Advantage: Using this approach, a server is able to avoid a complete denial of

service, since the server buffer will never be consumed completely. The server

only needs a random dropping algorithm to perform this approach.

• Disadvantage: No identification for random dropping may result in a substan-

tially degraded service for legitimate clients. It is a undesirable consequence,

especially when most requests waiting in queue belong to a DoS attacker.

2.5.5 SYN Cookies

Since TCP SYN flooding attacks exploit the inherent shortcomings of the protocol, it

appears reasonable to improve the protocol to resist attacks. SYN cookies belong to

this category.

In the SYN cookies approach, a server verifies the authentication of connection

requests by using so-called “cookies”, which are computed by hashing a series of con-

nection parameters. These parameters include a client’s IP address, port number, and

a secret number known only by the server. When receiving a client request i, the server

generates a secret number, and hashes connection parameters to obtain a “cookie” Hi.

The server then returns a SYN-ACK message containing Hi to the client. Until the

server receives the final ACK message with the correct Hi, the resource will not be

allocated for this formal connection [33].

• Advantage: SYN cookies are believed to be one of the most successful defences

against TCP SYN flooding. Instead of allocating resources without any verifica-

tion, SYN cookies introduce a small authentication mechanism to help the server

2.6. Summary 26

distinguish between spoofed IP addresses and legitimate ones. Resources are only

granted to the client who can successfully pass the authentication.

• Disadvantage: The major limitation of this approach is that SYN cookies as-

sume that IP spoofing attackers are incapable of eavesdropping on the SYN-ACK

messages sent to the spoofed IP address, and consequently, attackers cannot pro-

vide the server with the correct cookies. This assumption may not be always

correct. For example, if spoofed IP addresses are located within the same sub-

net, it is relatively easy for an attacker to intercept all the packets transferred on

the network.

On the other hand, the cryptographic hashing used in SYN cookies is quite ex-

pensive. Some engineers argue therefore, that servers expecting a lot of incoming

connections should not use this solution.

2.6 Summary

Since 2000, the more serious impact of DoS attacks on the Internet has caused pub-

lic suspicion about the Internet as a feasible tool for electronic commerce and other

electronic businesses. Unfortunately, as mentioned above, few proposed defence sys-

tems have been found capable of protecting both network servers and legitimate clients

against DoS attacks. The situation seems hopeless, but it may be saved by the magic

of client puzzles, which need not sacrifice any legitimate clients to the server’s interests

(as Random Dropping does), they do not lead to a heavy traffic load on the Internet (as

Packet Marking does), and they can even be based on a stronger assumption than SYN

cookies. Client puzzles are the major theme of this thesis, and they will be elaborated

on from the following chapter.

Chapter 3

Client Puzzles

Client puzzles are proposed as a promising countermeasure against DoS attacks. Since

these attacks mostly exploit defects in existing network protocols, the advantage of

client puzzles over other proposed methods is that by improving protocols directly, it

is feasible to confine DoS attacks in a harmless range for defending servers. This chapter

begins with an overview of client puzzles, in which several features of client puzzles will

be addressed. In addition, the idea of client puzzles deduces from cryptographic puzzles

that were first used in key agreement [38]. To assist readers with a comprehensive

knowledge of cryptographic puzzles, their two applications in relevant security fields

will be introduced. Then, the Client Puzzle Protocol proposed by Juels and Brainard

[33], which is designed as a work platform for client puzzles, will be examined. As

how to construct proper puzzles for DoS defence is the key issue of client puzzles, two

proposed puzzle constructions will be described at the end of the chapter. Meanwhile,

their weaknesses are analysed in detail.

3.1 Overview of Client Puzzles

In a typical DoS attack, an adversary deploys unauthorised service requests to consume

the limited resources of a target server. The aim of client puzzles is to impose a

moderate authentication cost on each client wishing to obtain service from a defending

server. This can be achieved by asking clients to solve different cryptographic puzzles

(here we call them client puzzles). “Cost”, in this context, means computational cost,

such as CPU processing time and memory space. Recent studies show that existing

DDoS tools are designed carefully not so as to disturb “Zombie” computers, and thus

avoid alerting their real owners. In other words, “Zombies” are unable to furtively

27

3.1. Overview of Client Puzzles 28

compute puzzles for the adversary. In this way, the defending server may force the

adversary to give up, because applying for more resources demands that the adversary

invest more resources himself/herself.

A client puzzle is a moderately difficult cryptographic problem. Unlike conventional

public-key authentication, creation and verification of these puzzles is much easier and

less expensive, which can satisfy the demands of dealing with large amounts of incom-

ing requests. The cost of computing client puzzles is negligible for legitimate clients,

but unendurably expensive for DoS attackers, who attempt to acquire considerable

resources from the server.

Client puzzles need a work platform to fulfill their promise. In 1999, Juels and

Brainard successfully proposed a client puzzle protocol to defend against TCP SYN

flooding attacks. The idea of the client puzzle protocol is very simple [33]. When

there is no evidence of attack, a server accepts connection requests normally. If the

defending server comes under a DoS attack, it distributes a unique client puzzle to each

client who is applying for a connection. In order to obtain the server’s resources for

his/her connection, a client must compute the puzzle correctly, and return the solution

in time. This protocol is deployed in conjunction with the traditional time-out, which

is used to control the time period for puzzle computation. Consequently, it is hard for

an adversary to compute large numbers of puzzles in a short period, which can be used

to differentiate legitimate requests from malicious half-open ones.

The client puzzle protocol has several advantages over other defences. First, it

improves defects in existing network protocols, and does not increase packet load on

the Internet. Second, this protocol is working within a stronger attack model than

standard measures [33]. For example, SYN cookies are based on the assumption that

an attacker is incapable of intercepting messages sent to spoofed IP addresses. We

know that this assumption is not always correct. Third, when dealing with high-speed

requests, the client puzzle protocol filters malicious ones more effectively than random

dropping. The difficulty of client puzzles can be adjusted flexibly to adapt to different

strengths of attacks. The last is that the client puzzle protocol can either work as

an independent protocol in the application layer, or can be built into other service

protocols it attempts to defend, such as TCP/IP, TLS [21], and so on.

On the other hand, client puzzles have one inadequacy. A client who requests a

service from a defending server has to install a small client-side program for the com-

putation of puzzles. Most of the other countermeasures against DoS attacks, such as

Traceback IP, SYN cookies, and Ingress/Egress filtering methods, merely demand a

3.2. Application of Puzzles 29

modification to a defending server or a fundamental network protocol, although the

potential disadvantages of these approaches are inevitable, as outlined in Chapter 2.

Compared with these, client puzzles are able to ensure service quality and protect

servers against DoS attacks effectively, as long as clients install a puzzle-solving soft-

ware. In today’s network technology, such software can easily be implemented by a

plug-in of a web browser, or distributed by the servers. Hence, the requirements for

this special software should not be a problem.

3.2 Application of Puzzles

Client puzzles are viewed as special cryptographic problems. In fact, any cryptographic

problem can be a puzzle. But not all of them can be client puzzles. Cryptographic

puzzles have been applied in a wide range of security fields, such as defending against

junk e-mail [22] and metering Web site usage [26]. In this section, we shall address two

of these applications in security fields to help readers gain a comprehensive knowledge

of puzzles.

3.2.1 Puzzles in Key Agreement

Cryptographic puzzle is an old technique, which was first exploited by Ralph C. Merkle

[38] to solve the problem of secret key exchange. In the context of public key cryptog-

raphy, Merkle raised the possibility of transmitting a secret key in insecure communi-

cation channels.

Informally, the method can be simply described as follows: A and B want to com-

municate over an insecure channel, and C has the ability to eavesdrop on all the infor-

mation transmitted between A and B. Assume that C can neither forge messages, nor

interrupt the communication. In addition, C is hard to predict the new information

generated by either A or B.

A generates a puzzle set which contains n cryptographic puzzles. This set is then

sent to B who randomly picks up one puzzle from the set, and solves it. Both A
and B now possess a common piece of information – the solution to the puzzle that

B solved. They will refer to this solution as the secret key for their further privacy.

We assume that one unit of computational cost generates each puzzle, and n units of

computational cost solve each puzzle. This implies that both A and B have invested

n units of effort. However, the eavesdropper C is unable to find out which puzzle B

3.2. Application of Puzzles 30

selected. In consequence, C must consume n units of effort to solve each of n puzzles,

for a total of n2 units of effort.

According to Merkle’s method, an adversary is forced to expend an amount of

computational overhead which increases as the square of the effort needed by the two

communicants for selecting a key.

3.2.2 Puzzles in Junk Mail Defence

Due to the ease and low cost of sending electronic mails, and particularly the simplicity

of broadcasting the same message to a group, junk mail has becomes a practical threat

on the Internet. People feel frustrated and helpless when they encounter the same

situation every day: hundreds of meaningless mails in their e-mail boxes. In a worst-

case scenario, an adversary can easily render an arbitrary e-mail address incapable of

accepting other mails, by flooding numerous junk mails to exhaust its capacity.

In 1992, Dwork and Naor introduced cryptographic puzzles into junk mail defence

[22], in which the mail system requires a sender to pay a moderate cost for each message.

The cost can be defined as a hardware/software resource consumed for computing a

cryptographic puzzle, and it is trivial for legitimate clients, but expensive for a junk

mail sender. This was the first time that cryptographic puzzles were incorporated into

access control.

Besides proposing a framework of defence systems, the most valuable contribution

of their paper is to describe the definition and properties of a “puzzle” f [22]:

1. f is moderately easy to compute for clients.

2. f is not amenable to amortisation: given l values m1, ..., ml, the amortised cost of

computing f(m1), ..., f(ml) is comparable to computing f(mi) for any 1 ≤ l ≤ l.

3. given x and y, it is easy to determine if y = f(x) for mail servers.

Note that the second point provides a definition for the hardness of computing a

puzzle which can be used to distinguish degrees of computation difficulty. According

to this definition, a puzzle may be chosen to act as a trapdoor algorithm [51]: given

some additional information (the trapdoor), the computation would be considerably

less expensive. It is convenient for puzzle distributors to verify the answers later.

Dwork and Naor also presented several puzzle constructions to support their system.

Among these, the hash function is extended respectively by Juels [33] and Aura [5] in

3.3. Client Puzzle Protocol 31

their papers.

3.3 Client Puzzle Protocol

To defeat TCP SYN flooding attacks, Juels and Brainard [33] proposed a new scheme

to remedy the flaws in the TCP connection establishment protocol. This is the client

puzzle protocol, which is referred to as a fundamental infrastructure of client puzzles.

Nearly all relevant research on client puzzles (including ours) is based on it. This section

will introduce the specifications of this protocol, along with its work environment.

Juels and Brainard designed an attack model in which the client puzzle protocol

might work effectively. They first assumed that an attacker A attempts to make use

of a client/server protocol M so as to deplete either the memory or computational

resources of a target server S. Meanwhile, a number of legitimate clients {Ci} exist

in the same network, and may ask for service from S. They then addressed several

assumptions to define the capability and incapability of A. We explain and discuss

three of the major assumptions in the following section.

(1) A cannot modify packets sent from any Ci to S.

If this assumption does not hold, then any adversaries who are able to modify

packets arbitrarily can launch a DoS attack simply by changing the source ad-

dresses of all packets sent to the server. By doing this, no legitimate client can

obtain a response from the server, because all messages that have been replied

will be sent to false addresses. Hence, the attackers do not need to mount re-

source depletion attacks, and can easily defeat the server. On the other hand, it is

possible that a limited number of clients’ packets may be modified by adversaries

on the Internet. But, so long as it is not on a large scale, this protocol can still

protect the servers against DoS attacks.

(2) A cannot significantly delay packets sent from any Ci to S.

Similarly, if any attackers can delay packets transferred on the Internet for a long

while, it is equivalent to interrupting the communication line. Attackers do not

need to launch any resource depletion attacks, and can easily achieve the goal of

denial of service.

(3) A can read any messages sent to any IP address.

3.3. Client Puzzle Protocol 32

In fact, we do not completely agree with this assumption. Since a packet may be

sent to a large number of different networks, it is hard for attackers to eavesdrop

on each of them. This assumption, in fact, makes the SYN cookies method totally

pointless. Currently, however it is still a practical and easy security measure

against DoS attacks for many websites. Hence, in our solution, we consider that

some of packets can be eavesdropped, rather than all.

Juels and Brainard tried to use the client puzzle protocol to defend an arbitrary

protocol M (such as TCP or SSL) against DoS attacks. As mentioned above, this

new protocol can be layered either independently on top of the protocol M , or can be

embedded directly into M . In their paper, they chose the former.

The client puzzle protocol can be illustrated in Fig (3.1) and Fig (3.2). To simplify

the description, we assume that the protocol M is initiated by clients, such that the

first message in the protocol M is sent from the client Ci to the server S. Hence, Ci

first sends a service request message to S, along with a query about whether S is under

an attack. If there is no such a threat, S replies with the answer “No”, and allocates

memory space to continue the remaining part of the protocol M as indicated in Fig

(3.1).

������

�����������	�
�����������

���

������	����
�����������������

���	��

Figure 3.1: No DoS Attack Threat

If its memory usage is beyond a designated percentage, the server S may suspect

that it is suffering a DoS attack. In this case, the message return to the query includes

3.4. Puzzle Construction 33

the answer “Yes”, a client puzzle and a timestamp t. Ci must resolve the puzzle

correctly, and return its solution within a time period Td = T − t, in which T is the

current time, and Td is designed by the server administrator. When S receives the

solution, it first checks whether the solution has expired, then verifies its correctness.

Only the request which belongs to the client who correctly solves the puzzle can be

granted to the server’s resources and continue the protocol M . In addition, the time for

using the allocated memory for each connection is limited by Tc. After this time, the

connection is disrupted by S, and Ci has to make another request for a new connection.

������

�����������	�
������������

��
�����	��������

���	����

�������������������
������������������

������������
��	������
���������

�����������	����

���	��

 ��
��	������	����

!�" ���#$��!�

%����������
��	����

Figure 3.2: Under A DoS Attack

Juels and Brainard also presented a simple design for the puzzle, which is based

mainly on a non-invertible hash function. However, in their paper, the puzzle scheme

they have proposed has some unresolved problems (such as redundancy and solution

collision), and needs to be improved further.

3.4 Puzzle Construction

Although the depth of research has been enhanced, and client puzzles are showing

promise against DoS attacks, they still face many challenges. For instance, one of the

3.4. Puzzle Construction 34

key issues is how to build up puzzles that are qualified to satisfy the requirements

for handling large amounts of suspicious service requests. To date, researchers have

proposed several puzzle construction schemes, such as the hash function based puzzles

[15, 21, 33], the Diffie-Hellman based puzzles [6], the game theory based client puzzles

[7], and so on. Most of them, however have underlying weaknesses that may be captured

by attackers and lead to DoS attacks. In this section, we shall describe two proposed

client puzzle schemes, and try to analyse their inherent problems. Following these

discussions, we shall present our solutions and new schemes in later chapters.

3.4.1 Hash Function-based Puzzle Scheme

Compared with the scheme proposed by Juels and Brainard, Aura and Nikander later

presented a more convincing specification of one-way hash function for client puzzles

[5], in which a defending server sends a puzzle’s parameters to a client, and according to

these parameters, the client performs a brute-force search to find the correct solution.

The difficulty of this puzzle can be adjusted by varying the puzzle’s parameters. The

server commits its resources to the client only after the solution is verified.

The hash function can be demonstrated as shown in the following table [5].

�������������������	��
�����������

������ ������	����
����������

� ����������
�����������������
������������
������

�� �� ������������������

�������������������������
 ��� 	���

��� �������������������
 ��� 	���

� ���������
����
��
��������!!��

� ����������!!������������������

������� ��������"�������	����
�����������������#� ����	��!��

 �������������
�����������������#� ���	����������

Figure 3.3: Aura’s Client Puzzle Construction

To construct new puzzles, the server generates a random number NS periodically,

and sends it to its clients. The valid time for NS should be short (such as 60 seconds)

3.4. Puzzle Construction 35

in order to prevent attackers from precomputing solutions. The server also decides the

difficulty level k of the puzzle. Now, NS and k together form the puzzle that is sent to

clients.

To solve the puzzle, the client also needs a random number NC , the main purpose of

which is to reuse the server NS for new puzzles. According to the parameters received

from the server and NC and C, the client performs a brute-force search to find the

solution X, which should ensure the first k bits of the hash value are all zero.

The advantages of this puzzle scheme are enumerated as follows:

(1) Before the server verifies the solutions, no memory space needs to be distributed

to clients. The server only generates one random number NS to create new

puzzles.

(2) The only efficient way to solve the puzzle is to try every possible X until a solution

is found. The cost of solving a puzzle relies on the value of k, which can easily

be controlled by the server.

(3) The solutions are hard to precompute because of the short valid time for one

single NS.

On the other hand, we have also found some shortcomings in this scheme:

(a) The server has to keep a record of the used NS in order to prevent attackers from

reusing them and precomputing solutions. Furthermore, due to the randomness

of NS, the server has to check that a certain NS has not been calculated before,

which wastes processing time.

(b) Although the difficulty level k can easily be adjusted by the server, the compu-

tation cost for clients is relatively hard to predict, and the waiting time for the

solution is similarly unknown.

(c) The vital weakness of this scheme is located at the verification phase. To verify

the solution of a puzzle, the server first has to check that NS is valid, and that C,

NC , and NS have not been used together before. After that, the server performs

a similar cryptographic hash computation as the client did, to check whether the

solution is correct. This opens up the opportunity for the puzzle verification to

become a target of DoS attacks, in which an adversary overwhelms the server

with numerous random solutions that the server has to process.

3.4. Puzzle Construction 36

3.4.2 Diffie-Hellman Based Puzzle Scheme

In 2004, Waters and Juels [6] proposed a fresh puzzle scheme, which is based on the

Diffie-Hellman key agreement, and permits the outsourcing of puzzles. To eliminate

puzzle construction as a target of DoS attacks, an external service (which they call

a “bastion”) is introduced in their paper to help multiple servers distribute puzzles.

Interestingly, many servers can rely on the same bastion, while the bastion need not

know which servers are deploying its service.

Puzzle distribution using this approach depends, in particular, on virtual channels,

rather than per-request or per-session as in previous schemes. A web server may limit

the maximum number of open TCP connections per channel in order to control accepted

communication via a restricted collection of channels, when it encounters a DoS attack.

At every time interval, the bastion generates client puzzles for distinct channels, which

are suitable for all servers that rely on the bastion’s service. Moreover, each server

has a unique identity, such as a public key. If a client intends to communicate with a

certain server, he/she needs to combine the corresponding public key with the puzzle

that he/she receives from the bastion, solving this reconstructed puzzle to obtain a

valid token for later connection. In other words, the puzzles distributed from a bastion

are general ones. Only in connection with the public key of a specific server, can the

client calculate a proper solution to meet the server’s demand.

According to Fig (3.4), the algorithm of the Diffie-Hellman based puzzle construc-

tion can be described as follows.

• To create a general puzzle for a certain channel c and a certain time period t,

the bastion selects a random integer rc,t ∈R Zq where q is a large prime. Then,

select a second random integer ac,t ∈R [rc,t , (rc,t + l) mod q], in which l is the

difficulty level of the puzzle. Let f ′ denote a one-way permutation on Zq, and g

be a published generator (order q), such that gc,t = gf ′(ac,t). Hence, the bastion

publishes the puzzle Pc,t = {gc,t, rc,t}.

• Receiving the puzzle Pc,t, a client (or an attacker) has to perform a brute-force

testing for all the possible values in the search range, in order to find the exact a′

which can satisfy the equation: gc,t = gf ′(a′). Then, for a specific server’s public

key YID, the solution to the puzzle is SID = Y
f ′(ac,t)

ID .

• Using its secret key XID as a shortcut, a defending server is able to compute

the solution in one step: SID = g XID
c,t , which can be verified in the following

3.4. Puzzle Construction 37

equations. Since

YID = gXID (mod q)

then,

SID = Y
f ′(ac,t)

ID

= g XID·f ′(ac,t)

= g f ′(ac,t)·XID

= g XID
c,t (mod q)

By comparing these two solutions, the server then determines whether to allocate

resources to the client.

�� �������������	
�������������
�����

��� ������������������

����������
���	������������������

�����������	���������������������

� �����	�������������������

�� ��������������
��������
�	����

���������	 �����
���������
�����

� ��� ���	 ����	����������������
����

�������
���������	�
 ������	��������	���	�
��

�
�
�

� ���	� ��� ���	
���
��������	 �

���

��� ���

��� � ��� ���	
 ����	�
���

� ���������������

 �������������

���������

����	�����������

�����	�����������

	 � �������

Figure 3.4: D-H-based Client Puzzle Construction

The main advantages of this puzzle scheme are enumerated as follows:

3.4. Puzzle Construction 38

(1) This method allows clients to solve puzzles offline. First, a client obtains a

general puzzle from a bastion, and solves it within the valid time. The client

then combines this solution with a server’s public key to compute the specific

solution to meet the server’s demand. All these computations can be achieved

offline, so that clients do not have to sit and wait while their computers solve

puzzles.

(2) The deployment of a bastion can mitigate the possibility of puzzle distribution

as a target point of DoS attacks.

(3) The deployment of virtual channels help the server detect DoS attacks and allo-

cate system resources rationally. By inspecting the usage of channels, the server

can determine whether it is under attack, and limit communication to a restricted

collection of channels.

Similarly, we have identified some problems in this scheme:

(a) We note that this scheme relies on virtual channels, where one channel owns only

one puzzle. Consequently, in a specified time period, there are only n puzzles for

the server (n is the number of valid channels). If an attacker can solve several

of them, he can easily exhaust the resources of the corresponding channels. Due

to the fact that there is no other identity for these solutions except the source

IP addresses, the server is obliged to stop all communication in these decayed

channels, and legitimate clients who solve the puzzles for these channels cannot

obtain a response.

(b) Furthermore, this scheme is vulnerable to attackers’ eavesdropping. If an attacker

is able to eavesdrop on packets sent from clients to the server, he/she may exploit

the solution computed by legitimate clients to deceive the server.

(c) Another practical problem is that all the servers that depend on the same bastion

have to have uniform configurations, such as the same number of channels, and

the same size of the timeslot. It is inflexible for web servers that possess distinct

resource and bandwidth capability.

(d) Finally, the cost of computing a puzzle solution on the server requires one modular

exponentiation, which is too expensive to be accepted in practice.

3.5. Summary 39

3.5 Summary

This chapter has shown the robustness of client puzzles in DoS defence. Although it

has many advantages over other proposed measures, the puzzle mechanism still faces

many challenges. The most important issue is what an efficient puzzle construction

might look like. Many researchers have proposed puzzle schemes, but few of them

can satisfy the demands of both web servers and legitimate clients. In the following

chapters, we will propose one general model and two specific schemes to solve these

problems. The ideas are based mostly on conventional trapdoor algorithms and several

hard problems in mathematics, such as Factorisation and Logarithm Discrete.

Chapter 4

Trapdoor-based Client Puzzle System

The preceding chapter introduced the idea of client puzzles, and analysed their po-

tential weaknesses by investigating some existing schemes. In this chapter, we shall

first discuss and summarise the problems that might introduce new possibilities for

DoS attacks against a defending server. After that, we shall advocate the essential

requirements that all promising puzzles should follow to overcome the disadvantages of

client puzzles. Based on these requirements, we shall propose a new model for puzzle

distribution, called a Trapdoor-based Client Puzzle System (TCPS), which is expected

to mitigate the vulnerabilities of client puzzles. This chapter can be viewed as a pre-

liminary definition of the TCPS. In the following two chapters, we shall introduce two

modified families of trapdoor algorithms that can be used to fulfill puzzle construction.

4.1 Problems

Although the employment of client puzzles in DoS scenarios appears to be promising,

we have noted that there is some opposition, such as the idea expressed on some

websites [19, 48]. It is argued that the current techniques of client puzzles are not

necessarily better than SYN cookies because, as members of the cryptographic family,

most proposed puzzle schemes inevitably have two vital shortcomings.

First, the complexity of puzzle construction and verification might turn the client

puzzle mechanism itself into a victim of DoS attacks. For instance, client puzzles based

on Hash functions [5] require a defending server to calculate a hash function in order to

verify each answer received from clients. As a result, an attack scenario may occur in

which an adversary sends numerous bogus answers that the server has to process. An-

other more extreme example is where a Diffie-Hellman based construction [6] requires

40

4.2. Essential Requirements 41

the server to perform a modular exponentiation for the solution of a puzzle, which

consumes more resources than hashing does. It is clear that the cost of verification

(for a defending server), being greater than that of generating random answers (for an

adversary), may result in DoS attacks. On the other hand, a complicated construction

also attracts attackers’ attention. A scenario of this type of attack would be where,

by utilising spoofed IP addresses, an adversary floods a defending server with false

connection requests to cheat the server exhausting the resources for the construction

of puzzles.

The second noticeable weakness in current schemes is that, to ensure the ran-

domness and non-iteration of client puzzles, the defending server has to store all the

correctly solved instances (for example, NS and NC) so that the solutions cannot be

reused by attackers [5, 33]. However, as time goes by, the memory space becomes con-

gested. Meanwhile, to guarantee the validity of puzzles and solutions, the defending

server has to perform two comparisons respectively in puzzle construction and verifi-

cation to examine whether the puzzles and solutions have been used before. This is

undesirable in a client puzzle mechanism.

4.2 Essential Requirements

To serve as a promising countermeasure against DoS attacks, client puzzles must always

satisfy the following essential requirements.

1. The computational cost of solving a puzzle on the client’s side should be always

higher than that of puzzle generation and verification on the server’s side.

Although legitimate clients will experience a slight delay in having their solution

verified, an adversary flooding a server with concurrent requests has to invest

larger amounts of computational resources. This increases the difficulties of such

an attack in practice.

2. The puzzles are stateless.

This means that a defending server must create puzzles randomly, and cannot

reveal any information regarding their generation, neither within the puzzle de-

scriptions nor their solutions. It means that knowing a number of the solutions

does not help a new client solve the puzzles. In consequence, puzzles are unpre-

dictable, and we cannot compute solutions in advance.

4.3. Definition 42

3. The puzzles are easy to construct.

Generating a puzzle should not be expensive for a defending server. Complying

with this requirement prevents the puzzle construction itself from being a victim

of DoS attacks, where an adversary may flood bogus requests to exhaust the

computational resources of a server.

4. The solutions are easy to verify.

The reason for this requirement is similar to the one above. To protect a defending

server from depleting its resources to verify a large number of random answers, the

verification process should be as simple as possible. For example, the comparison

of two numerical values could be one of the simplest methods, which in particular

depends on the uniqueness of puzzle solutions.

5. The complexity of puzzles is adjustable according to the strength of an attack.

As a puzzle’s complexity increase, the cost of solving a puzzle should also increase.

This gives some flexibility in dealing with the conflict between defending against

DoS attacks efficiently and providing qualified and timely service for legitimate

clients.

4.3 Definition

Some trapdoor one-way algorithms possess a range of useful properties that meet the

requirements above. In this section, we first introduce relevant knowledge about trap-

door functions. Then, we define the proposed Trapdoor-based Client Puzzle System

(TCPS), including its security properties. We demonstrate that this system meets all

the requirements as stated above.

First of all, we provide some notations that will be used in the course of this thesis.

We refer to probabilistic polynomial time Turing machines as efficient algorithms [29].

Let F(·) denote a randomised algorithm, and d ← F(·) denote the event that F outputs

the value of d. We denote the probability of event B happening after A1, . . . , An by

Pr[A1; . . . ; An : B].

We say that a function f(n) : N → N is negligible, if for every polynomial B(·)
and sufficiently big n, there exists f(n) ≤ 1/B(n). In fact, the notion of the negligible

probability describes a negligible event f(·) that should rarely happen, even if we

4.3. Definition 43

consider any polynomial-time function B(·) a large number of times. We also denote

that ε = 1/B(n).

4.3.1 One-Way Function

Our proposed system utilises trapdoor one-way functions. Informally, a one-way func-

tion is designed to provide an algorithm which is easy to compute, yet computationally

infeasible to reverse [51]. For example, given x it is easy to compute the value of f(x),

but infeasible to obtain x if given f(x) in polynomial time.

Definition 1 f(·) is a one-way function if for every probabilistic polynomial time ad-

versary A, we require

Pr[x ← R ; y ← R : A(f(·), y) = x s.t. f(x) = y] < ε

where R is a random number set.

4.3.2 Trapdoor One-Way Function

We note that a single one-way function is meaningless for cryptographers, as no one

can decrypt a message that is encrypted by a one-way function. A trapdoor one-way

function arises on the basis of solving such a problem, which is a special one-way

function equipped with some secrets called “trapdoor”. A trapdoor one-way function

is uniformly easy to compute in one direction, but hard to reverse. In particular, if the

trapdoor is known, it is also easy to compute x by reversing the function f(x).

Definition 2 f(·) is a trapdoor one-way function if for every probabilistic polynomial

time adversary A, we require

Pr

[
x ← R ; y ← R : A(f(·), y, d) = x

s.t. f(x) = y ∧ f−1(y, d) = x

]
= 1

where d is the trapdoor of the function f(x).

4.3.3 Trapdoor-based Client Puzzle System

The aim of a trapdoor-based client puzzle system is to protect service availability

transferred between a web server S and legitimate clients C against DoS attacks. The

4.3. Definition 44

system exploits a specific trapdoor one-way function, where a creator of puzzles (the

server S) can efficiently compute the correct solution, while other solvers (legitimate

clients C and an adversary A) must perform a brute-force search to obtain the answers.

The system consists of three efficient algorithms for generating random puzzles, solving

the puzzles and verifying the solutions of these puzzles, respectively.

Definition 3 A Trapdoor-based Client Puzzle System (TCPS) consists of a three-tuple

of polynomial algorithms (Gen, Solve, V erify), where

• Gen : Puzzle generation algorithm used by a defending server S. It takes security

parameter t and a difficulty level l as input, and outputs a random puzzle P along

with a correct solution Ss to the puzzle P . That is

(P , Ss) ← Gen(1t, l).

Indeed, a puzzle P comprises two elements denoted as P = (σ, [α, β]) where σ is

a puzzle parameter, and [α, β] is a search range of length l. That is l = |β − α|.

• Solve : Puzzle-solving algorithm. This is an efficient algorithm for a client C to

solve the puzzles. On input P = (σ, [α, β]), it computes an answer Sc.

Sc ← Solve(P)

• V erify : A deterministic algorithm performed by S. On input Ss and Sc, it

outputs either one or zero.

Verify(Ss, Sc) ∈ {1, 0}

Success: Define the success of a client solving a puzzle by:

Verify(Ss, Sc) = 1, if Ss = Sc holds.

The following working diagram (Fig 4.1) is a simple prototype for our Trapdoor-

based Client Puzzle System (TCPS), in which a defending server takes charge of two

positions: “Creator” and “Verifier”, and the clients are responsible for “Solver”.

Definition 4 Difficulty of a puzzle [6]

Let P = (σ, [α, β]) be one part of the outcome Gen(·) where σ is a parameter for a

client C solving a puzzle, and [α, β] is a search range for the answer along with the

4.3. Definition 45

���������

������������	
��������

����������������������

��
����������	��������

��	
��

�����
��������������

� ���	
����������	���

�������

� ���	����������
����

���
��

��������� ��������������

��

��

	
�

Figure 4.1: A Simple Prototype For The TCPS

width |β − α| = l. A defending server S sends P = (σ, [α, β]) to C, and receives the

answer Sc correspondingly. We require that the amount of computation that a client

needs to perform for the correct answer is equal to l/2 - half the length of a search

range on average.

We require that TCPS schemes should always hold the following security properties.

Correctness: We require that all the answers that are computed correctly by Solve(·),
will always pass the verification. That is

Pr

(P , Ss) ← Gen(1k, l);

Sc ← Solve(P) :

1 ← Verify(Ss, Sc)

 = 1

Semantic Security: For every probabilistic polynomial time adversary A, the proba-

bility of finding another efficient algorithm to compute a puzzle’s solution, rather than

performing a brute-force search in the given range [α, β], is negligible.

4.4. Security Assumption 46

Pr

̂Solve(·) 6= Solve(·) ;

Ŝc ← ̂Sol(P) :

1 ← Verify(Ss, Ŝc)

 < ε

Collision-resistance: The probability of the existence of two uniform integers Sc and

S ′c in the search range [α, β] is negligible.

Pr

Sc ← Solve(P) ;

S ′c ∈ [α, β] ; S ′c = Sc :

1 ← Verify(Ss, S ′c)

 < ε

Theoretically, there is only one correct answer for the puzzle in the range [α, β], which

ensures that only the client who accurately complies with the description of the puzzle

to perform the searching and the computation can obtain the right solution.

Information Theoretic Secrecy: A puzzle solution Sc does not reveal any informa-

tion about either possible puzzle constructions or other secrets of a defending server.

Pr

Pi = (σi, [αi, βi]) ;

Sci
← Solve(Pi) :

{σi+1| αi+1| βi+1} ← Sci

 < ε

4.4 Security Assumption

It is well-known that the security of many existing public-key cryptosystems, such as

RSA, Diffie-Hellman and DSS [35], is based on one assumption: that there is a mathe-

matically hard problem which is difficult for cryptanalysts to solve in a polynomial time.

Two prevalent hard problems widely used by cryptographers are the discrete logarithm

and factorisation [64]. In the following chapters, we will employ these hard problems,

combined with trapdoor functions, to develop two novel client puzzle schemes. Before

that, we shall introduce definitions of these hard problems.

4.4. Security Assumption 47

4.4.1 The RSA Assumption

The factorisation problem is a problem used to calculate a series of prime integers from

a given number. In current cryptosystems, people particularly focus on factoring an

integer N which is the product of two large primes p and q. This problem has been

studied by many researchers, and even now, it still cannot be solved efficiently.

The RSA Assumption is derived from the hardness of factorisation problem, which

was first introduced by Rivest and Shamir in [50]. They claimed that it is infeasible

to compute e-root in the group of order φ(N) = (p − 1)(q − 1), where e ∈ Z∗φ(N) is

relatively prime to φ(N). That is given N , e, and a random element y ∈ Z∗N , it is hard

to compute x such that xe = y (mod N). More formally, we define it as follows.

Assumption 1 The RSA Assumption holds, if for all probabilistic polynomial time

adversaries A, the following probability

Pr

N ← RSA(p, q) ;

e ← Z∗
φ(N) ; y ← Z∗N :

A(N, y, e) = x s.t. xe = y (mod N)

 < ε

As a matter of fact, computing e-root in Z∗N is equivalent to solving the factori-

sation problem. Assume that a polynomial adversary A is able to factorise N into two

large primes p and q efficiently. He can then compute φ(N) = (p − 1)(q − 1), and

exploit the extended Euclidean algorithm [9] to obtain d such that

e · d ≡ 1 (mod φ(N))

That is

d ≡ e−1 (mod φ(N)).

Now, he can obtain x = yd (mod N) by taking the modular exponentiation instead

of the e-root computation.

Hence, we believe that if the factorisation problem is hard in polynomial time,

the RSA Assumption holds. However, if people can find an efficient way to solve the

factorisation problem in the future, the RSA Assumption will not be valid any more.

Another confusing problem which should be noted is that the security of the RSA

scheme1 does not depend totally on the factorisation problem. This means that an

1The RSA scheme can provide encryption and signature functions [35], which is a different notion
from the RSA Assumption.

4.4. Security Assumption 48

attacker may break the implementation of the RSA without the operation of factoring

N . Some of these types of attacks have been reported in [51] and [10], such as “Chosen

Ciphertext Attack”, “Common Modulus Attack”, “Low Encryption Exponent Attack”,

etc.

We use Table (4.1) to illustrate the relationship between the factorisation problem,

the RSA Assumption, and the RSA scheme.

the RSA Assumption ←−− Factorization Problem ?−−→ RSA
(hold) (hard) (secure)

Table 4.1: The Relationship Between Factorisation, RSA Assumption and RSA

4.4.2 The Discrete Logarithm Problem (DLP)

The Discrete Logarithm Problem (DLP) is a problem that has been researched in

[36, 40]: given a large prime p, a generator α of Z∗p , and a random element β ∈ Z∗p
, it is hard to find the integer x (0 ≤ x ≤ p − 2) such that αx ≡ β (mod p). Many

popular public-key cryptosystems are based on this assumption, such as the ElGamal

system and the DSS [1, 23].

Similarly, we provide a formal presentation of the DLP, in which p is a large prime

(e.g. a 1024-bit number).

Assumption 2 We say that the hardness of the DLP holds, if for all probabilistic

polynomial time adversaries A, the following probability

Pr[α ∈ Z∗p , β ∈R Z∗p : A(p, α, β) = x s.t. αx ≡ β (mod p)] < ε

Chapter 5

A Scheme Based On The RSA Assumption

We begin this chapter by introducing a specific trapdoor algorithm whose security de-

pends on the RSA Assumption. We embed this algorithm into our TCPS (Trapdoor-

based Client Puzzle System) framework to implement the puzzle construction phase.

We shall evaluate this algorithm before employing it to develop a RSA Assumption-

based TCPS. Additionally, we shall demonstrate that this proposed scheme satisfies

all the essential requirements and security conditions as stated in Chapter 4.

5.1 Algorithm

In this section, we describe an efficient trapdoor scheme whose security is based on the

RSA Assumption. This scheme has been widely used earlier according to literature

[17, 18, 29]. To embed it into the TCPS, we make some modifications to it in our new

scheme.

Let N be the product of two large primes p and q. Maintain p and q as secrets.

It is computationally infeasible to factorise N for all polynomial adversaries. Denote

φ(N) = (p− 1)(q − 1). Let e ∈ Z∗φ(N) be a prime such that GCD(e, φ(N)) = 1. g is a

random integer in the group of order φ(N).

Puzzles constructed in this RSA Assumption-based scheme are derived from the

following equation.

M = ga · re (mod N) (5.1)

where a ∈ [1, e− 1], random r ∈ Z∗N . Given a value of M , we find that for each a′ 6= a,

there exists a unique r′ such that M = ga′ · (r′)e (mod N) holds. We present it as

49

5.1. Algorithm 50

follows.

M = ga · re = ga′ · (r′)e (mod N) (5.2)

Indeed, for each a′, the value of r′ is equal to the e-root of M · g−a′ (mod N).

The trapdoor of this algorithm is the value of x = g
1
e (mod N). In this case, we

plug x in Eq (5.1) as follows.

M = ga · re (mod N)

= (xe)a · re (mod N)

= (xa · r)e (mod N) (5.3)

Let y = xa · r, then we show that y equals the e-root of M .

y = M
1
e = xa · r (mod N) (5.4)

Note that if M is kept constant, y is uniformly a constant which inherits the same

property as in Eq (5.2). Given a value of y, for each a 6= a′, there exists a unique r′

such that

y = xa · r (mod N)

= xa−a′ · r′ (mod N) (5.5)

Now, we can compute

r′ = (y · x−a) · xa′ (mod N) (5.6)

Our scheme is such that, given a pair (a, r), the puzzle creator obtains the values

of M and y (= M
1
e modN). Keeping them constant, the creator varies the value of

a′ for each new puzzle, and meanwhile, computes r′ by using Eq (5.6). Due to lack of

knowledge about x, y, the solvers have to conduct three steps ruled by the creator as

follows, to obtain the answer r′.

(i) Receive the values of M , ga′ , e, N and a search range for r′ from the creator.

(ii) Pick up a candidate r′ from the range and test whether M = ga′ · (r′)e modN .

(iii) Repeat (ii) until all possible r′ are tested or a r′ that satisfies Eq (5.1) is found.

5.1. Algorithm 51

In this puzzle scheme, the computational cost consumed by the creator is quite

distinct from that consumed by solvers. For the creator, it merely needs one modular

multiplication r′ = T · a′ (mod N) to solve a puzzle, because y · x−a can be pre-

computed and referred to as a constant T . A solver, on the other hand, has to perform

a brute-force search and a number of modular exponentiations to determine the answer.

Furthermore, the creator is able to control the computational cost consumed by the

solvers by adjusting the length of the search ranges.

Theorem 1 If Eq (5.2) holds, then the solution r′ computed by Eq (5.6) can be verified.

Proof : Given the initial values of (a, r), we obtain the following result

M = ye = (xa · r)e = (xe)a · re = ga · re = ye (mod N)

To create a new puzzle, we choose a′ and obtain the solution r′ = (y · x−a)xa′ . Then

we verify it in Eq (5.2)

M = ye = [xa−a′ · (r′)]e = (xa−a′)e · (r′)e (mod N)

= (xa−a′)e · [(y · x−a)xa′]e (mod N)

= (xe)a−a′ · ye · (xa′−a)e (mod N)

= ga−a′ · ye · ga′−a (mod N)

= ye (mod N)

Theorem 2 Under the RSA Assumption, our scheme is secure.

Proof : Before presenting the proof, we firstly recall the RSA Assumption. N is the

product of two large primes p and q. Given two elements e ∈ Z∗φ(N), g ∈ Z∗N (where

e is relatively prime to φ(N)), it is computationally infeasible to find a non-negative

integer x such that

xe = g (mod N)

holds, which is equivalent to factoring pq [45].

We assume there is an algorithm A which can output a pair of (a, r) and (a′, r′),

where a 6= a′ and r 6= r′, for given values of M, g, e ∈ Z∗N , such that

M = ga · re = ga′ · (r′)e (mod N)

holds with a non-negligible probability.

5.2. A RSA Assumption-based TCPS 52

Now, we show that an algorithm B intends to use A to break down our scheme by

computing the trapdoor x = g
1
e (mod N), which is assumed to be secure under the

RSA Assumption. This simulation is described as follows.

After obtaining a pair of values (a, r) and (â, r̂), B transforms the following equation:

M = ga · re = ga′ · (r′)e (mod N)

and obtains

ga−a′ = (
r′

r
)e (mod N)

Let θ = a − a′. Since a, a′ < e and e is a prime, we note that GCD(θ, e) = 1.

According to the extended Euclidean algorithm [9], we can find two integers m, n such

that mθ + ne = 1. Now, B can obtain the following permutation by using the previous

equation.

g = gmθ+ne = gmθ · gne (mod N)

= (gθ)m · gne (mod N)

= [(
r′

r
)e]m · gne (mod N)

= [(
r′

r
)m · gn]e (mod N)

If B is able to take e-root computation in Z∗N , he will obtain the trapdoor x, such

that

x = g
1
e = (

r′

r
)m · gn (mod N)

Note that the probability that A outputs a = a′ and b = b′ is equal to 1/N2.

Moreover, e-root computation in a cyclic group (order N) is computationally infeasible

under the RSA Assumption. Hence the success probability of B is lower bounded by

1/N2. We have now completed the proof.

5.2 A RSA Assumption-based TCPS

In this section, we shall present how the above algorithm is used to develop the TCPS.

We assume there are two participants involved, namely a defending server S and a client

C. Additionally, S establishes a TCPS for DoS defence, and C has the ability to solve

puzzles by using the parameters received from S. Now, according to the definition

in Chapter 4, we divide the scheme into four phases, which are the preconstruction

5.2. A RSA Assumption-based TCPS 53

phase, the construction phase, the puzzle-solving phase and the verification phase,

respectively. Apart from the puzzle solving, which is performed on the client’s side,

these phases all run on the server.

1. Pre-construction phase

An analysis of the trapdoor algorithm outlined above indicates that the puzzle

creator (S) needs a number of constants to generate puzzles. Thus, to decrease

computational overheads and improve efficiency in the construction phase, we

introduce pre-computation into our scheme.

The pre-construction procedure is illustrated as follows:

(i) Determine a time interval Td, and the size of set A denoted by n.

There is a trade-off between Td and n, which requires some careful thought.

In fact, the server needs to find the minimum n and the maximum Td that

satisfy the following requirement: n is minimum greater than the maximum

connection ability of the server in each time period. It guarantees that in

the same time period no element in set A can be selected more than once.

For instance, if the hourly maximum connectivity of the server is 50,000 on

average, n should be greater than 50,001 with Td = 1.

(ii) Establish A.

Variable a′ for each new puzzle (M = ga′ · (r′)e modN) is derived from A.

First of all, the server creates a superincreasing sequence I [51] such that

I = { bi| 1 ≤ i ≤ m,m > n, bi ∈ [1, e− 1] } ∩ { ∀bi, b
′
i ∈ I|

i′−1∑
i=1

bi < b′i }

This means that every item belonging to I is greater than the sum of all the

previous elements. For example, {3, 7, 13, 29, 67} might be a subset of I,

while {3, 5, 7, 11} is not.

To build A, the server randomly picks up n(< m) non-repeated elements

from I. Then, we can obtain A such that

A = {ai| 1 ≤ i ≤ n, ai ∈ I } ∩ {∀ai, a
′
i ∈ A, 1 ≤ x ≤ n| a′i 6=

x∑
i=1

ai }

Recalling the property of a superincreasing sequence I, we know that every

instance in A cannot be equal to the sum of any arbitrary instances. Fig

5.2. A RSA Assumption-based TCPS 54

(5.1) illustrates this property more clearly. Assume that {1, 3, 5, 11, 23} is

a subset of superincreasing sequence I. To set up A, the server chooses four

non-repeatable elements from I randomly. Then, we obtain A = {3, 11, 1, 5}.
Note that we cannot obtain any element in A by summing up any other

discretionary number of elements. For example, 11+1 6= 3+5, 11 6= 3+5+1,

3 + 1 6= 5, and so on.

�

��

�

�
��

�

�

�

�����������	���	��	�
� ������������
���

�

�

������
�����������

�

��

�

�

�

����������
������

Figure 5.1: A Sample of Set A

(iii) Compute GA, which is a multiplier factor for constructing a puzzle.

GA = {gai(modN)|1 ≤ i ≤ n, ai ∈ A} ∩ {∀ai, a
′
i ∈ A, ai 6= a′i| gai 6= ga′i}

(iv) Compute XA, which is a multiplier factor for solving a puzzle.

XA = {xai (mod N)| 1 ≤ i ≤ n, ai ∈ A}

(v) Generate and encrypt the time parameter t.

The form of t is defined as:

{yymmddhh1hh2} ∩ {hh2 − hh1 = Td}

5.2. A RSA Assumption-based TCPS 55

For instance, when the server selects the time interval Td = 2, a time pa-

rameter for 17:00 to 19:00 on January 9th, 2005 is t = 0501091917. Then,

encrypt t by computing gt(modN) and xt(modN), respectively. Note that

gt and xt are unique in an identical Td, and computed before each new time

period starts.

(vi) Calculate M and T by Eq (5.1) and Eq (5.6)

M = ga · re (mod N)

T = y · x−a = Md · x−a (mod N)

where a ∈ [1, e − 1] and r ∈R Z∗N are a pair of initial values. The server

will publish the value of M as part of the description of puzzles, and keep

T secret.

After accomplishing the pre-construction, the server obtains a number of con-

stants {M , T , A, GA, XA}, and two periodic constants {gt, xt}. Note that

except M being public, the rest are kept secret on the server.

2. Construction phase

When receiving a request from a client C, the server S generates a puzzle P =

(ga′ , [α, β]) along with its correct solution rs. P is essential for a client solving a

puzzle. rs is stored on the server for verification of the answer returned from the

client. This stage is described as follows.

(i) Compute ga′

ga′ = gt · gai (mod N) (5.7)

where gai ∈ GA, t is the current time period and gt is a periodic constant

calculated at the beginning of t. The server picks up random gai ∈ GA to

generate a fresh puzzle, then marks this gai to be unavailable until a new

period comes. This means that when each period starts, all the elements in

GA are available. An element is marked unavailable throughout the same

period, once it is chosen by the server to create a puzzle.

(ii) Generate r′s

xa′ = xt · xai (mod N) (5.8)

rs = (y · x−a) · xa′ (mod N)

= T · xa′ (mod N)

5.2. A RSA Assumption-based TCPS 56

Note that the values of i in Eq (5.7) and Eq (5.9) are uniform.

(iii) Obtain a search range [α, β] ⊂ Z∗N

α = rs − c (mod N)

β = α + l (mod N)

for random c ∈ [0, l), where l is the current difficulty level of the puzzles.

3. Puzzle-solving phase

Unlike the other three, this phase is performed on client’s side. We assume that

a client C has installed a specific piece of software which is distributed by the

server. It solves puzzles received from the server by using a fixed equation

M = ga · re (mod N),

a triple of constants (M, e, N), and an interface for accepting puzzle parameters

from the server.

When a client receives a puzzle P , he employs an exhaustive search (brute-force)

to find the answer rc which satisfies the equation. Due to the length of the search

range l = β−α, a client C needs to perform l/2 modular exponentiations to find

the answer rc on average.

4. Verification phase

Upon receiving the answer rc from a client, the server compares it with the stored

solution rs that has been calculated in the construction phase. If they are equal,

Verify(·) outputs 1, which means that authentication of the client is verified, and

the server proceeds with the rest of the request. Otherwise, Verify(·) outputs 0,

and the server drops the request.

Verify(rs, rc) =

{
1 if rs = rc

0 otherwise

5.3. Parameter Table and Scheme Prototype 57

5.3 Parameter Table and Scheme Prototype

We illustrate all the main parameters used in this RSA Assumption-based TCPS in

the following table, along with their corresponding properties and a simple description.

No. Notation Phase Property Public/Private Description

1 l 1 Const* Private difficulty level of puzzles
2 p 1 Const. Private large prime
3 q 1 Const. Private large prime
4 N 1 Const. Public N = pq
5 φ(N) 1 Const. Private φ(N) = (p− 1)(q − 1)
6 e 1 Const. Public GCD(e, φ(N)) = 1
7 d 1 Const. Private e · d ≡ 1 modφ(N)
8 g 1 Const. Private g ∈R Z∗φ(N)

9 M 1 Const. Private M = ga · re modN

10 x 1 Const. Private trapdoor x = g
1
e modN

11 y 1 Const. Private y = M
1
e modN

12 a 1 Random - initial value
13 r 1 Random - initial value
14 T 1 Const. Private T = y · x−a modN
15 I 1 Const. Private superincreasing sequence
16 A 1 Const. Private ai ∈ I
17 GA 1 Const. Private gai modN
18 XA 1 Const. Private xai modN
19 Td 1 Const. Private time interval
20 t 1 Const. Private hh2 − hh1 = Td

21 gt 1 Const* Private -
22 xt 1 Const* Private -
23 a′ 2 Var. Private a′ = t + ai

24 rs 2 Var. Private Server’s solution
25 c 2 Random Private -
26 α 2 Var. Public α = rs − c
27 β 2 Var. Public β = α + l
28 rc 3 Var. Public Client’s solution

Table 5.1: Parameter Table of the RSA Assumption-based TCPS

Notation: “Const.” and “Var.” represent “constant” and “variable” respectively. “Const*” is denoted

as a periodical constant. In particular, l varies according to the strength of an attack. gt and xt

are changed at the beginning of a new time period. “Phase 1, 2, 3” denote “Pre-construction”,

“Construction”, “Puzzle-solving” respectively.

5.3. Parameter Table and Scheme Prototype 58

Server Client
– – – – – – – – – – – – –
M = ga · re = ga′ · (r′)e (mod N)

x = g
1
e (mod N)

y = M
1
e = xa · r (mod N)

secret: x, g, y public: M, e, N
– – – – – – – – – – – – –
Pre-construct a puzzle:

– Generate candidate data sets:
A = {a1, a2, . . . , an}
XA = {xa1 , xa2 , . . . , xan}
GA = {ga1 , ga2 , . . . , gan}

– Generate gt, xt

for the current time period

– Generate constant: T
– – – – – – – – – – – – –
Construct a puzzle:

ga′ = gt · gai (mod N)
xa′ = xt · xai (mod N)
rs = T · xa′ (mod N)
random c ∈ [0, l)

[rs − c, rs − c + l] → [α, β]
P=(ga′ , [α, β])−−−−−−−−−−−−−−→

– –
Search for rc to meet:

M = ga · re (mod N)
– – – – – – – – – – – – –
Verify a solution: rc←−−−−−−−−−−−−−−

rs
?
= rc

– – – – – – – – – – – – –
Allocate resources for a client
or drop a request according to
the correctness of the solution

...
...

... Proceed−−−−−−−−−−−−−−→ ...

Figure 5.2: A RSA Assumption-based Puzzle Scheme

5.4. Remarks 59

5.4 Remarks

Theorem 3 The RSA Assumption-based puzzle scheme will produce a Trapdoor-based

Client Puzzle System.

Proof. We need to show that the above scheme satisfies the requirements of the

Trapdoor-based Client Puzzle System as stated in Chapter 4.

• Correctness. It is easy to verify that answers computed correctly in the puzzle-

solving phase can always pass the final verification on the defending server.

In the proposed scheme, we provide a search range [α, β] which ensures the exis-

tence of the correct solution rs. Because

[α, β] ← [rs − c, rs − c + l] for c ∈ [0, l)

where both c and l are positive integers, this means

rs − c < rs < rs − c + l

Hence, a client can eventually find a rc (= rs) which makes Eq (5.1) valid, as

long as he employs an exhaustive search.

• Semantic Security. Due to the hardness of Factorisation (or the RSA Assump-

tion), a more efficient way to obtain the correct answer than a brute-force search

cannot be found. We will prove this claim in the Security Considerations section

below.

• Collision-resistance. According to the property presented in Eq (5.2), for each

a′ ∈ [1, e− 1], there exists a unique value r′ ∈ Z∗N which can satisfy the equation

M = ga′ · (r′)e modN .

• Information Theoretic Secrecy. No client can pre-compute a puzzle by guessing

or revealing the secret components of the server.

– If a client knows the trapdoor x, he can solve all the puzzles created by

this scheme efficiently. However, we have proved in Theorem 2 that the

probability of this scenario is negligible under the RSA Assumption.

– Puzzles generated by the server can be viewed as random.

5.4. Remarks 60

The server establishes a random and non-repeatable set A (A = {ai|1 ≤
i ≤ n, ai ∈ [1, e − 1]}) in the pre-construction phase. On the basis of A,

the server calculates GA (GA = {gai (mod p) | 1 ≤ i ≤ n, ai ∈ A}) as

a necessary parameter for creating puzzles. Note that the values of gai are

irregular, and hence, the probability of guessing an instance in GA is 1/N .

When N is large enough, we can say that this probability is negligible.

This scheme also meets the essential requirements that we advocated in Chapter 4 for

promising client puzzles.

Remark 1 The computational resources consumed by a client to solve a puzzle are

greater than those used by the server to generate the puzzle and verify the solution.

A defending server performs three modular multiplications and two additions to

create a puzzle and obtain the solution at the same time.

To produce ga′ , the server performs one modular multiplication:

ga′ = gt · gai (mod N)

To obtain the solution, the server performs two modular multiplications:

r′s = T · xa′ = T · xt · xai (mod N)

To generate the search range [α, β], the server performs two additions:

α = r′s − c ; β = α + l

To verify a solution, the server only needs to make a comparison.

rs
?
= rc

To solve a puzzle, however, a client has to conduct on average l/2 modular expo-

nentiations and comparisons, which consume much more computational resources than

modular multiplications and modular additions [37]. In addition, we ensure that the

size of p and q are large enough to resist any attacks on factorisation. As a result, the

answer can only be obtained by exhaustively searching the seed range and performing

modular exponentiations until the correct instance that satisfies the public equation is

found.

5.4. Remarks 61

Remark 2 Our scheme is better than the Hash function [5] and the Diffie-Hellman

[6] based puzzle schemes.

• The unique solution guarantees that the defending server can perform a simple

comparison to verify puzzle solutions. This is more efficient and effective in

protecting the verification phase against DoS attacks than the Hash function

based puzzle scheme, in which the defending server is required to perform a hash

function for solution verification.

• To adjust the difficulty of a puzzle, we exploit a non-negative integer l to control

the length of a search range. The value of l varies according to the strength of a

DoS attack. When the strength of an attack degree is low, l is correspondingly

small and the cost of solving a puzzle is insignificant for a client. If an attack

worsens and l enlarges, a client has to supply more resources to find a solution.

On average, it requires l/2 modular exponentiations to solve a puzzle. Hence, our

scheme is more easily measurable than the Hash function based puzzle scheme.

• To avoid puzzle iteration, the Hash function based scheme requires that a record

of the used instances is kept for a long time, and it performs two comparisons in

puzzle construction and verification respectively. However, relying on the time

parameter t, our scheme can always obtain unique puzzles without wasting mem-

ory space and computational time. The items calculated in the pre-construction

phase can also be reused in every new time interval.

• As well as relying on the outsourcing for puzzle construction, the Diffie-Hellman

based puzzle scheme requires a modular exponentiation to obtain a correct so-

lution. Note that a modular exponentiation can be divided into many mod-

ular multiplications [37] and a large number of modular additions. Our RSA

Assumption-based scheme, on the other hand, only needs three modular multi-

plications and two additions to obtain a puzzle and its corresponding solution,

which is more efficient.

• Our scheme is resistant to eavesdropping attacks. As we claimed earlier, no

puzzle construction information is revealed during communication between the

defending server and its clients. In addition, each connection request has a unique

solution, so that eavesdropping is rarely advantageous to an attacker.

• By varying the values of public instances (such as M , e, N) and constant instances

5.5. Security Considerations 62

(such as A, GA, XA), distinct web servers can obtain different puzzle schemes.

This is more flexible for current network servers that possess various capabilities.

Through these remarks we conclude that our RSA Assumption-based puzzle scheme

is qualified in theory.

5.5 Security Considerations

In this section, we will inspect the following possible attacks and show that our scheme

holds strong security properties (under the RSA Assumption) against them.

(1) An adversary intends to predict the answer rc from a sequence of valid answers

that he obtained previously. Recall that

M = ga · re (mod N)

where M, N, e, ga are the public parameters of a puzzle. The adversary then

performs a brute-force search to find a valid answer r such that

re =
M

ga
(mod N).

He can also deduce the following equation, even without knowledge of d.

r = (
M

ga
)d (mod N)

Similarly, he can also compute another answer

r′ = (
M

ga′)
d (mod N).

Now, he can obtain a constant

ϕ =
r

r′
= (

ga′

ga
)d = (ga′−a)d (mod N).

Assume that

r′′ = (
M

ga′′)
d (mod N).

Then,

r′′ · ϕ = (
M

ga′′)
d · (ga′−a)d

= (
M

ga′′+a−a′)
d (mod N).

5.6. Summary 63

If the adversary can find that there is a relationship between the elements in A

that satisfies â = a′′ + a− a′, he is able to pre-compute the answer

r̂c = (
M

gâ
)d = (

M

ga′′+a−a′)
d = r′′ · ϕ (mod N).

However, an important property of set A is that all the elements are derived from

a superincreasing sequence. Hence, there is no such relationship.

(2) An adversary intends to reveal the secret constant y from the public parame-

ters. However, he finds he has to compute the e-root of M (order N), which is

equivalent to factorising pq.

(3) An adversary attempts to find out about set A from a sequence of public para-

meters ga, ga′ . . . in the same period t. He knows that

ga = gai · gt (mod N)

ga′ = ga′i · gt (mod N)

then
ga

ga′ =
gai

ga′i
= gai−a′i (mod N).

In fact, the adversary does not know whether the values of ga and ga′ come from

the same period, because both t and g are secret parameters in our scheme. Even

if we assume that t for ga and ga′ are uniform, the adversary cannot obtain any

information about set A. Recalling the Discrete Logarithm Problem, we know

that it is still hard to compute (ai − a′i) even if g is known.

5.6 Summary

This chapter has depicted a novel client puzzle scheme embedded with an efficient trap-

door algorithm. This scheme has two distinct features: the computational overheads

are low, and the difficulty level of puzzles is measurable. We also presented that this

scheme is provably secure under the RSA Assumption.

Section 5.1 elaborated on a trapdoor algorithm, and proved that its security relies

on the RSA Assumption. In Section 5.2, we implemented the Trapdoor-based Client

Puzzle System (TCPS) by combining its definition (outlined in Chapter 4) with this

trapdoor algorithm. In order to reduce the computational overheads of puzzle con-

struction, we introduced a “Pre-construction” phase into our scheme. The major task

5.6. Summary 64

of “Pre-construction” is to pre-compute a sequence of constants that is required in

puzzle construction and verification. We also demonstrated that puzzles produced by

our proposed scheme satisfy all essential requirements and security conditions.

In this RSA Assumption-based TCPS, a defending server needs three modular

multiplications and two additions to generate a puzzle along with a solution. A quick

solution verification is achieved by only one value comparison. On the other hand, the

complexity of puzzles can be controlled via an integer l, which is actually the length

of solution search ranges. This means that the server can vary l to adjust the number

of computations on the client’s side, according to the strength of DoS attacks.

Section 5.3 provided a parameter table and a work prototype for this scheme. In

Section 5.4, several possible attacks were considered. Under the RSA Assumption, our

proposed scheme can defend against all these attacks.

In conclusion, this RSA Assumption-based TCPS does work effectively and effi-

ciently.

Chapter 6

A Scheme Based On The DLP

This chapter will illustrate another trapdoor algorithm whose security is based on the

hardness of Discrete Logarithm Problem (DLP). Similarly, we shall try to adapt this

algorithm to the TCPS to fulfill puzzle construction. We shall maintain that this

DLP-based scheme also meets the essential requirements and security conditions in

the definition of the TCPS. In particular, compared with the RSA Assumption-based

TCPS, this new scheme is expected to further diminish the cost of puzzle construction

in two ways: one is in saving storage space, and the other one is in cutting down the

number of modular multiplications.

6.1 Algorithm

The algorithm that we will introduce in this section is derived from Schnorr’s Signa-

ture [12, 52], which was proposed in 1989 and could provide encryption and signature

functions. Its security relies on the difficulty of computing discrete logarithms. First

of all, we describe the algorithm as follows.

Let p be a large prime, and q be another prime which is the prime factor of p− 1.

The size of p and q should be selected with care to ensure that DLP in Z∗p is hard. g is

a generator of the group G (order q). Denote x ∈ Z∗q as a positive and secret integer.

Let l be the difficulty lever of puzzles.

Our scheme is based on the following equations, in which random a, b ∈ Z∗q.

h = gx (mod p) (6.1)

C = ga · hb (mod p) (6.2)

65

6.1. Algorithm 66

W = a + b · x (mod q) (6.3)

Examining the above equations, we find a transformation by assembling them to-

gether as shown below.

• Put Eq (6.1) into Eq (6.2).

C = ga · hb = ga · (gx)b

= ga · gbx

= ga+bx (mod p) (6.4)

• Put Eq (6.3) into Eq (6.4).

C = ga+bx = gW (mod p) (6.5)

Note that g, p are constant in Eq (6.5). Hence, if we can maintain the constancy

of W , C should be a constant as well.

From equation (6.3), we can easily verify that a and b can be chosen arbitrarily, if

the secret value x is known, to obtain W . Moreover, by a given random a′ ∈ Z∗q, we

can compute a unique b′ ∈ Z∗p by Eq (6.6) such that W is kept constant.

b′ = (W − a′) · x−1 (mod q) (6.6)

Our puzzle scheme operates so that using Eq (6.3) and (6.5), the puzzle creator

can easily compute the initial values of W and C from a pair (a, b). Then, keeping

them constant, the creator changes the value of a′ for each new puzzle, and calculates a

corresponding solution b′ through Eq (6.6). He also generates a search range associated

with b′, where the range length equals l (recall that l is the difficulty level). The

puzzle creator should broadcast p, h and Eq (6.2), but keep g, x, q, and W secret. In

consequence, the only feasible method for a puzzle solver is to perform an exhaustive

search in the candidate range to find a b′ that makes Eq (6.2) hold.

Since he knows the trapdoor - Eq (6.6), the puzzle creator performs only one ad-

dition1 and one modular multiplication to obtain a solution for each fresh a′. On the

other hand, a solver must compute a sequence of modular exponentiations for testing

each instance in the given range until he finds the correct answer. Meanwhile, the

creator can adjust the size of the search range - l to control the computational costs

consumed by the solvers.

1A subtraction operation can be viewed as an addition in a computer system.

6.1. Algorithm 67

Theorem 4 If Eq (6.2) holds, then the solution b′ computed by Eq (6.6) can be verified.

Proof : Given the initial values of (a, b), we can obtain the following result.

C = ga · hb = ga · gbx = ga+bx = gW (mod p)

To create a new puzzle, we choose a′ and compute the solution b′ = (W − a) · x−1

(mod q). Now, we verify it in Eq (6.2).

C = gW = ga′ · gb′ = ga′ · h(W−a′)·x−1

(mod p)

= ga′ · g(W−a′)·x−1·x (mod p)

= ga′ · gW−a′ (mod p)

= gW (mod p)

Theorem 5 Our scheme is secure assuming the hardness of Discrete Logarithm Prob-

lem.

Proof: To illustrate our proof, first let us recall the assumption made in the Discrete

Logarithm Problem. Given two elements of a group, gv and h, it is computationally

infeasible to find a non-negative integer x such that

h = gx (mod p)

holds, where the size of p is appropriately chosen (e.g. 1024 bits).

We assume there is an algorithm A that, given C, g, h ∈ Zp
∗, outputs a, b such

that

C = ga · hb (mod p)

holds with a non-negligible probability.

We will show an algorithm B that uses A to solve an instance of a Discrete Loga-

rithm Problem which is assumed to be hard.

To be more precise, the task of algorithm B is to output

x = logg h (mod p)

given g, h ∈ Z∗
p for a prime p. This simulation is as follows.

First, B provides g, h, p as the public parameters to A. Then, B performs the

following:

6.2. A DLP-based TCPS 68

• Select a random value θ ∈ Z∗
q , where q | p− 1.

• Compute: C∗ = gθ mod p.

Finally, B provides C∗ to A, and with a non-negligible probability, A outputs: (a, b)

where:

C∗ = ga · hb (mod p)

holds. Now, the simulation is restarted. Again, first A is a provided with the public

parameters g, h, p, and finally given C∗. A will produce another forgery (â, b̂) where

C∗ = gâ · hb̂ (mod p)

holds. If â = a and b̂ = b hold, then the last simulation needs to be repeated until

â 6= a and b̂ 6= b. We note that A will output â = a and b̂ = b with probability 1/q2.

After obtaining two values (a, b) and (â, b̂), B gathers the following equations:

C∗ = ga · hb (mod p)

C∗ = gâ · hb̂ (mod p)

Hence, B derives:

ga · hb = gâ · hb̂ (mod p)

which implies:

a + bx = â + b̂x (mod q)

or

x · (b− b̂) = â− a (mod q)

and

x = (â− a)(b− b̂)−1 (mod q)

Note that x is the solution to the DLP problem. The probability of success of B is

lower bounded by 1/q2, which is non-negligible. Hence, we have provided the proof.

6.2 A DLP-based TCPS

This section will present how a new TCPS works by using this DLP-based trapdoor

algorithm. We still consider two participants in this scheme: a defending server S

which can distribute puzzles for DoS defence; and a client C who is willing to pay

6.2. A DLP-based TCPS 69

a countable computational cost to obtain service from S when it is suffering a DoS

attack.

Similarly, we split the scheme into four phases, and use preprocessing to calculate

and store a number of constants for puzzle construction and verification, which is

expected to relieve the computational burden for S. Although there are some uniform

parameters, such as Td, t, which have been defined in Chapter 5, we still repeat them

here to show this scheme in its entirety. An analysis of the efficiency and effectiveness

of our scheme will be provided at the end of this section.

Now, we begin with the four phases.

1. Pre-construction phase

(i) Determine a time interval Td and the size of A denoted by n.

Similar to the definition stated in Chapter 5, the relationship between Td

and n is a compromise. The server needs a minimum n and a maximum Td

to meet the following requirement: in each time period, n is by minimum

greater than the maximum connection ability of the server. It means that

no instance in set A can be chosen for puzzle construction more than once

in same time period.

(ii) Establish A.

A is a random and non-repeated integer set.

A = {ai| ai ∈ Z∗q, | 1 ≤ i ≤ n} ∩ {∀am, an ∈ A| am 6= an}

(iii) Compute GA.

GA is computed by the server.

GA = {gai (mod p)| 1 ≤ i ≤ n, ai ∈ A}

(iv) Generate and encrypt t

t is a time parameter which is in the form of

{yymmddhh1hh2} ∩ {hh2 − hh1 = Td}.

We can adjust the form of t according to the designated Td. For instance, if

Td = 30 minutes, the form of t can be described as

{yymmddhhmm1mm2} ∩ {mm2 −mm1 = 30}.

Then, the server computes gt (mod p) at the beginning of each new time

period.

6.2. A DLP-based TCPS 70

(v) Compute initial C, W , wt and x−1 (mod q).

Given a random pair (a, b) ⊂ Z∗
q , the server obtains

W = a + b · x (mod q)

and

C = gW (mod p).

Compute

wt = W − t (mod q).

Using the extended Euclidean algorithm, the server easily computes x−1

(mod q).

In the pre-construction phase, the server obtains constants {W , C, x−1 A, GA}
and two periodic constants {gt, wt}.

2. Construction phase

When receiving a request from a client C, the server S generates a puzzle P =

(ga′ , [α, β]) along with its correct solution bs. P is essential for a client solving a

puzzle. bs is stored on the server for verification of the answer returned from the

client. This stage is described as follows.

(i) Compute ga′

ga′ = gt · gai (mod p) (6.7)

where gai ∈ GA, t is the current time period and gt is a periodic constant

calculated at the beginning of t. The server picks up random gai ∈ GA to

generate a fresh puzzle, then marks this gai to be unavailable until a new

period comes. This means that when each period starts, all the elements in

GA are available. An element is marked unavailable throughout the same

period, once it is chosen by the server to create a puzzle.

(ii) Generate bs

bs = (W − a′) · x−1 (mod q)

= [W − (t + ai)] · x−1 (mod q)

= (wt − ai) · x−1 (mod q) (6.8)

Note that the values of i in Eq (6.7) and Eq (6.8) are uniform.

6.2. A DLP-based TCPS 71

(iii) Obtain a search range [α, β] ⊂ Z∗q

α = bs − c (mod q)

β = α + l (mod q)

for random c ∈ [0, l), where l is the current difficulty level of the puzzles.

3. Puzzle-solving phase

Unlike the other three, this phase is performed on the client’s side. We assume

that a client C has installed a specific piece of software which is distributed by

the server. It solves puzzles received from the server by using a fixed equation

C = ga · hb (mod p),

a triple of constants (C, h, p), and an interface for accepting puzzle parameters

from the server.

When a client receives a puzzle P , he employs an exhaustive search (brute-force)

to find the answer bc which satisfies the equation. Due to the length of the

search range l = β − α, a client C needs to perform on average l/2 modular

exponentiations to find the answer bc.

4. Verification phase

Upon receiving the answer bc from a client, the server compares it with the stored

solution bs that has been calculated in the construction phase. If they are equal,

Verify(·) outputs 1, which means that authentication of the client is verified, and

the server proceeds with the rest of the request. Otherwise, Verify(·) outputs 0,

and the server drops the request.

Verify(bs, bc) =

{
1 if bs = bc

0 otherwise

6.3. Parameter Table and Scheme Prototype 72

6.3 Parameter Table and Scheme Prototype

No. Notation Phase Property Public/Private Description

1 l 1 (*)Const. Private difficulty level of puzzles
2 p 1 Const. public large prime
3 q 1 Const. Private q|p− 1
4 x 1 Const. Private random x ∈ Z∗q
5 g 1 Const. Private g is a generator in Z∗

q

6 h 1 Const. Public h = gx (mod p)
7 a 1 Random - initial value
8 b 1 Random - initial value
9 C 1 Const. Public C = ga · hb mod p
10 W 1 Const. Private W = a + bx (mod q)
11 Td 1 Const. Private time interval
12 t 1 (*)Const. Private hh2 − hh1 = Td

13 gt 1 (*)Const. Private -
14 wt 1 (*)Const. Private wt = W − t (mod q)
15 x−1 1 Const. Private -
16 A 1 Const. Private ai ∈ I
17 GA 1 Const. Private gai modN

18 ga′ 2 Var. Private ga′ = gt · gai (mod p)
19 bs 2 Var. Private Server’s solution
20 r 2 Random Private -
21 α 2 Var. Public α = rs − r
22 β 2 Var. Public β = α + l
23 bc 3 Var. Public Client’s answer

Table 6.1: Parameter Table of the DLP-based TCPS

6.3. Parameter Table and Scheme Prototype 73

Server Client
– – – – – – – – – – – – –
h = gx (mod p)
C = ga · hb (mod p)
W = a + b · x (mod q)

secret: g, x, W, q public: C, h, p
– – – – – – – – – – – – –
Pre-construct a puzzle:

– Generate candidate data sets:
A = {a1, a2, . . . , an}
GA = {ga1 , ga2 , . . . , gan}

– Generate: gt, wt

for the current time period

– Initial constants: x−1

– – – – – – – – – – – – –
Construct a puzzle:

ga′ = gt · gai (mod p)
bs = (wt − ai) · x−1 (mod q)
random r ∈ [0, l)

[bs − r, bs − r + l] → [α, β]
P=(ga′ , [α, β])−−−−−−−−−−−−−−→

– –
Search for bc to meet:
C = ga · hb (mod p)

– – – – – – – – – – – – –

Verify a solution : bc←−−−−−−−−−−−−−−

bs
?
= bc

– – – – – – – – – – – – –
Allocate resources for a client
or drop a request according to
the correctness of the solution

...
...

... Continue−−−−−−−−−−−−−−→ ...

Figure 6.1: A DLP-based Puzzle Scheme

6.4. Remarks 74

6.4 Remarks

Theorem 6 The DLP-based puzzle scheme will produce a Trapdoor-based Client Puzzle

System.

Proof. We need to show that this DLP-based puzzle scheme meets all the security

requirements as outlined in the definition of the TCPS.

• Correctness. It is easy to verify that answers computed correctly in the puzzle-

solving phase can always pass the verification.

In the proposed scheme, we provide a search range [α, β] which ensures the exis-

tence of the correct solution bs. Because

[α, β] ← [bs − r, bs − r + l] for r ∈ [0, l)

where both r, l are positive integers, this means

bs − r < bs < bs − r + l

Hence, a client can eventually find a bc (= bs) which makes Eq (5.1) valid, as

long as he employs an exhaustive search.

• Semantic Security. Due to the hardness of the Discrete Logarithm Problem, a

more efficient way to obtain the correct answer than a brute-force search cannot

be found. We will prove this claim in the Security Considerations section below.

• Collision-resistance. According to the property presented in Eq (6.2), for each

a′ ∈ Z∗p, there exists a unique value b′ ∈ Z∗q which can satisfy the equation

C = ga′ · hb′ mod p.

• Information Theoretic Secrecy. In the pre-construction process, the defending

server generates a random and non-repeatable data set A (A = {ai|1 ≤ i ≤
n, ai ∈ Z∗

q }). According to set A, the server obtains a multiplier factor set GA

(GA = {gai (mod p) | 1 ≤ i ≤ n, ai ∈ Z∗
q }) in which the values of gai are

consequently irregular.

When the defending server constructs a puzzle, it performs the following compu-

tation:

ga′ = gt · gai

6.4. Remarks 75

where gai is randomly selected from GA. We notice that the probability of a client

successfully predicting a puzzle equals 1/qn. When q and n are big enough, pre-

computing a puzzle is computationally infeasible in the time period t.

This scheme also meets the essential requirements that we advocated in Chapter 4 for

promising client puzzles.

Remark 3 The computational resources consumed by a client to solve a puzzle are

greater than those used by the server to generate a puzzle and verify its solution.

A defending server performs two modular multiplications and three additions to

create a puzzle and obtain the solution.

To produce ga′ , the server performs one modular multiplication:

ga′ = gt · gai (mod p)

To obtain the solution, the server performs one modular multiplication and one

addition:

bs = (wt − ai) · x−1 (mod q)

where wt is computed at the beginning of the current time period.

To generate the search range [α, β], the server performs two additions:

α = bs − r

β = α + l < N

To verify a solution, the server only needs to make a comparison.

bs
?
= bc

Since we ensure that the size of p and q are large enough to resist any attacks on

the DLP, the answer can only be obtained by exhaustively searching the seed range

and performing modular exponentiations until the correct instance that satisfies the

public equation is found. In consequence, to solve a puzzle, a client has to conduct on

average l/2 modular exponentiations and comparisons, which is much more than the

defending server does.

Remark 4 This DLP-based puzzle scheme is better than the Hash function [5] and the

Diffie-Hellman [6] based schemes, and also even better than the RSA Assumption-based

puzzle scheme.

6.5. Security Considerations 76

Similarly, the DLP-based TCPS is more efficient and effective than most proposed

puzzle schemes.

• A quick verification is achieved by using only one comparison, which relies on the

uniqueness of puzzle solutions.

• The defending server can adjust the complexity of client puzzles by changing

the value of l. Moreover, the defending server is able to predict the average

computational cost on the client’s side.

• Most constant instances computed in the pre-construction phase can be reused

in each time period, which reduce the workload of the defending server.

• Like the RSA Assumption-based puzzle scheme, this new method is also resistant

to eavesdropping attacks.

• Compared to the RSA Assumption-based puzzle scheme, this DLP-based scheme

has two advantages:

– Reducing computational costs. The DLP-based scheme only needs two mod-

ular multiplications and three modular additions, whilst the RSA Assumption-

based one requires three modular multiplications and two modular additions.

– Saving memory space. In the pre-construction phase, the DLP-based scheme

only needs two constant sets A and GA. The RSA Assumption-based one,

on the other hand, requires three constant sets A, GA and XA.

Following the above remarks, we conclude that the DLP-based puzzle scheme is

qualified in theory.

6.5 Security Considerations

In this section, the proposed digital signatures will be analysed by inspecting the

following possible attacks. We show that if an adversary intends to break our puzzle

scheme, he has to solve the the discrete logarithm problem in Z∗p, which is expected to

be hard.

6.6. Summary 77

• Scenario 1. An adversary attempts to find the secret integer x from the public

parameters h and p, since h = gx (mod p). The adversary finds that even

though he knows g2, he still has to compute a discrete logarithm in Z∗p.

• Scenario 2. An adversary intends to find the secret constant W from the

public parameter C, p, since C = gW (mod p). He finds a similar situation

with Scenario 1. He has to compute a discrete logarithm in Z∗p, even though he

knows g.

• Scenario 3. An adversary intends to find secret information about the puzzle

construction a′ from the public parameter ga′ . This is still hard because it is also

a typical discrete logarithm.

6.6 Summary

This chapter has described another trapdoor algorithm, which is also suitable for the

TCPS. This new client puzzle system is secure assuming the hardness of the DLP.

Section 6.1 elaborated on this trapdoor algorithm, and proved that its security relies

on the Discrete Logarithm Problem. In Section 6.2, we implemented the Trapdoor-

based Client Puzzle System (TCPS) by combining its definition (outlined in Chapter 4)

with this DLP-based trapdoor algorithm. Similar to the RSA Assumption-based puzzle

scheme, there are four phases in this new scheme, which are “Pre-construction” phase,

“Construction” phase, “Puzzle-solving” phase and “Verification” phase respectively.

Compared with the RSA Assumption-based scheme, this DLP-based TCPS has

two more major advantages: reducing computational costs by using two modular mul-

tiplications and three additions to construct a puzzle (the RSA Assumption-based one

requires three modular multiplications and two additions); saving memory space in

the pre-construction phase by calculating and storing only two constant sets (the RSA

Assumption-based one requires three constant sets).

We also demonstrated that puzzles produced by this DLP-based scheme satisfy all

essential requirements and security conditions.

In conclusion, this DLP-based TCPS is qualified in DoS defences.

2g is also kept secret in this scheme.

Chapter 7

System Description and Discussion

In this chapter, we shall describe the working environment for our Trapdoor-based

Client Puzzle System (TCPS), and how a defending server will work together with the

TCPS. We shall provide a coarse-gained configuration for system parameters, which

will enable the server to detect DoS attacks and start up the defence system in time.

Moreover, we will give an example of how to determine the difficulty level of puzzles

according to the load on the defending server. After that, we shall discuss several

possible attacks against the TCPS, and further solutions will be analysed.

7.1 Working Environment

To imitate the external environment surrounding the TCPS, we create an attack model

and assume that there are four basic components in a network: a defending server

deploying a client puzzle protection, a number of normal clients who are willing and

able to pay some computational costs for quality service when the server is suffering

from a DoS attack, a malicious client (or an adversary) with limited computational

resources who is attempting to launch a Distributed Denial-of-Service attack, and some

unwitting accomplices whose machines are called “Zombies” and serve as a platform for

a DoS attack. To provide service, the defending server and a client communicate with

each other under a certain network protocol, in which our client puzzle mechanism is

embedded.

We make the following assumptions about the capabilities of the adversary and the

“Zombies”. The first three have been explained by Juels and Brainard [33], and are

included in the following list:

1. The adversary cannot modify packets sent from any client to the defending server.

78

7.2. System Description 79

2. The adversary cannot significantly delay the packets sent from any client to the

defending server.

3. The adversary and the “Zombies” can exploit spoofed IP addresses to launch a

DoS attack.

4. “Zombies” can comply with the adversary’s command to launch cooperated at-

tacks at a designated time, but they cannot help the adversary to compute puz-

zles.

5. An adversary can deploy network worms to recruit a cohort of “Zombie” machines

in the widespread network. However, he/she cannot generally compromise routers

in the middle of the network. Based on this assumption, we consider that an

adversary can only perform limited eavesdropping on the network.

4. All client machines have the same processing power to devote to puzzle solving,

and we view an adversary as a compromised client machine. Since our client

puzzle system is deployed in conjunction with conventional time-outs, only the

solution returned before its expiration can be accepted by the defending server.

Consequently, a legitimate client can easily compute a single puzzle and send

it back in time, whereas an adversary must have access to large amounts of

computational resources to achieve his goal. Due to the fourth assumption above,

an adversary cannot gather such large amounts of resources on his own.

7.2 System Description

We shall now look at how a system using our trapdoor-based client puzzle works for a

defending server and legitimate clients. Our scheme begins with a regular examination

of a defending server to determine whether it is currently under a DoS attack. A

standard parameter for an attack can be the status of buffer space consumed or the

number of TCP connections. Here, we prefer the status of buffer space consumed as a

standard; so let Bf denote the whole buffer space of a defending server and Csm be the

number of buffers consumed. We assume there are five values of Csm which reflect the

strength of an attack (this can be adjusted flexibly according to different web servers),

and we call them 1 to 5. When less than half of Bf is consumed, the value of Csm is

zero, which means there is no attack alarm for a defending server. When the number

of consumed buffers comes to half of Bf , the value of Csm is increased to 1, indicating

7.2. System Description 80

that the server is suspected of being under an attack. From now on, the defending

server needs to construct and send out a puzzle for every client who is applying for a

connection until the alarm is removed again. When the number of consumed buffers

increases to 3/5 Bf , 7/10 Bf , 4/5 Bf , and 9/10 Bf respectively, the values of Csm are

2, 3, 4, and 5 correspondingly.

We have another parameter l – the difficulty level of a puzzle, which decides the

length of the search range related to Csm. When Csm is zero, the value of l is also

zero. When Csm is increased to 1, l becomes 10 (the value of l can also be adjusted

according to different web servers). As Csm increases, the value of l appears to grow

exponentially. We describe some variations below:

Csm = 0, l = 0;

Csm = 1, l = 10;

Csm = 2, l = 100;

Csm = 3, l = 1, 000;

Csm = 4, l = 10, 000;

Csm = 5, l = 100, 000;

We can see that the difficulty of a puzzle can be increased from 0 to a figure that

is computationally infeasible as an attack becomes more severe.

We describe the details of our defending system as follows.

1. Csm = 0, which means there is no attack alarm for our defending server.

When a client sends an initial connection request and an enquiry as to whether

the server is under a DoS attack, the server answers “No”. Then the client and

the server should continue and finish their connection according to a standard

connection establishment protocol such as TCP. The period of validation for this

connection is within a certain time Tv.

2. Csm ≥ 1, which means our defending server is suspected of being under

a DoS attack

When a client sends an initial connection request and an enquiry as to whether

the server is under a DoS attack, the defending server constructs a puzzle accord-

ing to the current value of l, and sends back “Yes”, together with a set of puzzle

parameters, to the client. The server keeps a correct solution b′si for every con-

nection request i for a specified period Tw. A client uses the puzzle’s parameters

7.3. Discussion 81

to solve the problem and sends the solution back. The defending server compares

the two solutions, and then decides whether to proceed or drop this request. A

connection request should be dropped immediately if a solution received from a

client is incorrect, or the time for sending back a solution is beyond Tw.

7.3 Discussion

In this section, we will discuss some possible attack scenarios and problems that occur

when a defending server implements the TCPS. Solutions will also be discussed.

• Discussion 1

If a malicious client floods a defending server with initial connection requests by

using spoofed IP addresses or his “Zombies” (see Figure 6), how can a server

protect itself? Wasting system resources to construct and send out a puzzle for

every connection request is not an efficient approach for protecting a web server.

�������

���������	

���
��

����		���	�
��
�

�

�
��
�

����		���	�
��
�

����		���	�
��
�

� � �
� ��

Figure 7.1: A Threat To Our TCPS

The aim of such an attack is to make a defending server perform a large number

of meaningless computations for the construction of puzzles, which may lead to

the possibility of exhausting the server’s resources. Recall that a basic principle

of client puzzles in defending against DoS attacks is to force a client to consume

a large number of resources before obtaining resources from the defending server.

If we do not comply with this rule, the threat of DoS attacks still exists.

7.3. Discussion 82

We propose two improved solutions to defeat this threat.

Solution 1

We propose to calculate and obtain the puzzle solution pairs (ga′ , b′s) in advance,

and store them in a secret table on a defending server, before every new time

period t starts. When there is a connection request, the server does not need to

construct a puzzle by calculating the modular multiplication for ga′ and b′s. The

server just fetches a pair of puzzle solutions (ga′ , b′s) from the table, keeps b′s,

and sends the value of ga′ to the client. Hence, the only thing that the server

needs to do, when there is a connection request, is to select a random integer r

to generate the seed range [b′s − r, b′s − r + l] for b′c. The size of the table can be

determined by the capability of the connectivity of the defending server.

Solution 2

Before describing our second scheme, we make the following assumption for this

solution. A malicious client who deploys IP spoofing cannot intercept all the

packets sent from a defending server to the spoofed addresses. When a defending

server receives a connection request, it sends back a sequence number to determine

whether the address is bogus. The aim of this option is to alleviate an attack

via the sequence number in this first step, and then ban it in the later puzzle

verification.

When a client sends an initial connection request and an enquiry as to whether

the server is under a DoS attack, the server returns “Yes” and a sequence number

to the received IP address. If the client is willing to accept the puzzle, he should

return a value that is equal to the sequence number plus one in a strict time period

Ts. After receiving the correct sequence number in a valid time period, the server

generates and sends a cryptographic puzzle to the client. Otherwise, the server

will drop the service request immediately. The sequence number is a filter for

spoofed IP addresses which works under the above assumption. A legitimate

client has to simply solve a puzzle and send the solution in a given time Tw to

obtain the final service. If the solution is correct, the server will proceed with

the rest of the connection request and distribute the system’s resources to the

client. On the other hand, if the answer is wrong or the time for computation is

beyond the given time Tw, the server will drop this request. If a connection is

established, the period of validation for this connection is within a specified time

Tv.

7.3. Discussion 83

������

�����������	�
����������

���
����� ����	������	�����

�� ���

�	����

���	����

������ �!��"��"����
���#��"��$��������

���%��#��"��
��	������
��������&

�������"��$	����

'#��"����������
�

!�����(����
�������

$	����

���	��

)��
��	�����$	����

*���#%��"��
��	����

Figure 7.2: Using A Sequence Number Against IP Spoofing

• Discussion 2

Compared with a hash-based puzzle, in which a defending server does not need

to store any client information while a client is solving the puzzle, our scheme

requires a defending server to store a solution b′s. These are two totally different

purposes. The hash approach sacrifices CPU time in the verification process to

avoid any memory becoming exhausted. Our trapdoor-based puzzle conducts a

reverse activity. We note that the final decision should be made by the server

administrators, who are aware of which resources are more valuable for their own

systems.

• Discussion 3

The main goals of our client puzzle schemes are to defend network servers against

DoS attacks, and ensure that legitimate clients gain qualified service as long as

they can solve the puzzles. However, some DoS attacks may aim to take down

clients’ machines, where an attacker may broadcast false puzzles to consume a

client’s resources.

In this case, the current solution (for example, the puzzle scheme proposed by

Aura [5]) is to make puzzles signed by the defending server. When receiving a

7.3. Discussion 84

puzzle, a client first verifies the signature by using the public key of the defending

server, and then computes it. Since the number of puzzles for a legitimate client

is very small, the cost of public-key verification on the client’s side is usually

acceptable.

• Discussion 4

Our TCPS and two proposed puzzle schemes can be applied to all network servers

which are based on TCP connection, such as telnet, Web or email, or SSL/TLS

[21]. The software for puzzle construction and computation can be homogenous

and centrally distributed. Different servers can obtain diverse puzzle systems by

changing a series of parameters in the schemes, for example, the large primes

(e.g. p, q), the constant sets (e.g. A, GA), and so on. Clients need to download

the software only once, and are then able to solve all types of puzzles, according

to parameters and equations published by servers.

Chapter 8

Conclusion and Future Work

This thesis began with a brief introduction about the achievements of today’s Internet,

along with an overview of the major security threats to its development. Our work

in this thesis, however, has only focused on studying and preventing one of these

threats: Denial-of-Service (DoS), which is believed to create massive destruction in

open communication networks.

By reviewing the history of DoS, we have acknowledged that Denial-of-Service is

a macro definition for the result of all intentional/accidental actions that can cause

service to be degraded or interrupted. A DoS attack is specifically referred to in

our work as a malicious action which attempts to render an Internet service provider

incapable of supplying normal service to legitimate clients.

To illuminate the attack theory, we have demonstrated a number of representative

examples of DoS attacks, in which Distributed Denial-of-Service (DDoS) attacks are

relatively new and possess more significant power by controlling “Zombie” armies and

mounting cooperated attacks on victim hosts or networks. We have classified these

attacks in two distinct ways according to their characteristics.

Several proposed countermeasures have been analysed, such as Ingress/Egress Fil-

tering and Packets Marking. An analysis of their advantages and limitations has been

presented in Chapter 2. Compared with these methods, client puzzles appear to be

more reasonable and more practical to protect web servers against resource depletion

attacks. We have described the robustness of client puzzles, which force suspected

attackers (including all legitimate clients and real attackers) to invest their compu-

tational resources in an authentication process before a defending server allocates its

memory and processing time.

However, we have also found that most proposed puzzle constructions are incapable

of meeting the demands of tackling large amounts of high-speed incoming requests. In

85

86

the most severe cases, the client puzzle mechanism itself may become a target of DoS

attacks. By examining two proposed puzzle schemes, we have summarised current

problems and provided our recommendations.

Since puzzle distribution and verification can be subject to DoS attacks, we have

proposed a novel model for puzzle construction, called the Trapdoor-based Client Puz-

zle System (TCPS). As long as it satisfies the security conditions we have defined,

any cryptographic algorithm can be adapted to this model to construct puzzles. Our

TCPS can overcome the problems encountered by previous puzzle schemes, such as the

complexity of construction and verification, solution collision, and so on.

Moreover, we have developed two puzzle schemes in this thesis, and demonstrated

that both of them are efficient with low computational costs, and can be deployed in

connection with the Client Puzzle Protocol [33] or other existing network protocols

(e.g. TCP/IP, SSL). We have also provided complete security proof for each respective

scheme.

The common attributes of our new puzzle schemes are outlined as follows:

• The defending server sends the client a puzzle whose solution requires a brute-

force search and a number of modular exponentiations to satisfy a given equation.

• The difficulty level of puzzles is parameterised according to the server load. In

addition, the average computational costs on the client’s side can be predicted

by the server.

• The security of both puzzle schemes is guaranteed by some hard problems in

mathematics, such as the Factorisation and the Discrete Logarithm.

• Most of the computations can be accomplished in the pre-construction phase.

Due to the special cryptographic properties of puzzles, pre-computed items can

be reused in connection with time parameters, and newly generated puzzles still

appear random.

• Most significantly, a quick verification for puzzle solutions can be achieved, which

relies on the uniqueness of solutions. The server is able to obtain a unique solution

when a puzzle is created, then compare it with the answer received from the client.

Hence, there is no computation in the verification phase.

After describing two puzzle schemes, we have proposed a configuration of system

parameters to help the defending server detect DoS attacks and start up the client

87

puzzle protection. A discussion on further attacks was presented, and we noted that

while client puzzles are promising in terms of being able to mitigate the damage of

DoS attacks, a large number of research issues are still waiting to be resolved in the

future.

Future Work

The TCPS introduced in this thesis is a first step towards setting up a framework

to solve the problems that exist in current puzzle constructions. More cryptographic

algorithms are expected to be found and adapted to this model. The results of our

two specific puzzle schemes have been theoretically proved in this thesis. It would be

exciting to come up with a real system in which we can determine their effectiveness

through experiments.

In addition, as analysed in Chapter 2, many reasons contribute to the prevalence of

DoS/DDoS attacks today, which include both network problems and individual prob-

lems. Client puzzles are designed to improve the Internet’s protocol, which aims at

remedying network defects. Other solutions should arise from effective Intrusion Detec-

tion Systems (IDS) or antivirus systems to tackle individual problems. Currently, client

puzzles can only mitigate DoS attacks, but cannot stop them. We suggest combining

puzzle schemes with other countermeasures to achieve this goal in the future.

Another interesting issue is that our work in this thesis focuses only on how to

defend network servers against resource depletion attacks by using client puzzles. In

fact, this mechanism can also be used to defeat network congestion or bandwidth

depletion attacks by asking a sender to solve puzzles if he/she intends to send out a

large traffic load. However, few people have noticed this topic to date, and it still is

an open research question.

In conclusion, we summarise possible future work as follows:

• Implement the two puzzle schemes proposed in this thesis and perform experi-

ments on their effectiveness.

• Study how to control the complexity of client puzzles to maximise a defending

server’s unitisation in practice.

• Cooperate with other countermeasures, such as Packet Marking or Traceback IP,

to trace suspected packets to their source IP addresses. Finally, identify and

remove “Zombies”, “Masters”, and even true attackers.

88

• Extend the applications of client puzzles to relevant security fields.

The concept of client puzzles is a relatively new topic in network security, and there-

fore few implementations have so far been proposed. We hope that our research has

provided some valuable recommendations, which will be beneficial to other researchers

in this field.

Bibliography

[1] Digital signature standard (DSS). In Federal Information Processing Standards

Publication 186. National Institute of Standards and Technology (NIST), 1994.

[2] The New York Times, 12 September, 1996.

[3] R. Aguilar and J. Kornblum. New York Times site hacked. CNET NEWS.COM,

8 November 1996.

[4] T. Aura and P. Nikander. Stateless connections. In Proceedings of International

Conference on Information and Communications Security ICICS’97, volume 1334

of LNCS, pages 87–97. Springer Verlag, November 1997.

[5] T. Aura, P. Nikander, and J. Leiwo. Dos-resistant authentication with client

puzzles. Security Protocols, 8th International Workshop, Cambridge, UK, April

3-5, 2000; revised papers, volume 2133 of Lecture Notes in Computer Science:170–

177, Springer 2001.

[6] J. A. Halderman B. Waters, A. Juels and E. W. Felten. New client puzzle out-

sourcing techniques for dos resistance. In ACM Conference on Computer and

Communications Security, pages 246–256, 2004.

[7] B. Bencsth, I. Vajda, and L. Buttyn. A game based analysis of the client puz-

zle approach to defend against dos attacks. In IEEE Conference on Software,

Telecommunications and Computer Networks (SoftCom 2003), Venice, 7-10 Octo-

ber, 2003.

[8] D. J. Bernstein. Syn floods - a solution.

Available at http: // www. op. net/ jaw/ syn-fix.html, 1996.

[9] Matt Bishop. Computer security : art and science. Boston, MA : Addison-Wesley,

203.

89

BIBLIOGRAPHY 90

[10] D. Boneh. Twenty years of attacks on the rsa cryptosystem. In Notices of the

American Mathematical Society (AMS), 46:203–213, 1999.

[11] R. Braden. T/tcp: Tcp extensions for transactions functional specification. RFC

1644, July 1994.

[12] E. F. Brickell and K. S. McCurley. An interactive identification scheme based on

discrete logarithms and factoring. In Advances in Cryptology, Proc. EUROCRYPT

90, LNCS 473, volume 5, pages 23–29. Springer-Verlag, 1991.

[13] CIAC Information Bulletin. H-02: SUN’s tcp syn flooding solutions, October,

1996.

[14] CERT Coordination Center. Trends in denial of service attack technology, Octo-

ber, 2001.

[15] Wu chang Feng. The Case for TCP/IP Puzzles. In Proceedings of ACM SIG-

COMM Workshop on Future Directions in Network Architecture (FDNA-03), Ger-

many, August 2003.

[16] CNN. Cyber-attacks batter Web heavyweights.

available at http://www.cnn.com/2000/tech/computing/02/09/cyber.attacks.01

/index.html, February 2002.

[17] R. Cramer and I. Damgard. New generation of secure and practical rsa-based

signatures. In Advances in Cryptology, Proc. CRYPTO 96, LNCS 1109, pages

173–185. Springer-Verlag, 1996.

[18] R. Cramer and V. Shoup. Signature schemes based on the strong RSA assumption.

ACM Transactions on Information and System Security, 3(3):161-185, August

2000.

[19] daN. Re: client puzzle protocol neohapsis archives.

Available at http://archives.neohapsis.com/archives/nfr-wizards/2000-q1/0645.

html, 2000.

[20] C. Davidson. The “SYN flood” gates open for WebCom. iWorld Weekly, 16 De-

cember 1996.

[21] D. Dean and A. Stubblefield. Using client puzzle to protect TLS. In Proceedings of

the 10th USENIX Security Symposium, USA, August, 2001. USENIX Association.

BIBLIOGRAPHY 91

[22] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In

Advances in Cryptology, Proc. CRYPTO 92, LNCS 740, pages 139–147, Santa

Barbara, CA USA, August 1992. Springer Verlag.

[23] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Transactions on Information Theory, 31:469–472, 1985.

[24] J. Elliot. Distributed denial of service attacks and the zombie ant effect. IT

Professional, pages 55–57, March, 2000.

[25] P. Ferguson and D. Senie. Network ingress filtering: Defeating denial of service

attacks which employ ip source address spoofing. IETF, RFC 2267, January 1998.

[26] M. K. Franklin and D. Malkhi. Auditable metering with lightweight security.

Journal of. Computer Security, 7(4):237–255, 1998.

[27] A. Freier, P. Karlton, and P. Kocher. The SSL protocol -version 3.0, March 1996.

[28] X. Geng, Y. H., and A. B. Whinston. Defending wireless infrastructure against the

challenge of ddos attacks. Mobile Networks and Applications (MONET), 7(3):213–

223, 2002.

[29] R. Gennaro. Multitrapdoor commitments and their applications to proofs of

knowledge secure under concurrent man-in-the-middle attacks. In Advances in

Cryptology, Proc. CRYPTO 2004, LNCS 3152. Springer-Verlag, 2004.

[30] Thomer M. Gil. MULTOPS: a data-structure for bandwidth attack detection,

2001.

[31] Shon Harris. Dos defense. Information Security magazine, September, 2001.

[32] John D. Howard. An analysis of security on the internet 1989 - 1995, PhD thesis,

Carnegie Mellon University, April 1997.

[33] A. Juels and J. Brainard. Client puzzles: A cryptographic countermeasure against

connection depletion attacks. In S. Kent, editor, Distributed Systems Security

(SNDSS), pages 151–165, 1999.

[34] F. Kargl, J. Maier, and M. Weber. Protecting web servers from distributed denial

of service attacks. In Proceedings of the 10th International WWW Conference,

Hong Kong, May 1-5, 2001.

BIBLIOGRAPHY 92

[35] Charlie Kaufman, Radia Perlman, and Mike Speciner. Network Security: Private

Communication in a Public World (2nd Edition). Prentice Hall PTR, 2002.

[36] A. K. Lenstra and H. W. Lenstra Jr. Algorithms in number theory. In J. van

Leeuwen, editor, Handbook of Theoretical Computer Science, volume A, pages

673–715. MIT Press/Elsevier, 1990.

[37] C. Mclvor, M. Mcloone, and J. V. Mccanny. Modified montgomery modular mul-

tiplication and rsa exponentiation techniques. In IEE Proceedings Computers &

Digital Techniques, volume 151, pages 402–408, Nov 2004.

[38] R. C. Merkle. Secure communications over insecure channels. Communications of

ACM, 21(4):294–299, April 1978.

[39] P. R. J. Mirkovic and J. Martin. A taxonomy of ddos attacks and ddos defense

mechanisms. Technical Report 18, University of California, Los Angeles - Com-

puter Science Department, 2002.

[40] A. M. Oldyzko. Discrete logarithms in finite fields and their cryptographic sig-

nificance. In Advances in Cryptology, Proc. EUROCRYPT 84, LNCS 209, pages

224–314. Springer Verlag, 1984.

[41] T. J. Ott, T. V. Lakshman, and L. Wong. Sred: Stabilized red. In Proceedings of

IEEE INFOCOM, March 1999, pages 1346–1355, 1999.

[42] K. Park and H. Lee. On the effectiveness of probabilistic packet marking for ip

traceback under denial of service attack. IEEE INFOCOM 2001, pages 338–347,

2001.

[43] K. Park and H. Lee. On the effectiveness of route-based packet fil-

tering for distributed dos attack prevention in power-law internets. In

Proceedings of ACM SIGCOMM’2001, August 2001.

[44] K. Park and H. Lee. Advanced packet marking mechanism with pushback for ip

traceback. In ACNS04 PROGRAM Academic Track, June 8-11, 2004.

[45] R. C. Peralta. A simple and fast probabilistic algorithm for computing square

roots modulo a prime number. IEEE Transactions on Information Theory, IT-

32:846–847, 1986.

[46] DARPA INTERNET PROGRAM. RFC 791 - internet protocol, September, 1981.

BIBLIOGRAPHY 93

[47] DARPA INTERNET PROGRAM. RFC 793 - transmission control protocol, Sep-

tember, 1981.

[48] Michael B. Rash. client puzzle protocol.

Available at http://honor.trusecure.com/pipermail/firewall-wizards/2000-

february/007944.html, 2000.

[49] L. Ricciulli, P. Lincoln, and P. Kakkar. TCP SYN flooding defense. In In Comm.

Net. and Dist. Systems Modeling and Simulation Conf. (CNDS’ 99), 1999.

[50] R. Rivest, A. Shamir, and L. Adelman. A method for obtaining digital signa-

tures and public-key cryptosystems. Communications of the ACM, 21:120–126,

February 1978.

[51] Bruce Schneier. Applied cryptography : protocols, algorithms, and source code in

C. John Wiley & Sons, Inc., 1996.

[52] C. P. Schnorr. Efficient signature generation for smart cards. In Advances in

Cryptology, Proc. CRYPTO 89, LNCS 435, pages 239–252. Springer-Verlag, 1990.

[53] D. Seeley. A tour of the worm.

Available at http://world.std.com/ franl/worm.html#p2.

[54] L. Sherriff. Virus launches ddos for mobile phones.

Available at http:// www.theregister.co.uk/content/1/12394.html.

[55] R. Stone. Centertrack: An ip overlay network for tracking dos floods. 9th USENIX

Security Symposium, pages 199–212, August, 2000.

[56] Computer Emergency Response Team. Cert advisory CA-96.01: UDP port Denial-

of-service attack, 1996.

[57] Computer Emergency Response Team. Cert advisory CA-97.28: IP Denial-of-

service attacks, 1997.

[58] Computer Emergency Response Team. Cert advisory CA-99.17: Denial-of-service

tools, 1999.

[59] Computer Emergency Response Team. Cert advisory CA-96.21: TCP SYN flood-

ing and IP spoofing attacks, 24 September 1996.

BIBLIOGRAPHY 94

[60] Computer Emergency Response Team. Cert advisory CA-96.26: Denial-of-service

attack via ping, December, 1996.

[61] Computer Emergency Response Team. Cert advisory CA-98.01: Smurf IP Denial-

of-service attacks, December, 1996.

[62] Computer Emergency Response Team. Cert advisory CA-95-01: IP Spoofing at-

tacks and Hijacked terminal connections, January, 1995.

[63] A. Wagner, B. Plattner, and R. Hiestand. Experiences with worm propaga-

tion simulations. In Proceedings of the First ACM Workshop on Rapid Malcode

(WORM03), October 1999.

[64] C. T. Wang, C. H. Lin, and C. C. Chang. Signature schemes based on two

hard problems simultaneously. In the 17th International Conference on Advanced

Information Networking and Applications, pages 557–560, 2003.

[65] Ge’ Weijers. re:client puzzle protocol.

Available at http://archives.neohapsis.com/archives/nfr-wizards/2000-q1/0558.

html, 2000.

[66] M. Williams. Ebay, amazon, buy.com hit by attacks. IDG News Service, 9 Febru-

ary 2000.

[67] Y. Xiang, W. Zhou, and M. Chowdhury. A survey of active and passive defence

mechanisms against ddos attacks. Technical Report, TR C04/02, School of Infor-

mation Technology, Deakin University, Australia, March, 2004.

[68] B. Ziegler. Hacker tangles panix Web site. Wall Street Journal, 12 September

1996.

	Efficient trapdoor-based client puzzle system against DoS attacks
	Recommended Citation

	tmp.1535945559.pdf.xEbVW

