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Abstract

The Internet has developed into an important economic, military, academic, and

social resource. It is a complex network, comprised of tens of thousands of indepen-

dently operated networks, called Autonomous Systems (ASes). A significant strength

of the Internet’s design, one which enabled its rapid growth in terms of users and

bandwidth, is that its underlying protocols (such as IP, TCP, and BGP) are dis-

tributed. Users and networks alike can attach and detach from the Internet at will,

without causing major disruptions to global Internet connectivity.

This dissertation shows that the Internet’s distributed, and often redundant struc-

ture, can be exploited to increase the security of its protocols, particularly BGP

(the Internet’s interdomain routing protocol). It introduces Pretty Good BGP, an

anomaly detection protocol coupled with an automated response that can protect

individual networks from BGP attacks. It also presents statistical measurements of

the Internet’s structure and uses them to create a model of Internet growth. This
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work could be used, for instance, to test upcoming routing protocols on ensemble of

large, Internet-like graphs. Finally, this dissertation shows that while the Internet

is designed to be agnostic to political influence, it is actually quite centralized at

the country level. With the recent rise in country-level Internet policies, such as

nation-wide censorship and warrantless wiretaps, this centralized control could have

significant impact on international reachability.
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Glossary

AS Autonomous System. A (typically multi-homed) network that has

been assigned IP address space and has its own intradomain rout-

ing policies. ISP, university, and corporate networks are often au-

tonomous systems.

BGP Border Gateway Protocol. BGP is a path-vector routing protocol

that finds AS-paths to destination prefixes. It is the de-facto inter-

domain routing protocol.

IP prefix A contiguous block of IP addresses. An example of a prefix is

192.168.1.0/24. The “/24” divides the network portion of the prefix

from the host portion. IPv4 has 32 bit addresses, and therefore the

first 24 bits (192.168.1) name the network, and 256 addresses remain

for the hosts.

IRR Internet Routing Registry. A database of AS number assignment,

IP prefix assignment, and routing policies between ASes.

RIR Regional Internet Registry. RIR’s assign AS numbers and IP address

space to organizations within their designated region.
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Chapter 1

Introduction

Today the Internet is comprised of nearly 31,000 individually operated networks

called Autonomous Systems (ASes). These ASes have administrative control over

their internal networks, including routing protocols, topology, and traffic engineering.

A handful of fundamental protocols (BGP, DNS, IP, UDP, TCP) tie these networks

together into a single interdomain network, the Internet. These protocols are insecure

because they do not authenticate communication end points, routing paths, or even

the resolution of names. They are also considered neutral protocols because they do

not give preference to particular networks, or rely upon trusted authorities. They

thrive in a distributed network in which members may freely come and go and the

majority of administrators (or network operators) are trustworthy.

Recently, these protocols have come under the scrutiny of security researchers

as they have repeatedly been publicly compromised. Specifically, weaknesses in the

BGP interdomain routing protocol, which enables each AS to communicate with all

other ASes, have received public attention. For example, in February of 2008, a

Pakistani ISP used BGP to claim ownership of YouTube Inc.’s IPv4 addresses in

an attempt to prevent Pakistani citizens from viewing YouTube content [1]. The
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Chapter 1. Introduction

announcement of ownership was accidentally leaked globally and YouTube was un-

reachable for several hours. In August of 2008, at the hacker conference DEFCON,

the conference’s network traffic was rerouted to a middle man where it could be spied

upon, and then forwarded back to the attendees using a BGP hijack [2].

A number of the many proposed security solutions (e.g. DNSSEC, Secure BGP,

Secure Origin BGP) for the fundamental protocols could have been implemented

and deployed by now. However, the previously listed solutions are ineffective when

deployed on a single network. They rely upon a wide deployment to be effective

and therefore networks must wait for the entire community to select and deploy a

security protocol before they can be protected.

The research in this dissertation investigates secure solutions for the fundamen-

tal Internet protocols that have robust deployment paths. Specifically, it describes

a distributed security proposal for BGP, called Pretty Good BGP. It also verifies

PGBGP’s effectiveness through simulation and live experiments. Performing accu-

rate simulations of protocol behavior on the Internet is difficult, as the Internet’s

topology is not well understood [3]. Therefore, this dissertation also explores new

methods for measuring and modeling the Internet’s structure to improve simulation

accuracy.

The Internet measurements were performed both at the AS and country-level.

The AS-level measurements differ from previous research in that they tease apart

the differences in network structure based on location within the Internet’s hierarchy

(from core to periphery), rather than focusing on global Internet properties.

The hierarchical, or radial, analysis can be used to verify that AS models produce

statistically realistic graphs across the hierarchical spectrum. This dissertation finds

that existing AS topology models do not sufficiently capture the Internet’s radial

structure, and introduces a new model, ASIM, that does. ASIM is the first AS

2



Chapter 1. Introduction

model to integrate traffic, economy, and geography. With ASIM, it is possible to

create ensembles of realistic graphs to validate new protocols on today’s networks

and predicted topologies of tomorrow’s.

Internet measurements could also be used to understand how new Internet pro-

tocols and policies might affect international routing. For instance, countries might

wish to avoid routing their traffic through countries that are known to censor or

wiretap international traffic. By studying Internet routing at the country-level, this

dissertation investigates how well distributed the Internet is when politics (such as

nation-wide censorship and wiretapping) are taken into account.

This dissertation addresses the following questions:

1. BGP Security Can the BGP protocol be secured without the use of a PKI?

To what extent? Could such a protocol be backwards compatible and have

strong incentive for early adoption? Regardless of the proposed protocol, is

ubiquitous deployment necessary to minimize the effect of BGP attacks on a

global scale?

2. AS-Level Modeling What is the topology and structure of the Autonomous

System (AS) level Internet? Can the AS graph, be accurately modeled? How

do external factors such as economics and geography affect network growth and

connectivity?

3. Country-Level Routing Measurement How might censorship of Internet traffic

(e.g. Pakistan, Iran, China) and legalized warrantless wiretaps (e.g. U.S.A.,

Sweden) affect countries ability to reach each other? In other words, are some

countries so central to the Internet that other countries must route traffic

through them?

In the remainder of this chapter, I summarize three research projects that address

3



Chapter 1. Introduction

the previous questions, and the contributions that I have made. I then provide an

outline of the remainder of this dissertation.

1.1 Distributed Routing Security: Pretty Good

BGP

The Internet’s interdomain routing protocol, BGP, is vulnerable to a number of

potentially crippling attacks. Several promising cryptography-based solutions have

been proposed, but their adoption has been hindered by the need for community

consensus, cooperation in a Public Key Infrastructure (PKI), and a common security

protocol. Rather than force centralized control in a distributed network, I examine

distributed security methods that are amenable to incremental deployment.

Previous research has shown that anomaly detection can be used to enhance

system security without the need for global cooperation or the need to alter the

underlying system’s protocols [4, 5, 6]. For instance, in [4] operating system calls

are monitored for abnormal behavior which might suggest the presence of malicious

code. In response to suspicious system calls, the anomaly detector throttles the

cycle time given to the anomalous application. Another intrusion detection system,

RIOT [5], monitors IP connections for abnormal behavior and throttles outgoing

connections to hinder the propagation of worms when suspicious behavior is detected.

These protocols couple an effective graduated response to difficult security problems

without altering the underlying protocols or requiring the support of external entities.

Anomaly detection and response mechanisms could help improve security of the

fundamental network protocols as well. For each protocol, anomaly detection could

be used to find activities that exploit its vulnerabilities. For instance, within DNS,

new addresses for typically stable names could be considered suspicious. Upon detec-

4
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tion of suspicious activity, an effective security response could be used to prevent it

from causing damage. This could be accomplished in network protocols by delaying

the change in state that the suspicious message would cause. In BGP routers, new

destinations for IP addresses could temporarily be given lower priority over routes

with more stable destinations. During this time the actual owner of the IP addresses

could be informed of the proposed change and allowed to remedy the situation before

the malicious route would have a chance to propagate.

This dissertation describes a distributed anomaly detection and response system

for BGP that provides similar protection as that given by existing methods and has

a more plausible adoption path. Specifically, my dissertation makes the following

contributions: (1) it describes Pretty Good BGP (PGBGP), whose security is com-

parable (but not identical) to Secure Origin BGP; (2) it gives theoretical proofs on

the effectiveness of PGBGP; (3) it reports simulation experiments on a snapshot of

the Internet topology; (4) it quantifies the impact that known exploits could have

on the Internet; (5) it presents a reference implementation of Pretty Good BGP,

developed in the Quagga routing suite; and (6) it determines the minimum number

of ASes that would have to adopt a distributed security solution to provide global

protection against these exploits.

Taken together these results explore the boundary between what can be achieved

with provably secure centralized security mechanisms for BGP and more distributed

approaches that respect the autonomous nature of the Internet.

1.2 Measuring and Modeling the AS Level Graph

The structure of the Internet at the Autonomous System (AS) level has been studied

by Physics, Mathematics and Computer Science communities. In collaboration with

Petter Holme, I extend this work to include features of the core and the periphery.

5
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New methods for plotting AS data are also described. They are used to analyze data

sets that have been extended to contain edges missing from earlier collections.

In this work the average distance from one vertex to the rest of the network is

used as the baseline metric for investigating network structure. This is useful for

measuring the characteristics of ASes based upon their distance from the network

core. Common vertex-specific quantities are plotted against this metric to reveal dis-

tinctive characteristics of central and peripheral vertices. Two data sets are analyzed

using these measures as well as two common generative models (Barabási-Albert [7]

and Inet [8]). There is a clear distinction between the highly connected core and a

sparse periphery. This dissertation also shows that the periphery has a more complex

structure than that predicted by existing estimations and models.

This work also models the Internet’s growth in order to better understand its

present state and to predict its future. To date, Internet models have attempted to

explain one (or two) of the following aspects: network structure, traffic flow, geog-

raphy, and economy. This dissertation’s contributions include: (1) the design and

implementation of an agent-based model that integrates all four network aspects;

(2) to validate the model it compares the model’s output to the measurements de-

scribed earlier; and (3) it discusses how the model can be used to improve topology

measurements and test new Internet routing protocols.

1.3 Nation-State Routing

The treatment of Internet traffic is increasingly affected by national policies that

require the ISPs in a country to adopt common protocols or practices. Examples

include government enforced censorship, wiretapping, and protocol deployment man-

dates for IPv6 and DNSSEC.

6
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If an entire nation’s worth of ISPs apply common policies to Internet traffic, the

global implications could be significant. For instance, it is known that a number

of countries censor domestic traffic [9, 10]. How much impact would it have on

international communication if those same countries filtered international traffic?

These kinds of questions are surprisingly difficult to answer, as they require com-

bining information collected at the prefix, Autonomous System, and country level,

and grappling with incomplete knowledge about the AS-level topology and routing

policies.

Chapter 6 develops the first framework for country-level routing analysis, which

allows researchers to answer questions about the influence of each country on the flow

of international traffic. The contributions of this dissertation include: (1) identifying

and addressing the many challenges of inferring country-level paths; (2) developing

network centrality metrics to measure each country’s importance to network reach-

ability; and (3) presenting and validating the results. My results show that some

countries known for their national policies, such as Iran and China, have relatively

little effect on interdomain routing, while three countries (the United States, Great

Britain, and Germany) are central to international reachability, and their policies

thus have huge potential impact.

1.4 Outline of Dissertation

The rest of this dissertation is structured as follows. Chapter 2, presents background

material on the Internet’s topology and history, the BGP protocol and its security

problems, and work related to my research. Following the background chapter, I

describe each of the projects. First, in Chapter 3, I describe the design and imple-

mentation of my security proposal for BGP, Pretty Good BGP (PGBGP). Chapter

4 describes experimental results and analysis of PGBGP. In Chapter 5, I present

7
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structural measurements of the AS-level graph. I then describe an agent-based net-

work model called ASIM, and use the structural measurements to verify that the

networks it creates are statistically similar to the real AS-graph. This work was

done in collaboration with Petter Holme. The final component of my dissertation,

which measures the influence of each country over international routing, is presented

in Chapter 6. Finally, I discuss possible future work and conclude in Chapter 7.
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Chapter 2

Background and Related Work

This chapter provides an overview of how Internet routing works today and describes

the Internet’s AS-level structure. It also reviews prior work related to my disserta-

tion, including existing Border Gateway Protocol (BGP) security proposals, methods

to infer interdomain paths, and existing Internet modeling projects. I first present

an overview of the Internet’s topology and BGP in Section 2.1, and then describe

BGP’s history and its vulnerabilities in Sections 2.2 and 2.3. Finally, I review related

work in Section 2.4.

2.1 BGP and the AS-Level Topology

Internet routing operates at the level of IP address blocks, or prefixes . Regional

Internet Registries (RIRs), such as ARIN, RIPE, and APNIC, allocate IP prefixes

to institutions such as Internet Service Providers. These institutions may, in turn,

subdivide the address blocks and delegate these smaller blocks to other ASs, such

as their customers. Ideally, the RIRs would be notified when changes occur, such as

an AS delegating portions of its address space to other institutions, two institutions

9
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Route Learned From Should Export Route to
Provider All customers
Peer All customers
Customer All neighbors
Local All neighbors

Table 2.1: Standard route export rules. Routes learned from providers are propa-
gated to customers, while local routes and those learned from customers are propa-
gated to all neighbors.
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Figure 2.1: From left to right, Comcast first announces its prefix (67.123.22.0/24)
to its providers AT&T and Verizon. Next, AT&T and Verizon each select Comcast
as their best (and only) route to the prefix and propagate that to their neighbors.
Finally, Qwest select’s Verizon’s route over AT&T’s and propagates the route to its
customers.

combining their address space after a merger or acquisition, or an institution splitting

its address space after a company break-up. However, the registries are notoriously

out-of-date and incomplete. Ultimately, BGP update messages and the BGP routing

tables themselves are the best indicator of active prefixes and the ASs responsible

for them. BGP tables today contain around 280,000 active prefixes, with prefixes

appearing and disappearing continually.

ASs exchange information about how to reach destination prefixes using the Bor-

der Gateway Protocol (BGP). A router learns how to reach external destination

prefixes via BGP sessions with neighboring ASs. BGP has two kinds of update
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messages—announcements and withdrawals. Announcements contain information

such as the destination prefix, the announcer’s IP address, and the AS path the route

will take. As the route announcement propagates, each AS adds its own unique AS

number to the path. A withdrawal retracts an earlier announcement. BGP responds

to a withdrawal message by deleting the previously announced route from its routing

table and propagating the withdrawal to its neighbors. BGP routing changes can oc-

cur for many reasons, including equipment failures, software crashes, policy changes,

or malicious attacks. Inferring the cause directly from the BGP update messages is

a fundamentally difficult, if not impossible, problem.

A router with multiple neighbors would likely learn multiple routes for each pre-

fix. The route actually chosen to transmit data is determined by the BGP decision

process . The decision process is a sequence of about a dozen rules that compare one

route to another [11]. Generally, a router prefers routes that conform to the policies

of the local network operator. Next, the router prefers routes with the lowest AS

path length. If multiple equally good routes remain, the router can apply additional

rules, ultimately resolving ties arbitrarily to ensure a single answer. Because the

decision process does not consider traffic load or performance metrics, the selected

route is not necessarily optimal from a performance point of view. An illustration

of BGP propagation is shown in Figure 2.1. In it, Comcast announces the prefix

67.123.22.0/24 to the rest of the network. The “/24” in the prefix shows that all

IP addresses that have the same first 24 bits as 67.123.22.0 are within the prefix’s

range.

In practice, routes are often selected and propagated according to local routing

policies, which are based on the business relationships with neighboring ASs [12, 13].

The most common relationships are customer-provider and peer-peer. In a customer-

provider relationship, the provider ensures that its customer can communicate with

the rest of the Internet by exporting its best route for each prefix, and by exporting
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the customer’s prefixes to other neighboring ASs. In contrast, the customer does not

propagate routes learned from one provider to another since the customer pays for

the use of such links. In a peer-peer relationship, two ASs connect solely to transfer

traffic between their respective customers. An AS announces only the routes learned

from its customers to its peers. These business relationships drive local preferences,

which in turn influence the decision process. Typically, an AS prefers customer-

learned routes over peer-learned routes, and peer-learned routes over provider-learned

routes.

ASes are often prevented by contractual agreements from forwarding (exporting)

their best routes to all of their neighbors [14]. Routes that are exported in violation of

contractual stipulations are considered policy violations, and are one type of invalid

path. According to Gao [14], an AS should export routes learned from its peers and

providers only to its customers. Routes learned from customers should be exported

to all neighbors. Therefore, an AS should not export a route learned from a provider

or peer to another provider or peer. An AS that does so is considered to be a policy

violator and the resulting AS path is a policy violating path. Table 2.1 lists each of

the export rules in common practice for future reference.

Today, the Internet is comprised of roughly 31,000 Autonomous Systems. Al-

though BGP is flexible enough to allow ASes to inter-connect into any graph struc-

ture, the Internet is hierarchically structured in practice. Networks higher in the

hierarchy transit traffic for the networks under them. A rough estimate from 2007

shows that only 17% of the ASes transit traffic for other ASes 1 and are called transit

networks. The remaining ASes are known as stub networks.

1The number of ASes in the IAR database (discussed in Chapter 3) from June 22nd
2007 which did not always occur at the end of an AS path.
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2.2 BGP’s History

The predecessor to the Border Gateway Protocol, the External Gateway Protocol,

was designed around a central core network, the NSFNET. Each peripheral network

had exactly one path to the core, which formed a tree structure. The tree topology of

the Internet prevented routing loops from forming but it also prevented Autonomous

Systems from connecting to multiple providers (known as multi-homing) and sharing

traffic with nearby networks. Network operators (engineers in charge of the networks)

disregarded these precautions and shared traffic with their neighbors anyway, being

careful not to announce this routing information to other networks in an effort to

avoid loops. Eventually, the network community’s desire for a more flexible routing

policy led to the design of the Border Gateway Protocol.

The Border Gateway Protocol was originally described in RFC 1105 [15], in June,

1989. Unlike EGP, the Exterior Gateway Protocol [16], BGP did not constrain the

network into a strict tree topology. BGP allowed peering Autonomous Systems to

define their relationships flexibly, freeing ASes to multi-home, and negotiate peer-to-

peer relationships. Loops were avoided by transmitting the entire path along with

each route update so that routers could discard routes that included duplicate AS

numbers in the path. BGP’s flexibility also allowed new backbones to be integrated

into the Internet, such as those of the tier 1 ISPs.

In the years since BGP’s introduction, the protocol has undergone three signifi-

cant revisions. First, in 1990, BGP-2 [17] removed the topological constraints that

BGP had originally used and allowed for an arbitrary network topology. BGP-3 [18],

documented in 1991, optimized the exchange of information about previously reach-

able routes. Finally, BGP-4 was introduced in 1994 [19] and revised in 1995 [20]

and 2006 [21]. BGP-4 introduced Classless Inter-Domain Routing (CIDR prefixes).

Before CIDR routing, there were 3 network sizes that allowed for either 28, 216, or 224
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hosts on the network. CIDR prefixes allow finer control of network size, and waste

fewer addresses.

2.3 BGP’s Vulnerabilities

BGP’s vulnerabilities stem from the fact that the information passed between routers

is not verified. The originating AS of the route may not in fact own the prefix that

the route claims, which is referred to as an origin AS attack. Next, the AS path

itself could be altered, leading to problems with snooping, contract violations, and

spoofed paths. In this section, I describe both types of vulnerabilities.

2.3.1 Origin AS Attacks

There are two main classes of origin AS attacks: prefix hijacks and sub-prefix hijacks.

Because BGP does not validate the origin AS of an update message, a BGP router

can announce any prefix, even those it does not own, which is known as a prefix

hijack. For example, a university could announce that it owns a prefix that actually

belongs to a financial institution, such as a bank. Those ASes that selected the

university’s route would send their data to the wrong destination. The university

could then use the data however it pleased: it could discard it (known as a black

hole); it could read the data and then forward it on to the intended destination [22];

or, it could impersonate the bank’s services to gain passwords (such as a website

login page).

Because an AS can announce any prefix, a network can accidentally or maliciously

announce a subnet of another network’s prefix rather than the whole prefix. This is

known as a sub-prefix hijack. For instance, an AS could announce 12.0.0.0/9 which

is a subnet of AT&T’s 12.0.0.0/8. This is a serious form of attack because routers
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are designed to forward traffic to the smallest matching subnet. Therefore, routers

would forward all traffic in the range of the sub-prefix to the adversary.

An adversarial AS could also announce a larger network, or supernet, of its vic-

tim’s prefix. Although it has been shown that such hijacks could be used for sending

spam from unused address space [23], it could not be used to divert traffic away from

proper destinations because routers always forward packets to the smallest matching

prefix. In this dissertation I do not consider such attacks.

There are many examples of actual origin AS attacks, including the famous 1997

incident in which a single ISP sub-prefix hijacked the first class-C subnet of ev-

ery announced prefix causing reachability problems for a large number of networks.

On November 30th, 2006 AS 4761 announced at least 4000 prefixes that it did not

own [24], including specific prefixes owned by organizations such as banks, universi-

ties, and large corporations. More recently, on February 24th 2008, AS 17557 (Pak-

istan Telecom) sub-prefix hijacked YouTube’s (http://www.youtube.com/) web-

site [1]. It is generally thought that such attacks are accidental, but they still cause

damage and they occur routinely.

It is worth noting that origin AS attacks could be stopped by using only methods

available to BGP today. BGP implementations often provide programmable filters,

in which operators can program their routers to discard routes that violate certain

conditions. Filters are used by some providers to ensure that their customers an-

nounce routes only for prefixes that they own. If all providers did this, the BGP

network would be safe from origin AS attacks. However, many networks do not filter

effectively, forcing neighboring ASes to infer the validity of routes that originate from

many hops away, an impossible task without an accurate registry. Even careful net-

work operators make mistakes, allowing their customers to announce prefixes they

do not own. For example, AS 2914 (Verio) is well known to run carefully configured

filters for its customers, but it was one of the ASes that allowed its customer (AS
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Exploit Name Category Procedure

Shortest Spoofed Path Spoofed Edge Erase AS path except for the origin AS before export
Shortest Path Policy Violation Replace AS path with shortest path of existing edges to origin AS
Redistribution Policy Violation Export route learned from one provider or peer to another
Spoofed AS Number Invalid AS Number Erase AS path and prepend victim’s AS number

Table 2.2: Invalid path exploits.

C

A

B

DE

Redistribution: (A,B,C,D), (A,E,D)
Shortest Path: (A,E,D)
Shortest Spoofed Path: (A,D)
Spoofed AS Number: (D)

Figure 2.2: Examples of invalid paths. Autonomous System A modifies its AS path
when exporting routes to gain access to D’s traffic. The paths listed in the legend
are those that A could send to its neighbors for each type of invalid path attack.
Arrows point to customers from providers, and undirected edges represent peer-peer
relationships.

4761) to announce Panix’s prefix in the well publicized hijack [25].

2.3.2 Invalid Paths

BGP does not verify the AS path declared in a route update. The path might not

have been traversed by the update, or the path might violate a network’s contractual

policy, or it might not exist. The BGP protocol states that before propagating

an update, each AS must prepend its own AS number to the path and leave the

remainder of it untouched. An adversary could disobey the protocol and edit the

path before propagating it, perhaps to shorten it to attract more traffic.

A consensus does not exist on what aspects of an AS path should be validated. I

define an invalid path as an AS path in which an edge (pair of consecutive ASes in an

AS path) in the path is spoofed (does not actually exist in the physical topology), the
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Figure 2.3: Examples of shapes that cannot be seen in valid paths. Within these
paths, a customer or provider propagates a route to another customer or provider.
Arrows point at customers and undirected edges denote peering relationships.

path violates a contractual policy, or at least one AS in the path has a spoofed AS

number. This extends the definition introduced in [26] to include policy violations.

The most important examples of known BGP exploits that use invalid paths are

listed below:

1. Shortest spoofed path To avoid prefix hijack detection, an AS could erase the

entire path between itself and the origin AS before propagating a route. This

leaves the apparent (spoofed) edge (Adversary, Origin) at the end of the path.

This is also the shortest path possible between the Adversary and the Origin,

increasing its chances of being selected by upstream ASes.

2. Shortest valid path To perform a hijack but avoid having any spoofed edges

in the path, an adversarial AS might erase the existing path and prepend the

shortest valid path of actual edges between itself and the origin AS.

3. Redistribution attack If a BGP router is not correctly configured, it could ac-

cidentally export routes learned from providers or peers to other providers or

peers, causing a policy violation. This is fairly common as many BGP routers

export all learned routes to all neighbors by default. Accidental policy viola-
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tions can cause traffic bottlenecks, since customers may not be able to handle

their provider’s traffic loads.

providers might route traffic through their customers, which don’t have enough

bandwidth

The reason that accidental policy violation attacks are harmful is that the

providers (and the provider’s providers) that the customer might export the

route to would be likely to select the customer route for the destination, but

the customer might not be able to cope with such a large amount of traffic.

4. ASN spoof A router could be configured with the AS number of its victim. This

could then be used to originate the victim’s prefix with the legitimate origin

AS. This is a difficult attack to perform because the adversary’s neighbors

would likely discard routes that do not have the correct next-hop AS number.

Therefore, AS A must either convince its neighbors that it is indeed AS V,

convince its neighbors to collude with it, or compromise its neighbor’s routers.

Examples of these attacks are given in Figure 2.2, and a short description of each

type of attack is listed in Table 2.2.

2.4 Related Work

In this section, I review previous research related to my dissertation. First, I discuss

existing BGP security protocols, including those that use cryptographic methods.

Next, I describe known heuristics used to infer the economic relationships between

ASes, and the AS-level paths between each pair of IP prefixes. Finally, I review

existing generative models of Internet-like graphs.
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2.4.1 BGP Security Proposals

Existing proposals for protecting BGP from hijacking and other attacks fall into two

broad categories, cryptographic protection and anomaly detection. Cryptographic

approaches involve an authenticated registry that maps IP prefixes to their proper

origin ASes. The registry would be secured and distributed using a Public Key

Infrastructure (PKI). This approach requires global cooperation among the ASes

to build and actively maintain the registries. To date, efforts to create such reg-

istries [27, 28, 29] have suffered from inaccuracy [30] and lack of trust by the op-

erational community [31]. Other impediments include both the need to change the

basic BGP protocol and the requirement that all ASes along a path participate in

the cryptographic check in order for updates to be verifiable. Despite several credible

proposals, cryptographic solutions have not yet been widely deployed.

The security solution presented in Chapter 3, Pretty Good BGP (PGBGP), is

an anomaly detector coupled with a soft-response capable of detecting and stopping

short-term attacks and misconfigurations (less than twenty four hours) without the

intervention of human operators. For longer attacks, PGBGP distributes notice of

anomalies to registered network operators through the Internet Alert Registry (IAR)

website.

A number of other anomaly detection systems have been proposed for BGP se-

curity as well. Zhao et al. [32, 33] were among the first to use anomaly detection

to prevent prefix hijacks. They proposed attaching a list (known as Multiple Origin

AS or MOAS lists) of acceptable origin ASes for each prefix announced. The list

would be placed in the community attribute (an optional parameter typically used

to convey routing policy within an AS) of each update and each receiving AS would

cache the list. If, in the future, an AS not in the cached list announced itself as the

origin AS for the prefix, it would activate an alarm. The MOAS list mechanism is a
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detector of suspicious routes but it does not provide a response. Another difficulty

in deploying MOAS lists is that routers often strip the community attribute as the

update propagates, to reduce memory in their routers.

Subramanian et al.’s Whisper [34] security mechanism for BGP is similar to

MOAS lists. With Whisper, ASes sign update messages (with their AS number) as

they are propagated, and a receiving AS can authenticate all of its known routes

for a prefix with a simple cryptographic check. If the check fails, at least one of

the routes is invalid. Whisper is intended for ubiquitous deployment and does not

protect the BGP network from sub-prefix hijacks because it looks for inconsistencies

among routes for a known (previously announced) prefix.

Kruegel et al. [26] propose to detect prefix-hijack attempts and false updates

based on geographical information obtained from a central registry, such as the

Whois [35] database. Although Whois data are often incomplete and out-of-date,

they argue that the geographic locations of ASes do not change frequently.

Wang et al. [36] developed a BGP anomaly detector to protect top-level domain

DNS server (gTLD) routes. They suggest filtering out all but the most durable (and

verified) routes to these addresses. This is feasible for two reasons. First, gTLD

routes have been shown to be stable, in fact most popular prefixes are [37]. Second,

it is possible to lose reachability to some gTLD prefixes without disrupting service

because alternate gTLD addresses exist.

The Internet Routing Validation system (IRV) designed by Goodell et al. [38]

suggests creating an authentication server at each AS. The server can be used by

other networks to verify the contents of update messages. Such a solution requires

a PKI infrastructure to authenticate the IRV server’s IP address and identity and

access to the PKI servers requires use of the same BGP network that IRV is trying

to protect.

20



Chapter 2. Background and Related Work

Recently, Qiu et al. [39] designed an anomaly detector to inform ASes when

their address space has been hijacked. Upon receipt of a suspicious origin AS for

a prefix, their mechanism queries randomly selected ASes asking if they use the

same origin AS for the prefix. If all of the other ASes use the same origin AS,

then the origin is considered legitimate given the assumption that it is difficult to

suppress the legitimate origin’s path from reaching at least some ASes. Otherwise,

if multiple origins for the prefix exist, both origins are informed of the situation.

PGBGP performs the same function through the Internet Alert Registry (as shown

in Chapter 3. The IAR also detects a number of other security problems while only

informing the origin AS of the problem once.

There are a few BGP alert services similar to the IAR. Renesys Corporation’s [40]

Routing Intelligence [41] service provides information about root cause analysis, pre-

fix hijacks, outages, and withdrawals. They privately connect to networks and use

proprietary algorithms to detect problems for a fee. The recently designed Pre-

fix Hijack Alert System [42] provides prefix hijack alerts to subscribed customers for

specific prefixes, in a manner similar to the IAR. The IAR and PHAS were developed

in parallel. RIPE’s MyASN [43] service informs users when MOAS conflicts occur.

The IAR is different from these systems in its use of PGBGP’s low false-positive

anomaly detection methods. The abundance of such monitoring systems suggests

that they are useful, and PGBGP can work with any of them, allowing operators to

subscribe to any monitoring service.

The PGBGP response mechanism has some similarities to rate-limiting mecha-

nisms that have been proposed for other security problems. Virus throttling [6], for

example, throttles back abnormally high rates of outgoing connection attempts to

ensure that Internet viruses propagate slowly. Slowing the propagation of a bogus

route is similar to slowing the propagation of viruses, although my mechanism is quite

different. Process Homeostasis [4], an IDS developed by Somayaji et al., responds
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to abnormal system calls by exponentially lowering the suspicious application’s time

slice on the CPU. The PGBGP design differs from these earlier systems in that it

does not actually delay packet delivery (or execution performance). PGBGP could

also be viewed as a form of temporary quarantine [44], in which suspicious routes are

temporarily assigned a lower preference, to allow the router to select trusted routes

when possible.

Cryptographic Authentication

There are a number of proposed cryptographic security protocols to improve BGP’s

security [45, 46, 47, 48]. However Kent et al. [49] were the first to attempt to secure

the BGP protocol comprehensively. Kent et al.’s Secure BGP protocol guarantees

that announced BGP updates have not been tampered with and that the origin AS

of each route is allowed to originate its prefix. Their system adds a new attribute

to BGP update messages which is used to ensure that both the AS path announced

was traversed by the update and that the update’s attributes have not been altered

in transit. This attribute is updated by each AS in the AS path as it propagates.

Verification of an update message occurs in two steps. First, the origin AS for the

prefix is checked against the cryptographically secure registry. Second, the signatures

within the update message are verified. The verification steps require a hierarchically

designed PKI with full cooperation of every AS.

While SBGP could provide a significant level of security, its deployment is inhib-

ited by several factors. First, it requires a complete and accurate registry, and

past attempts at creating up-to-date regional registries (ARIN, RIPE, and AP-

NIC) [27, 28, 29] have failed [30]. Second, it does not protect BGP against re-

distribution attacks. Finally, its chances of wide-spread deployment are impeded by

the fact that adoption is expensive (requires new routers) and there is little incentive

for early adoption.
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Another approach to cryptographically securing BGP is Secure Origin BGP

(soBGP) [50]. Created by Cisco Systems [51], soBGP uses an out of band web-of-

trust key distribution platform rather than a centralized PKI and allows for networks

to describe their edge policy through the same platform. The web-of-trust is used

to validate AS public keys and those keys are used to sign policy certificates and

prefix-ownership certificates. Like SBGP, prefix-ownership certificates are assigned

hierarchically and not through the web-of-trust model. Secure Origin BGP verifies

update messages by ensuring that the AS Path in the update and the origin AS

concurs with the distributed certificates. Attributes other than the AS Path and

prefix within the update are not secured but the authors argue that they are pri-

marily used for local policy information anyway. PGBGP’s authentication method is

similar to soBGP’s in that it verifies the origin of each update and ensures that the

path is credible. However, PGBGP uses a historical database local to each router

for authentication, and soBGP relies upon public keys. Due to their similar nature,

the two protocols could be combined to consult certified information when available

and otherwise rely on the historical database.

Tao Wan et al. later combined features of SBGP and soBGP to create Pretty

Secure BGP (psBGP) [52]. Pretty Secure BGP uses a centralized PKI for AS number

authentication and a decentralized web-of-trust for prefix ownership certificates. This

is because AS numbers have a central authority (ICANN) while the actual state of

prefix delegation is unknown. They propose certifying address space by trust. A

destination AS (D) must distribute its list of prefixes but those prefixes are not

verifiable until a handful of trusted neighbors distribute the same list signed with

their own numbers, vouching for D.

Hu et al. remove the PKI and even neighbor-signing and suggest using history for

verification [53], similar to PGBGP. In this way ASes cache the recently used public

keys for each AS and distrust updates signed with unknown keys. Like psBGP,
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the decentralized model does not provide for an authority to rule over disputes in

ownership but it is simpler to deploy.

2.4.2 Inferring BGP Paths

In order to understand the importance of each AS or country to interdomain rout-

ing in Chapter 6, it is necessary to understand how traffic traverses the Internet.

Although collections of traceroutes and BGP routing tables are publicly available

from sources such as iPlane [54], Skitter [55], RouteViews [56], and RIPE RIS [57],

these data sets contain only a small fraction of the AS paths between each pair of

IP prefixes. The remaining AS paths must be inferred [58].

In this subsection, I describe the existing heuristics to infer AS paths. Some of

the heuristics require labeling the economic relationships between ASes as input, and

I describe methods to infer those relationships as well.

Inferring Economic Relationships

The original AS-graph labeling technique [59], designed by Lixin Gao, used the valley-

free rule which was defined in the same paper. The approach divides each observed

path into three parts as described in Chapter 2.4.2. To divide the path the peak AS

is found and it is assumed that all ASes downstream (to the left) of the peak are

provider edges while those upstream are customer. If an edge appears on both sides

of a peak the edge is considered to be sibling-sibling. One of the edges attached to

the peak AS may be a peer-peer edge. In Gao’s algorithm the peak of each path

is determined by finding the AS of highest degree. A candidate peer-peer edge is

one that only connects to peak ASes in paths. The candidate peer-peer edges that

connect two ASes of similar degree are labeled as peer-peer.
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Subramanian et al. later formally defined the type-of-relationship (ToR) prob-

lem [60] and developed another heuristic that does not explicitly find the peak of

each observed AS path but instead takes measurements from many vantage points

and assigns relationships based upon AS position in each graph. Essentially ASes are

broken into tiers and those edges between ASes in the same tier are labeled peer-peer

while those between tiers are marked customer-provider.

Battista et al. later proved that the ToR problem is NP-complete [61] and many

researchers have since focused on using approximation algorithms for MAX2SAT

to provide labelings that maximize the number of valley-free paths. [61, 62, 63]

These algorithms focus on correctly labeling customer-provider relationships and as

discussed in 2.4.2 the results often fail relationship sanity checks (with the exception

of [63]).

Lixin Gao returned to the ToR problem in 2004 with Jianhong Xia to introduce

a new heuristic and compare it to her own along with that proposed in [60]. Xia

discovered that relationship information could be scraped from registries and com-

munity attributes from update messages. This information was used to compare

the results of previous heuristics with and to seed their new algorithm. The new

algorithm applies a simple set of inferencing constraints repeatedly to the seeded

topology until the constraints can no longer be applied. The algorithm, seeded by

the scraped information, performed significantly better than Gao and Subramanian’s

earlier work.

Inferring AS Paths

The method that I use to infer AS paths was developed by Qiu et al [64]. Qiu’s

heuristic [64] simulates the propagation of BGP routes across an AS topology, as

if each AS had a single router. The propagation model is a simplified model of
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the actual BGP protocol. In it, each router selects its best path to the destination

prefix after receiving a route announcement, and propagates the path to its neighbors

(obeying the valley-free rule) if its best path has changed. The largest contribution

that her work made was to include known BGP paths from routing table dumps

(known as RIBs) to improve the accuracy of the heuristic. Essentially, ASes are

primed with known paths for each prefix at the beginning of the algorithm. Then,

as the paths are propagated, paths that are the fewest hops from a known path are

given preference.

In addition to Qiu et al.’s work [64], there are at least two other methods for

inferring AS-paths that are prefix specific. Mühlbauer et al. [65] showed that when

an AS has multiple routers distributed across many locations, more than one router

needs to be simulated to capture all of the routing diversity within the AS. By

simulating multiple quasi-routers per AS, they were able to predict AS-paths with

relatively high accuracy (reported 65%); however, the high overlap between their

testing and training data sets makes it difficult to compare the accuracy of their

technique with mine. Mühlbauer’s approach is also computationally expensive, and

they only reported on results for 1,000 prefixes (out of nearly 300,000 at the time of

writing).

Another AS-path inference algorithm was developed by Madhyastha et al., [66]

who used a structural approach to AS-path prediction. They began with known

traceroutes from the iPlane project and used them to infer IP-level paths for chosen

src/dest pairs. The algorithm works by searching for the closest observation point to

the source prefix (by examining a few sample traceroutes from the source) and then

uses the known iPlane paths to infer the remaining paths from the source.
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2.4.3 Modeling the AS Network

Generating realistic models of the Internet at the AS-level is useful for many rea-

sons. As an example, one can test a new routing protocol against an ensemble of

generated (but realistic) networks in order to ensure that the protocol works well

on average, and not just on one particular graph. Further, generated graphs can be

expanded past the size of today’s Internet to those of possible future networks. Such

graphs would be useful to study the ability of current and future network protocols

to scale. This sub-section describes two common generative models, the Barabási-

Albert model and the Inet model.

Barabási-Albert model

The Barabási-Albert (BA) model is a general growth model for producing networks

with power-law degree distributions [7]. [67] reports a highly skewed distribution of

degree, fitting well to a power-law with an exponent around −2.2. Since this finding,

degree distribution has become a core component in models of the AS graph; both

the BA and Inet models as well as others [68, 69, 70] create networks with power-law

degree distributions.

In the BA model, vertices and edges are iteratively added to the network using

preferential attachment, and a power-law degree distribution arises. More precisely,

the initial configuration consists of m isolated vertices. From this configuration the

network is iteratively grown. At each time step one vertex is added together with

m edges leading out from the new vertex. The edges are attached to vertices in the

graph such that:

1. The probability of attaching to a vertex i is proportional to degreei.

2. No multiple edges, or self-edges, are formed.

27



Chapter 2. Background and Related Work

This procedure produces a network which has, in the |N | → ∞ limit, a degree

distribution P (k) ∼ k−3 for k ≥ m, and P (k) = 0 for k < m where k is node degree.

Inet model

The Inet model [71] is less general than the BA model. While the BA model has been

found to create scale-free networks (networks whose degree distribution is a power

law) similar to the structure found in protein networks, communication networks,

and even road networks, the Inet model’s objective is to regenerate the AS graph

as accurately as possible rather than to focus on a single mechanism to create and

explain scale-free networks. The scheme is rather detailed and I only sketch its

strategy here. Starting with N vertices, Inet first generates random numbers that

represent the final degree of the vertices such that the degree distribution matches

the observed distribution of the AS-graph as closely as possible. This means that the

low-degree end of the distribution is more accurately modeled by Inet than the BA

model because the BA model will not produce a vertex with degree less than m. In

the real AS-graph there are a considerable fraction of degree-one vertices. After the

degrees are assigned to the vertices, edges are added in such a way that the degree

correlation properties of the original AS-graph is matched as closely as possible. A

more detailed explanation of this procedure and its rationale are given in [71].
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Pretty Good BGP Design and

Implementation

Given the difficulty of introducing a centralized security solution for BGP [72], it

is worth asking how much security an individual AS (node) can achieve without

relying on other networks to deploy the same method. This question could be asked

of all distributed networks. An ideal security enhancement would be able to both

detect and suppress the propagation of origin AS and invalid path attacks. It would

require little cooperation from other ASes, minimal (if any) changes to the underlying

routers, and it would be simple (and cheap) to adopt.

This chapter presents Pretty Good BGP, a system that automatically delays

the use and propagation of new routes in favor of known alternatives. In PGBGP,

routers identify suspicious routes by consulting a table of trusted routing information

learned from the recent history of BGP update messages. Introducing delay gives

the human operators and automated systems, time to investigate suspicious routes;

or, the suspicious route may disappear on its own [30].

Because PGBGP does not require any protocol changes, it is incrementally de-
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C

P’

A

P

Policy violation: (A, P’, C, P)

Figure 3.1: In this example AS A can legitimately observe the edge (C,P) in path
(A,C,P) since A is one of C’s children. Invalid path (P’,C,P) contains an invalid edge
since P’ should not see (C,P), but A would not recognize it as invalid.

Figure 3.2:

ployable via software updates to the routers in participating ASs. Given the many

impediments to deploying strong BGP security, it is important to evaluate how much

of the problem can be addressed by weaker solutions such as anomaly detection. Ul-

timately, such an evaluation will contribute to the ongoing debate about how to

secure BGP.

The remainder of this chapter describes the design and implementation of Pretty

Good BGP and its corresponding utilities. The work described in this chapter, as

well as the enext, have been published in the International Conference on Network

Protocols [73] and Communication Networks [74].

3.1 Pretty Good BGP (PGBGP)

Pretty Good BGP combines a conservative anomaly detector with a soft response

to ensure that as many attacks are detected and suppressed as possible without de-

grading routing behavior. New origin ASes and new directed edges are considered

anomalous. PGBGP takes advantage of the AS network’s natural path redundancy

and responds to anomalies by temporarily lowering their local preference, favoring
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A B C D

A B D
x

Historically Trusted Edges

B-D is a new Edge

A B C D

Historically Trusted Origin for 12/8

Z is a new Origin for 12/8

A B C Z x

Figure 3.3: Examples of anomalies. First, AS path (A,B,C,D) has been seen in a
recent route. Therefore edges A→B, B→C, and C→D are in the normal database.
Next, a route update with AS path (A,B,D) is received, which has an anomalous
edge B→D. In the next example, AS D is in the normal database as the origin of
prefix 12.0.0.0/8. The new route update has Z for the origin AS, which is anomalous.

known trusted paths while anomalous routes are vetted. This automatically miti-

gates the effect of short-term attacks and misconfigurations. To help suppress longer

attacks, I describe a notification system known as the Internet Alert Registry (IAR)

that informs the operators involved with and affected by anomalous routes, so that

they can be fixed quickly.

3.1.1 Anomaly detection

The PGBGP detection mechanism is simple. Recent routing information is used to

construct a database of normal (trusted) network characteristics in the router. New

origins and edges that deviate from the trusted database are treated as anomalous.

Routes which contain new origins and edges are considered anomalous routes. To

maintain a dynamic database of normal network data over time, anomalies are added
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to the normal database after 24 hours if they are still in the routers at that time. To

remove stale information from the database, origins and edges that have not been

seen in the routing table for a long period of time (discussed in Section 4.2.3 are

removed.

There are two route features that the normal database N monitors. The first is

the origin AS for each prefix. The second is a list of the edges seen in routes. New

edges and new origin ASes are considered anomalous. Two simple examples of the

anomaly detector are shown in Figure 3.3.

These features can be extracted from BGP updates. The first AS number in an

AS path is the origin of the prefix. Edges can also be extracted from the AS path.

Consecutive ASes in the path are connected, and therefore neighbors. For a path

(A,B,C,D) where D is the origin AS, the directed edges A→B, B→C, and C→D are

inferred. PGBGP monitors directed edges instead of undirected edges because while

one direction might be legitimate, the reverse might be an indication of a contractual

violation (see Figure 3.2).

Initially, a PGBGP router’s normal database, N , is empty. 1 The prefix pair and

edges are extracted from each received update for h days and added to N . After h

days, new prefix pairs or edges (and the routes that contain them) are considered

anomalous for twenty-four hours. Anomalous network features found within the

router’s tables (RIB) after h days will be added to N . To remove stale information,

all trusted network features that have not been seen in routes in the last h days are

removed from N . Chapter 4 experiments with various values for the h parameter.

1Subsequent router reboots could restore the database from disk.
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3.1.2 Response

An ideal response mechanism would effectively hinder the propagation of bogus

routes without interfering with normal network operation in the case of a false posi-

tive. Pretty Good BGP is the only anomaly detection algorithm I know of to incor-

porate such a response. It achieves this by decreasing the likelihood of an anomalous

route being used and propagated, without precluding it.

When presented with multiple routes for a given prefix, the BGP selection mech-

anism applies a standard set of tie-break rules to select a single best route. The first

rule selects the routes of the highest local preference. By lowering the local preference

of anomalous routes to zero, PGBGP can suppress their use if an alternative trusted

route for the prefix is available. 2 After providing a window of time (twenty-four

hours) for operators to fix (withdraw or filter) the route, if it is indeed incorrect, the

route is restored to its normal local-preference.

This soft-response does not affect network reachability. If only anomalous routes

exist for a prefix, then they will be used. The next chapter shows that most anoma-

lous routes are short-lived, and suppressing them has little impact on network oper-

ation. In fact, these routes are likely the result of churn during BGP convergence,

and are best avoided.

The soft-response mechanism just described cannot be applied to sub-prefix

anomalies. This is because a new sub-prefix necessarily introduces a new prefix,

and all routes for this prefix will be forwarded to the hijacker’s AS. Instead, PGBGP

delays all routes which contain new sub-prefix anomalies from entering the router’s

tables for twenty-four hours. In the meantime, traffic for addresses in the sub-prefix

will continue to be forwarded toward its super-net’s origin AS. If the super-net is

withdrawn during this period, then the anomalous sub-prefix routes are used.

2ASes of high degree are more likely to have stable alternate paths to select from.
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The sub-prefix hijack response could cause reachability problems in the following

unlikely scenarios: If a customer AS C uses a sub-prefix of its provider P’s space, but

temporarily loses its connection to P, it might try to announce the sub-prefix over a

backup-provider link. Since the sub-prefix is not typically announced (perhaps it is

aggregated by P), it may be viewed as a sub-prefix hijack, and data will continue to

be forwarded to P. If P has no means of reaching C, then the data would be discarded.

This scenario is unlikely as typically a customer with multiple upstream providers

would announce the more specific prefix through both providers at all times (with a

padded path on the backup route to discourage its use). A second scenario in which

reachability could be lost is if a customer AS changes providers but keeps the old

provider’s sub-prefix (this is discouraged by many ASes). So long as the customer

maintains connections to both the old and new provider for at least one day (which

is typical) the new sub-prefix (which was not previously announced with the old

provider) will be accepted as normal before the old provider is dropped.

3.1.3 Correctness of PGBGP

Here I describe the instances in which PGBGP can successfully identify origin AS

and invalid path attacks. I assume that the normal database, N , is clean. That is,

the database does not contain incorrect network characteristics from invalid paths.

This assumption simplifies my explanation. When deployed, it is expected that the

normal database might initially be corrupted, but would gradually become more

reliable as anomalous routes were detected and fixed.

Because N is clean, any update with a prefix hijack u, must include a prefix pair

that does not exist in N . The same reasoning can be applied to sub-prefix hijacks

so long as the super-net exists within N when u is received. If the super-net has

not been announced within hprefix time, then the sub-prefix hijack will fail to be
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detected. PGBGP does not consider new origins as anomalous if a trusted AS for

the prefix is on the AS path. This exception reduces the number of anomalies by

about sixteen percent, but makes PGBGP’s origin AS detector vulnerable to shortest

valid path attacks, and may be omitted in future work to improve security.

Next, I enumerate PGBGP’s ability to detect all three classes of invalid paths:

1. Spoofed edges. Since N is clean, any update with a spoofed edge will contain

a directed edge that does not exist within N .

2. Policy violations. Here I show that any update u with a policy violation in

u.as path = (v1, v2, ..., vn) contains a directed edge not in v1’s normal database

N unless v1 is a transitive customer of the closest policy violator in the path

to v1, AS vv. I define a transitive customer of an AS a as the union of set

{a} with all of a’s customers and their customers, ad infinitum. I show that

edge (vv, vv+1) cannot be a member of v1’s normal database N as it could not

observe the directed edge in a policy valid path.

Proof by contradiction. Let vv be the closest policy violator to v1 in path

u.as path. It is assumed that v1 is not vv’s transitive customer. Let path

Z = (v1, ..., vv, vv+1, ...) be a valid path received by AS v1. We know that

vv+1 is vv’s provider or peer by definition of a policy violator. According to

Table 2.1, routes learned from providers or peers can only be propagated to

transitive customers. Since v1 is not vv’s transitive customer, and vv learned

the route from its peer or provider (vv+1), path Z is a policy violating path.

3. ASN Spoofing. Let v represent the victim’s AS number and let n represent

any of the adversary’s neighbors AS numbers. Then all ASN spoofed paths

will include directed edge (n, v), which is a spoofed edge not in the recipients

normal database unless the victim is AS n’s neighbor.
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To summarize, PGBGP can detect all prefix hijacks and sub-prefix hijacks (un-

less the super-net has been withdrawn), spoofed paths, policy violations for all but

customers of the violating AS, and many instances of spoofed ASNs.

3.1.4 Responding to Long-Term Attacks

Pretty Good BGP is capable of mitigating short-term attacks and misconfigurations

autonomously. In the event that the adversary intends to perform a long-term attack,

then further action must be taken during the twenty-four hour window before the

bad route is added to the normal database.

Once an anomalous route has been identified by PGBGP, it can be difficult to

determine if it is a true or false positive. It is impractical to expect network operators

to verify all suspicious routes manually, because of volume and ambiguity.

The operators in the best position to determine the legitimacy of a suspicious

route are often the ones most interested in it. The legitimate origin AS’s operators

can easily verify if a suspicious route is a true of false positive. Also, the operator of

the AS from which an attack originates knows which prefixes it should announce and

can most quickly repair a misconfiguration. If these two operators are informed of

each suspicious route that PGBGP finds, the operating overhead could be minimized

and routes could be verified by the most knowledgeable parties. In Section 3.3 I

describe the design and implementation of the Internet Alert Registry, a distributed

alert system capable of distributing PGBGP anomalies.

After an operator confirms that an anomaly is in fact a true positive, he or she

must act to stop the propagation of the malicious route. This is feasible for two

reasons. First, Pretty Good BGP slows the propagation of anomalous routes down

from machine to human time (24 hours). Next, the networking community collab-

oratively wants to maximize reachability for their customers. A misbehaving AS is
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SBGP soBGP PGBGP

Invalid origin AS Yes Yes Yes
Policy violations No Yes Partial

Spoofed AS numbers Yes Partial Partial
Spoofed edges Yes Yes Yes

Table 3.1: Comparison of BGP security protocols when ubiquitously deployed.

SBGP soBGP PGBGP

Invalid origin AS Partial Partial Yes
Policy violations No Partial Partial

Spoofed AS numbers Partial Partial Partial
Spoofed edges Partial Partial Yes

Table 3.2: Comparison of BGP security protocols when partially deployed.

considered harmful to the entire Internet, not just the victim network. Therefore,

network operators from other networks might be willing to help filter out malicious

routes, and apply pressure to the adversary’s providers. For instance, during the

YouTube hijack [1], many ISPs responded to the hijack by filtering out Pakistan

Telecom’s sub-prefix, effectively stopping the hijack within two hours. Common fo-

rums (with high participation) for network operators to quickly reach one another

include the regional Network Operator Groups [75, 76, 77, 78, 79].

3.2 Comparison to Other BGP Security Approaches

If deployed ubiquitously with an accurate PKI, SBGP and soBGP could provide more

comprehensive security than PGBGP. Table 3.1 shows the strengths and weaknesses

of each protocol. As will be shown in Figure 4.1 of Chapter 4, SBGP’s weakness at

detecting policy violations is likely not a great concern because policy violations affect

only about five percent of the network, whereas spoofed AS numbers are significantly
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more harmful on average. However, this analysis does not account for the relative

frequency of each type of exploit. Policy violations are likely more common as most

routers are configured by default to propagate all learned routes to all neighbors. This

means that routes learned from providers or peers, by default, will be propagated

to other providers and peers. On the other hand, ASN spoofing requires routers on

both ends of a connection to be misconfigured.

As discussed earlier, an effective security mechanism for distributed networks

should have a plausible path for adoption (Table 3.2). One aspect of this issue

is what security is provided if the mechanism is deployed on only some nodes in

the network. This is problematic for methods like SBGP that require each AS to

sign route updates as they propagate. If only a fraction of nodes deployed SBGP,

then AS paths would have holes in their signature chains, making them unverifiable.

Participating ASes would be able to sign for the origin AS of the path, and even verify

some edges, but there is no guarantee that the extra signature attributes would not

be stripped by malicious or non-participating ASes. Similarly, Secure Origin BGP

cannot verify routes unless every AS in the path properly updates the soBGP registry.

PGBGP effectively prevents the propagation of short-term attacks. It is believed

that a significant fraction of attacks and misconfigurations are short-term. Mis-

configurations are typically fixed as quickly as possible, and an adversary is likely to

make his attack short to avoid capture. Stopping long-term attacks requires operator

intervention, as PGBGP eventually returns anomalous routes to normal preference.

Pretty Good BGP relies upon operators to punish non-compliant (misbehaving) net-

works via filters, possible de-peerings, and public shaming. Most network operators

try to ensure that customers can reach each destination, and misbehavior is typically

not tolerated.

Finally, the feasibility of deploying each security mechanism in the absence of

a global authority that can dictate its adoption. In a distributed system of self-
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interested ASes, a new mechanism will be adopted only if there is an incentive for

each individual AS to do so. This issue can be framed by asking the question: Is

there an advantage for early adopters? In the case of SBGP there would be little

incentive for individual ASes, as many ASes must agree to deploy it before it can

provide substantial security benefits. Because the infrastructure costs would likely

be non-negligible, it might even be financially advantageous to be the last adopter of

SBGP. Similarly, soBGP would require community consensus to maintain a reliable

and distributed PKI. It would likely be cheaper to deploy (as it does not require a

change to BGP, simply a change to the preference rules), it would have dramatic

effect even if deployed on only 100 ASes, its mechanism is simpler than the SBGP

and soBGP (no consensus or PKI required), and it provides more advantages for

early adopters (protection from all short-term attacks).

To summarize, PGBGP would provide the most security when partially deployed.

If ubiquitously deployed, PGBGP would provide security comparable to soBGP with

the addition of policy violations. Combination schemes are also possible. For in-

stance, soBGP or SBGP could be used to offer cryptographic protection for signed up-

dates, with PGBGP serving as the default for cryptographically unverifiable routes.

3.3 Implementation

In order to deploy Pretty Good BGP on a live network, two components must be

built. First, the changes to the BGP protocol need to be implemented in a routing

platform. I built a reference implementation of the PGBGP algorithm in the Quagga

open-source routing suite. Next, an alert distribution mechanism must be developed

and maintained in order to inform network operators of potential attacks. I built

the Internet Alert Registry which distributes notification of anomalous routes around

the world to hundreds of registered network operators. In this section, I describe the
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1: OnReceiveRoute(NewRoute):
2: if NewRoute.type = Withdraw or NewRoute.LearnedFrom = Internal Router then

3: return

4: Remove suspicious tag from routes in table at least 24 hours and rerun the decision
process for them

5: if NewRoute is anomalous then

6: Label NewRoute as anomalous
7: Update normal database with NewRoute
8: if Time to garbage collect then

9: Remove stale objects
10: Store the existing objects to disk, for recovery in case of restart
11: return

Figure 3.4: The PGBGP update algorithm.

bgp pgbgp Enable PGBGP with default parameters
show ip bgp pgbgp Shows PGBGP statistics
show ip bgp anomalous-paths Lists the anomalous routes
show ip bgp pgbgp neighbors (ASN) Lists the neighbors of ASN
show ip bgp pgbgp origins (Prefix) Lists the origin ASes for Prefix

Figure 3.5: A list of new commands for interactive BGP sessions.

implementation of both systems.

3.3.1 PGBGP in Quagga

Quagga [80] is an open-source routing platform for Unix platforms. It includes

daemons for OSPF, RIP, and BGP. I chose to create a reference implementation of

PGBGP in Quagga’s BGP daemon because it is thought to be the most popular

software-routing platform in use today. It is efficiently implemented with the C

programming language, and its development community is active.

There are three places that PGBGP is hooked into Quagga’s BGP daemon. First,

40



Chapter 3. Pretty Good BGP Design and Implementation

Description Count Size of Node
Origin AS History 287,166 16 bytes
Prefix History 285,153 12 bytes
History Container 285,153 12 bytes
Edge History 62,158 12 bytes
Anomalous Route 542 12 bytes
Untrusted Neighbor for Subprefix 400 16 bytes
Session Duration 8 16 bytes
Total Memory 11.6MB

Figure 3.6: Structures used to store PGBGP’s normal database, and their count in
the IAR which had six neighbors at the time of this writing.

each route update needs to be communicated to PGBGP. At this stage, PGBGP

labels the route as anomalous or not based on the algorithm described in Section 3.1,

and updates its internal records as outlined in Figure 3.4. Next, the BGP decision

process is modified so routes labeled as anomalous as are selected only as a last

resort. Finally, new commands needed for the command line interface so a user can

interact with PGBGP. The commands are listed in Table 3.5.

To avoid the use of threads and alarms, which complicate the code, timed events

are triggered by new route updates. Thus, anomalous routes are updated at the first

route update after the 24 hour anomaly period. Also, stale objects (those not seen

in the router for h time) in the normal database are not freed from memory as soon

as they become stale. Instead, a periodic garbage collection process sweeps over the

entire normal database, removing all stale objects in one pass.

Storage Requirements

Pretty Good BGP keeps track of the recently seen prefixes, origins for those prefixes,

edges in paths, routes that have been labeled as anomalous, neighbors that have

sent routes for suspicious sub-prefixes, and the uptime for each session. The size
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and count of each of these objects in the IAR, which has six active sessions with full

tables, is shown in Table 3.6.

Although the table suggests that 11.6MB of space is required for PGBGP, in

practice, the overhead is closer to 20MB. This is likely due to the space required to

build the data-structures to hold the data. The total size of 20MB is reasonable,

considering that the IAR’s bgpd process consumes 200MB of resident memory.

It should also be noted that as more sessions are added, the memory requirements

are not expected to grow significantly. New sessions typically do not introduce many

new prefixes or edges.

3.3.2 The Internet Alert Registry

The IAR is an opt-in service that runs the PGBGP implementation of Quagga and

distributes e-mail alerts to the ASes affected by each anomaly. Although it is cur-

rently hosted at UNM, multiple instances of the IAR could be deployed, with different

feeds, to increase robustness.

The IAR is comprised of three parts. First, a PGBGP-enabled Quagga router

is connected to ASes around the world (currently there are six connections, mostly

located in North America). When the router discovers an anomalous route, it writes

it to a log file. The log file is monitored and new anomalies are sent to the second

part of the system, the database and website. The database keeps track of anomalies,

as well as registered users of the IAR. The website provides a registration system,

forums for discussion of interesting hijacks, a display of current anomalous routes,

and an interface to search the database of routes.

Today, the IAR has over 200 registered network operators, ranging from Tier 1

ASes down to periphery ASes. There are two ways in which operators can receive
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alerts. First, they can register to receive all anomalous routes pertaining to ASes

they express interest in. This is the naive approach, and false positives will be sent

to the operator as well as true positives. On average, a user monitoring a periphery

AS will receive less than one alert per year, while Tier 1 ASes average more than

two per day. This is a reasonable load for a Tier 1 AS as most have full-time staff

dedicated to troubleshooting their network.

The second method by which users may receive alerts filters out all false positives

before the user sees them. This is accomplished in two steps. First, the IAR posts

a list of all recent anomalies in an RSS feed. Next, the user downloads a program,

called the IAR Tracker, that reads RSS feeds of alerts from IAR alert registries.

The IAR tracker scans the IAR feeds and compares them to the user’s local network

configuration. Alerts that agree with the local configuration are considered false

positives, and silently dropped. Alerts that disagree with the user’s configuration

are forwarded on to the operator as true positives.

3.4 Summary

BGP is vulnerable to a number of significant attacks because the contents of route

announcements cannot be easily verified. In this chapter, I introduced a simple,

incrementally deployable modification to the BGP decision process, called PGBGP,

which can provably mitigate BGP’s most critical vulnerabilities. The basic principle

behind PGBGP is that routers should be cautious when adopting new routes. By

choosing to prefer stable routes, short-term attacks can be stopped before they can

cause widespread damage.

This chapter also described a reference implementation of PGBGP in the Quagga

routing suite. It has low memory overhead (roughly 20MB) and quickly processes

new routes. It can be enabled on a BGP router with a simple line in the router con-
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figuration, “bgp pgbgp.” Finally, I developed the Internet Alert Registry. Today, the

IAR distributes notification of anomalous routes to hundreds of registered operators

around the world.
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Pretty Good BGP: Experimental

Results

Chapter 3 described the design and implementation of Pretty Good BGP. This chap-

ter describes PGBGP’s expected performance if deployed.

First, in Section 4.1 I simulate the Internet’s vulnerability to many of the known

BGP exploits when the victim and adversary are randomly placed. By understanding

the severity of each type of exploit, researchers can focus upon the most significant

problems.

Next, I study possible adoption paths for BGP security enhancements, including

those other than PGBGP. Specifically, I show through simulation that a small de-

ployment of the invalid-path extensions to Pretty Good BGP on the 125 largest ASes

(0.5% of all ASes) would be sufficient to minimize the global effect (reaching only

0.07%-2% of all ASes depending on the type of attack) of randomized BGP attacks.

Section 4.2 analyzes the anomalous routes detected by PGBGP. These experi-

ments help to determine how many alerts an AS might expect to receive, and how
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many routes might be avoided by a PGBGP-enabled router at any given time.

Finally, PGBGP is not a comprehensive security solution. There are cases in

which PGBGP could miss an attack, for instance if its normal database contains

invalid data. In Section 4.3 I enumerate the limitations of PGBGP’s security.

4.1 Incremental Adoption

Any new version of BGP software is likely to be adopted incrementally. The ex-

periments in this section quantify the effectiveness of PGBGP when only a subset

of ASes adopt it. I compare PGBGP’s response to that of an ideal BGP security

solution, one that recognizes and discards all bogus routes with one hundred percent

accuracy.

4.1.1 Experimental Setup

To simulate PGBGP’s defenses against attack, I created the BGP Simulator (BSIM) [81].

BSIM is a route propagation simulator freely available under the GPL license. It

takes as input a user-specified topology (including inferred relationships) and simu-

lates the propagation of route announcements across the network according to the

export rules defined in Section 2.1 1. Ties between routes are first decided by rela-

tionship type, then path length, and finally by the neighbor’s AS number, similar to

the BGP decision process [21].

For the simulations I used the topology and relationships provided by the AS

Relationships Dataset [82] built on the 2nd of February 2007. The inferred topology

describes 48,986 edges between 24,267 ASes. The complete AS topology is unknown.

1BSIM also respects sibling relationships, which occur when two AS numbers belong to
the same company.
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Some types of edges (such as customer-provider) are more likely to be observed than

others (such as peer-peer). This is because only customers can see peer-peer edges

due to the export rules shown in Chapter 3’s Table 2.1. Since there are a limited

number of observation points, many peer-peer edges are likely unknown.It is possible,

that such peer-peer links would lessen the impact that the Tier 1 ASes have on BGP

routing as predicted by the experiments.

I extended the BSIM framework to support both PGBGP and the idealized perfect

detector. The perfect detector is a “black box” that discards all invalid routes, never

making a mistake. It is therefore the best security mechanism that an AS could

deploy. Each simulated router can run as a normal BGP router, a PGBGP router, or

a router with perfect detection. Finally, I added all of the attack scenarios described

in Table 2.2 as well as prefix and sub-prefix hijacks into BSIM.

Within BSIM, an attack is simulated in two steps: initialization and attack. To

initialize the network, each router’s BGP routing table is cleared and its protection

status is assigned as either none, PGBGP, or perfect. Next, the adversarial and

victim ASes are chosen uniformly at random from the network. Then, the victim AS

announces its address blocks to prime the history-based registry of each PGBGP-

enabled router. For the second step, at time h (horigin or hedge depending on the

attack type) the adversarial AS announces an invalid (bogus) route to steal the

victim’s traffic. After propagation of the bogus route has converged, ASes that

select a path that includes the attacking AS are counted as having been hijacked.

For simplicity, I consider all routes that include the adversary’s routers after the

attack to be bogus, even if the adversary’s router was used before the attack to reach

the destination.

The experiments report attack effectiveness—the fraction of ASes that erro-

neously select a route through the attacker—for varying levels of PGBGP deploy-

ment. In these experiments I systematically deploy PGBGP in ASes in order of
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Figure 4.1: Effectiveness of each synthetic attack against a network of ASes with-
out any security protection using the standard export rules. The x-axis describes
the form of attack simulated while the y-axis represents the fraction of ASes that
routed through the adversarial AS after 500 simulated attacks. Error bars represent
standard error of the mean.

decreasing node degree, starting with the AS of highest degree. This is because it

would likely be easier to convince a small number of large ASes (even though they

each have thousands of BGP routers) to adopt a new protection method than tens

of thousands of ASes.

4.1.2 Unprotected Networks

I simulated all four attacks described in Section 2.1 as well as prefix and sub-prefix

origin AS attacks on an unprotected BGP network. The routers do not perform

ingress filtering, and they do not have any security mechanism deployed. This pro-

vides an upper bound on how damaging each attack type could be. The results are

shown in Figure 4.1, where the x-axis shows the type of attack, and the y-axis is the

fraction of ASes that selected a route through the adversarial AS.

As the figure shows, sub-prefix hijacks pose the most significant threat. This is
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Simulated Attack Difference
Sub-Prefix Hijack 0.0360
Prefix Hijack 0.0143
ASN Spoof 0.0159
Spoofed Edge 0.0087
Prepended Shortest Path 0.0032
Redistribution Attack 0.0063

Table 4.1: The sum of the absolute difference of the mean between PGBGP’s effec-
tiveness and the black box filter’s for the plots of Figure 4.7

expected because a new sub-prefix propagates to every AS and is always selected

because it is the only available route for the prefix. Prefix hijacks are also a serious

threat. On average, prefix hijacks convince roughly half of the ASes to misroute their

traffic.

Assuming some form of origin AS protection, adversaries would then have to

use invalid path attacks to steal data. Of the invalid path attacks, it is surprising

that policy-violation attacks (shortest path and redistribution, as summarized in Ta-

ble 2.2) are relatively ineffective. Because a customer AS could have many providers,

which in turn have many large providers, and each of these providers prefers routes

from customers, it seemed likely that such attacks have significant impact. Instead,

on average, the adversary in each attack convinced only four percent of the network

to route through it. This is possibly because the adversary’s path is very long.

4.1.3 Incremental Adoption

This section analyzes PGBGP’s effectiveness at stopping attacks under an incremen-

tal adoption scenario. Figure 4.7 compares PGBGP to the perfect detector for the

different attack types. In each panel, the x-axis shows the number of ASes (out

of 24,267 total) running PGBGP (or the perfect detector), in order of decreasing
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node degree, and the y-axis shows the fraction of ASes that choose routes that pass

through the adversarial AS. Although the PGBGP automated response deprefer-

ences routes while the perfect detector actually discards them, Table 4.1.3 shows

that there is a negligible difference when used on large ASes with many alternate

routes. This suggests that PGBGP’s softer depreferencing mechanism could be as

effective as discarding routes outright (which soBGP and SBGP do), while retaining

the ability to tolerate false positives.

For most attack scenarios, running PGBGP on only 125 (0.5%) of all ASes would

suffice to protect the entire Internet from both invalid path and origin AS attacks.

The same number is required for the perfect detector.

4.1.4 Propagation of Anomalous Routes

If an anomalous route is not withdrawn within time s, it is accepted by the PGBGP

routers and propagated to the next level of ASes. I show in Figure 4.2 how anomalous

routes spread as a function of time for the sub-prefix hijack. Other attacks have

similar results (data not shown). The bottom line represents the initial response

of the network to an attack. After time s, the route is accepted as normal and

propagated further, shown by the second line from the bottom. This process is

repeated for a total of four iterations. The simulations suggest that it could take

three delay periods on average for the route to propagate fully if 125 large ASes were

running PGBGP.

Figure 4.2 represents a worst case propagation scenario. Many false positives are

propagated quickly once the older paths disappear. For instance, if an AS changed

providers but kept its prefix, its (prefix, origin AS) would change and be considered

anomalous by PGBGP. However, PGBGP would select this route if there no trusted

route was available. Similarly, new edges (e.g., backup links) which become available
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Figure 4.2: Worst case propagation of a new sub-prefix over time. The bottom line
shows the immediate suppression of the new sub-prefix by PGBGP. The X-axis shows
the number of ASes that have deployed PGBGP (in decreasing order of degree) and
the Y-axis represents the fraction of ASes that select routes through to the sub-
prefix. Each successive line above the bottom line represents the propagation of the
sub-prefix one day later.

due to link failure would not be hindered if no alternative existed.

4.2 Analysis of PGBGP Anomalies

As with any anomaly detection method, some legitimate routes will be labeled

anomalous (false positives). Because of PGBGP’s soft response, reachability is typ-

ically not affected, however. This section describes an experiment in which I ran

PGBGP on four months of public BGP update feeds and discovered that most

anomalous network characteristics are quickly withdrawn. I predict from this ex-

periment that depreferencing routes for twenty-four hours would have little negative

impact in practice, as most affected routes are misconfigured, non-optimal routes

discovered during convergence, or attacks. Next, I estimate how many new network

characteristics would likely be experienced by routers on a daily basis, and show how

to tune the parameter h to reduce this value. Finally, I evaluate the number of alert
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notifications ASes would likely receive from the IAR, and find that, on average, the

number is low (0.03 alerts per day).

4.2.1 Experimental Setup

The routers of each AS have a unique perspective on the Internet’s routes. Predicting

PGBGP’s behavior on a particular AS is difficult without access to feeds of its BGP

update messages. Instead, I ran PGBGP’s detection algorithm against four months

of publicly available BGP updates to estimate how many new network characteristics

might be labeled as anomalous per day based upon the size of the router (interpreted

as the number of update streams) and history length, h.

The BGP update streams were collected from the RouteViews [56] project at the

University of Oregon. RouteViews collects BGP update messages from many routers

scattered around the world, including backbone routers in large ASes. The data set

consists of all BGP updates from September 1st 2006 through December 31st 2006

inclusive from the RouteViews2 server, which includes over 40 BGP sessions.

I measured the rate at which anomalies were discovered over the four-month pe-

riod and varied h values and number of router feeds (neighbors). Each anomaly

corresponds to a single alert from the Internet Alert Registry. To simulate BGP

routers of different size (1 to 10 external neighbors), I selected individual feeds (from

unique ASes) from the data in decreasing order of size. The size of a feed is deter-

mined by the number of updates it logged during the time period. The first h days

were used to initialize the normal database N , and the remaining days were used to

monitor for anomalies.
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Figure 4.3: Length of stay in the RIB for anomalies. Anomalies that exist within the
RIB at twenty-four hours are added to the normal database and considered trusted.
Panel a shows the probability mass function while panel b shows the cumulative
distribution function. Only the largest feed was used for this experiment.

4.2.2 Most Anomalies Disappear Quickly

On the largest BGP feed, I recorded the time at which each new network character-

istic was first observed, and the time that it was last observed during the twenty-four

hour depreference period. Anomalies that were withdrawn before the depreference

period ended likely due to misconfigurations, short-term attacks, or path exploration

when connectivity is unstable.

Figure 4.3 shows the results of this experiment. Panel a of the figure shows that

new network characteristics either disappear from the RIB quickly (within one hour)

or remain the full twenty four hours. Nearly fifty percent of new edges are with-

drawn from a router’s RIB within one hour of being identified as anomalous. By the

twenty-four hour mark, panel b shows that roughly seventy percent of the anomalies

have disappeared. New prefix pairs that could be prefix hijacks behave similarly.

This suggests that the observed anomalies are highly correlated with attacks or mis-

configurations. Interestingly, most (60%) new sub-prefixes remain in the RIB for at

least twenty-four hours. I speculate that new edges and prefix origins often occur
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from path exploration, whereas sub-prefixes usually do not.
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Figure 4.4: The number of prefix hijack anomalies, or alerts, that PGBGP observed
during the 4 month time period. The initial h days were used to initialize the normal
database. The figure represents a parameter sweep of the number of BGP streams
and the duration of the history period h.
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Figure 4.5: The number of sub-prefix hijack anomalies, or alerts, that PGBGP ob-
served during the 4 month time period. The initial h days were used to initialize the
normal database. The figure represents a parameter sweep of the number of BGP
streams and the duration of the history window h.
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Figure 4.6: The number of edge anomalies, or alerts, that PGBGP observed during
the 4 month time period. The initial h days were used to initialize the normal
database. The figure represents a parameter sweep of the number of BGP streams
and the duration of the history period h.

4.2.3 Number of Anomalies

This sub-section discusses the number of anomalies a router is likely to experience

over time, given connectivity (number of neighbors measured by the number of

streams), and different values for h. PGBGP has three tunable parameters, s (the

delay period), hprefix, hedge. s was set to twenty-four hours to allow operators time

to respond to alerts. Also, it was shown in Figure 4.3 that twenty-four hours is

sufficient to separate the short-term anomalies from long-term. The history window

h determines how recently an origin or edge must have been observed to be consid-

ered normal. The values of hprefix and hedge were chosen to minimize the number of

anomalies and keep the history window relatively small (so the database is current).

Figure 4.4 shows the number of new prefix pairs (possible prefix hijacks) compared

to the number of BGP streams and the value of hprefix. Larger values of hprefix

decrease the number of anomalies slightly. Adding streams does not significantly

increase the number of anomalies, except for the tenth stream, which introduced a
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significant number of anomalies. This is because that stream included 4,035 prefix

hijacks by AS 4761 on Nov. 30th of 2006 [24]. These hijacks include prefixes owned

by eBay, the Bank of New York, Cisco, Princeton University, and the University of

New Mexico.

The number of new (prefix, origin AS) pairs attributed to sub-prefix hijacks is

shown in Figure 4.5. In contrast with prefix hijacks, increasing hprefix increases the

number of sub-prefix anomalies. Given Figures 4.4 and 4.5, I chose ten days for

hprefix to keep the history short and minimize the total number of anomalies. For

simplicity, I chose a single value for hprefix as opposed to one for prefix hijacks and

another for sub-prefix hijacks. To further reduce the number of alerts, these values

could be set independently. The number of sub-prefix alerts would also be reduced if

I all routes more specific than /24 and less specific than /8 were filtered. Many BGP

routers adhere to this practice to decrease the RIB size. My experiments included

these routes because they are often the result of misconfiguration, and are interesting

to study.

Figure 4.6 shows the number of anomalous edges observed per day compared to

hedge and the number of neighbors. As the number of neighbors increases, the number

of anomalies due to new edges decreases. This is probably because, over time, the

router is exposed to more legitimate edges as routes change. If PGBGP were adopted

first by the largest ASes with the most neighbors, this would be beneficial. Similarly,

as the length of hedge increases, the number of anomalies due to new edges decreases.

This analysis suggests that hedge should be set to 60 days (roughly two months).

In future experiments, once the Internet Alert Registry has attained additional

feeds and data, the values of h could be adjusted. Adaptive algorithms could be used

to determine appropriate values of h for each router.

With parameters of hprefix = 10d, hedge = 60d and one stream, there are about
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340 anomalies per day, of which 240 are short-term and one hundred are long-term.

If the IAR sent one e-mail per anomaly to each victim and adversary AS, then the

average AS would have received 0.02 alerts per day with a standard deviation of

0.18. Large ASes, such as the “Tier 1” providers (AS numbers 1668, 7018, 3549,

3356, 701, 2914, 209, 3561, and 1239) would have received only 4.24 alerts per day

(with a standard deviation of 2.33).

4.3 Limitations of PGBGP

PGBGP would provide a safer but not perfectly secure environment for the BGP

network. This section describes all of the PGBGP vulnerabilities of which I am

aware.

Insecure Data Plane: Like most BGP security mechanisms, PGBGP only protects

the routing control messages (control plane), and does not verify that the traffic

actually traverses the announced route (data plane). Hu et al. study data plane route

verification [83, 84] by measuring destination characteristics such as the destination

host OS, IP identifier probing, and TCP timestamps. Such techniques could be used

to reduce the number of false positives in PGBGP.

Corrupted Data: PGBGP implicitly relies upon attentive operators to monitor

alerts from the IAR to prevent invalid data from entering PGBGP normal databases.

All operators may not exhibit this level of vigilance, and their networks will be less

safe. Section 4.2 showed that there are very few alerts to any individual operator,

and the alerts are trivial to receive. If the adversarial AS were contacted during

the depreference period but failed to correct the problem, it would remain up to the

adversary’s providers and the operational community to prevent the bogus routes

from propagating.
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Adversary Location: If not alternative routes are available, an anomalous route

could spread unhindered by PGBGP. For instance, if the adversary were the victim’s

sole provider, then the victim would be unable to propagate its routes. However,

ASes with many connections are less susceptible to this vulnerability. In future work

I intend to explore this area further.

Hijacks of Larger Prefixes: It has been shown that less-specifics networks are

sometimes hijacked in order to send email spam from unused IP addresses [23]. While

Pretty Good BGP could be configured to detect such hijacks, they do not interfere

with routing of normal traffic and are not considered within PGBGP’s threat model.

Mixed Relationships: If two ASes have both a customer-provider and a provider-

customer relationship, PGBGP could miss a policy violation involving that edge.

For instance, in North America AS A might be AS B’s provider, but in Europe AS

A could be B’s customer. Both directed edges (A,B) and (B,A) could regularly be

seen by other ASes, that are not customers of A and B. PGBGP would be unable to

detect policy violations involving those edges. Generally such a relationship mixture

is rare, customer-provider and peer-peer mixtures are more common and PGBGP

can detect policy violations that include them.

Potential DoS: PGBGP is vulnerable to denial-of-service attacks. For example,

an adversary could introduce many new edges or (prefix, origin AS) pairs with false

route updates that the normal database would have to keep track of. As shown in

Section 3.3, the amount of history data required for each edge or pair is small, so such

an attack would have to be significant (and noticeable due to all of the anomalies).

This might be remedied by discarding route updates with excessively long AS paths

and limiting the rate of updates for each prefix.
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4.4 Summary

In this chapter, I showed through simulation that Pretty Good BGP could largely

eliminate the effects (reaching only 0.07%-2% of all ASes depending on the type of

attack) of origin AS and invalid path attacks if deployed on the largest 0.5% of ASes.

I also showed that PGBGP is nearly as effective at stopping attacks as an idealized

security solution. Finally, I showed that PGBGP is incrementally deployable because

it does not require global cooperation or changes to the BGP protocol.
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Figure 4.7: Effectiveness of each synthetic attack against networks protected by PG-
BGP and the perfect detector. The results of the two detectors are nearly identical.
The x-axis is log-scaled (and shifted up by one to show x = 0) and represents the
number of ASes that have deployed the PGBGP (or the perfect detector). The y-
axis is linearly scaled and represents the number of ASes that selected a route that
included the adversary’s AS. Error bars show the standard error of the mean over
five hundred runs. a) Sub-Prefix Hijack b) Prefix Hijack c) ASN Spoof d) Spoofed
Edge e) Prepended Shortest Path f) Redistribution Attack
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Chapter 5

Measuring and Modeling the

Autonomous System (AS) Level

Internet

This chapter describes work measuring and modeling the AS-level structure of the

Internet. In the first section, I measure the Internet’s AS-level structure from a radial

(from the core to the periphery) perspective. As discussed in Chapter 4, the Inter-

net’s topology is not well understood. Studying the AS-network’s structure helps

researchers to better understand the underlying mechanisms behind the network’s

growth. By studying the network from a radial perspective, it is possible to study

the core network apart from the periphery. Since the two portions of the network

have different functions (the core transits traffic for the periphery), it is important

to study them independently.

Statistical measurements of network structure can also be used to help validate

network growth models, to verify that the networks they produce are similar to the

real one. Network growth models are useful for testing network protocols on predicted
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future networks. They can also be used to ensure that protocols behave properly

on several instances of networks, not just a single inferred network. In Section 5.2,

I develop a model, called ASIM, capable of generating AS topologies. ASIM is the

first model to incorporate geography, economics, and traffic within a single frame-

work. The work in this chapter is a collaborative effort with Petter Holme 1 and is

published in the Proceedings of the Royal Society A [85] and SIGCOMM Computer

Communications Review [86].

5.1 Measuring the AS Network’s Topology

Since the turn of the century there has been increasing interest in the statistical

study of networks [87, 88, 89], stimulated in large part by the availability of large-

scale network data sets. One network of great interest is the Internet [90]. The

Internet is intriguing because its complexity and size preclude comprehensive study.

It is comprised of millions of individual end-nodes connected to tens of thousands of

ISPs whose relationships are continually in flux and only partially observable. One

way to cope with these complexities is by analyzing a single scale of Internet data, for

example, a local office network of computers and their inter-connections; a network

of email address book contacts; the network formed by URL links on the World Wide

Web; or the interdomain (Autonomous System) level of the Internet. This section is

concerned with the last of these examples—the AS graph. The vertices in the graph

are themselves computer networks; roughly speaking an AS is an independently

operated network or set of networks owned by a single entity. Edges represent pairs

of ASes that can directly communicate.

A major finding of earlier AS studies is that node degree (number of links to

1I gathered the data sets and helped develop the model while Petter implemented the
model and performed the statistical analysis
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other ASes) has a power law distribution [67]. The degree distribution is, however,

not the only structure that affects Internet dynamics [91]. Higher-order network

structures can also impact network dynamics. This section analyzes the AS graph

using methods that are appropriate for networks with a clear hierarchical organiza-

tion [90, 92]. In particular, I study network quantities as a function of the average

distance to other vertices. This approach allows us to separate vertices of different

hierarchical levels, in a radial (from core to periphery) fashion. This is, furthermore,

a way to determine how clearly separated the core and the periphery are. Most

analysis methods developed by physicists (degree frequencies, correlations, etc.) are

based on quantities averaged over the whole network and do not take a hierarchical

partitioning into account [90]. Studies by computer scientists, on the other hand,

assume a division of the AS level Internet into hierarchical levels [60]. I argue that

the observed AS level networks do have pronounced core-periphery dichotomy but

that the periphery has more structure than previously thought.

5.1.1 Networks

This subsection briefly reviews the organization of the AS-level Internet and de-

scribes the data sets. It also describes the network models that the observed data

is compared to. These models include one randomization scheme that samples ran-

dom networks with the same set of degrees as the original networks, the generative

Barabási-Albert preferential attachment model [7], and the Inet model [71]. The null

hypothesis in these measurements is that the random networks accurately reflect the

Internet’s structure.
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AS networks

The experiments in this section analyze four real-world data sets (that is, data sets

collected using observed network data rather than simulated networks that are gen-

erated synthetically), of which two are original. The first two are well-known and

well-studied [93] dating from 2002 and the second two data sets are recent, inferred

from 2006 data. The first graph in each pair consists of edges learned solely from

router RIBS (http://www.routeviews.org/data.html), which were also used in Chap-

ter 4. The second graph in each pair contains RIB information augmented with edges

derived from other sources (such as routing registries [28, 27, 29] , looking glass servers

[94], and routing update messages from RouteViews [56] and RIPE [57]) which pro-

duces a more accurate representation of the real network. The additional sources are

described below.

Obtaining RIBs from Route Views BGP routers store the most recent AS

path for each IP block (prefix) announced by its peers. These data are stored in

the router’s RIB, and periodic RIB dumps from a large number of voluntary sources

are available from Route Views (http://www.routeviews.org). Each RIB represents a

static snapshot of all routes available to the router from which it was obtained. Since

BGP only disseminates each router’s best path, and this value is dynamic as links

go up and down, a sizable portion of the network can be hidden from each router.

In order to obtain a more complete topology, common practice is to take the union

of the relationships found in a large number of RIB samples. From the samples,

AS relationships are then inferred from the routing paths. A path is comprised of

connected ASes and therefore each pair of adjacent ASes in a path corresponds to

an edge in the graph.

The 2002 graph taken from a single RIB (RIB ’02) was inferred from Route Views

on May 15th of 2002. I constructed the 2006 RIB graph (RIB ’06) from the Route
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Views RIB on May 16th of 2006. The RIB ’02 graph has N = 13233 and M = 27724

while RIB ’06 has N = 22403 and M = 46343.

Extending the RIB Dataset There are other sources of AS connectivity data

besides Route Views. RIPE (http://www.ripe.net) has data collected from addi-

tional RIBs beyond those contained in the Route Views data. Peering information

is directly available for a small number of ASes that are participating Looking Glass

(http://www.traceroute.org) routers. Finally, some ASes register their peering rela-

tionships in regional registries such as RIPE. The extended 2002 AS graph (AS ’02)

was constructed using inferred topologies from all three of these sources, together

with the original Route Views data.

RIB data represent a brief snapshot of routing state. There are many paths that

a router sees only briefly, and the chances of capturing all of them from just a few

RIB dumps is unlikely. In the extended AS-graph of 2006 (AS ’06), I augmented

the Route Views RIB data with all of the paths found in BGP update messages

for the entire month of April 2006 from both Route Views and RIPE. This gives a

more complete picture over time, although it is still biased by the limited number of

routers from which the data were collected.

The extended 2002 AS-graph (AS ’02) has N = 13579, M = 37448 and the

corresponding 2006 network (AS ’06) has N = 22688 M = 62637. Thus the extended

data sets have 35% (2002) and 67% (2006) more edges than their RIB counterparts.

Null-model networks

To study the network structures beyond degree distribution I compare the AS net-

work data against a null model with the same degree distribution. The null model is

a random network constrained to have the same degree distribution as the original
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network. By comparing results for the observed networks with the same quantities

for the null model, we can observe additional network structure if it exists. One

way to sample a random network is to randomly rewire an existing graph so that

the degree distribution remains [95]. In my implementation I create a new random

network by enumerating the edges E of the original graph, and for each edge (i, j) I:

1. Choosing another edge (i′, j′) randomly and replacing (i, j) and (i′, j′) with

(i, j′) and (i′, j). If this creates a multi- or self-edge, then I revert to the

original edges (i, j) and (i′, j′), and repeating with a new (i′, j′).

2. Choosing two edges (i1, j1) and (i2, j2) and replacing them along with (i, j′) by

(i1, j
′), (i, j2) and (i2, j1).

Step 2 guarantees ergodicity of the sampling [96], i.e. that one can go between any

pair of graphs with a given set of degrees by successive edge-rewirings.

Generative network models

In addition to the observed (inferred from data) and null-model networks described

above, I also study networks produced according to two previously proposed network-

generation schemes [7, 71]. The first is the well-known the Barabási-Albert preferen-

tial attachment model [7]. The second, known as the Inet model, version 3.0 [71], is

more complex and designed specifically for creating networks with AS graph prop-

erties.

Both models are described in Chapter 2. Because the BA model has only one

integer parameter it is not very flexible at fitting data. In this document, I use

m = 3 to make the average degree as similar to the AS networks as possible. Other

preferential attachment models (e.g., [97]), can model the average degree and slope

of the degree distribution more closely. Such improvements, I believe, are unlikely to
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Figure 5.1: Normalized histograms of vertices with a specific average distance d̄ to
the rest of the vertices. (a) shows curves for the Oregon Route Views data (RIB
’02), extended data (AS ’02), and values for random networks with the same degree
sequences as AS ’02. (b) displays curves for the Oregon Route Views data (RIB ’06),
extended data (AS ’06), as well as randomized networks with the degree sequence of
AS ’06. (c) shows the same AS ’06 curve as (b) along with the BA and Inet model
results for parameter values as close as possible to those of the AS ’06 network. 100
averages were used for the null-model curves in (a) and (b) as well as the model
networks in (c). Lines are guides for the eyes. The error-bars represent standard
error (the point symbols are often larger than the error bars).

change the conclusions of Chapter 5 drawn from the original BA model. I use Inet’s

default parameter settings, except N which I extracted from the datasets, producing

an average degree that is approximately six.

5.1.2 Numerical results

This subsection presents the numerical results of the analysis. I first discuss the aver-

age distance metric for displaying network properties with a radial perspective. Then
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I define and present the results for each network structural measure as a function of

the average distance to other vertices.

Let d(i, j) denote the graph distance between two vertices i and j—the number

of edges in the shortest path between i and j. A simple measure for how peripheral

a vertex is in the network is its eccentricity—the distance to the most distant vertex,

maxj∈V d(i, j) [98]. Eccentricity is thus an extremal property of the network and is

determined by a small fraction of vertices. To reflect the typical path length of a

vertex I rank vertices according to an average property of the vertex. The average

property corresponding to eccentricity is the average distance from one vertex to all

of the others:

d̄(i) =
1

N − 1

∑

j

d(i, j), (5.1)

where the sum is over all vertices, except i, in V . I note that the reciprocal value of

d̄(i), the closeness centrality, is a common measure for centrality in social network

studies [99, 98]. Average distance is a more intuitive measure in this context—

d̄(i) ≈ 2 means that i is on average two hops away from other vertices, whereas the

closeness value 0.5 does not have such a direct interpretation.

Another way to study eccentricity is by iteratively removing vertices of low-

degree to construct a sequence of k-cores (subgraphs in which all vertices have degree

≥ k) [60, 100]. In this study, the average distance metric is used instead because it

measures separation of vertices. Further, because it is a global measure (in the sense

that the entire network topology affects d̄(i) for every i) it is likely more robust to

errors in the input data.

Peering policies do not always allow each router to pick the shortest topological

path to every destination. For instance, a route learned through a customer might

be longer than through a peer-to-peer link but as it would provide revenue, policy

demands that the customer route be used. Therefore the d̄(i) values shown in this
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chapter do not always represent valid routing paths. More accurate measurements

would require relationship information which is difficult to attain because these data

are often treated as proprietary and inferencing methods are inaccurate.

Radial vertex density

The fraction of vertices as a function of d̄ are shown in Fig. 5.1.2. The figure shows

the distribution of d̄ for my data sets and the AS graphs produced by the BA and Inet

models. The observed networks produce graphs that are far from smooth, unimodal

distributions. Instead they have one peak close to d̄ = 3, a smaller peak around

d̄ = 4, and for the 2006 data, a third peak near d̄ = 5. The difference between

the RIB-only and the extended datasets is small, except around the second peak

in Fig. 5.1.2(b) which is higher in the RIB-only data. The null-model curves are

much more unimodal, although they do not follow a simple, smooth functional form.

Such a unimodal form could be a result of the averaging of many null-model curves,

but the observation holds even if single realizations of the randomization are plotted

(data not shown). Thus, the observed AS graph is less homogeneous than what I

would predict by considering only vertex degree.

The two peaks can be interpreted as an effect of the hierarchical organization

of the Internet. The core (Tier-1 providers and other large ISPs) is in the low-d̄

tail, the d̄ = 3 peak are vertices directly connected to the core, and the d̄ = 4

peak are vertices whose closest neighbors are in the d̄ = 3 peak. This explains the

approximately integer distance between the peaks. As expected, the Tier-1 ASes

(AS numbers 209, 701, 1239, 1668, 2914, 3356, 3549, 3561, 6461 and 7018 in the

data sets) have an average d̄ = 2.35± 0.03 in the AS ’02 data and d̄ = 2.41± 0.03 in

the AS ’06 data, and are thus in the center of the network (left of the most central

peak). Thus, the Tier-1 ASes are in the extreme low end of the d̄-spectrum.
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Figure 5.2: Degree k as a function of the average distance d̄. The panels and symbols
represent the same data sets as in Fig. 5.1.2.

Results for the BA and Inet model networks are shown in Fig. 5.1.2(c). The Inet

model has a peak to the left of the middle of the range of distances, but no second or

third peak. The BA model matches the observed network even less accurately—its

peak is at a relatively high d̄ value.

Degree

Degree distribution is now a classical quantity in the study of the Internet topology.

Ref. [67] reports a highly skewed distribution of degree, fitting well to a power-law
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with an exponent around 2.2. Since this finding, the degree distribution has become

a core component in models of the AS graph—both the BA and Inet models as

well as others [68, 69, 70] create networks with power-law degree distributions. One

interpretation of degree is that it is a local centrality measure [98]. Further, different

measures of centrality are known to be highly correlated [101, 102, 103] so one can

expect the average degree k to be a decreasing function of the average distance d̄.

Figure 5.2 confirms this prediction for both the observed and model networks.

In Fig. 5.2(a) and (b) I observe that the k(d̄)-curves decrease dramatically until the

approximate location of the first peak in the distribution plots Fig. 5.1.2(a) and (b).

Therefore, d̄ identifies a natural border between the core vertices of high-degree and

low average distance, and the sparsely connected periphery. The observed graphs,

however, have higher degree in the periphery compared to the null-model curves.

This suggests that the network periphery may have more complex wiring topology

than that is predicted by degree distribution alone. This pattern occurs in the other

network measurements as well.

The Inet model (Fig. 5.2(c)) fails to capture the higher degree (implying addi-

tional complexity) in the periphery. Because the BA model has a minimal degree

of three, it is difficult to compare to the observed networks. However, the decrease

of the k(d̄)-curves at the largest d̄-peak is not conspicuous in the BA model curves.

Thus, there is no clear core-periphery dichotomy in the BA model. This too is not

surprising, because the BA model was designed to produce “scale-free” networks in

the sense of fractals (if one zooms in on any part of system, it looks similar to the

whole).
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Figure 5.3: Neighbor degree K as a function of the average distance d̄. The panels
and symbols represent the same data sets as in Fig. 5.1.2.

Neighbor degree

Degree is a property of individual vertices, with no information about how they are

interconnected. In this sense degree is a measure of local network structure. To un-

derstand the network’s non-local organization [104], one can measure the correlations

of degrees between neighbors in the network. There are three common approaches.

The first, known as assortative mixing coefficient [89], measures the Pearson correla-

tion coefficient for each edge. This provides one number for the entire network and

is thus appropriate for comparisons between networks. The second approach makes

a density plot that displays the fraction of edges with degree (k1, k2). This kind of

72



Chapter 5. Measuring and Modeling the Autonomous System (AS) Level Internet

two-dimensional plot is called a correlation profile [105, 106]. Correlation profiles

provide more detailed information than the assortative mixing coefficient, but they

are less concise and more sensitive to noisy data. The third approach measures

average neighbor degree

K(i) =
1

k(i)

∑

j∈Γi

k(j) , (5.2)

(where Γi is the neighborhood of i) as a function of degree k(i) [97]. All approaches

must be compared to null models because skewed degree distributions are known to

induce negative-correlations [105]. The third approach produces a one-dimensional

plot and thus forms a middle ground between the assortative mixing coefficient and

the correlation profile. It is also a method that can be adapted to the radial-plot

framework—by plotting K against d̄ one can monitor the correlation between cen-

trality and neighbor degree. For the AS-level Internet high-degree vertices are, on

average, connected to vertices of low degree and vice versa [97]. Since degree de-

creases with d̄, one would then expect K to be an increasing function of d̄.

As seen in Fig. 5.3, vertices at intermediate distances have neighbors of highest

degree. The peak in K(d̄) coincides with the largest peak in the histograms found

in Fig. 5.1.2, and the change of slope in Fig. 5.2. This suggests that the periphery is

composed of two levels: the intermediate majority which is primarily connected to

the core, and the extreme periphery that is connected to other periphery vertices.

It is also apparent in Fig. 5.3(a) and (b) that the null-model qualitatively has the

same shape as the observed network; but, just as for degree distribution; neighbor

degree values are larger in the observed networks than the null-model. Also, the Inet

model underestimates the average neighbor degree in the periphery. Finally, the BA

model exhibits less correlation between K and d̄.
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Figure 5.4: Deletion impact φ as a function of the average distance d̄. The panels
and symbols represent the same data sets as in Fig. 5.1.2.

Deletion impact

If a vertex is not actively routing packets due to fault or attack, other vertices might

be affected. I am interested in knowing how susceptible a given network structure

is to random node failures. Assuming that the network is connected, let Si be the

number of vertices in the largest connected subgraph after the deletion of i. I define

the deletion impact as

φ(i) =
N − 1− Si

N − 2
. (5.3)
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This measure can take values in the interval [0, 1]. A value of 0 means that the entire

network, except i, is still connected after the deletion. A value of 1 means that all of

the network’s edges were attached to i and that all of the vertices are isolated after

the deletion.

Fig. 5.4 plots deletion impact as a function of the average distance for the same

data sets as the previous figures. All curves are roughly decreasing. This means that

the network is more sensitive to the deletion of central, than peripheral, vertices. This

observation is anticipated from earlier studies showing that the Internet is vulnerable

to targeted attacks at the vertices of highest degree [107] but robust to random

failures. This is because the majority of vertices have low φ-values. However, the

deletion impact measure can detect more subtle effects in the periphery.

The first peak in the d̄-distribution is, as mentioned above, around d̄ = 3. At

this distance φ has decreased a thousand times from the core where φ ∼ 10−2.

In this quantity I see a substantial difference from the null-model; the peripheral

vertices of the inferred networks have significantly lower deletion impact than the

peripheral vertices of the null-model networks. This, I believe, is another effect of the

high degree of peripheral vertices. The fact that the periphery is relatively highly

connected suggests that there are alternate routes that could be used if a regular

path is obstructed by a vertex failure. In the case of the Inet model, which has very

few vertices of high d̄, the peripheral φ values are quite low because the periphery is

well connected to the core. As expected, φ = 0 for all vertices in the BA model since

all vertices have degree of at least three. The BA model thus produces network that

are more robust to vertex deletion than the observed networks are.
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Figure 5.5: Clustering coefficient C as a function of the average distance d̄. The
panels and symbols represent the same data sets as shown in Fig. 5.1.2.

Clustering coefficient

The clustering coefficient C(i) [108] is another frequently studied network property:

C(i) = M(Γi)
/(

k(i)

2

)

(5.4)

M(X) denotes the number of edges in a subgraph X. The clustering coefficient

measures how interconnected the neighborhood of a vertex is. One interpretation

is that C(i) is the number of connected neighbor pairs rescaled by the theoretical

maximum. C(i) can also be seen as the fraction of triangles that i is a member of,

normalized to the interval [0, 1].
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In Fig. 5.5 I display the clustering coefficient as a function of the average distance.

The curves for the observed graph, null-model, and Inet model networks show a peak

around the same point as the peak in the d̄-distribution. However, the null-models do

not exhibit as high a degree of clustering in the periphery as the inferred networks.

In other words, there are more triangles in the periphery than can be expected from

only the network’s degree distribution. In fact, for 100 null-model networks based on

the AS ’06 network, no triangles existed for d̄ > 3.8 with any vertex having d̄ > 3.8.

This should be compared with 1124 triangles for the AS ’06 network itself (there are

even 83 triangles where all vertices have d̄ > 3.8). This further suggests that the

periphery of the observed AS graphs is complex. As triangles represent redundancy

(the three vertices will still be connected if any one of the edges are cut) this could

help to explain the increased robustness to deletion seen in Section 5.1.2. As seen

in Fig. 5.5(b), neither the Inet, nor the BA model predict a significant number of

peripheral triangles. The low deletion impact values for peripheral vertices in these

models may be attributed to the presence of longer cycles.

Distance balance

In the context of scientific collaboration networks it has been shown [109] that the

number of shortest paths leaving a vertex via a specific neighbor is skew distributed

(asymmetric). In other words, most of the shortest paths from a vertex i to the rest

of the network traverse a single neighbor of i. To rephrase this in terms of the average

distance, central vertices are likely to have few neighbors with smaller d̄ values. This

leads us to another view of centrality. Let the distance balance of b(i) be the fraction

of i-neighbors j with d̄(j) < d̄(i). Clearly one can expect this to be an increasing

function of d̄, but is it a linear increase?

Figure 5.6 plots the distance balance as a function of d̄. As expected, all of the

curves generally increase but not linearly. Almost all the increase from 0 to 1 takes
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Figure 5.6: Distance balance b as a function of the average distance d̄. The panels
and symbols represent the same data sets as shown in Fig. 5.1.2.

place around the highest peak in Fig. 5.1.2, which gives another characterization of

the core and periphery: in the core, the typical vertex has relatively few neighbors of

higher centrality than itself (and vice versa in the periphery). The b(i) values in the

peripheral region of all curves approach values close to 1. In Fig. 5.6(b) the curves of

the observed data are somewhat lower. This supports the previous observation that—

as seen previously in quantities such as degree, neighbor degree, and the clustering

coefficient—the periphery is structurally less different from the core than what can be

expected from random networks constrained to the degree sequence of the observed

networks. As seen in Fig. 5.1.2(c), the Inet model behaves like the null-model—
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the same observation holds for the average neighbor degree (Fig. 5.3) and clustering

coefficient (Fig. 5.5). Unlike the Inet model, the BA model’s curve increases more

smoothly which suggests (in accordance with what has been observed above) a less

pronounced core-periphery structure than the observed networks.

5.1.3 From Measurement to Modeling

This section has discussed a number of statistical measurements (beyond node de-

gree) that can be used to study the AS-graph. The next section builds upon this

work to generate graphs that are shown to be statistically similar to the real AS

graph.

5.2 Modeling the AS-Level Internet

This section describes an agent-based model capable of creating networks similar to

the AS network. Since the actual AS network is difficult to uncover, as discussed

in Chapter 4, it is useful to generate Internet-like networks that can be used to test

protocols are a large number of graphs for validation.

As one of the most complex human artifacts, the Internet is a challenging system

to model. Dynamic processes of different time scales operate simultaneously—from

slow processes, like the development of new hardware to the transport of data, which

often occurs at the speed of light.

These phenomena are to some extent interdependent. Traffic provides income

to the service providers, which is then invested in infrastructure, which can lead to

changes in traffic patterns. This section describes a mechanistic, agent-based model

(ABM) [110] to study how these phenomena interact to produce the macroscopic
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features of the Autonomous System (AS) level Internet. Instead of simply repro-

ducing a macroscopic pattern using statistical fitting or phenomenological models,

mechanistic models specify a set of primitive components (known as agents) and in-

teraction rules that mimic the architecture of the real system. The models are judged

on their ability to generate realistic macroscopic behaviors from these primitive com-

ponents. The goal is to provide a parsimonious explanation of how a system works

by hypothesizing a small set of simple but relevant mechanisms. In this spirit my

model attempts to reproduce large-scale features of the Autonomous System level of

the Internet by modeling localized and well-understood network interactions.

The ASes of the Internet lend themselves naturally to ABM modeling. Each AS

is an economic agent, comprised of a discrete network that can have spatial extent.

Over time, ASes create new links to other ASes, upgrade their carrying capacity,

and compete for customer traffic. The agents in the model described here, behave

similarly, although in simplified way. The model is designed to be general enough

to simulate any spatially extended communication network built by subnetworks of

economically driven agents.

In previous work, Chang et al. showed that incorporating economics and geogra-

phy into the Highly-Optimized Tolerance (HOT) [111] model increases the model’s

accuracy [112]. A related ABM model of the AS graph produces degree distributions

similar to empirical observations [113]. Bar et al. proposed a similar model [114]

that incorporates another aspect of the real Internet—that the agents are spatially

extended objects. My model is similar in scope to this earlier work but differs in the

details, most importantly by adding explicit economics in the form of cost. Other

differences include accounting for population density, simplifying the treatment of

traffic flow, and not assuming a HOT framework. The previous work in this area,

like much research on network models, focuses almost exclusively on degree distri-

butions of the graphs. This subsection compares the model’s output to Internet
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data using several topological measures [85], including degree distributions, as well

as geography and traffic dynamics.

The remainder of this chapter is organized as follows. First, I describe and

motivate the model. Then, I characterize the time evolution, network topology,

correlation between network structure and traffic flow, packet routing statistics, and

geographical aspects of the networks produced by the model. Where possible, I

compare the properties of these synthetic networks to observed data from the Internet

(such as that shown in Section 5.1).

5.2.1 AS Simulation Model (ASIM)

I begin with the fundamental unit responsible for network growth, an agent with

economic interests [115]. These agents manage traffic over a geographically extended

network (which I refer to as a sub-network to distinguish it from the network of ASes)

and profit from the traffic that flows through their network.

This section compares agents to the ASes that comprise the Internet. This is

not an exact mapping—some of the Internet Service Providers (ISPs) have many

AS numbers (e.g., AT&T), while other ASes are shared by several organizations.

ASIM makes the common simplifying assumption that once an agent is introduced,

it does not merge with another agent or go bankrupt [90, 116, 113]. This is partially

justified by the fact that the Internet, from its inception, has grown monotonically,

and the model tries to capture this dynamic. Most models of the AS graph enforce

strict growth [90] as well and are justified by their a posteriori ability to reproduce

measured features.

The model assumes a network user population distributed over a two-dimensional

area. Traffic is simulated by a packet-exchange model, where a packet’s source and

destination are generated with a probability that is a function of the population
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a b c

Figure 5.7: Illustration of the network growth algorithm: (a) shows the locations of
four agents on the geographic grid. These are assumed to be connected by a physical
network administrated by the agent, but this assumption is not explicit in the model.
(b) Example graph resulting from (a). Illustrates that two agents are present in the
same pixel is a necessary, but not sufficient condition for a link to form between the
agents. (c) Illustrates the area that each hypothetical agent can afford to expand to
(the shaded region).

profile. The model is initialized with one agent comprised of a network (a sub-

network in my terminology) that spans one grid location (referred to as a pixel of the

landscape. As time progresses, the agent may extend its subnetwork to other pixels,

so that the sub-networks reach a larger fraction of the population. This creates

more traffic, which generates profit, which is then reinvested into further network

expansion. Through positive feedback, the network grows until it covers the entire

population. This subsection describes the assumptions and most of the details of the

model; the source code is publicly available from www.csc.kth.se/∼pholme/asim/.

An agent i is associated with a set of locations Λi (representing sources or end-

points of traffic, and peering points), a capacity Ki (limiting the rate of packets that

can pass through the agent), a packet-queue Qi, and a set of neighbor agents Γi. A

necessary, but not sufficient, condition for two agents to be connected is that their

locations overlap in at least one pixel. The locations exist on an Lx × Ly square

grid. A pixel of the grid is characterized by its population p(x, y) and the set of

agents with a presence there A(x, y). The total number of agents in the simulation

is denoted by n, and the number of links between agents by m. These quantities,
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except Lx and Ly, depend on the simulation time. The outer loop of the model then

iterates over the following steps:

1. Network growth. The number of agents is increased. Existing agents expand

geographically, and their capacities are adjusted.

2. Network traffic. Packets are created, propagated toward their targets, and

delivered. This process is repeated Ntraffic times before the next network-growth

step.

I measure simulation time τ as the number of times Step 1 is executed (the time

unit between packet movements is 1/Ntraffic). In the remainder of this subsection I

describe the growth and traffic steps in greater detail.

Network growth

The income of an agent, during a time step, is proportional to the traffic propagated

by the agent during the period. This is a simplification. For example, income could

depend both on the amount of traffic and the prices for forwarding the packets set

by business agreements. Assume an agent i has a budget Bi that it invests so that it

can increase its traffic, and thus its profit. Since there is a possibility of congestion

in the model, agent i tries first to remove bottlenecks by increasing its capacity Ki

(the number of packets that the agent can transit during one time step). When the

capacity is sufficient, the agent spends the rest of its budget on increasing its traffic

by expanding geographically. There are three prices associated with network growth.

The capacity price Ccapacity is the price of increasing Ki one unit. For simplicity I let

Ccapacity be independent of the size of the agent’s subnetwork. The wire price Cwire is

the price per pixel between a new location and the agent’s closest existing location.

Finally, Cconnect is the cost of connecting two agents with locations at the same pixel.
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The average degree (number of neighbors of an AS) in the AS graph has been

relatively constant over time [90, 117] (increasing about 5% from 2001 to 2007).2 I

take this as a constraint in the model and let the desired average degree kD be a

control parameter. I also assume that each agent tries to spend all of its budget, but

not more than that, whenever it is updated.

The network growth step iterates over the following steps:

1. Increase of the number of agents. As long as the network is too dense (i.e. if

2m > kDn), new agents are added. New agents are situated in the pixel (x, y)

that has the highest available population p(x, y)/(A(x, y) + 1) where A(x, y)

is the cardinality of A(x, y) and A(x, y) ≥ 1. The budget and capacity of the

new agents are initialized to Binit and Kinit respectively.

If the network is small, n < kD + 1, it is not dense enough for new agents to

be added in step 1. Thus, I do not apply this condition when n is less than a

threshold n0 and call the time when n = n0 is reached t0.

2. Capacity increase. Each agent synchronously increases its subnetwork’s capac-

ity based upon traffic from the last time step (but not more than the agent

can afford). Agent i invests the minimum of (Bi, Ccapacity∆Ti, 0, 0) to increase

capacity (∆Ti is the change in traffic propagated by i since the last update).

3. Link addition. While 2m ≤ nkD (which usually means kD − 1 times), choose

two agents randomly that are not already connected and share a common pixel.

If the budgets of both agents are larger than Cconnect, then connect them.

4. Spatial extension. Let the agents with remaining budget extend their networks.

Iterate through all agents i and add a location at the pixel, not in Λi, that has

2This calculation is based on data from Oregon Route Views, www.routeviews.org.
Although more edges of the AS graph can be identified by combining multiple data sources,
the Route Views data set has been compiled in a consistent way over the years, so I believe
that the relative degree increase is reliable.
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Figure 5.8: Illustration of traffic simulation. (a) A packet is created with source pixel
s and target pixel t with probability proportional to the product of populations at s
and t. One of the agents at the target pixel is randomly chosen as the target agent.
The propagation of the packet is shown in the graph. Each agent i is associated
with a queue Qi and a capacity Ki. When a packet reaches an agent, it is appended
to Qi. Ki packets in the queue are relayed to neighboring agents and i’s budget is
credited one unit. The arrows in (b) symbolize the packet’s route from source to
destination agent. The package is routed to a neighboring agent j with probability
exp((d(i, t)−d(j, t))/λ (where t is the packet’s target, d(·, ·) gives the graph distance,
and λ is a parameter).

the highest available population p(x, y)/(L(x, y) + 1), and is not further than

(Bi − Cconnect)/Cwire from a location in Λi (i.e., not further from i than i can

afford). (See Figure 5.7(b)). Alternatively, the algorithm could select the

point with the lowest cost per unit of population. However, such an algorithm

is computationally prohibitive for studying networks of the Internet’s scale.

Each agent’s budget is updated immediately after each modification.
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Network traffic

I model traffic with a discrete, packet-exchange model [118, 119]. The packets are

generated with specific source and target pixels, but the routing takes place on

the network of agents. I neglect intradomain routing among the agent’s locations,

assuming that the time it takes for a packet to pass through an agent is independent

of the specific locations it visits. The dynamics are defined as follows:

1. Packet generation. I assume that most traffic originates from direct communi-

cation between individuals and does not depend on the distance between them.

For each pair of points [(x, y), (x′, y′)] on the grid, I create a packet with source

(x, y) and destination (x′, y′) with probability Ppkg p(x, y) p(x′, y′), where Ppkg

is a parameter that controls the rate at which new packets are created. Then,

an agent is selected at random from those at the source pixel to become the

source node. The destination agent is randomly chosen from the agents at the

destination pixel. Finally, one unit of credit is added to the sender’s budget.

2. Packet propagation. Each agent i propagates the first Ki packets from its queue

(of length li) each time step and receives one unit credit for each propagated

packet. A packet can travel only one hop (inter-AS transmission) per time step.

A packet at agent i is propagated to a neighbor j with probability exp(λ(d(i, t)−

d(j, t)) (where t is the recipient AS, d( · , · ) is the graph distance, and λ is a

parameter controlling the deviation from shortest-path routing [120] observed

in Ref. [121]).

3. Packet delivery. For all agents, delete all packets that have reached their target.

The assumption in step 1 that the probability of two agents communicating is

independent of their spatial separation agrees with the (somewhat debated) “death

of distance” in the Internet age [122]. I also tested communication rates that decay
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with the square of the distance, as observed in conventional trade firms [123], with

qualitatively similar results. ASIM’s traffic propagation model is simplified from

reality, and it more closely resembles peer-to-peer traffic than user-to-service traffic.

The model also assumes that temporal fluctuations in packet generation are negligible

and ignore peak levels of congestion. Because the economy of the agents grows as

function of accumulated traffic through their subnetworks, average traffic load is a

reasonable approximation. Given the level of abstraction in my model, I believe

these traffic propagation assumptions are reasonable.

Business agreements between ASes are an important factor in BGP [20]. Next

hops are often selected by cost, rather than path length, which inflates the average

path length as shown in [121]. Although inter-AS contractual agreements are not

explicitly included, probabilistic propagation method 2 has a similar effect on average

path length.

5.2.2 Numerical simulations

Parameter values

Before presenting the simulation results, this sub-section describes the experimental

design, and choice of parameters. First, it specifies a population profile p(x, y), pri-

marily modeled from population distributions but one experiment involves a specific

geographic population (U.S.A census data). To simplify the generation of popula-

tion distributions, I neglect spatial correlations and simply model the frequency of

population densities. This frequency has two important features: it is skewed (pix-

els with low population densities are more frequent than highly populated pixels)

and fat-tailed (there are pixels with a population density many orders of magni-

tude larger than the average). One probability distribution with such features is the

power-law distribution Prob p ∼ p−χ. To reduce the fluctuations between different
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Parameter Interpretation Value
Lx = Ly Number of pixels in the x (and y) direction 50
Ntraffic Number of packets sent per simulation step 1× 104

Ppkg Constant to determine packet source and dest. 0.001
n0 Agent growth threshold 35

Kinit Initial capacity of an agent 5
Cwire Price per pixel for new wire 500
Binit Initial budget for a new agent 3× 105

λ Parameter in exponential distribution 75

Table 5.1: Default parameters values for simulation experiments.

realizations of {p(x, y)}, and prevent unrealistically high populations within a pixel,

I sample the power-law distribution in the bounded interval [1, (LxLy)
1/(1−χ)] [124]

with χ = 3. The results do not depend strongly on the distribution of p(x, y). Qual-

itatively similar results are obtained with normally distributed p values and real

population-density maps (data not shown).

In multi-parameter, agent-based models, such as ASIM, a systematic investigation

of the full parameter space is infeasible. Parameters are, if possible, obtained from

real systems. I set the desired degree kD = 5.52, the same average degree reported

in Ref. [85]. Unless otherwise stated, the desired size of the network is nD = 16,000,

which is the same order of magnitude as the current AS graph. Other parameters

are balanced to keep runtime low (less than one day) while still engaging all aspects

of the algorithm. This means, for example, that between every network update,

a significant number of packets are routed through even the smallest agents, and

enough packages to cause congestion pass through larger agents. Unless otherwise

stated, the experiments use the parameter set given in Table 5.1. Many of the

results are taken from a single run, but the results are shown to be representative by

comparing them to 20 other runs.
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Figure 5.9: Time evolution of an example run. In panel (a) the number of agents and
the number of inter-agent links is shown as a function of simulation time. In (b) the
fraction of the landscape with network coverage, and the fraction of the population
reached by the network, is plotted against time. Panel (c) shows the average travel
time 〈τp〉 for packets and the average distance (number of inter-agent hops) in the
network 〈d〉, as functions of the number of agents.

Network Growth

This sub-section studies the growth of the network over time. Fig. 5.9(a) plots the

number of agents and links as a function of simulation time for one representative

run. At τ = τ0 ∼ 4 × 105 the graph is sparser than kD. Initially, the agents spend

their budget on new links and increasing capacity. At τ ∼ 1.5 × 106, the budget of

the wealthier agents is sufficient to invest in wires to new locations (see Fig. 5.9(b)).

This creates new traffic, which causes positive feedback accelerating the traffic flow,

coverage, budget, and also more congestion. At τ ∼ 1.9×106, n(τ) and m(τ) change

from exponential to sub-exponential growth. As seen below, this is also the time when

a significant level of congestion appears in the network. At about the same time,

the network has expanded to serve entire population. With the current model, the

network would continue to grow indefinitely with decreasing returns for the agents. A

plausible extension would be to introduce maintenance costs that are proportional to

network size, in which case the network would reach a steady state where the budgets
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of the agents are balanced and no further investments can be made. For τ & 1.9×106

the increase of n(τ) is slower than exponential. This is explained by the increasing

level of congestion in the system. Figure 5.9(c) plots the average time 〈τp〉 for a

packet to travel from source to destination. 〈τp〉 is bounded from below by the average

distance (number of links in the shortest path, averaged over pairs of nodes) 〈d〉. The

two curves diverge, i.e. a significant level of congestion appears, around N = 1000.

The growth of n(τ) and m(τ) slows down at the same point. The slowing in growth

likely arises from a congestion-driven negative feedback. The most striking feature

of network growth over time is the transition from a small network, almost constant

in size, to a rapidly increasing system (around τ ∼ 1.8× 106). This effect is typical

for technologies emerging from the interactions of a large number of agents—they

need a critical mass of users to reach a significant fraction of the total population.

One can argue that the Internet reached this critical mass in the early 1980’s when

it started to span the globe. Another important point in the Internet’s history

was the advent of the World Wide Web (WWW) in the early 1990’s, and with it

commercial applications and access to the general public. My model does not include

applications, such as the WWW, that undeniably affect network growth. Such effects

could be included by adopting a different traffic model, but for this chapter I aim

at simplicity and generality. In the Internet, ASes growth has been slower than

the exponential increase of agents predicted by the model (bgp.potaroo.net/cidr/;

read January 7, 2008). This discrepancy arises in part because the model does

not assume that maintenance costs are proportional to income. For example, if

maintenance costs grew super-linearly, then negative feedback could dampen growth.

Other external factors, such as the centralized method for allocating and assigning AS

numbers (Internet Assigned Numbers Authority, www.iana.org), might also influence

the actual rate of growth experienced by the Internet.
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Figure 5.10: The degree distribution (cumulative mass function) of a real AS-graph
(AS06) together with degree distribution of a network generated with the model (a),
the BA (b) and the FKP models (c). Panel (d) is a density plot that illustrates the
correlation between traffic and degree in my model runs.

Degree distribution

As discussed in Section 5.1, the AS-graph’s degree distribution appears to follow a

power-law form. In Fig. 5.10(a) I compare the cumulative degree distribution of the

model with that of the Internet’s. The figure shows the model network from the

example run described earlier (taking data from the simulation when N = 16,000),

and the “AS06” network of the previous section. The match between the model and

the real networks is striking. Preliminary studies suggest that the slope of the curve

is largely insensitive to changes in parameter values. The complexity of ASIM raises

the question of what causes this emergent degree distribution. By comparing ASIM

to two simpler models, I provide evidence that this is a combined effect of geographic

and economic factors. The two models are: the Barabási–Albert (BA) model [7] (a

general network model that explains power-law degree distribution as a “rich-gets-

richer” phenomena), and the Fabrikant, Koutsoupias, and Papadimitriou (FKP) [68]
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(explaining how power-law degree distributions can appear from trade-offs in spatial

optimization). Both models are described in detail in Chapter 2.

In Figs. 5.10(b) and (c) I plot the cumulative mass function of degree for one BA

and one FKP network. The model parameter values were chosen to give networks

as close as possible to the real AS-graph (m = 5 for the BA model, α = 4 for the

FKP model, and N = 22,688 for both). The slope of the BA model is steeper than

the real network, and the curve for the FKP-model is flatter than the real data. To

compare the goodness-of-fit, since the curves have a similar range in log pk, I measure

the ratio θ of the area between the curves and the area (in the log pk, log k-space)

spanned by the extreme values of log k and log pk. I find θ = 0.95% for my model,

4.0% for the BA model, and 11% for the FKP model. Although both the BA and

FKP models have been extended to yield better data fits [125, 8], the original forms

of the models illustrate two important components of Internet growth, namely the

rich-gets-richer effect driving the growth of the BA model and the spatial trade-

off effect of the FKP model. A combination of these effects may explain why the

model’s degree distribution, and the curve of the real network, lies between those of

the original BA and FKP models. In ASIM, the degrees of nodes do not directly

affect the creation of new links. However, preferential attachment occurs indirectly

via positive feedback—nodes with large degree acquire more traffic, and thus more

budget which they can reinvest in more connections, thus increasing their degree.

The effect of preferential attachment in the model is shown in Fig. 5.10(d), which is

a plot of the probability density of a node’s traffic load given its degree. Because an

agent’s income is correlated with the traffic that it propagates, and a larger budget

will increase the possibility of creating new links, there is positive feedback between

the degree and the rate of degree increase, i.e. a form of preferential attachment.

Note that the correlation in Fig. 5.10(d) is not linear (the slope is different from the

solid line). It is known that nonlinear preferential attachment does not give a power-

law degree distribution [126] (which I seem to have), so preferential attachment is
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Figure 5.11: Radial statistics for real and model networks. Panels (a)–(c) show the
radial densities of nodes for the real AS-graph and ASIM (a), the BA (b) and FKP
(c) model. Panels (d)–(f) show the average degree vs. average distance d̄ for my
algorithm, the BA, and the FKP model respectively. The data of panels (b), (c),
(e), and (f) are plotted in Ref. [85] as well.

not the only factor affecting the network’s growth. Also, if I had linear preferential

attachment, the slope of P (k) would be the same as the BA model.

Traffic flow and congestion patterns

Section 5.2.2 investigated network topology and its growth. In this subsection I study

traffic flow and how network topology affects it. In the Internet, packets do not

necessarily travel the shortest distances between source and destination. Most im-

portantly, business agreements between agents arrange agents into a hierarchy [115].

The business contracts put constraints on how packets are routed. For example, in

the hierarchy, a packet normally cannot first be routed downwards (to customers),

then upwards (to providers), even if that is a shorter path (this is known as the valley

free rule). Gao and Wang [121] investigated the extra distance d+ packets need to

travel as a result of constraints such as these. They found a decaying probability dis-
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Figure 5.12: Traffic patterns of the model. (a) displays the number of extra steps
d+ in packet navigation in the real Internet compared to my model. Panel (b) shows
the probability density of agents having betweenness CB and traffic density ρ. The
data is collected from twenty independent runs.

tribution of d+, meaning that most of the traffic actually travels via shortest paths.

ASIM does not have explicit business agreements that force hierarchical routing first

into the core of the network and then out again. However, in most graphs a vast

majority of shortest paths pass through a restricted core of the graph [127], and my

traffic model routes most traffic via short (if not the shortest) paths. The d+ dis-

tribution of my model (shown in Fig. 5.12(a)) matches the observation of Gao and

Wang [121] (θ = 8.1%).

Investigate the relationship between graph centrality and traffic density can reveal

how congestion and fluctuations affect routing [118]. If all agents have sufficient
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capacity for packets to always route along shortest paths, then traffic density along a

link l will be proportional to its betweenness centrality (also used to measure country

centrality in Chapter 6)

CB(l) =
∑

i,j

σl(i, j)
/ ∑

i,j

σ(i, j) (5.5)

where σl(i, j) is the number of shortest paths between nodes i and j passing through

the link l, and σ(i, j) is the total number of shortest paths between i and j. If an

AS is congested, the traffic through its links will be lower than anticipated by the

betweenness of the edge. Thus, congestion patterns can be illustrated by studying

betweenness and traffic load. Fig. 5.12(b) is a density plot of the actual traffic density

as a function of betweenness of the links of the model network. For more central

nodes (higher betweenness), there is a strong correlation between betweenness and

traffic density—the vertices with CB ≈ 4×105 spans half a decade of ρ. For the more

peripheral nodes the correlation is less clear (vertices with CB ≈ 5 × 104 can have

ρ-values of almost three orders of magnitude). Indeed, there seems to be a separation

of agents into two classes, one comprised of agents with the capacity to keep traffic

flowing and another with inadequate capacity. For links of low betweenness the

traffic/betweenness correlation is weak. To summarize, congestion does affect the

system, and it is most pronounced for nodes carrying little or intermediate traffic

levels.

Geographic structure

I briefly discuss the spatial network structure—another feature that emerges from

the model. As an example, I ran the simulation on the population density profile of

the United States. In Fig. 5.13(a)–(d) I show the growth of the largest agent for a run

with nD = 20, Lx = 513 and Ly = 323. Lines are drawn between each node (pixel)

and the agent’s nearest node at the time of the node’s addition. In this representation
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Figure 5.13: Spatial expansion of a single agent with the US population density as
model input. The simulation parameters are the same as the rest of the subsection,
except nD = 20, Lx = 513 and Ly = 323. Panels (e) and (f) represent the points of
presence of AT&T and Sprint within the United States. These data were adapted
from Ref. [128].

the length of the lines are proportional to the wire cost. Fig. 5.13(e) and (f) plot the

locations of Tier 1 exchange points of two major Internet providers Sprint and AT&T

(adapted from Ref. [128]). There are some similarities between these real networks

and the model network of Fig. 5.13(d)—all networks span the whole continent and

have locations concentrated in urban areas. In Ref. [129] the authors observe a super

linear scalig relationship between the density of servers and the population density

with an exponent between 1.2 and 1.7. The model is consistent with this observation

(with an exponent in the lower range of this observation). Studying spatial aspects

of the model more carefully is an area of future research.
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5.3 Summary

This chapter investigated how vertex-specific network measures of the AS level Inter-

net vary with the average distance from a vertex to the other vertices of the graph.

This projection of vertices to the space of average distances gives a picture of how the

network structure changes from the most central to the most peripheral vertices. Us-

ing the distance separation measure I find that there is a well-defined core-periphery

dichotomy in the inferred networks. To some extent this can be explained as an effect

of the set of degrees of the network—I notice that the average degree as a function

of the average distance has the same qualitative form for the observed networks as

the BA and FKP networks. However, the periphery is more complex than what is

predicted by degree alone. This is manifested in higher average degree, higher aver-

age neighbor degree, lower deletion impact, higher clustering coefficient, and lower

distance balance than the observed networks. To summarize, the AS graph has a

more clear split into a core and a periphery than can be anticipated by its degree dis-

tribution and simple models of scale-free networks. At the same time, the split is less

dramatic and more nuanced than expected from a strict hierarchy. The additional

network structure in the periphery may have consequences for spread of attacks and

methods to defend against attack. Further, the two topology generators (Inet and

BA model) that I tested could be extended to model the periphery more accurately.

I used two kinds of observed AS data—easily accessible router RIBs and more

complete data sets where edges missing from the RIBs are added. The effect of the

missing edges is clearly visible: the peripheries of the RIB-networks (with missing

edges) have lower average degree, lower number of triangles, and other traits. On

the other hand, the missing links do not change the network structure qualitatively.

My conclusions would be unchanged if I used only the RIB data. This suggests that

though my datasets are incomplete, the addition of the edges yet missing might not

significantly effect the network structure.
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In this chapter I also presented a mechanistic model of AS networks that, like

the AS-level Internet, are comprised of spatially extended subnetworks that have an

interest in increasing the traffic running through them. My model networks grow

slowly until they reach a critical mass where an approximately exponential growth

begins; they match the degree distribution of real networks and the radial statistics

closely. The degree distributions of both the model and the real world lie between the

distributions of the pure BA and FKP models. Because ASIM incorporates aspects

of both the BA and FKP models I hypothesize that this macro-feature arises from

the combination of preferential attachment (of the BA model) and geographically

constrained optimization (of the FKP model). ASIM recreates important traffic

characteristics observed in real Internet traffic. And, when I run the model on the

US population density map many features of the backbone of existing large agents

are recreated.

The different aspects of the model (traffic, geography, and economy) all affect

the output. In this chapter I did not scrutinize the model’s parameter dependence,

although preliminary studies suggest that the speed of growth (quantified by e.g.

the time to reach the critical density) is strongly dependent on both the wire and

attachment prices, the population density profile (a more clumped population dis-

tribution produces faster growth), and their desire to communicate. On the other

hand, network topology is rather insensitive to the population distribution, and also

not very dependent on how sources and destinations are generated (e.g., introducing

a distance dependence does not matter much). The actual layout of the network,

however, does depend on the population profile.
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Nation-State Routing

Internet routing is typically studied at the Autonomous System (AS) level. This is

by design. Traditionally, ASes control their own internal networks and set their own

policies for the routing, filtering, and monitoring of traffic, placing policy in the hands

of the organizations that own them. Recently, groups of ASes have begun to act under

common policies, issued by their country’s government. Examples include Internet

censorship [10], wiretapping [130], and protocol-deployment mandates [131, 132]. For

instance, Chinese, British, and Pakistani ISPs are required (or strongly encouraged)

to filter content deemed socially offensive. Although censoring techniques differ, all

three countries are known to block traffic at the IP level (e.g., by filtering based on IP

addresses and URLs in the data packets, or performing internal prefix hijacks [133,

134, 9]), which could affect the international traffic they transit. Some countries,

such as the United States and Sweden, wiretap international traffic, where even

encrypted traffic is vulnerable to traffic-analysis attacks [135]. Finally, governments

can attempt to force the deployment of protocols, such as the deployment of IPv6

and DNSSEC in federal agencies of the United States.

It is unclear what effect any particular country’s current or future policies could
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have on the rest of the Internet. Typically, censorship is applied to prevent domes-

tic users from reaching disagreeable content. However, some censorship techniques

(such as filtering based on IP addresses or URLs) may affect all traffic traversing

an AS and future policies might specifically require that international traffic is fil-

tered. In addition, ASes might intentionally, or accidentally as in the recent YouTube

outage [134], apply censorship policies to international traffic. How many networks

outside of the country would be prevented from viewing Web pages simply because

their traffic traverses one of these networks? Which international traffic is vulnerable

to warrantless wiretapping by the United States or Sweden? And, finally, how feasi-

ble is it to avoid directing traffic through a given country with objectionable policies

by using alternative routes?

To answer these questions, this chapter measures the aggregate effect of national

policies on the flow of international traffic, rather than analyzing individual ASes in

isolation. This chapter takes initial steps toward understanding interdomain routing

at the nation-state level. I am particularly interested in understanding the influence

that each country’s ASes have over reachability between other countries. The result-

ing data and measurement techniques could be useful to many communities. First,

those regions of the world with strong dependencies on particular countries could

use these results to guide changes in how they connect to the rest of the Internet.

Second, overlay networks (such as Resilient Overlay Networks [136]) could use these

results to determine how best to circumvent specific countries, helping to ensure that

data are delivered intact, and avoid snooping. Third, these results would be helpful

to policy makers to understand what impact their decisions could have on the global

Internet.

There are two primary challenges in this work. The first is to define suitable

metrics for quantifying the importance, or centrality, of each country to Internet

reachability. The second is to accurately infer the data needed to compute these
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metrics, and validate them. I adapt the betweenness centrality metric from statistical

physics as a first approximation of country centrality. Betweenness centrality is

typically used as a naive traffic estimator at each node in a graph. However, in

Section 6.3 I show how betweenness centrality can be adapted to estimate the impact

each country has on reachability between other countries, defining country centrality

(CC).

The metrics take as input the country-level paths between each pair of IP ad-

dresses in the Internet. This is a significant challenge because of the many levels

of inference required to produce a country-level interdomain path. First, ASes se-

lect routes using the Border Gateway Protocol (BGP) [11], which chooses routes

based on undisclosed routing policies, rather than simply using the shortest path.

Fortunately, this is a well-studied problem and several inference algorithms exist for

inferring AS-level routes, discussed in Chapter 2. A second challenge arises because

an individual AS may span many countries. This leads us to consider routing at the

IP prefix level, which requires understanding how packets traverse each AS. Finally,

each path must be converted to a country-level path by mapping IP addresses to

prefixes, and then prefixes to countries (e.g., using routing registry data). There is a

risk of introducing significant, and possibly compounding, error in each step of the

process. Section 6.4 gives empirical evidence that the centrality metric is robust to

the measurement noise, and that the results are meaningful.

Inference techniques allow us to estimate the centrality of each country, where

CC values range from 0 (implying no influence) to 1 (the theoretical maximum).

The results show that countries known for censorship, such as Great Britain, China,

Australia, and Iran, have CC values of 0.29, 0.07, 0.07, and 1.12e-05 respectively.

These results suggest that of the countries that censor Internet traffic only some

could have significant impact on global routing. In particular, the countries that have

received the most publicity for their censorship, such as China, have significantly less
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impact on international traffic than, say, Great Britain, which also censors traffic. I

also show that the United States and Sweden (nations known to permit warrantless

wiretapping) have CC values of 0.74 and 0.02; even if ASes actively prefer BGP

routes that avoid the United States, the CC value only drops from 0.74 to 0.55.

The chapter is organized as follows. In the next section I briefly discuss the cor-

rect granularity for measuring country paths. In Section 6.2 I describe the Country

Path Algorithm (CPA) for inferring country-paths from a pair of source and des-

tination IP addresses. The algorithm has several stages, as it must first infer the

interdomain path, then intradomain paths, and finally determine the country path.

Next, Section 6.3 reviews betweenness centrality and presents two extensions for

measuring a country’s influence over global reachability. These metrics take as input

the global measurements produced by the CPA. Section 6.4 applies the metrics to

sample data sets of traceroutes and AS paths, as well as inferred paths between all

known IP prefixes. This helps validate that the metrics are robust to inference error.

I also present initial results characterizing the data produced by the CPA. Finally, I

summarize the project in Section 6.5.

6.1 The Appropriate Granularity for Analyzing

Country-Level Paths

For the experiments it is necessary to infer all of the country-paths between each pair

of IP addresses. Since IP addresses are allocated to ASes, one option is to determine

the country-paths between each pair of ASes and use that information to determine

all paths between each pair of IP addresses. One immediate problem is that some

ASes span more than a single country. A second issue is that in many cases there are

multiple paths between two ASes, depending on where traffic enters the AS and on

102



Chapter 6. Nation-State Routing

Figure 6.1: Example AS topology with AS paths. Paths 1 and 2 both route between
the same pair of ASes (A and B), but their AS paths are different, depending on the
destination prefix. The same AS path can also have distinct country-level paths, for
example paths 1 and 3.

the destination prefix in question. For example, in Figure 6.1 AS A uses path 1 to

reach prefix 1 at AS B, but uses path 2 to reach prefix 2 at the same destination AS.

AS B might split its traffic like this to balance its traffic load between two providers

(ASes C and E).

A second possible approach would cluster together prefixes with the same AS

paths between AS pairs, and infer a path for one prefix from each cluster. This

is known as a BGP Atom [137, 138]. Although this approach can enumerate the

best AS-paths between AS pairs, it does not encompass the full diversity of country-

level paths. Two destination prefixes with the same AS path may have different

underlying country-level paths. For instance, in Figure 6.1 AS paths 1 and 3 are

the same, however they terminate in different countries (United States in path 1

Australia in path 3).

After ruling out the first two approaches, I resorted to inferring the country-level

paths between each pair of IP prefixes, the finest level of measurement available.
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traceroute =

C1

︷ ︸︸ ︷

ipsrc, ip2, ip3,

C2

︷ ︸︸ ︷

ip4, ip5, ip6,

C3

︷︸︸︷

ipdst

traceroute = ipsrc, ip2
︸ ︷︷ ︸

AS1

, ip3, ip4, ip5,
︸ ︷︷ ︸

AS2

ip6, ipdst
︸ ︷︷ ︸

AS3

Country-path Inference Algorithm: (ipsrc, ipdst)→ (AS1, AS2, AS3)→ (C1, C2, C3)

Figure 6.2: Traceroutes, AS-paths, and country paths. A traceroute is the list of
IP addresses of the routers that a packet traverses from ipsrc to ipdst. Each router
belongs to an AS, and each router is in a country C. The Country Path Algorithm
takes a source and destination IP address as input, infers the interdomain AS-path
between the two addresses, and then infers the country-path between them.

There are over 290,000 prefixes in today’s routers, resulting in over 84 billion country

paths that need to be inferred and analyzed. I also studied all of the available

alternate paths from one prefix to another, resulting in more than 220 billion country

path inferences that needed to be performed. The large size of the inference problem

places significant constraints on the inference algorithm’s complexity. For instance,

simply running Dijkstra’s shortest path algorithm to determine the intradomain path

of each AS in each path is too slow.

6.2 The Country Path Algorithm

The metrics described in Section 6.3 analyze country-level paths to determine which

countries can potentially interfere with the communication of others. In this section

I present the Country Path Algorithm (CPA) for inferring the country-level paths

between any two IP addresses. There are two steps to the procedure. The first

infers the interdomain path between the addresses, and the second step predicts the
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country-path from the AS-path. I use a slightly modified version of Qiu et al.’s [64]

AS-path heuristic for the first step which is described in 6.2.1, and introduce the first

country path predictor in the second step, presented in 6.2.3. An overview of the CPA

algorithm is shown in Figure 6.2. The AS-path to country-path heuristic requires

information about known traceroutes and their corresponding AS-paths and country-

paths as input. I show how to infer these paths from a traceroute in Subsection 6.2.2.

6.2.1 Prefix Pair to AS-path

The first step in the country path algorithm is to map prefix source/destination pairs

to their appropriate AS paths. Of the recent AS-path inference methods [64, 58, 65,

66], only Qiu’s provides prefix-level predictions and is fast enough for my needs.

A Modified Version of Qiu’s Heuristic

1: KnownPath(p, G, prePaths):
2: while queue.length > 0 do

3: u ← POP(queue,0)
4: for all v ∈ peers(u) do

5: Pu ← ribIn(u)[p][0]
6: if legitimatePath((v)+Pu) then

7: tmppath ← ribIn(v)[p][0]
8: update ribIn(v)[p] ← with (v) + Pu

9: sort(ribIn(v)[p])
10: if tmppath = path(v)[p][0] and v ∈ queue then

11: append(queue,v)
12: return ribIn

Figure 6.3: Pseudo-code of Qiu’s inference algorithm. Line 6 was modified to prop-
agate paths to pre-determined ASes.

Qiu’s heuristic simulates the propagation of BGP routes across an AS topology,

as if each AS had a single router. The propagation model is a simplified model of
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1: ComparePath(P1 = (u, v1, ...), P2 = (u, v2, ...)):
2: if P1.ulen 6= P2.ulen then

3: return P1.ulen - P2.ulen
4: if |P1| 6= |P2| then

5: return |P1| − |P2|
6: if P1.freq 6= P2.freq then

7: return P2.freq - P2.freq
8: return P1 − P2

Figure 6.4: Pseudo-code of Qiu’s path comparison heuristic. Lines 2-4 have been
switched with lines 5-7 from the original algorithm.

the actual BGP protocol. In it, each router selects its best path to the destination

prefix after receiving a route announcement, and propagates the path to its neighbors

(obeying the valley-free rule) if its best path has changed. The largest contribution

that her work made was to include known BGP paths from routing table dumps

(known as RIBs) to improve the accuracy of the heuristic. Essentially, ASes are

primed with known paths for each prefix at the beginning of the algorithm. Then,

as the paths are propagated, paths that are the fewest hops from a known path are

given preference.

As an optimization, ASes that start the algorithm with primed paths, need never

process new paths from their neighbors. Qiu’s algorithm includes this optimization,

and primed ASes never learn of alternate paths. My centrality metrics require a

list of all possible alternate paths for each AS to each prefix as well as the best

path. This is needed to estimate the ability of networks to route around (or avoid)

particular countries using alternate paths. Therefore, I modified Qiu’s algorithm to

propagate paths to all ASes, even those that were primed with a known path. My

changes to the original algorithm, are shown in Figures 6.3 and 6.4. The purpose of

the alterations is to predict alternate paths, not to increase the algorithm’s accuracy.

In the validation section I show that the changes appear to have no significant effect

on the predictive accuracy of the algorithm.
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Pre-processing the Data

Qiu’s algorithm takes four data sets as input: a list of known BGP routes, a topology

of known ASes, the edges between ASes, and the economic relationship of each edge. I

retrieved the first RIB of 2009 (BGP routing table) from RouteViews [139] and RIPE

RIS servers [28]. In total there are paths for 290,691 prefixes. I randomly divided the

routes in half, into a testing and training set. To prevent overlap between the data

sets, all routes from each observation point are kept together, and all observation

points in the same AS are also kept together.

A topology was extracted from each set of routes, as well as a large topology from

the combined set. The training set topology has 29,580 vertices (ASes) and 68,396

edges while the total set has 29,607 vertices and 77,683 edges.

The edges of the topology must be labeled as one of customer-provider, peer-peer,

or sibling-sibling (two AS numbers that represent the same network). I implemented

the relationship inference algorithm described in [14] and labeled the edges of the

topologies with the results. In total, the testing topology has 6,616 peer-peer edges,

61,037 customer-provider edges, and 743 sibling-sibling edges. The total topology

has 12,623 peer-peer edges, 64,050 customer-provider edges, and 1,010 sibling-sibling

edges.

Validation

To ensure that my implementation of the heuristic was working correctly, I down-

loaded RouteViews and RIPE RIBS from the beginning of 2005, which is close in

time to the data used for Qiu et al.’s original paper. I split the data into testing and

training sets proportional in size to the data sets used in [64] (I used the RIPE data

for training, and tested on the RouteViews data), and then fed the testing topology

and paths as input to the heuristic for prediction of paths in the testing set. The
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heuristic was able to predict 60% of the testing paths, exactly as stated in the orig-

inal paper. This shows that the alterations had little effect on the algorithm, and

suggests that my implementation is correct.

On the 2009 data set, the algorithm is able to predict the exact path found in

the training set of the RIB correctly 54% of the time. However, the exact path is

often in the routing table (80% of the time), but not selected as the best path.

These results suggest that the inferred routing table of each AS is relatively

accurate, however the best path is not reliably selected. I return to this point in

Section 6.3 and show experimentally that the heuristic is accurate enough for this

chapter’s reachability analysis.

6.2.2 Mapping Traceroutes to AS and Country Paths

The next step is to map an AS-path into a country-path. This requires information

about known country-level paths and their respective AS-paths. This sub-section

describes how country-level and AS-level paths can be extracted from traceroutes,

and the next section shows how the data can be used to infer country-level paths.

Challenges

Traceroutes show the router-level path between two IP addresses. By converting

the routers’ IP addresses to countries, the countries that a packet traverses can be

determined.

There are many impediments to this process. First, a router can mask its exis-

tence in traceroutes by not decrementing packet TTLs. I assume that this is rare.

A router could also be configured not to respond to traceroutes, which happens rel-

atively frequently (e.g. MPLS routers). Such traceroutes are incomplete, but useful
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information can still be extracted from them.

The next challenge is to understand the location (country and AS) of each IP

address found in the traceroutes. IP addresses are allocated to ASes by the regional

routing registries (ARIN, RIPE, AFRINIC, APNIC, and LACNIC). Each regional

registry publishes a database of allocated IP space, the ASes they were allocated,

and the country of the organization. Once allocated, it is up to the ASes to update

the registry databases of any changes. For instance, if an ISP delegates a portion

of its prefix to a customer AS, that customer should be registered for the particular

sub-prefix. This is not always done, and the registries are known to be incomplete

and often inaccurate [30, 140].

Algorithm and Data

I collected traceroutes from the iPlane project [54] on December 17th, 2008. The

data set contains roughly 26 million traceroutes, that were collected from 198 obser-

vation points (the majority of which are PlanetLab [141] nodes), with an average of

133,580 traceroutes each.

To convert the traceroutes to country-paths, I first had to obtain registry infor-

mation for each IP address in the traceroutes. Team Cymru [142] keeps track of

registry allocated prefixes and associated country code and AS mappings. For each

IP in the traceroutes (as well as each prefix in the RIBs), Team Cymru’s server was

queried to obtain the country code. In the case that the lookup failed, or that the

response was vague, such as “EU” (Europe) or “AP” (Asia Pacific), a normal whois

request was run (version 4.7.27) country and AS information were extracted where

possible (whois responses vary, some contain more information than others). The

only tweak to the data was to replace the Hong Kong country code with China since

they are now the same country. In total, I was able to determine a specific country
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code for 99% of the IPs found in traceroutes.

Validation

To verify the accuracy of the IP to country code and AS lookups, I compared the

results to known ASes and countries for particular routers. One method of extracting

the actual location of a given router is to extract it from its DNS hostname. For in-

stance, the router with hostname, 143.ATM3-0.XR2.LAX2.ALTER.NET, is located

in Los Angeles, which is in the United States. Two projects have developed host-

name to location heuristics, RocketFuel’s undns [143] and the sarangworld project

[144], and the iPlane project has applied them to the routers in the traceroute data

set. The locations were further verified by the iPlane project by timing analysis and

known topology information.

For each IP address that was resolved to a country and AS using undns and

sarangworld (9% of IPs in the traceroutes), the values were compared to my infered

data from routing registries. I found that I could correctly infer the country of a

router 96% of the time, and the AS 92% of the time. The verification suggests that

the data sets are accurate enough for the AS Path to country-path heuristic.

6.2.3 AS-path to Country-path

The last piece of the IP address pair to country-path algorithm involves inferring

a country-path from an AS path. In total, the final algorithm takes a pair of IP

addresses as input, determines their longest matching prefixes (like a routing table

lookup), finds the best inferred AS path between them, and finally uses the algorithm

in this sub-section to infer the countries along the path.
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Challenges

It is difficult to infer intradomain routes. The name, Autonomous System, reflects

the fact that an AS has complete control over its intradomain network. It can use

whatever protocols it likes, even experimental ones, with its own policies, to deter-

mine how packets traverse its own network. This makes it difficult for an outsider to

determine how a packet might route through an AS. Common intradomain protocols

(e.g. OSPF [145] and IS-IS [146]) typically choose the shortest path between any

two points in the network. One difficulty is that the definition of shortest path can

change between networks. For some networks, a short path might be low latency,

where for others it might be one that follows a high-bandwidth path.

Since I am provided with an inferred AS path as input, the next step is to

determine where the route will enter (ingress router) and exit (egress router) each

AS. A simply heuristic for finding the exit router might be to find the nearest router

to the ingress router that is connected to the next hop AS. But again, nearness is

not well defined.

Finally, the algorithm has to be fast enough to infer a country-path for 220 billion

paths (number of prefix pairs times the average number of available paths, or average

node degree) in a reasonable amount of time. Performing Dijkstra’s shortest path

across large ASes with tens of thousands of routers billions of times is simply too

slow, and most AS paths include at least one AS of that size.

The Algorithm

This sub-section presents a linear time (relative to the size of the AS path) algo-

rithm to infer country-paths from AS-paths. The insight of the algorithm, similar to

Qiu’s AS-path algorithm, is to use known intradomain paths as often as possible.
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ipsrc, ip2
︸ ︷︷ ︸

AS1

, ip3, ip4, ip5,
︸ ︷︷ ︸

AS2

ip6, ipdst
︸ ︷︷ ︸

AS3

Figure 6.5: Example annotated traceroute. ipsrc, ip3, and ip6 are AS ingress points,
and ip2 and ip5 are AS egress points.

1: predictCountries(AS-path):
2:
3: for each ASN in the AS-path do

4: if (a known ingress point exists for the next ASN from this ingress) then

5: Select countries and next ingress point from known-ingress
6: else if (a known ingress point exists for the next ASN from this ASN in this country)

then

7: Select most frequented ingress point (and corresponding country path)
8: else if (a known ingress point exists for the next ASN from this ASN) then

9: “”
10: else if (a known ingress point exists for the next ASN from this country) then

11: “”
12: else if (a known ingress point exists for the next ASN) then

13: “”

Figure 6.6: Pseudo-code of AS-path to country-path prediction

The algorithm is broken down into two phases, initialization, and path inference.

In the initialization phase, the (traceroute, country-path, AS-path) triples of known

data are parsed for two particular features. First, each AS’s ingress point is stored,

relative to the ingress point of the previous AS in the path. For instance, Figure

6.2.3 shows an example triple in which I learn that when AS2 is entered at ip3, and

AS3 is the next AS, with ingress point ip6. Therefore, when AS path AS2, AS3 is

seen in the future, and AS2 was entered at ip3, then I infer that ip6 is AS3’s ingress

point and will have the country-path inferred from ip addresses ip3, ip4, ip5,and ip6.

To increase accuracy, the algorithm looks two ASes ahead to determine the next AS’s

ingress point. For instance, when AS1 is entered at ipsrc and AS2 and AS3 are next,
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then the algorithm infers that ip3 is the ingress point to AS2. This information is

stored in a hash table, referred to as the known-ingress table.

There will not be a value in the known-ingress table for every combination of

ASes and ingress points. Therefore, it is sometimes necessary to to guess ingress

points for the next AS. To aid in guessing, the initialization algorithm also keeps

track of the frequency of each AS’s ingress points. For instance, the algorithm might

learn that ip3 is the ingress point for AS2 75% of the time, or 50% of the time when

coming from an AS in Canada, or 90% of the time when coming from anywhere in

AS1. The algorithm keeps track all of these frequencies, and their relationships to

previous ASes and countries.

The prediction algorithm is shown in Figure 6.6. For each AS in the AS path,

it searches the known data for the current context (e.g. next AS, current country,

current ingress point), progressively becoming less specific, until a match is found.

A match provides information about the next ingress point and the list of countries

between the current and next ingress points. This proceeds until the final ingress

point is found. At which point, the country of the destination prefix is appended to

the country-path and the path is returned.

Validation

To validate the algorithm, I selected roughly 1.4 million complete traceroutes from

the testing set in which every router along the path were determined, the country and

AS are known for each router, and the source and destination IP addresses are from

different countries. Then, I initialized the prediction algorithm with the training

set and predicted country paths for the test routes. The algorithm predicted the

exact set of countries 78% of the time. Another way of comparing the agreement

of predicted results to the known set of paths is to take the intersection of the sets
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Figure 6.7: Betweenness centrality. The middle node does not have the greatest
degree, but it is along the greatest number of shortest paths.

over the union Predicted∩Actual
Predicted∪Actual

, as seen in [66]. The agreement between the predicted

paths and the actual paths is 92%, suggesting that when the predictor is wrong, it

is usually close.

6.3 Reachability Metrics

There are many ways to quantify the importance (or centrality) of a node in a

network. Network centrality is a well studied problem [147, 148, 149] in statistical

physics that has recently been applied to the AS-level Internet [85, 150, 151]. In

this section I discuss the betweenness centrality metric, which is a centrality metric

adapted for this chapter’s experiments. From betweenness centrality, two metrics for

measuring the centrality of a country at the BGP level are derived.
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6.3.1 Background on Betweenness Centrality

The simplest centrality metrics measure the degree of a node and the average shortest-

path distance from a node to any other in the network. More advanced metrics, such

as betweenness centrality, directly incorporate the importance of a node to network

routing.

Betweenness centrality is an estimator of the importance of a node for commu-

nication flow in a network. It assumes that traffic flows equally along the shortest

paths between two points, that each node has unit traffic, and that each node’s traffic

is uniformly distributed to the other nodes. It then estimates how much traffic flows

through each node with the following formula:

Betweenness(υ) =
∑

s 6=υ 6=t∈V

s 6=t

σs,t(υ)

σs,t

where σs,t is the number of shortest paths between s and t and σs,t(υ) is the number

of shortest paths between s and t that transit through υ. Nodes that transit a lot

of traffic have higher betweenness values than those that transit little. Figure 6.7

depicts an example network in which the middle node has the highest betweenness,

even though four nodes have greater degree.

If each pair of nodes in the network had a single shortest path between them,

then the betweenness centrality of a node could be interpreted as the number of

shortest paths that pass through the node. In a network like the Internet, there

are typically many shortest paths between two nodes. When multiple shortest paths

exist, betweenness centrality splits the traffic equally among the shortest paths (by

dividing it by σs,t). A node’s betweenness centrality then represents the total amount

of traffic it transits, given the stated assumptions.
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6.3.2 Country Centrality

In this study, I am interested in determining each country’s influence over global

reachability. This is not the same as determining how much traffic a country transits.

Although a country might transit 50% of all Internet traffic, that does not necessarily

imply that 50% of country-pairs rely upon that country to communicate with one

another. But, traffic estimates can still be useful for determining influence over

reachability.

Because I am concerned with global reachability, I assume that all countries

are equally important, and wish to communicate with one another uniformly. The

goal of this chapter is to determine how much influence each country has over the

communication paths. This can be thought of as a traffic estimation problem in

which all countries have unit traffic, and all countries split that traffic equally to

each destination. Then, to determine influence, I measure how much traffic each

node transits. This is similar to the problem that betweenness centrality tries to

solve.

There are three significant differences between country centrality and betweenness

centrality. The first is that in country centrality, network nodes are countries, and

each country is comprised of many prefixes. Traffic is propagated between prefixes.

Second, the path between a pair of prefixes is not the shortest path, but instead the

best country-level path inferred by the CPA. The final difference is that prefixes can

be of varying size. A prefix 12.0.0.0/8 has 224 IP addresses while 192.168.0.0/16 has

216 IP addresses. Since I assume that each country has unit traffic, I then assume

that each prefix in a country sends and receives traffic proportional to its fraction of

the country’s total IP address space.

The above differences are addressed with the Country Centrality metric. In

Country Centrality, the σ function is changed to work on the best inferred path
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between prefixes instead of shortest path between vertices. Next, the algorithm

is changed to sum over all of the prefixes for each country, and weight each path

according to its prefix size. The CC value of a country υ can be determined with

the following formula:

CC(υ) =
∑

s 6=υ 6=t∈V

s 6=t

∑

ρs∈Ps
ρt∈Pt

(Wρs
Wρt

) σρs,ρt
(υ)

where υ is a country, Ps is the set of prefixes for country s, and Wρs
is equal to ρs

’s fraction of country s’s prefix space |ρs|
P

pi∈Ps
|ρi|

. Here, the function σρs,ρt
(υ) equals

the number of best paths between ρs and ρt that transit country υ. Since there is

only one best country path between each pair of prefixes in this function, σ is either

1 or 0. If each country had a single prefix, then the CC value of υ would be the

number of shortest paths that transit υ, which represents the number of country-

pairs that transit υ to communicate. Since countries have many prefixes, and traffic

between prefixes is proportional to prefix size, a country’s CC value represents the

total amount of traffic that it transits, given the stated assumptions.

To simplify CC values, they are presented in this dissertation as normalized values

from [0, 1] by dividing them by the sum of traffic (with end-points other than the

country itself) that it does not transit. Therefore, a value of one is the theoretical

maximum value, suggesting that the country transits all traffic for every country pair.

Similarly, a value of zero suggests that the country has no influence on reachability.

6.3.3 Strong Country Centrality

The CC metric estimates reachability influence based upon the best path between

each pair of prefixes. BGP routers typically have multiple available routes to select
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from for each destination. Therefore, it is possible that a country in the best path

could be avoided by using an alternate path. For example, a network operator might

intentionally try to avoid routing through a particular country, because it is known

to filter or wiretap their data. In this subsection, I try to understand how central

countries are when alternative routes are considered.

I consider a country to be strongly central to two prefixes if all of the available

paths between them include the country. Once a router selects an alternate path,

that change is propagated throughout the network, potentially changing the tables

of thousands of other routers. Rather than attempt to measure all of the possible

network states when alternate routes are selected, the algorithm looks at a snapshot

of the network’s state, and determine how hard it is to avoid a country given each

router’s currently available paths. The resulting measure is called the strong country

centrality SCC (SCC) metric.

SCC(υ) =
∑

s 6=υ 6=t∈V

s 6=t

∑

ρs∈Ps
ρt∈Pt

(Wρs
Wρt

) τρs,ρt
(υ)

In the SCC measure, τρs,ρt
(υ) is 1 (strongly central) when all all available paths

from from ρs to ρt include υ, otherwise it is 0. Once normalized, a value of one

suggests that a country is completely unavoidable for all paths of all country-pairs.

A SCC value should be strictly less than or equal to the same country’s CC.

6.4 Country Centrality Results

This section quantifies the influence that countries have on Internet reachability.

It begins by determining country centrality (CC) values from the incomplete view

given from the raw traceroute and BGP paths described in Section 6.2. Then, I test
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the algorithm for mapping prefix pairs to country-paths by using the same prefixes

seen in the traceroute set, but with the inferred country-paths that provide a more

complete view of the Internet topology. This experiment shows that my metrics

are robust to the error introduced in the paths. Finally, this section infers country-

paths between all pairs of prefixes and report on the CC and SCC values for the

highest-ranked countries and countries known for pervasive censorship.

6.4.1 Analysis on Directly Observed Paths

To start the analysis, I focus on statistics computed directly from the paths observed

in the raw traceroute and BGP data. These paths are directly observed by some

source, reducing the possibility of inference errors. However, these data sets provide

only a partial (and potentially biased) view of paths through the Internet, depending

on the locations of iPlane monitors (mostly PlanetLab nodes) and the vantage points

where publicly-available BGP feeds are collected. In addition, these raw data sets do

not provide information about alternate paths, required for computing Strong CC

(SCC).

Computing the CC value of the traceroute data set was straight-forward—I sim-

ply converted the traceroutes into country-paths using the method described in Sec-

tion 6.2.2, and fed those paths into the algorithm for computing the CC metric. The

results for the top 20 countries are listed in the “TR” column of Table 6.1. Similarly,

for the BGP data, I inferred country-paths for each of the AS paths in the routing-

table dumps described in Section 6.2. These results are listed in the “BGP” column

of Table 6.1. (Notice that the sum of the CC values can be greater than one since

multiple countries can lie on the same path.) The top five countries are the same in

both data sets; the remaining 15 countries in the table are mostly the same, though

slightly rearranged as one might expect given how close their values are.
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TR BGP
United States 0.335762 (1) 0.349493 (1)
Great Britain 0.240520 (2) 0.187967 (2)
Germany 0.149530 (3) 0.165787 (3)
Netherlands 0.079117 (4) 0.070454 (4)
France 0.059566 (5) 0.061420 (5)
Sweden 0.049587 (6) 0.013672 (15)
Hungary 0.042618 (7) 0.036281 (7)
China 0.033759 (8) 0.045443 (6)
Canada 0.033422 (9) 0.034070 (8)
Italy 0.032357 (10) 0.025297 (10)
Japan 0.024164 (11) 0.016592 (14)
Denmark 0.022172 (12) 0.165787 (21)
Russia 0.019994 (13) 0.023872 (11)
Singapore 0.017008 (14) 0.032938 (9)
Spain 0.016551 (15) 0.013413 (16)
Austria 0.016277 (16) 0.011704 (17)
South Africa 0.014977 (17) 0.002211 (20)
Australia 0.010235 (18) 0.007424 (12)
Serbia 0.007689 (19) 0.007488 (19)
Norway 0.006837 (20) 0.006769 (22)

Table 6.1: Country Centrality (CC) computed directly from traceroute (TR) and
BGP paths. Numbers in parenthesis represent the country’s position in the TR
column.

The results show that three countries—the United States, Great Britain, and

Germany—have high CC values, while many of the commonly mentioned countries

that employ censorship (e.g., China and Iran) have relatively little influence over

global reachability. European countries are heavily represented in the table, includ-

ing some countries with higher rankings than I expected—such as the Netherlands,

Sweden, and Hungary. I suspect that the relatively large number of (small) countries

in Europe cause a large number of European countries to rely on other countries in

the same region for connectivity to the rest of the Internet. In addition, these results

may be, at least in part, an artifact of the incomplete perspective of the raw tracer-
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oute and BGP data; as seen in the next section, these three countries drop somewhat

(although not dramatically) in the ranking when I use the more complete, inferred

paths.

6.4.2 Validation of Inference of Country Paths

The CC results from the raw traceroute and BGP data, while interesting, represent

only a tiny sample of the Internet’s country-paths. Still, these data sets are useful for

validating the country-path inference technique. The validation experiment compares

the CC results of real country-paths (directly mapped IP addresses to countries) to

inferred country-paths (country-paths inferred from only the source and destination

IP addresses). The inference algorithm was trained on the training sets of traceroutes

and BGP RIBs. Then, I used the primed country-path inference algorithm to infer

paths between the (source,destination) IP address pairs in the testing traceroute set.

It is possible that the testing traceroute may have a source IP from an AS in the

RIB training set. The algorithm would then have a known AS-path to infer, which

would invalidate the experiment. To prevent such overlap from affecting the results,

I ignored such traceroutes in the experiment.

I plot the results of the inferred paths against what are believed to be accurately

inferred “real” country-paths in Figure 6.8. Both axis are log scaled to show the

countries with low centrality in greater detail. Ideally, the data points would reside

along the dotted x = y line, suggesting that the CC of the real paths and inferred

paths are the same. Many of them, especially the larger values, are close to that

line. There are only a few extreme outliers, and they have relatively low CC values.

I produced a least squares linear fit of log(x) vs log(y). It is plotted as a solid line,

and has slope 0.94, with an R2 of 0.84. This experiment leads us to believe that

while there is inference error, the CC measurement is robust enough to the CPA
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Figure 6.8: Actual versus Predicted Country Centrality. Predicted Country Central-
ity (CC) (log-scaled y-axis) is plotted against the actual CC for the same countries
(log-scaled x-axis). Because there are so many small values, the data is fit in log(y)
vs log(x) space to prevent overfitting the large values. The least squares linear fit is
a solid line and the ideal x = y line is dashed.

noise that the resulting values are meaningful.

6.4.3 Analysis on More Complete Country Paths

Because the inferred results match the CC values of the real paths so well, I inferred

the entire set of country paths between all 290,682 routable prefixes found in the

collection of RIBs. The country-path inference algorithm was trained on the full

traceroute and RIB data sets. In total, the computation took two days to run when

spread over 14 processors. all countries, sorted by their CC values. Not surprisingly,

the vast majority of countries have very small CC values. I list the top 20 countries

in the ranking in the “CC” column in Table 6.2. The list of countries has a significant

overlap with Table 6.1. The top five countries are the same, with just France (#4)

and the Netherlands (#5) swapped in ranking between the two lists.
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Figure 6.9: Country Centrality (CC) on more complete, inferred country-paths.
Countries are displayed on the x-axis, sorted by their CC values, and CC values
are displayed on the y-axis.

Surprisingly, the U.S. has a significantly higher CC value in Table 6.2—nearly

double the CC value in Table 6.1. I suspect that this is caused by the sampling bias

in the traceroute and BGP data sets. For instance, the incomplete data sets likely

under-sample some countries (such as those in South America) that often rely on the

United States for reachability to the rest of the Internet. This disparity points out

the importance of having a more complete view of country paths.

Next, I investigate the Strong CC (SCC) of each country. This is an estimate of

the difficulty in circumventing a given country, even if alternate routes are used. The

results are shown in the “SCC” column of Table 6.2. The table shows that the top

three countries have high SCC values, suggesting that they are hard to avoid even

using alternate paths. I also show the top 10 CC and SCC countries in Figure 6.10.

Not surprisingly, the U.S. is especially difficult to avoid, especially for countries (e.g.,

in South America) that connect directly to the U.S. for connectivity to the Internet.
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CC SCC
United States 0.740695 (1) 0.546789 (1)
Great Britain 0.294532 (2) 0.174171 (2)
Germany 0.250166 (3) 0.124409 (3)
France 0.139579 (4) 0.071325 (4)
Netherlands 0.128784 (5) 0.051139 (5)
Canada 0.104595 (6) 0.045357 (6)
Japan 0.072961 (7) 0.027095 (11)
China 0.069947 (8) 0.030595 (10)
Australia 0.066219 (9) 0.037885 (8)
Hungary 0.064767 (10) 0.023094 (14)
Singapore 0.063522 (11) 0.043445 (7)
Italy 0.047068 (12) 0.027088 (12)
Spain 0.043248 (13) 0.025370 (13)
Russia 0.043228 (14) 0.035191 (9)
Austria 0.024632 (15) 0.010501 (17)
Sweden 0.023350 (16) 0.009785 (19)
South Africa 0.019294 (17) 0.013778 (15)
Denmark 0.015684 (18) 0.008101 (21)
Serbia 0.014935 (19) 0.012312 (16)
Switzerland 0.013302 (20) 0.003865 (35)

Table 6.2: Country Centrality (CC) and Strong Country Centrality (SCC) computed
using inferred country paths

Finally, I consider the countries that are known for significant censorship. When

Internet censorship is discussed, China, Iran, Saudi Arabia, and Pakistan are com-

monly mentioned as countries that filter Internet traffic. According to the OpenNet

Initiative [152], these four countries along with eight others partake in pervasive traf-

fic filtering. The CC values of each of these countries is shown in Table 6.3. Aside

from China (with a CC of 0.07), these countries appear to have very little influence

over global reachability. I was initially surprised to see that South Korea has a rela-

tively low CC value (0.004), given the significant penetration of the Internet in the

country. However, the large deployments of broadband connectivity for end users

need not relate to whether Korean ISPs play an important role in transit service for
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Figure 6.10: Strong Country Centrality (Zoomed). The top 10 countries (in terms
of CC value) are displayed on the x-axis, sorted by their CC values. The CC values
are displayed on the y-axis. The squares represent the Strong CC values of each
respective country and have the same scale as the CC data.

other countries.

6.5 Summary

As government control over Internet traffic becomes more common, many people will

want to understand how international reachability depends on individual countries

and to adopt strategies either for enhancing or weakening the dependence on some

countries. The work presented in this dissertation is an initial step towards providing

the algorithms and tools that will be needed to understand and manage nation-state

routing.

In particular, I discussed the problems associated with understanding routing

patterns at the country level, which is the level at which most censorship and wire-
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CC SCC
China 0.069947 (8) 0.030595 (10)
Vietnam 0.007087 (30) 0.003916 (34)
South Korea 0.003548 (44) 0.001044 (54)
Saudi Arabia 0.003286 (47) 0.001722 (49)
U.A.E. 0.000839 (65) 0.000541 (63)
Pakistan 0.000274 (81) 0.000265 (74)
Iran 1.12e-05 (105) 9.48e-06 (101)
Yemen 1.06e-07 (131) 7.50e-08 (130)
Oman 2.64e-08 (138) 2.64e-08 (133)
Myanmar 0 0
North Korea 0 0
Sudan 0 0
Syria 0 0

Table 6.3: Country Centrality and Strong Country Centrality values of countries
with pervasive censorship. Countries with 0 values were not found to transit any
international traffic.

tapping policies are mandated. I then described algorithms and data sources to infer

country-level paths from traceroute probes and AS-level BGP data, and I validated

those algorithms against different samples of the same kinds of data. Next I discussed

metrics for comparing the relative importance of different countries in current routing

topologies. Finally, I used the algorithms to infer a country path between each pair

of IPv4 prefixes and then applied the metrics to the paths to obtain initial results.

It is not surprising that the results show the dominance of the U.S. at the country

routing level. However, other countries appear to have either more or less importance

than one might expect. For example, both Great Britain and Germany are second

only to the U.S. in centrality, while Japan, China, and India are only 8th, 10th,

and 32nd respectively. Collectively, these results show that the “West” continues to

exercise disproportionate influence over international routing, despite the penetration

of the Internet to almost every region of the world, and the rapid development
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of China and India. Beyond what the results tell us about the Internet today, I

see the methods described in this dissertation as helping network designers, policy

makers, and researchers better understand the likely impact of national policies on

user privacy and the access to politically or socially sensitive content.
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Future Work and Conclusion

It is surprising that the Internet is so vulnerable to disruption, given its economic and

social importance. In part, this is because existing security proposals rely upon global

deployment before they can offer significant security gain. This dissertation measured

the Internet’s structure, modeled it, and exploited its redundant connectivity at the

AS-level to develop a distributed security solution for the BGP routing protocol.

After discussing future work in Section 7.1, I discuss the dissertation’s contributions

and conclude in Section 7.2.

7.1 Future Work

The work presented in this dissertation could be continued in many directions. First,

the soft-response mechanism introduced in Pretty Good BGP could be used to secure

other network protocols, such as DNS. DNS servers and clients do not ensure that

the IP addresses that they have for each domain name are legitimate. This might

allow a rogue DNS server to misdirect clients towards malicious destinations. For

instance, a bank’s website might be impersonated in order to steal user’s passwords.
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The principle of trusting stable information, as found in PGBGP, could be applied

to DNS. Therefore, if a bank’s stable IP address is changed, it could be considered

an anomaly. And, as a soft response, both the trusted IP address and the anomalous

IP could be returned in a DNS response for twenty four hours. Clients could then

be configured to use the anomalous IP only if the trusted IP does not work.

The BGP security work could also be extended towards discovering optimal de-

ployment techniques. For instance, it would be useful to know what the minimal

necessary deployment of a security solution might be to protect routing or DNS. My

simulator, BSIM, could be used to help answer this question.

Next, many interesting extensions of ASIM are possible. For example, the model

could include business agreements between the different agents (similar to Ref. [116,

113]), or change the traffic patterns from person–to–person communication to a situ-

ation with more traffic originating from central servers. I could also model intra-AS

routing. Many of today’s ASes employ “hot-potato” routing and transfer packets

to the next AS as quickly as possible, to reduce cost. Alternative intra-AS routing

strategies, such as routing the packet as close to the destination as possible, could

be tested within the model’s framework.

Finally, my exploration of nation-state routing introduces many new opportuni-

ties for research. First, there are several potential sources of bias in the data sets I

used, which could potentially impact the results. It is believed that the Internet’s

topology is significantly larger than what can be observed in BGP RIBs [153]. For

example, peer-peer connections are only visible to customers of the peers (due to the

valley-free rule) and are thus difficult to find [154]. Fortunately, it is believed that

customer-provider edges are well represented in the observed RIBs. The topologies

that I extracted from the RIBs support these suppositions. As shown in 6.2.1, the

number of peer-peer edges increases by 90% between the testing set and the total

set while customer-provider edges only increased by 5%. Peer-peer edges typically
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have less impact on routing than customer-provider edges, since only the down-

stream customers of the two peers can route through peer-peer edges. In addition,

I suspect that peer-peer edges, for the most part, arise between ASes in the same

country, or at least the same small geographic region (e.g., between two countries in

Europe), which would also limit their influence on the international flow of traffic

through the Internet. Still, the missing edges could have impact on the results of

my measurements. To test this, I plan to run the algorithms on multiple inferred

and generated [155, 86] topologies, including traceroute measurements collected from

larger number of vantage points [156].

Beyond the question of bias, I would also like to study the evolution of country

centrality over time. It has been suggested that the United States transits a smaller

fraction of total traffic than in the past. It would be interesting to know if the

United States has also become less central in terms of reachability, and if so why.

Which countries are becoming more central over time and which less so? It would

also be interesting to know how my results would change if I incorporated more

realistic models of interdomain traffic [157]. A more long-term question involves un-

derstanding the economically-driven strategies that single countries or small groups

of countries could adopt, either to enhance their own centrality or to reduce the

centrality of other countries (e.g., such as overlay routing). There may also be other

network measures that are of interest. Deletion impact or measures that incorporate

some component of traffic are two obvious directions.

Finally, it would be interesting to study the paths of domestic traffic. What frac-

tion of domestic paths (those that have a source and destination within the same

country) are actually routed through another country? Answering this question

would provide insight into the influence that foreign nations have over a country’s

domestic routing and security, and would shed light on a question posed in [130] con-

cerning whether warrantless wiretapping on links connecting one country to another
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might inadvertently capture some purely domestic traffic. The framework developed

in this dissertation could be extended to address that question.

7.2 Concluding Remarks

This dissertation explored Internet security from a distributed perspective. First, it

introduced Pretty Good BGP (PGBGP). PGBGP is the first BGP security proposal

that could provide significant security to early adopters. It is an anomaly detector

coupled with a soft-response mechanism that has provable security guarantees. I

built a reference implementation of Pretty Good BGP, and it is currently used to

warn hundreds of network operators around the world of routing misconfigurations

and attacks.

Further, this dissertation explored the Internet’s structure at the AS-level. I

presented a new generative model of AS-like graphs, ASIM, which could be used to

test new network protocols. ASIM produces graphs statistically similar to the real

AS-graph both in degree distribution as well as from the radial perspective.

Finally, it was shown that Autonomous Systems sometimes act in unison, en-

forcing policies dictated by governments (such as censorship and wiretaps). This

dissertation introduced a framework for analyzing the Internet at the country level,

in order to better understand how much influence each country has over Internet

reachability.
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